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1  |  INTRODUC TION

A major aim of evolutionary quantitative genetics is to measure and 

understand heritable genetic variation, and to explain the mainte-

nance of that variation in the face of natural and sexual selection 

and genetic drift (Walsh & Lynch, 2018). One way that research-

ers have tried to answer these questions is by conducting long- 

term ecological studies of natural populations (Charmantier et al., 

2014; Kruuk et al., 2008). There are now several studies, mostly of 

vertebrates, where individual life- histories of entire cohorts have 

been collected for several decades, spanning 10s of generations 

of the focal organism (Clutton- Brock & Sheldon, 2010). Typically, 

the pedigree of the population has been determined, allowing re-

searchers to use either (i) quantitative genetics (Kruuk, 2004) and/

or (ii) gene mapping approaches (Slate et al., 2010) to study how se-

lection and evolution have shaped diversity. Both approaches have 

led to genuine breakthroughs in our understanding of how genetic 

variation and selection have combined to shape biodiversity, but 

they also both have limitations (especially when applied to natural 

populations). Proponents of both approaches are aware of these 

limitations, and they are actively seeking solutions (Charmantier 

et al., 2014).
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Abstract
Genomic prediction, the technique whereby an individual's genetic component of their 

phenotype is estimated from its genome, has revolutionised animal and plant breed-

ing and medical genetics. However, despite being first introduced nearly two decades 

ago, it has hardly been adopted by the evolutionary genetics community studying wild 

organisms. Here, genomic prediction is performed on eight traits in a wild population 

of Soay sheep. The population has been the focus of a >30 year evolutionary ecology 
study and there is already considerable understanding of the genetic architecture of 

the focal Mendelian and quantitative traits. We show that the accuracy of genomic 

prediction is high for all traits, but especially those with loci of large effect segregat-

ing. Five different methods are compared, and the two methods that can accommo-

date zero- effect and large- effect loci in the same model tend to perform best. If the 

accuracy of genomic prediction is similar in other wild populations, then there is a real 

opportunity for pedigree- free molecular quantitative genetics research to be enabled 

in many more wild populations; currently the literature is dominated by studies that 

have required decades of field data collection to generate sufficiently deep pedigrees. 

Finally, some of the potential applications of genomic prediction in wild populations 

are discussed.
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The most obvious limitations of a quantitative genetics approach 

are that (i) the loci explaining trait variation cannot be identified, and 

(ii) several generations of data have to be collected before pedigree- 

based analyses are possible. Genomic solutions to understanding 

heritable genetic variation also suffer from problems. Whether con-

ducting pedigree- based linkage mapping or a pedigree- free genome- 

wide association study (GWAS) it is hard to find quantitative trait 

loci (QTL) that reach strict genome- wide statistical significance, and 

in linkage mapping the effect sizes of reported QTL are almost cer-

tainly substantially overestimated (Slate, 2013; Slate et al., 2010). 
GWAS studies of wild populations have had some notable suc-

cesses, although usually only when large effect loci are segregat-

ing (Comeault et al., 2014; Johnston et al., 2011). Because linkage 

mapping or GWAS studies require very high statistical significance 

thresholds (p < 1 × 10−7 is not uncommon) to distinguish true posi-

tives from false ones, they are biased towards detecting causal loci 

of large effect. If a trait is polygenic then much of the genetic vari-

ation will remain unmapped. The most (in)famous example of this is 

human height, where in a sample size of ~one- quarter of a million 

people, 697 genomewide significant loci only explained 16% of the 
heritability (Wood et al., 2014). Studies of natural populations typ-

ically involve sample sizes of hundreds, or at most, a few thousand 

individuals, and therefore statistical power to detect loci of medium- 

small effect is low; for an excellent example see (Kardos et al.,2016). 

The problem may be exacerbated if phenotypes are hard to measure 

in the field or if environmental heterogeneity is a further source of 

phenotypic variation. Put simply, even in the longest- running studies 

in the wild, the power to detect most causal genes is very low. This 

makes it impossible to describe trait architectures or to understand 

the relationship between genotypes and phenotypes. How then, can 

evolutionary quantitative geneticists use genomics tools to under-

stand and predict the genetic architecture and microevolution of 

their focal traits?

One possible solution to the low power/high polygenicity prob-

lem is to switch focus away from the hunt for individual significant 

loci, and instead try to understand the genetic component of pheno-

typic variation by using information from all of the typed SNPs. Two 

conceptually different approaches can be taken. The first involves 

running an “animal model” with the genetic relationship matrix esti-

mated from markers rather than a pedigree. It was recognised sev-

eral decades ago, before the necessary genotyping technology was 

available, that allele- sharing at markers could be used to estimate 

relatedness between pairs of individuals, and that relatedness coef-

ficients could then be regressed on phenotypic similarity to predict 

heritabilities (Ritland, 1996; Ritland & Ritland, 1996). As genotyp-

ing technology improved, methods using marker- based relatedness 

became more tractable. In fact, marker- based approaches are po-

tentially more accurate than pedigree- based methods because the 

realised relatedness between individuals rather than the expected 

relatedness can be estimated e.g. (Hayes et al., 2009; Visscher 

et al., 2006). Using a genomic relationship matrix (GRM) estimated 

from marker data, it is possible to estimate quantitative genetic pa-

rameters in a mixed model best linear unbiased predictor (BLUP) 

framework (VanRaden, 2008); that is, to perform genomic best 

linear unbiased prediction (GBLUP). GBLUP has been used to esti-

mate trait heritabilities in natural populations (Bérénos et al., 2014; 

Robinson et al., 2013; Santure et al., 2013; Silva et al., 2017), humans 
(Yang et al., 2010) and agriculturally important organisms (VanRaden 

et al., 2009). An extension of the model, where the GRM is estimated 

from a subset of markers, has been used to partition genetic variance 

into specific parts of the genome, e.g. in chromosome- partitioning 

(Visscher et al., 2007) or regional heritability mapping (Nagamine 
et al., 2012) studies.

In addition to providing estimates of parameters such as a trait's 

heritability, individual breeding values can also be estimated from 

GBLUP models. For a historical background and accessible summary 

of these developments see (Hill,2014). An assumption of GBLUP is 

that the distribution of all of the marker effects are sampled from a 

single normal distribution; in other words, all markers explain some 

of the variation and the trait is highly polygenic. Of course, this as-

sumption is unrealistic— many quantitative traits are highly polygenic, 

but not all of the markers will contribute to phenotypic variation. 

Furthermore, traits with nonpolygenic architectures are frequently 

of interest to breeders, medical geneticists and evolutionary ge-

neticists studying natural populations. A potential improvement on 

GBLUP methods then, is to use methods that can accommodate dif-

ferent genetic architectures. This is achievable with a second major 

approach, whereby marker effects are estimated, and can come 

from more than one (not necessarily normal) distribution. The ap-

proach was first described almost 20 years ago (Meuwissen et al., 

2001), and has since revolutionised animal and plant breeding (de 

los Campos et al., 2013). The concept is deceptively simple. Usually 
two steps are involved. In a first stage, marker effects are estimated, 

usually by Bayesian MCMC methods, in a “training population” of 

individuals with known phenotypes that are typed at many markers. 

Next, another panel of individuals with unknown phenotypes (the 

“validation” or “test” population) is genotyped at the same markers, 

and their genomic estimated breeding values (GEBVs) are predicted 

from their genotypes and the previously estimated effect sizes of 

each marker. The approach works, provided that the markers are in 

sufficiently strong linkage disequilibrium (LD) with the unknown loci 

that cause trait variation. If marker density is sufficiently high that 

adjacent markers are in LD with one another, then they should also 

be in LD with unknown causal loci. All of the approaches for esti-

mating genomic breeding values from phenotypes and marker data 

have collectively become known as genomic prediction (and their 

application in breeding programs, as genomic selection). In medi-

cal genetics a similar approach, termed the polygenic risk score, is 

frequently used to predict phenotypes or disease risk (Wray et al., 

2013). The main distinction between genomic prediction and poly-

genic risk scores is that the latter usually only uses SNPs that surpass 

a certain (usually quite stringent) significance threshold in a GWAS, 

rather than all available SNPs (Khera et al., 2018). This is only possi-

ble because studies of humans often involve hundreds of thousands 

of subjects, and therefore there is power to detect multiple causal 

variants of small effect. In wild populations that is unrealistic, so this 



    |  3ASHRAF et Al.

manuscript focuses on genomic prediction rather than polygenic risk 

scores.

Meuwissen et al. (2001) described two Bayesian genomic pre-

diction models, Bayes A and Bayes B. In Bayes A, the marker effects 

are all nonzero, but are drawn from a scaled- inverse χ2 distribution, 

allowing some markers to have large effects. In Bayes B, there are 

two distributions of marker effects, with a proportion of markers 

assumed to have zero effect and the remainder with effects drawn 

from a scaled- inverse χ
2 distribution. Following the development 

of Bayes A and Bayes B, further refinements, such as the marker 

effects coming from different types of distribution, have been 

made (Gianola, 2013; Habier et al., 2013). Methods that are flexi-
ble enough to capture different genetic architectures are potentially 

the most useful (Daetwyler et al., 2013). For example, methods that 
model marker effects as a mixture of different distributions can ac-

commodate large and small effect loci (Erbe et al., 2012; Zhou et al., 

2013). However, the main principle of using a training population to 
estimate marker effects, which are then used to predict phenotypes 

in a genotyped test population is common to all of these methods.

The accuracy of genomic prediction can be estimated by cor-

relation between GEBV and phenotype, divided by the square root 

of the heritability (Meuwissen et al., 2013). Accuracy depends on a 
number of factors such as the heritability (h2) of the trait (Daetwyler 

et al., 2008; Goddard, 2009; Hayes et al., 2009), the training popu-

lation sample size (Habier et al., 2013; Meuwissen et al., 2001), the 
marker density (Habier et al., 2009; Meuwissen & Goddard, 2010), 

the underlying genetic architecture (i.e., number and effect size of 

loci) of the trait (Daetwyler et al., 2010) and the statistical approach 

used (Crossa et al., 2010; Daetwyler et al., 2013; de los Campos 
et al., 2013; Meuwissen et al., 2001). Empirical investigation of these 
factors on genomic prediction accuracy have been described in the 

animal and plant breeding literature (Hayes, Bowman, et al., 2009; 

Hayes et al., 2010; Heffner et al., 2011; Zhao et al., 2012).

While genomic prediction has become a widely used tool in an-

imal and plant breeding, it remains rare in quantitative evolution-

ary genetics studies of wild populations (but see Bosse et al., 2017; 
Gienapp et al., 2019; McGaugh et al., 2021; Stocks et al., 2019), 

even though there are a number of long- term longitudinal studies 

where suitable phenotypic and genomic data have been collected. 

Therefore, the main motivation of this study was to investigate the 

feasibility and accuracy of genomic prediction in a wild population 

of Soay sheep that has been the focus of a long- tern study since 

1985. Previous genetic studies of Soay sheep (Bérénos et al., 2015; 

Gratten et al., 2007, 2010; Johnston et al., 2011) have demonstrated 
that some phenotypes have a simple Mendelian basis (e.g., coat co-

lour, coat pattern), others are highly polygenic (e.g. adult weight), and 

some are intermediate with many genes of small effect and a small 

number of loci with quite large effect contributing to genetic varia-

tion (e.g., horn length). Thus, a second aim of the study was to assess 

the accuracy of genomic prediction in different types of trait. Finally, 

the third aim of the study was to compare the accuracy of different 

genomic prediction methods (Daetwyler et al., 2013; de los Campos, 
Hickey, et al., 2013; Meuwissen et al., 2013). Thus, we compared five 

different methods: (i) GBLUP, (ii) BayesA & (iii) BayesB -  the models 

first introduced by (Meuwissen et al., 2001), (iv) Bayesian Lasso -  a 

model similar to GBLUP and BayesA in the sense that it assumes all 

SNPs explain some variance and (v) BayesR -  a model that assumes 

SNPs either have zero effect or come from a mixture of >1 Gaussian 

distribution, potentially with some large effect loci.

2  |  MATERIAL S AND METHODS

2.1  |  Study population

The Soay sheep is a primitive feral breed that resides on the St Kilda 

archipelago, off the NW of Scotland. Since 1985, the population on 

the largest island, Hirta (57°48′N, 8°37′W), has been the subject of a 
long- term individual based study (Clutton- Brock et al., 2004). Briefly, 

the majority of the sheep resident in the village Bay area of Hirta are 

ear- tagged and weighed shortly after birth and followed through-

out their lifetime. Ear punches and blood samples suitable for DNA 

analysis are collected at tagging. Every year during August, adult 

sheep and lambs are captured and morphological measurements are 

taken. Winter mortality is monitored, with the peak of mortality oc-

curring at the end of winter/early spring, and ca. 80% of all deceased 
sheep are found. To date, extensive life history data have been col-

lected for over 10,000 sheep. Field work was carried out according 

to UK Home Office procedures and is licensed under the UK Animals 

(Scientific Procedures) Act of 1986 (licence no. PPL60/4211). More 

details of the natural history of the study system can be found else-

where (Clutton- Brock et al., 2004).

2.2  |  Genetic data

Genotyping of the population was performed using the Illumina 

Ovine SNP50 beadchip array, developed by the International Sheep 

Genomics Consortium (ISGC) (Kijas et al., 2012). Genotyping was 

performed at the Wellcome Trust Clinical Research Facility Genetics 

Core (Edinburgh, UK). Details about the genotype calling and qual-

ity control of the data are available elsewhere (Bérénos et al., 2014, 

2015; Johnston et al., 2011, 2016). Briefly, pruning of SNPs and in-

dividuals was performed using plink v 1.9 (Chang et al., 2015). SNPs 

were retained if they had a minor allele frequency of at least 0.01, 

a call rate of at least 0.98 and a Hardy- Weinberg equilibrium test 

p- value >.00001. Individuals were retained if they were typed for 

at least 0.95 of SNPs. Only autosomal SNPs were analysed, as most 

genomic prediction software cannot distinguish between autosomal 

and sex- linked loci; the sheep X chromosome represents ~5% of the 
total genome. Pruning was performed on a per- trait basis to ensure 

consistency of cutoff values between traits. Because SNP pruning 

was performed on a per- trait basis, the proportion of SNPs retained 

after pruning varied slightly between traits (fewest SNPs = 35,885 
for coat colour and coat pattern; most SNPs = 36,437 for horn 
length).
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2.3  |  Phenotypic data

We studied phenotypic data collected for eight different traits: fore-

leg length (n = 1126), hindleg length (n = 1139), weight (n = 1168), 

metacarpal length (n = 890), jaw length (n = 897), horn length 
(normal- horned males only; n = 472), coat colour (n = 4737) and coat 
pattern (n = 4737). An aim of the study was to investigate whether 
comparisons between the alternative genomic prediction methods 

were sensitive to the underlying genetic architecture. Therefore, 

we chose to study traits that had been the focus of previous gene 

mapping studies and were known to have variable architectures 

(summarised in Table 1). Among the body size traits, foreleg length, 

hindleg length, weight and horn length were measured on live ani-

mals, whereas metacarpal length and jaw length were taken from 

cleaned post- mortem skeletal material. Coat colour and coat pat-

tern are independent discrete traits that are recorded at the time 

of capture and remain fixed throughout life (Clutton- Brock et al., 

2004; Gratten et al., 2007, 2010). Further details of how the mor-
phological traits are measured can be found elsewhere (Bérénos 

et al., 2014, 2015; Johnston et al., 2011). Analyses of live- capture 

morphological data were restricted to animals captured in August, 

that were at least 28 months old, to remove most complications of 

growth and give consistency with previous genetic studies of these 

traits (Bérénos et al., 2014, 2015). Male horn length included meas-

urements taken outside of August, as many males are captured and 

measured during the rut in November. Post- mortem measurements 

were likewise restricted to animals who were at least 28 months old 

when they died.

2.4  |  Modelling nongenetic effects

The quantitative traits being investigated are known to vary be-

tween sexes and age classes and are influenced by environmental 

effects (Bérénos et al., 2014). Because some of the software being 

tested does not allow the inclusion of repeated measurements 

or fitting of random effects, it was necessary to fit models with 

nongenetic effects prior to performing the genomic prediction. 

Therefore, mixed effects models were run that adjusted pheno-

types for fixed effects (sex and age of the animal) and non- genetic 

random effects (birth year, capture year and animal identity). 

Traits recorded on live animals had repeated measurements, so 

individual identity was fitted to remove any permanent environ-

mental effect on phenotype. Traits recorded on skeletal material 

were recorded just once per animal. Models were run using the 

lmer function in the R v3.6.0 package lme4 v1.1- 23 (Bates et al., 
2015). The random effect of individual identity was extracted 

from each model and retained as the phenotype to be analysed 

in the genomic prediction models. The two Mendelian traits are 

categorical traits that are fixed throughout lifetime, unaffected by 

environmental conditions and with the same penetrance in each 

sex; therefore no phenotypic adjustments were necessary. Details 

of the model outputs are summarised in Table S1.TA
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2.5  |  Running genomic prediction models

A major aim of this study was to compare different methods for 

obtaining genomic estimated breeding values (GEBVs). Below we 

briefly discuss these methods, which rely on subtly different as-

sumptions about the distribution of marker effect sizes, and outline 

how each model was run.

2.5.1  |  BayesA

The BayesA method was one of the two models in the first genomic 

prediction paper (Meuwissen et al., 2001). All markers have a nonzero 

effect size, and the distribution of marker effects follows a scaled- 

inverse χ2 distribution. Here, BayesA was implemented in the R pack-

age BGLR v1.0.8 (Perez & de los Campos, 2014). The analyses were 

performed with default parameter settings except the number of it-

erations was set to 120,000 (default = 5,000) with a burnin of 20,000 

(default = 1,000) and a thinning interval of 100 (default = 10).

2.5.2  |  BayesB

The BayesB method of genomic prediction was also introduced in 

Meuwissen et al. (2001). In this model, the assumption that all mark-

ers have a nonzero effect is removed. Instead, the BayesB method 

assumes a mixture of two distributions, such that some markers have 

zero effect and others, following a scaled- inverse χ
2 distribution, 

have nonzero effects, with some potentially of large effect. In real-

ity, many loci explain zero genetic variance. BayesB analyses were 

also performed in the BGLR package with default parameter settings 

except the number of iterations, burnin length and thinning interval, 

which were the same values as used in the BayesA analyses.

2.5.3  |  Bayesian Lasso (BayesL)

This method of genomic prediction is similar to BayesA in that all 

SNP effects come from a single distribution. However, BayesL mod-

els marker effects as following a double exponential distribution 

rather than a t distribution. A consequence of using this distribution 

is that, relative to the BayesA method, SNPs with small effect sizes 

are more strongly shrunk and SNPs with larger effect sizes are less 

strongly shrunk (de los Campos et al., 2009). BayesL was also im-

plemented in the R package BGLR, using default parameters except 

the number of iterations, burnin length and thinning interval, which 

were the same values as for the BayesA and BayesB analyses.

2.5.4  |  GBLUP

This method assumes that marker effects are drawn from a normal 

distribution. Rather than estimate the effect of each SNP, GBLUP 

utilises the genomic relationship matrix (GRM) which is estimated 

from the proportion of alleles that are identical- by- state (IBS) be-

tween every pair of individuals. Here, the GRM was calculated 

from all typed markers. Genomic best linear unbiased predictions 

(GBLUPs) of breeding values are obtained by examining the covari-

ance between phenotypic similarity and pairwise relatedness. GRMs 

have previously been used to estimate the heritability of traits in the 

Soay sheep population (Bérénos et al., 2014, 2015), but not to obtain 

GEBVs. As with the BayesA, BayesB and BayesL analyses, BGLR was 

used to obtain genomic EBVs.

2.5.5  |  BayesR

BayesR models SNP effects as a mixture of >1 normal distribution 

and an additional component of zero variance (Erbe et al., 2012). 

We implemented the method within the BayesR v1 software pack-

age (Moser et al., 2015) and used the default priors of four mixture 

components with variances of 0, 0.0001, 0.001 and 0.01 of the 

phenotypic variance. Dirichlet priors for the number of pseudo- 

observations (SNPs) in each distribution were set to 1, 1, 1 and 

5. Priors for the genetic and residual variances were chosen as 

a scaled inverse- chi squared distribution with scaling parameter 

estimated from previous pedigree- based animal models (see ref-

erences in Table 1) and degrees of freedom set to 10. Note that 

the default parameters give very similar values for genomic es-

timated breeding values, but we find that some samples of the 

MCMC chain return zero or very low estimates of additive genetic 

and residual variance under the default settings (see Table S2). As 

with all analyses run in BGLR, the BayesR analyses were run for a 

total of 120,000 iterations with a burnin of 20,000 and a thinning 

interval of 10.

Because BayesR reports the genetic variance explained by each 

SNP, SNP effect sizes can be aggregated (e.g., across the genome, 

across individual chromosomes) to describe the genetic architecture 

of the trait. Detailed descriptions of the trait architectures are not 

the main goal of this work, but we do report them in the Supporting 

Information. This is partially motivated by the knowledge that many 

of our focal traits already have well- described architectures (Table 1) 

and so it is useful to examine whether BayesR is assigning amounts 

of variance to loci that are consistent with genome wide associa-

tion studies. We also compare descriptions of trait architectures 

between BayesR models using the default parameters and models 

using priors informed by previous quantitative genetic studies of 

those traits (Table S2).

2.6  |  Assessing prediction accuracy and bias

Genomic prediction accuracy was assessed by cross- validation; 

each data set was randomly split into a training population contain-

ing 95%, 50% or 10% of individuals and a test population contain-

ing the remaining 5%, 50% or 90% of individuals. Twenty replicates 
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were generated for every combination of trait, model and training 

population size (8 traits × 5 methods × 3 training sizes × 20 repli-

cates = 2400 models). For the six continuous traits, prediction ac-

curacy was estimated as the correlation between the GEBV and an 

individual's phenotype, divided by the square root of the heritability 

(i.e., rGEBV,y/h, where h2 is the heritability and y is the phenotype). 

We also report the correlation between the GEBV and phenotype, 

without dividing by the square root of the heritability (Table S3). 
Accuracy was averaged across the 20 replicates. The phenotypes 

were the values preadjusted for age, sex, year of birth and year of 

death using the same models as described in the section on Modelling 

non- genetic effects. Because the phenotypes were adjusted for ran-

dom and fixed effects, the heritability of each trait was estimated 

from the adjusted phenotypes. These estimates of heritability will 

be greater than previously published estimates, because nongenetic 

sources of variation have already been removed, but they are more 

appropriate for measuring the observed and expected accuracy of 

the GEBVs. Trait heritabilities were estimated using Animal mod-

els run in the R package mcmcglmm v2.29 (Hadfield, 2010). In these 

models the additive genetic variance was estimated from a relation-

ship matrix determined by the population pedigree; the pedigree 

was constructed from a combination of behavioural observations 

and genotype data from 315 SNPs. Pedigree construction methods 
are described elsewhere (Bérénos et al., 2014). MCMCglmm models 

were run for 120,000 iterations with a burnin of 20,000 and sam-

pling every 100th iteration. In addition to recording the correlation 

between GEBVs and phenotypes, a linear regression was performed 

to estimate the slope between the two variables. A slope of 1 is in-

dicative of there being no bias in GEBVs (Meuwissen et al., 2001; 

Moser et al., 2015). Slopes greater than one would suggest that 

between- individual differences in GEBVs underestimate the differ-

ence in phenotypic values.

For the two categorical traits (coat colour/pattern), accuracy 

was determined by measuring the area under the curve (AUC) in a 

receiver operating characteristic (ROC) curve. ROC curves are well 

established tools for assessing how well genetic markers predict cat-

egorical traits such as disease presence/absence (Wray et al., 2010). 

ROC curve analysis were performed with the R package pRoc v1.16.2 

(Robin et al., 2011).

2.7  |  Comparisons between observed and 
expected accuracy

It is possible to predict the accuracy of genomic prediction if infor-

mation about the effective population size, genome size, recombina-

tion rate, trait heritability, and the genomic architecture are available 

(Daetwyler et al., 2010; Goddard et al., 2010). Here we used equa-

tion 2 of Daetwyler et al. (2010):

where rgĝ is the correlation between the true breeding value g and the 

GEBV ĝ. rgĝ is equivalent to the rGEBV,y/h, the measure of accuracy we 

use in this paper (Meuwissen et al., 2013). Np is the number of individ-

uals in the training set, h2 is the trait heritability and NQTL is the number 

of independent loci contributing to the trait. The other parameter, M
e, 

is the estimate for the number of independent chromosomal segments, 

given by M
e
 = 2N

e
L/log(4N

e
L) where N

e
 is the effective population size 

and L is the genome linkage map length, measured in Morgans. The 

length of the Soay sheep genome is 33.04 Morgans (Johnston et al., 
2016), and the effective population size is around 194 –  see the supple-

mentary material of (Kijas et al., 2012) -  giving an M
e
 of 1263. We used 

the pedigree- estimated heritabilities of the traits adjusted for fixed and 

random effects (Table 1). We estimated the number of causal loci as 

3000 (weight and jaw length), 1000 (foreleg, hindleg, metacarpal), 100 
(horn length) or 1 (coat colour and coat pattern). 100 loci may seem like 

a large number of loci for horn length, given one locus explains most 

of the additive genetic variance (Johnston et al., 2011, 2013), but the 
BayesR analysis suggests that the remaining additive genetic variation 

is likely to be determined by many loci (Table S4). Note that while the 

true number of QTL can only be crudely guessed, the predicted accu-

racy is a function of whichever is smaller of N
QTL

 and M
e
; it is likely that 

for polygenic traits of Soay sheep M
e
 is lower than N

QTL
, making the 

expected accuracy insensitive to guesses of the true number of QTL.

3  |  RESULTS

3.1  |  Genomic prediction accuracy

The main finding is that genomic prediction in the Soay sheep popula-

tion is accurate regardless of trait architecture or of the method used 

(Figure 1, Table S2), even when training sizes are relatively modest 

(a few hundred individuals). For the continuous traits, accuracy was 

typically high (~0.70) when most of the phenotyped animals were 
included in the training set (Table S2, Figure 1a). Unsurprisingly, the 

accuracy declines when the training size is decreased. The pheno-

types of the two categorical traits were predicted with very high 

accuracy, even when only 10% of animals were used in the training 
data set (Table S2, Figure 1b). As expected, for all traits, the accu-

racy was generally lower when the training set was smaller (Table 

S2, Figure 1).

3.2  |  Genomic prediction bias

If genomic prediction estimates of GEBVs are unbiased, then it is 

expected that regressions of GEBVs on phenotypes should be equal 

to 1.0 (Meuwissen et al., 2001). There was a tendency for regres-

sion coefficients to be a little <1.0, meaning GEBVs overestimated 

between- individual variation, but this was largely driven by the mod-

els with smallest training sizes (Figure 2, Table S4). In the 50% and 
95% training population data sets, there was relatively little bias with 
regression coefficients close to 1.0 for most traits and most models. 

rgĝ =

√

√

√

√

Nph
2

Nph
2+min

(

NQTL,Me

)
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F I G U R E  1  Accuracy of genomic prediction for (a) quantitative and (b) Mendelian traits. For quantitative traits, accuracy is measured 
as rGEBV,y/h, the mean correlation between GEBVs and the phenotype, divided by the square root of the heritability. For Mendelian traits, 

accuracy is determined as area under curve from ROC analysis. All plots show the mean and SE obtained from 20 replicates of training sizes 

comprising 95%, 50% or 10% of the available individuals
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Taking an average across 360 analyses (20 replicates × 3 training 
sizes × 6 quantitative traits) BayesL had the mean regression co-

efficient closest to 1.0 (Table S3, top row). However, of all of the 
methods, it had by far the largest standard deviation of regression 

coefficient, and therefore may be the most prone to severe bias. Of 

the remaining methods, BayesR had the mean regression coefficient 

closest to 1.0 and with the lowest standard deviation, although all 

of the other methods performed quite similarly with respect to bias 

(Table S4).

3.3  |  Comparison of models

Among most of the continuous traits, there was little difference 

in the accuracy (Table S2, Figure 1a). This is not surprising as all of 

the models either make an assumption that the trait is polygenic, or 

can explicitly model the trait as polygenic. BayesR and BayesB were 

perhaps marginally more accurate than BayesA, BayesL and GBLUP. 

For horn length, the most oligogenic of the continuous traits, and 

the two single- locus Mendelian traits, coat colour and coat pattern, 

BayesR and BayesB were the most accurate (Table S2, Figure 1b), 

presumably because they allow for the modelling of both zero effect 

and major effect loci. BayesA, was the next best performing model, 

with BayesL and GBLUP being considerably less accurate than all 

others, especially with smaller training populations. Thus, across all 

types of trait architecture, and considering both accuracy and bias, 

BayesR and BayesB appeared to be the most reliable methods of 

those examined here. Previous studies of humans and livestock have 

reached similar conclusions (Erbe et al., 2012; Moser et al., 2015). 

From this point, we mostly focus on results from the BayesR analy-

ses, as that is the most accurate approach, and because it allows a 

detailed investigation of trait genetic architecture.

F I G U R E  2  Boxplots showing the mean and distribution of regression coefficients when GEBVs were regressed on phenotypes for the 
six continuous traits. Each boxplot summarises 20 replicates per trait/training size/method combination
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3.4  |  Comparison between default and informed 
priors for BayesR models

GEBVs estimated from BayesR models running the default param-

eters and BayesR models using priors informed by previous mo-

lecular genetic studies were almost identical; for all eight traits the 

correlation in GEBVs between the two models was >0.996 (Table 

S5). Genetic architectures were similar between the two models, al-

though there was a tendency for the heritability to be a little greater 

when using the model that used informed priors (Table S5). For one 

trait, horn length, the default model tended to have a large autocor-

relation between estimates of VA from consecutive samples of the 

MCMC and it also frequently estimated there to be no additive ge-

netic variance for the trait (almost 10% of MCMC samples), despite 
the trait having a high heritability.

3.5  |  Comparisons between observed and 
expected accuracy

Overall, for all three training population sizes (95%, 50% and 10%), 
there was a good fit between the observed and expected accuracy 

of genomic prediction (Figure 3); for the leg length and weight traits, 
the observed accuracy was a little higher than expected.

3.6  |  Description of trait architectures by BayesR

Although a description of trait architectures was not a primary 

objective of this work, BayesR provides estimates of many param-

eters of interest, including the trait heritability and the number 

and effect sizes of SNPs contributing to phenotypic variation. The 

trait architectures are summarised in the Supporting Information. 

Because most of the traits considered here have been the focus 

of previous studies, it is possible to compare the BayesR outputs 

with other approaches such as GWAS and chromosome partition-

ing analyses. Trait architectures of the eight traits are summarised 

in Table S5, chromosome partitioning plots are presented in Figure 

S1, and Manhattan plots of posterior inclusion probabilities of each 

SNP having a nonzero effect size are presented in Figure S2. Broadly, 

the genetic architectures described by BayesR are consistent with 

those reported previously. Estimates of trait heritability were similar 

to estimates made using pedigrees (for comparisons see Table 1 and 

Table S5), with the six continuous traits all having BayesR estimated 

heritabilities between 0.39 and 0.64. Coat colour and coat pattern 
had lower heritabilities, despite both being determined by a single 

locus; this is expected as both TYRP1 (coat colour) and ASIP (coat 

pattern) have one allele that is completely dominant to the other, so 

some nonadditive (dominance) genetic variance at the causal loci is 

well documented (Gratten et al., 2007, 2010).
BayesR returns an estimate of the number of SNPs that explain 

the phenotypic variation. We urge caution against taking these esti-

mates as definitive (and note that the 95% confidence intervals span 
a ~10- fold range for most traits; Table S5). Any estimate is certain to 

be imprecise because full genome sequences have not been used, 

the sample size make it hard to distinguish between zero effect and 

small effect loci, and distinguishing between multiple tightly linked 

causal SNPs and one causal SNP is very difficult without doing func-

tional genomics. However, the estimated number of SNPs was great-

est for the traits that were thought to be highly polygenic (weight, 

jaw length), and was least for the Mendelian (coat colour and coat 

pattern) and major locus (horn length) quantitative traits. The es-

timated number of causal SNPs was intermediate for those quanti-

tative traits where moderate effect size QTL had been discovered 

in previous GWAS studies. Thus, within- population, between- trait 

comparisons in the number of SNPs may give an indication of which 

traits are relatively more/less polygenic, provided the same set of 

markers is used for each trait.

F I G U R E  3  Observed and predicted 
accuracy of BayesR genomic prediction in 

Soay sheep
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Chromosome partitioning plots (Figure S1) were broadly consis-

tent with previous work using chromosome- wide relatedness matri-

ces (figure 1 of Bérénos et al., 2015). However, in that study, two traits 

(adult weight and jaw length) had significant correlations between 

chromosome length and the proportion of variation explained by the 

chromosome, but in this study neither trait showed a significant rela-

tionship. Nonetheless, the chromosomes that tended to explain the 

most variation in the earlier study, also explained the most variation 

here. An exception was for jaw length, where Chromosome 20 ex-

plained more than 30% of the additive genetic variance here, but did 
not in the earlier study. However, no SNP on Chromosome 20 had a 

posterior inclusion probability >0.5 (Figure S2b), so there is no com-

pelling evidence of a major locus QTL on that chromosome. Instead, 

posterior inclusion probabilities plots indicate at least two regions of 

chromosome 20 contribute to jaw length variation (Figure S2b).

The two Mendelian traits, coat colour and coat pattern, are char-

acterised by one allele being dominant to the other (at Tyrp1 that 

dark allele is dominant to the light allele and at ASIP the wild allele 

is dominant to the self allele). Despite neither causal SNP being in-

cluded on the ovine SNP chip, the distribution of GEBVs for both 

traits was trimodal (Figure S3), indicating that the linked SNPs suc-

cessfully distinguished between the three possible genotypes (het-

erozygotes and the alternative homozygotes). In other words, it was 

possible to distinguish between phenotypically identical animals 

that are either heterozygous or homozygous for the dominant allele.

4  |  DISCUSSION

Attempts to use genomic prediction in an ecological context re-

main very rare compared to its application in breeding or medicine, 

although some examples are now described (Bosse et al., 2017; 
Gienapp et al., 2019; McGaugh et al., 2021; Stocks et al., 2019). As 

far as we are aware this is the first genomic prediction study in a 

wild population that considers either multiple traits with different 

genetic architectures or different genomic prediction methods. 

Comparisons between studies are not straightforward because 

accuracy depends on both biological (e.g. genome size, effective 

population size, heritability) and technical (e.g. marker density, train-

ing population size) factors (Daetwyler et al., 2008, 2010; de los 

Campos, Vazquez, et al., 2013; Goddard, 2009), which inevitably will 
vary between studies. Certainly, the accuracy reported here is com-

parable to situations in plant and animal breeding where genomic 

selection is routinely used for trait improvement (Hayes, Bowman, 

et al., 2009; Lin et al., 2014) and is probably greater than has been 

observed for morphological traits in commercial sheep populations 

(Auvray et al., 2014; Brito et al., 2017). Therefore, the prospects for 
genomic prediction in this population are promising.

The relatively high accuracy of genomic prediction in Soay sheep 

is perhaps not especially surprising, as the values are mostly close 

to, or marginally greater, than expectations. If the effective popula-

tion size had been overestimated, the predicted accuracy may have 

been underestimated, compared to if the correct N
e
 had been used. 

However, overestimating N
e
 would be expected to affect the pre-

dicted accuracy of all traits, not just a subset of them. It is notable 

that previous GWAS studies (Bérénos et al., 2015) of the three leg 

traits identified QTL of reasonably large effect (up to 15% of the 
additive genetic variance), despite the traits being reasonably poly-

genic. These findings are supported by the BayesR analyses of ge-

netic architecture (see Table S5). The accuracy of jaw length GEBVs 

were a little lower than for the other traits, although not much 

lower than predicted (Figure 3). Jaw length is highly polygenic and, 
unlike the leg length traits, no QTL have previously been identified 

in GWAS studies (Bérénos et al., 2015). In general, the traits with 

larger effect size loci had the greatest accuracy (see Supporting 

Information Part 4, Figure S4, Table S6), so perhaps the greater than 

expected accuracy of leg length but not jaw length is attributable, at 

least in part, to these relatively large effect loci.

The accuracy of genomic prediction is sensitive to the size of 

the training population. Unsurprisingly, the lowest accuracy was ob-

tained for the traits with fewest records (horn length, jaw length, 

metacarpal length), when using training sets comprising just 10% 
of the animals. It is perhaps remarkable that the accuracy of horn 

length genomic prediction was as large as it was (0.22) when just 47 
(10% of the total) animals were used in the training set. When 448 
animals (95% of the total) were used in the training set, the accuracy 
was as high as 0.89. Thus, in populations with reasonably high linkage 

disequilibrium between SNPs, relatively modest increases in sam-

ple sizes can facilitate successful genomic prediction. The accuracy 

of genomic prediction is also sensitive to the accuracy with which 

the phenotype is measured. Improvements are likely if nongenetic 

sources of variation can be adjusted for, or if those effects can be 

included directly in the models. Here, we preadjusted phenotypes 

after accounting for sex, age, birth year and capture year. The accu-

racy of the phenotypic measurement can potentially be improved if 

repeated measurements are available. Some of our traits had mul-

tiple measurements per individual (weight, foreleg length, hindleg 

length), while others were only recorded once (e.g., jaw length and 

metacarpal length). Here, there was no obvious difference in the ac-

curacy of GEBVs of traits that were measured repeatedly and GEBVs 

of traits that were measured once, although that may be because 

the repeat measures traits were recorded on live animals (which are 

harder to measure accurately) and the single measure traits were 

recorded on immobile material (bones).

4.1  |  Conclusions and future directions

In this population the accuracy of genomic prediction was compa-

rable to that seen in applied animal and plant breeding programs. In 

part, this is because Soay sheep have a history of isolation on a small 

island and a relatively small effective population size. This means LD 

extends several megabases across much of the genome (Bérénos 

et al., 2014; Feulner et al., 2013), and the number of SNPs (~38K) 
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on a medium density chip is sufficient to tag unknown causal loci. 

Future work will examine whether a higher marker density (400– 

500K SNPs) results in a further improvement in accuracy, although 

we note that in livestock populations, improvements in GEBV ac-

curacy between 50– 60 K SNP chips and whole genome sequences 

are often tiny (Frischknecht et al., 2018; Heidaritabar et al., 2016; 

Veerkamp et al., 2016),. While other study systems used in evo-

lutionary and ecological research may not have LD extending as 

far as it does in Soay sheep, the era of whole- genome sequencing 

hundreds or thousands of individuals is upon us. Therefore, an in-

sufficient marker density will soon become a problem of the past, 

and genomic prediction should be feasible in other populations. 

Excitingly, this means that quantitative genetic studies are no longer 

restricted to wild populations with multigenerational pedigrees. This 

is especially important for long- lived organisms where sampling in-

dividuals across several generations may be a decades- long endeav-

our or for small organisms that are hard to track in the wild such 

as insects. Instead, cross- sectional rather than vertical sampling of 

study populations is possible, which greatly expands the range of 

organisms that could be studied. Genomic methods for describing 

genetic architectures, like the BayesR approach, mean that many 

different aspects of genomic architecture (e.g., a trait's heritability, 

additive genetic variance, and the contribution of individual loci and 

individual chromosomes etc.) can be estimated, even in the absence 

of a pedigree.

Of course, genomic prediction analyses usually seek to estimate 

breeding values (and by extension, phenotypes) which are prop-

erties of the individual rather than of a population (such as, e.g., a 

trait's heritability). There are several obvious areas where GEBVs 

can be used to address long- standing problems in evolutionary ecol-

ogy. First, being able to estimate an individual's breeding value and/

or phenotype before it is expressed means it should be possible to 

predict (and test) how different individuals will respond to a future 

environmental event. A good example of this comes from a ge-

nomic prediction study of ash trees experiencing an outbreak of ash 

dieback, a disease caused by the fungus Hymenoscyphus fraxineus 

(Stocks et al., 2019). Being able to identify which young plants are 

most resistant to dieback could be an essential tool in re- establishing 

populations devastated by disease. Second, GEBVs can be used to 

better understand the “invisible fraction” problem in evolutionary 

biology, highlighted more than three decades ago (Grafen, 1988). 

The invisible fraction refers to the idea that the individuals in a pop-

ulation who reach reproducible age, may not be representative of 

the entire population if mortality up to reproduction is nonrandom 

(Hadfield, 2008; Hemmings & Evans, 2020). Because estimating 

GEBVs in a test population requires only genomic data and no phe-

notypes, it should be possible to compare GEBVs between all of the 

individuals born in a cohort and the subset of them that reach repro-

ductive age. Thus, genomic prediction at a fitness or survival- related 

trait should allow direct testing for, and quantification of, invisible 

fractions.

Perhaps the most obvious application of genomic prediction in 

wild populations will be to explore microevolutionary trends and 

in particular revisit the “evolutionary stasis” problem (Merilä et al., 

2001). This refers to the observation that traits are frequently ob-

served to be heritable and under directional selection, yet they do 

not always evolve in response to that selection in the expected way. 

Detailed descriptions and explanations of the possible explanations 

for stasis are available elsewhere (Kruuk et al., 2001; Merilä, Kruuk, 

& Sheldon, 2001a, b; Merilä et al., 2001). Quantitative genetic ap-

proaches to understand evolutionary stasis have used EBVs derived 

from animal models applied to pedigreed populations (Coltman et al., 

2003; Garant et al., 2004; Wilson et al., 2007), but a number of prob-

lems and biases associated with this approach have been highlighted 

(Hadfield et al., 2010; Postma, 2006). Notably, pedigree- derived pre-

dicted breeding values are more strongly correlated with the pheno-

type than true breeding values are (Postma, 2006). This is especially 

true for individuals without many phenotyped relatives in the ped-

igree. This is problematic for studies looking at microevolutionary 

trends in breeding values, as it means temporal changes in EBVs 

may reflect environmental effects on phenotypes rather than ge-

netic ones. Similarly, in a pedigree- based approach, those individuals 

that lack phenotypic records and have few relatives have EBVs very 

close to the population mean of true breeding values (Hadfield et al., 

2010). In studies that explore temporal trends in breeding values, 

these relatively uninformative individuals may be clustered towards 

either or both ends of a time series. Both problems are largely over-

come with GEBVs generated from a genomic prediction test popula-

tion, because each individual's genome rather than its phenotype or 

number of phenotyped relatives is used to predict its breeding value. 

It has been shown through simulations that genomic prediction is 

a more accurate method for estimating EBVs than pedigree- based 

methods when the focal individual is not closely related to phe-

notyped individuals (Clark et al., 2012). Of course, other problems 

highlighted in discussions of using breeding values to study micro-

evolutionary trends, such as failing to incorporate the uncertainty in 

GEBVs (Hadfield et al., 2010), must still be addressed, but that is rel-

atively straightforward if a Bayesian solution is used. Thus, it seems 

likely that genomic prediction can pave the way for new analyses of 

microevolutionary trends.

In conclusion, this study shows that genomic prediction can re-

liably measure individual breeding values in the Soay sheep popu-

lation, and that high accuracy does not appear to be restricted to 

traits with specific underlying genetic architectures. Approaches 

that can model zero effect, small effect and large effect loci seem to 

be the most consistently reliable. Finally, we anticipate that similar 

studies will soon be possible in many other previously understudied 

organisms, paving the way towards both applied evolutionary quan-

titative genetics research and a re- exploration of some classic, yet 

unresolved, problems.
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