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Abstract

We provide a homological construction of unitary simple modules of Cherednik and

Hecke algebras of type A via BGG resolutions, solving a conjecture of Berkesch–

Griffeth–Sam. We vastly generalize the conjecture and its solution to cyclotomic

Cherednik and Hecke algebras over arbitrary ground fields, and calculate the Betti

numbers and Castelnuovo–Mumford regularity of certain symmetric linear subspace

arrangements.

Mathematics Subject Classification 16S99 · 20C20 · 20C08 · 14N20

Introduction

In [1], Bernstein–Gelfand–Gelfand utilise resolutions of simple modules by Verma

modules to prove certain beautiful properties of finite-dimensional Lie algebras. Such

resolutions (now known as BGG resolutions) have had spectacular applications in the

study of the Laplacian on Euclidean space [19], complex representation theory and

homology of Kac–Moody algebras [28], statistical mechanics and conformal field the-

ories [27,46,47], and they provide graded free resolutions (in the sense of commutative

algebra) for determinantal varieties [20,40]. Remarkably, such resolutions have never
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been used in the study of symmetric and general linear groups in positive characteristic

— or indeed anywhere in modular representation theory!

One of the most important problems in Lie theory is to classify and construct unitary

simple representations. For Lie groups, this ongoing project draws on techniques from

Dirac cohomology [35], Kazhdan–Lusztig theory [64], and the Langlands Program

[58], and has provided profound insights into relativistic quantum mechanics [61].

The Cherednik algebra of a complex reflection group, W , is an important Lie theoretic

object which possesses hallmarks from the classical theory: a triangular decompo-

sition and a category O with a highest weight theory [29], analogues of translation

functors [42], induction and restriction functors [3] with associated Harish–Chandra

series [43], and Kazhdan–Lusztig theory [52] (for W = G(ℓ, 1, n)). Both the unitary

representations of real reductive groups [31–33] and those of Cherednik algebras [13]

are of great importance in algebraic harmonic analysis.

Resolutions and cohomology of Cherednik algebras. For Cherednik algebras of

symmetric groups, H1/e(Sn), the simple unitary representations L(λ) of H1/e(Sn)

were classified by Etingof, Griffeth and Stoica [23] by a combinatorial condition on the

partition λ of n labeling the “highest weight" of L(λ). In the spirit of classical results

in Lie theory, Berkesch, Griffeth, and Sam subsequently conjectured that any unitary

simple L(λ) admits a BGG resolution [65, Conjecture 4.5]. The primary purpose of

this paper is to prove Berkesch–Griffeth–Sam’s conjecture and thus homologically

construct the unitary simple H1/e(Sn)-modules. To state our main result, let us recall

that the category O of the algebra H1/e(Sn) is a highest weight category, with simple

modules L(λ) and standard modules �(λ), see Sect. 5.8 for precise definitions. We

define a length function, ℓ : W → N, on partitions in terms of the action of an affine

Weyl group in Subsection 2.1.

Theorem A Associated to any simple unitary H1/e(Sn)-module, L(λ), we have a com-

plex C•(λ) =
⊕

λ�ν �(ν)[ℓ(ν)] with differential given by an alternating sum over all

“one-column homomorphisms". This complex is exact except in degree zero, where

H0(C•(λ)) = L(λ).

Geometric resolutions. In contrast to classical papers on BGG resolutions and unitary

representations, which usually (but not always! [12]) employ ideas from algebraic

geometry, our methods are completely algebraic and moreover yield several geometric

results. Namely, each standard module �(ν) is a free C[x1, . . . , xn]-module, and as

a consequence we obtain Sn-equivariant, graded free resolutions (in the sense of

commutative algebra) for the e-equals variety

Xe,1,n := Sn{(z1, . . . , zn) ∈ Cn : z1 = · · · = ze},

and for the following algebraic varieties when n = ke:

Xe,k,n := Sn{(z1, . . . , zn) ∈ Cn : zie+1 = · · · = z(i+1)e for 0 ≤ i < k}.

We hence provide, see Propositions 8.2 and 8.6, formulae for the graded Betti numbers

and calculate the Castelnuovo–Mumford regularity of these varieties – a notoriously
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difficult problem in general [16,57]. Moreover, we also provide formulae for these

invariants in the cyclotomic case, where the equalities in the equations defining the

above varieties become equalities up to multiplication by an ℓth root of unity. Finally,

we remark that the Cherednik algebra approach to geometric resolutions was inspired

by the Lie theoretic construction of Lascoux’s resolutions of determinantal varieties

(via parabolic BGG resolutions of unitary modules) [20,65]; it would be interesting to

find a purely geometric proof of the resolutions of our varieties by analogy with [40].

Motivation for the existence of BGG resolutions of unitary modules. Our proof of

Theorem A only makes use of the combinatorial condition on the partition λ labeling

unitary representations [23], and does not make use of the concept of unitarity itself.

Thus, although this section is not strictly necessary for the rest of the paper, we take a

moment to explain, beyond the analogy with classical Lie theory, why it is reasonable

to expect that a BGG resolution of unitary modules should exist. We remark, first, that

the concept of a BGG resolution is a highest-weight-Morita-invariant homological

construction, while the unitarity concept arises in harmonic analysis and it is not

preserved by Morita equivalence. Up to highest-weight equivalence, the category O for

the Cherednik algebra Ha/e(Sn) only depends on the denominator, e, of the parameter

whereas the module La/e(λ) being unitary really depends on the numerator a, with

the most general case being a = ±1. Thus, in order to connect BGG resolutions and

unitary modules in a meaningful way, we first find a representation-theoretic concept

at the level of categories and combinatorics that is equivalent to being unitary for the

parameter ±1/e.

Assuming L(λ) has full support, we can achieve this using the (quiver) Hecke

algebra. The representation theory of the algebra H1/e(Sn) is closely connected with

that of the Hecke algebra Hq(Sn) of the symmetric group at the root of unity q =
exp(2π

√
−1/e); namely, there exists an exact functor K Z : O1/e(Sn) → Hq(Sn)

which preserves (simple) unitary representations. Comparing results of Stoica [54]

and Ruff [53] we can see that, for Hq(Sn) the class of unitary modules coincides

with the much-studied calibrated/completely splittable modules (those on which the

Jucys–Murphy subalgebra acts semisimply [37,49,53]) or equivalently the class of

modules which are homogenous in the KLR grading on Hq(Sn). Thus, for fully sup-

ported L(λ) we replace the condition “L(λ) is unitary” with the equivalent condition

that “KZ(L(λ)) is calibrated/homogenous” and we construct a resolution of KZ(L(λ))

by cell modules of Hq(Sn), which we also call a BGG resolution. This resolution

upgrades a character formula from [53] to the categorical level. After this, we will lift

the resolution back to a BGG resolution of L(λ).

Modular BGG resolutions for symmetric groups and KLR algebras. A key ingre-

dient to our proofs is to work in the 2-categorical setting of diagrammatic Cherednik

algebras (or weighted KLR algebras) of [59]. The diagrammatic calculus is easier for

calculation and benefits from a graded structure. The diagrammatic approach allows

us to generalize the original conjecture to higher levels and arbitrary ground fields; we

prove this more general version. We recast the combinatorial condition in type A for

L(λ) to be unitary [23] as, the partition λ lies in the fundamental alcove of the dominant

chamber in an affine type A alcove geometry. In our BGG resolution, �(ν) appears in

homological degree d if and only if ν is obtained from λ by reflecting across d walls
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(increasing the distance from the fundamental alcove by 1 at each step). This alcove

model vastly generalizes to the set of all ℓ-partitions whose components each have at

most h columns, Pℓ
n(h). For any multipartition lying in the fundamental alcove we then

construct a BGG resolution of the corresponding simple Hc(G(ℓ, 1, n))-module. We

remark that Griffeth has obtained a combinatorial description of the ℓ-partitions that

label unitary irreducible modules for Hc(G(ℓ, 1, n)), [30], and it would be interesting

to compare this condition to the one arising from the alcove model.

Working with quiver Hecke algebras furthermore allows us to obtain our results

over an arbitrary field, k. The search for an effective description of the dimensions of

simple representations of symmetric groups over arbitrary fields is a centre of gravity

for much research in modular Lie theory [44,45,50]. We show that our resolutions for

unitary simples remain stable under reduction modulo p — in other words the beautiful

properties of unitary modules extend beyond the confines of characteristic zero (a

necessary condition for the definition of unitary modules via bilinear forms to make

sense) to for arbitrary fields. Finally, in Theorem 7.4 and Proposition 7.2 we obtain a

simple closed form for the Mullineux involution, M, on unitary/homogenous simples

and explicitly construct this isomorphism — to our knowledge, this is the first time

such an isomorphism has been explicitly constructed (outside of the semisimple case).

This pivots the impact of our result from Cherednik algebras and geometry of

subspace arrangements, to modular representations of the symmetric group. As our

main result is the first of its kind for symmetric groups (providing a resolution of

a given homogenous simple Dn(λ) in terms of the grading-shifted Specht modules

Sn(ν) for λ � ν, see Subsection 1.2 for precise definitions) we state it now in this

simplified form. For the far more general statement concerning cyclotomic quiver

Hecke algebras, see Theorems 4.2 and 4.3.

Theorem B Let k be a field of characteristic p > 0. For Dn(λ) a homoge-

nous simple (in the KLR grading) we have an associated kSn-complex C•(λ) =⊕
λ�ν Sn(ν)〈ℓ(ν)〉with differential given by an alternating sum over all “one-column

homomorphisms". This complex is exact except in degree zero, where

H0(C•(λ)) = Dn(λ).

Moreover, the simple kSn-module Dn(λ) has basis {cs | s ∈ Stdp(λ)} where

Stdp(λ) ⊆ Std(λ) is the set of p-restricted tableaux. The action on this basis is given

in Theorem 4.3. We have that Dn(λ)⊗ sgn ∼= Dn(λM) under the map : cs �→ csM .

We thus provide the first instances of BGG resolutions anywhere in modular rep-

resentation theory of finite and algebraic groups; in particular the first homological

construction of a family of simple modules for symmetric groups. For Hecke alge-

bras of type B, the simplest examples of our resolutions have appeared in work of

mathematical physicists concerning Virasoro and blob algebras [27,46,47] and in

Brundan–Stroppel’s founding work on categorical representation theory [11,12].

The bases of Theorem B first appeared in work of Kleshchev and Ram [37]. We

remark that our results for the Hecke algebras depend only on the quantum parameter

e ∈ N and are entirely independent of the characteristic of the underlying field (for

ℓ = 1 we set e = p in Theorems 4.2 and 4.3 to obtain Theorem B for symmetric

groups).
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The partitions and multipartitions we consider (namely those lying in the fundamen-

tal alcove) have no restriction on their e-weight; calculating the composition series

of the corresponding Specht modules for symmetric groups and Hecke algebras in

positive characteristic is far beyond the current realms of conjecture (which at present

have been stretched as far as w(λ) < p3 for h = 3 by Lusztig–Williamson [44]).

Over C, calculating the composition series of these Specht modules is theoretically

possible using Kazhdan–Lusztig theory — however it quickly becomes computation-

ally impossible — we provide examples of series of Specht modules (of rank n as

n →∞) for which the length of the composition series tends to infinity. Thus Theo-

rem B provides the only contexts in which we can hope to understand unitary simple

modules (see Sect. 4).

Structure of the paper. To finish the introduction, let us discuss the structure of the

paper and of the proofs of Theorems A and B. We in fact deduce Theorem A from

Theorem B. To that end, in Sect. 1 we introduce the quiver Hecke and diagrammatic

Cherednik algebras. In Sect. 2 we recall the alcove geometric approach to these dia-

grammatic algebras, this will provide the combinatorics for proving Theorem B. In

Sect. 3 we lift this combinatorics to the level of homomorphisms between standard

modules, thus providing the skeleton of the resolutions in Theorem B; we also study the

compositions and restrictions of these homomorphisms. In Sect. 4 we prove Theorem

B, see Theorems 4.2 and 4.3.

In Sect. 5, we pivot to rational Cherednik algebras. We first translate the path model

of Sect. 2 into the language of abacus combinatorics used in formulating [65, Con-

jecture 4.5]. We then recall the connection between rational Cherednik algebras and

the diagrammatic algebras of Sect. 1; this allows us to use Theorem B to prove almost

all cases of Theorem A (see Theorem 5.24). In Sect. 6, we complete the proof of

Theorem A and we also construct BGG resolutions of certain non-unitary represen-

tations. In Sect. 7 we give a simple formula, in terms of abacus combinatorics, to

compute the Mullineux map on unitary representations. Finally, in Sect. 8 we explore

the commutative algebra consequences of Theorem A .

1 Diagrammatic algebras

1.1 Combinatorics

Fix a charge (e; κ0, . . . , κℓ−1) ∈ N × Zℓ. We now recall the diagrammatic Chered-

nik/weighted Hecke algebras of [59] and results concerning their representation theory

from [6–8]. We define a partition, λ, of n to be a finite weakly decreasing sequence

of non-negative integers (λ1, λ2, . . .) whose sum, |λ| = λ1 + λ2 + . . . , equals n.

An ℓ-partition λ = (λ(0), . . . , λ(ℓ−1)) of n is an ℓ-tuple of partitions such that

|λ(0)| + · · · + |λ(ℓ−1)| = n. We will denote the set of ℓ-partitions of n by Pℓ
n . Given

λ = (λ(0), λ(1), . . . , λ(ℓ−1)) ∈Pℓ
n , the Young diagram of λ is the set of nodes,

{(r , c, m) | 1 ≤ c ≤ λ(m)
r }.
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We refer to a node (r , c, m) as being in the r th row and cth column of the mth

component of λ. Given a box, (r , c, m), we define the content of this box to be

ct(r , c, m) = κm + c − r and we define its residue to be res(r , c, m) ≡ ct(r , c, m)

(mod e). We refer to a box of residue i ∈ Z/eZ as an i-box. We set res(λ) :=
∪(r ,c,m)∈λres(r , c, m).

Remark 1.1 We wish to emphasise here that the notion of content is heavily dependent

on the choice of charge. Two distinct charges will often result in the same residues

and will give isomorphic Hecke algebras; however the resulting Cherednik algebras

need not be isomorphic or even Morita equivalent, see [5]. However, they are derived

equivalent, although we will not need this in this paper, [42,51].

Given λ ∈Pℓ
n , we let Rem(λ) (respectively Add(λ)) denote the set of all removable

(respectively addable) boxes of the Young diagram of λ, i.e. those boxes (r , c, m) ∈ λ

(resp. (r , c, m) /∈ λ) so that λ \ {(r , c, m)} (resp. λ ∪ {(r , c, m)}) forms the Young

diagram of an ℓ-partition. Given i ∈ Z/eZ, we let Remi (λ) ⊆ Rem(λ) and Addi (λ) ⊆
Add(λ) denote the subsets of boxes of residue i ∈ Z/eZ.

Each charge gives rise to a different ordering on Pℓ
n , and hence a different Fock

space, a different Cherednik algebra, and a different weighted lens through which

to study the quiver Hecke algebra [5]. These charged ordering on Pℓ
n are given as

follows:

Definition 1.2 Given κ ∈ Zℓ such that 0 ≤ κi − κi+1 < e we write (r , c, m) �κ

(r ′, c′, m′) if res(r , c, m) = res(r ′, c′, m′) and either

(i) ct(r , c, m) < ct(r ′, c′, m′) or

(i i) ct(r , c, m) = ct(r ′, c′, m′) and m > m′

For λ,μ ∈ Pℓ
n , we write μ ≤κ λ if there is a bijective map A : [λ] → [μ] such that

either A(r , c, m) �κ (r , c, m) or A(r , c, m) = (r , c, m) for all (r , c, m) ∈ λ.

We reiterate that the orderings ≤κ and �κ are heavily dependent on κ ∈ Zℓ.

Definition 1.3 Given λ ∈ Pℓ
n , we define a tableau of shape λ to be a map t : [λ] →

{1, . . . , n}. We define a standard tableau to be a tableau in which the entries increase

along the rows and columns of each component. We let Std(λ) denote the set of all

standard tableaux of shape λ ∈Pℓ
n .

Definition 1.4 Given λ ∈ Pℓ
n we let tλ ∈ Std(λ) be the tableau obtained by placing

the entry n in the unique minimal removable box (r , c, m) ∈ λ (under the≤κ ordering)

and then placing the entry n−1 in the unique minimal removable box of λ\{(r , c, m)}
and continuing in this fashion.

We again emphasise that the definition of tλ is highly dependent on the fixed choice

of charge.

Definition 1.5 For h ≥ 0 we say that κ ∈ Zℓ is h-admissible if h < |κi − κ j | < e− h

for 0 ≤ i �= j < ℓ.
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Remark 1.6 For h ≥ 0 and κ ∈ Zℓ h-admissible the ordering �κ in Definition 1.2 is

a coarsening of the usual c-function ordering on the Fock spaces of Foda–Leclerc–

Okado–Thibon–Welsh [5,59]. This is the only ordering for which we have a closed

form for a labelling of the simple modules for the quiver Hecke algebra [25] (in other

words, a labelling of the component of the ŝle crystal containing the empty ℓ-partition).

Notice that this combinatorial ordering and the algebraic structures it underlies are

completely different from the classical dominance order and the (graded) cyclotomic

q-Schur algebra [17,34,56]; see [5,59] for more details.

Given h ∈ N, we let Pℓ
n(h) denote the subset of Pℓ

n consisting of those ℓ-partitions

which have at most h columns in each component, that is

P
ℓ
n(h) = {λ = (λ(0), λ(1), . . . , λ(ℓ−1)) | λ(m)

1 ≤ h for 0 ≤ m < ℓ}.

Given λ ∈Pℓ
n , we define its residue sequence, res(λ) to be the sequence obtained by

recording the residues of the boxes of λ according to the ordering ≤κ on boxes.

1.2 The quiver Hecke and Cherednik algebras

Definition 1.7 Let ǫ ≪ 1
nℓ

. To (r , c, m) ∈ λ we associate Iκ
(r ,c,m)

= ct(r , c, m) −
m/ℓ − (r + c)ǫ. Given λ ∈ Pℓ

n , we let Iκ
λ denote the disjoint union over the Iκ

(r ,c,m)

for (r , c, m) ∈ λ. We define a κ-diagram of type G(ℓ, 1, n) to be a frame R× [0, 1]
with distinguished solid points on the northern and southern boundaries given by Iκ

μ

and Iκ
λ for some λ,μ ∈ Pℓ

n and a collection of solid strands each of which starts

at a northern point and ends at a southern point. Each solid strand carries a residue,

i ∈ Z/eZ, say (and we refer to this as a solid i -strand). We further require that each

solid strand has a mapping diffeomorphically to [0, 1] via the projection to the y-axis.

Each solid strand is allowed to carry any number of dots.

We draw

(i) a “ghost i-strand” 1 unit to the right of each solid i-strand and a a “ghost dot" 1

unit to the right of each solid dot;

(i i) vertical red lines with x-coordinate κm − m/ℓ ∈ Q each of which carries the

residue κm in Z/eZ for 1 ≤ m ≤ ℓ which we call a red κm-strand.

Fig. 1 A κ-diagram for ℓ = 1 and κ ∈ Z with northern and southern loading Iκω for ω = (15)
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Finally, we require that there are no triple points or tangencies involving any combi-

nation of strands, ghosts or red lines and no dots lie on crossings. We consider these

diagrams equivalent if they are related by an isotopy that avoids these tangencies,

double points and dots on crossings. See Fig. 1 for an example of a κ-diagram.

Remark 1.8 We emphasise that we have chosen ǫ ≪ 1
nℓ

in order to guarantee that for

any two boxes (r , c, m), (r ′, c′, m′) for 1 ≤ r , r ′, c, c′ ≤ n and 0 ≤ m < ℓ we have

that Iκ
(r ,c,m)

�= Iκ
(r ′,c′,m′).

Definition 1.9 We define the degree of a κ-diagram to be the integer obtained by

summing over the degrees of all the local neighbourhoods of the diagram with each

neighbourhood contributing either zero to the degree, or providing a non-zero degree

contribution to the degree as follows:

deg

i

= 2 deg

i j

= −2δi, j deg

i j

= δ j,i+1 deg

i j

= δi, j

and their mirror images.

Definition 1.10 (Definition 4.1 [59]) We let An(κ) denote the k-algebra spanned by all

κ-diagrams modulo the following local relations (here a local relation means one that

can be applied on a small region of the diagram). The product d1d2 of two diagrams

d1, d2 ∈ An(κ) is given by putting d1 on top of d2. This product is defined to be 0

unless the southern border of d1 matches the northern border of d2, in which case we

obtain a new diagram in the obvious fashion.

(A1) Any diagram may be deformed isotopically; that is, by a continuous deformation

of the diagram which avoids tangencies, double points and dots on crossings.

(A2) Any solid dot can pass through a crossing of solid i- and j-strands for i �= j or

an arbitrary crossing involving a ghost strand. Namely:

ij

=

ij ij

=

ij

ii

=

ii

and their mirror images through reflection in the vertical axis hold.

(A3) We can pass a solid dot through a crossing of two like-labelled solid or ghost

strands at the expense of an error term:

i i

=

i i

+

i i i i

=

i i

+

i i
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Ghost dots can pass through any crossing of strands (regardless of their residue) freely.

(A4) For double-crossings of solid strands with i �= j , we have the following local

relations:

ii

=0

i j

=

ji

Performing relation (A4) implicitly involves undoing the corresponding double-

crossing of ghost strands at the same time (which we do not picture) and vice versa.

(A5) If j �= i − 1, then we can freely pass ghosts through solid strands. That is, we

have the following local relations:

ij

=

j i ji

=

i j

(A6) On the other hand, in the case where j = i − 1, we have the following local

relations:

i –1 i

=

i –1 i

−

i –1 i

i i –1

=

i i –1

−

i i –1

(A7) We can pull a solid i-strand through a (i−1)-ghost-crossing (or a ghost (i−1)-

strand through a i-solid-crossing) at the expense of an error term.

i –1i –1 i

=

i –1i –1 i

+

i –1i –1 i

ii i –1

=

ii i –1

−

ii i –1
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(A8) All other triples of solid and ghost strands satisfy the naive braid relation.

Diagrammatically, we have that

ki j

=

ki j ki j

=

ki j

ki j

=

ki j

for any i, j, k ∈ Z/eZ and their mirror images through reflection in the

vertical axis hold. Performing the leftmost relation (A8) implicitly involves

manipulating a braid of three ghost strands at the same time (which we do not

picture) and vice versa. Furthermore,

ca b

=

ca b zx y

=

zx y

and a, b, c, x, y, z ∈ Z/eZ such that δa,b−1,c = 0, δx,y+1,z = 0.

(A9) Ghost strands and ghost dots may pass through red strands freely. For i �= j , the

solid i-strands may pass through red j-strands freely. If the red and solid strands

have the same label, a dot is added to the solid strand when straightening.

Diagrammatically, we have that

i i

=

i i i j

=

i j i i

=

i i

i j

=

i j

for i �= j and their mirror images through reflection through the vertical axis

hold.

(A10) Solid crossings and dots can pass through red strands, with a correction term

k ij

=

k ij

+

k ij

δi, j,k
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(A11) Any braid involving a red strand and not of the form in (A10) can be undone

without cost. Diagrammatically, we have that

kji

=

kji kji

=

kji

kji

=

kji

jki

=

jki jki

=

jki

jki

=

jki

for any i, j, k and their mirror images through reflection in the vertical axis

hold.

(A12) Finally, any solid or ghost dot can be pulled through a red strand without cost.

Diagrammatically, we have that

kj k

=

j k j

=

k j

for any j, k and their mirror images through reflection in the vertical axis hold.

(We have not added the residues as they play no role here.)

Finally, we have the following non-local idempotent relation.

(A13) Any idempotent in which a solid strand is n units to the right of the rightmost

red-strand is referred to as unsteady and set to be equal to zero.

Given λ ∈ Pℓ
n and i ∈ (Z/eZ)n , we have an associated weight-idempotent

1
i

λ given by the diagram with northern and southern points Iˇ
˘ , no crossing strands,

and northern/southern residue sequence of the diagram given by i ∈ (Z/eZ)n . If the

residue sequence is equal to that of the partition, res(λ), then we let 1λ := 1
res(λ)
λ . We

define the diagrammatic Cherednik algebra or weighted KLR algebra, An(κ) to be

the algebra

An(κ) := E+An(κ)E+ where E+ =
∑

λ∈Pℓ
n
1λ.
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Definition 1.11 Let λ,μ ∈Pℓ
n . A λ-tableau of weight μ is a bijective map T : λ→ Iκ

μ.

We let T(λ, μ) denote the set of all tableaux of shape λ and weight μ.

We say that a tableau T is semistandard if it satisfies the following additional

properties

(i) T(1, 1, m) < κm ,

(i i) T(r , c, m) < T(r − 1, c, m)− 1,

(i i i) T(r , c, m) < T(r , c − 1, m)+ 1.

We denote the set of all semistandard tableaux of shape λ and weight μ by SStd(λ, μ).

Given T ∈ SStd(λ, μ), we write Shape(T) = λ. We let SStd+n (λ, μ) ⊆ SStdn(λ, μ)

denote the subset of tableaux which respect residues. In other words, if T(r , c, m) =
(r ′, c′, m′) for (r , c, m) ∈ λ and (r ′, c′, m′) ∈ μ, then κm + c − r = κm′ + c′ − r ′

(mod e).

Definition 1.12 Given S a tableau of shape λ and weight μ, we let CS denote any

diagram tracing out the bijection S : [λ] → Iκ
μ using the minimal number of crossings.

Given S, T a pair of tableau of shape λ (and possibly distinct weights) we set CST =
CSC∗T where C∗T is the diagram obtained from CT by flipping it through the horizontal

axis.

Theorem 1.13 The R-algebra An(κ) is a quasi-hereditary graded cellular algebra

with basis

{CST | S ∈ SStd(λ, μ), T ∈ SStd(λ, ν), λ, μ, ν ∈P
ℓ
n} (1.1)

and the subalgebra An(κ) is a quasi-hereditary graded cellular algebra with basis

{CST | S ∈ SStd+(λ, μ), T ∈ SStd+(λ, ν), λ, μ, ν ∈P
ℓ
n}. (1.2)

For both algebras, the involution is given by ∗ and the ordering on Pℓ
n(h) is that of

Definition 1.2. We denote the corresponding left An(κ)- and An(κ)- cell-modules are

�An(κ)(λ), �An(κ)(λ)

respectively. These modules have simple heads, denoted by

LAn(κ)(λ), L An(κ)(λ)

respectively. When the context is clear, we drop the subscripts on these modules.

We let A�λ
n (κ) denote the 2-sided cell-ideal

∑
λ�λ An(κ)1λ An(κ).

The standard tableaux Std(λ) form the predictable subset of semistandard tableaux

of weight ω = (1n) as follows. Let λ ∈Pℓ
n . If s ∈ Std(λ) is such that s(rk, ck, mk) = k

for 1 ≤ k ≤ n, then we let S ∈ T(λ, ω) denote the tableau S : λ → ω determined

by S(rk, ck, mk) = Iκ
(k,1,ℓ)

. We have a bijective map ϕ : Std(λ) → T(λ, ω). given by

ϕ(s) = S.
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Definition 1.14 We define the Schur idempotent, Eω, and quiver Hecke algebra,

Hn(κ), as follows

Eω =
∑

i∈(Z/eZ)n

1
i
ω and Hn(κ) := EωAn(κ)Eω.

Theorem 1.15 ([5]) The algebra Hn(κ) admits a graded cellular structure with respect

to the poset (Pℓ
n ,�), the basis

{cst := Cϕ(s),ϕ(t) | λ ∈P
ℓ
n , s, t ∈ Std(λ)},

and the involution ∗. We denote the left cell-module by Sn(λ) := Eω�(λ) with basis

{cs | s ∈ Std(λ)} and let Dn(λ) denote the simple head of Sn(λ).

When proving results on homomorphisms, the algebra An(κ) is smaller than An(κ)

and much easier for computation. We shall then (trivially) inflate these results to An(κ)

and apply the Schur functor to obtain the corresponding result for Hn(κ).

Remark 1.16 We let t be an indeterminate over Z≥0. If M = ⊕k∈ZMk is a graded

k-module, we write dimt (M) =
∑

k∈Z(dimk(Mk))t
k .

Finally, we briefly recall from [6, Theorem 4.9] that for the above three algebras, there

are graded Morita equivalences relating the subcategories of An(κ)-mod, An(κ)-mod,

and Hn(κ)-mod whose simple constituents are labelled by Pℓ
n(h). In particular

HomAn(κ)(�(μ),�(λ)) ∼= HomAn(κ)(�(μ),�(λ)) ∼= HomHn(κ)(Sn(μ), Sn(λ))

(1.3)

for λ,μ ∈ Pℓ
n(h). This allows us to focus on the algebras An(κ) where we have

the benefit of a highest weight theory which is intimately related to the underly-

ing alcove geometry and Hn(κ) where we have more easily constructible restriction

functors, which we will recall momentarily. Both isomorphisms are simply given by

idempotent truncation from An(κ). The truncation from An(κ) to Hn(κ) kills every

weight-idempotent 1
i

λ for i ∈ (Z/eZ)n and ω �= λ ∈Pℓ
n .

1.3 Induction and restriction

For r ∈ Z/eZ, we have an embedding ιrn−1 : Hn−1(κ) →֒ Hn(κ). Given D ∈ Hn−1(κ)

the diagram ιrn−1 is obtained by adding a single solid r -strand (connecting the northern

and southern points Iκ
(n,1,ℓ)

) and its ghost to the left of all strands in D.

Example 1.17 For example, the diagram in Fig. 1 is of the form ι04(D) for D ∈ H4(0).

We let ιn−1 =
∑

r∈Z/eZ ιrn−1. We have that Hn(κ) is free as a Hn−1(κ)-module

under the identification Hn−1(κ) ∼= ιn−1(Hn−1(κ)). We let resn
n−1 : Hn(κ)-mod →
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Hn−1(κ)-mod and indn
n−1 : Hn−1(κ)-mod → Hn(κ)-mod denote the obvious restric-

tion and induction functors. We post-compose these functors with the projection onto

a block in the standard fashion. This amounts to multiplying by an idempotent

Er
ω =

∑

i=(i1,...,in−1,r)

1
i
ω

for r ∈ Z/eZ. We hence decompose these restriction/induction functors into

r -resn
n−1 = Er

ω ◦ resn
n−1 r -indn

n−1 = Er
ω ◦ indn

n−1

Finally we recall a simple case of [5, Theorem 12.1]. If λ has precisely one removable

r -box, � ∈ Remr (λ), then we set Er
ω(λ) = λ−� and we have that

Sn−1(λ−�) ∼= r -resn
n−1(Sn(λ)). (1.4)

This isomorphism is given by “ignoring the leftmost strand" as follows

CS �→ ιrn−1(CS)× CT�
(1.5)

for S ∈ SStd(λ−�, (1n−1)). For more details we refer to [5, Section 12].

Remark 1.18 We note that our embeddings are “adding strands to the left" whereas

many readers are used to “adding strands to the right". This is because our algebras are

build from the natural ordering Definition1.2. By building diagrams from the opposite

order on contents, one can obtain embeddings which “add strands to the right".

Remark 1.19 The subalgebra Hn(κ) = EωAn(κ)Eω is usually defined via generators

e(i), ψr , and yr subject to certain relations (see [5, Definition 3.1] for more details).

We will make use of this classical notation by identifying the generator σ(e(i) with

1 i
w

while σ(yr e(i)) gets identified with

σ(e(i)) = 1
i
ω

σ(yr e(i))

=

κ0κℓ−1 κ1i1i2ir−2ir−1irir+1ir+2ir+3in

σ(ψr e(i))

=

κ0κℓ−1 κ1i1i2ir−2ir−1irir+1ir+2ir+3in
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2 Alcove geometries and path-bases of diagrammatic algebras

In Subsection 2.1, we recall the alcove geometry controlling the subcategories of

representations for quiver Hecke and Cherednik algebras of interest in this paper. In

Subsection 2.2 we cast the semistandard tableaux for diagrammatic Cherednik algebras

in this geometry; this path-combinatorial framework will be essential for our proofs.

In Subsection 2.3 we cast the standard tableaux combinatorics of the quiver Hecke

algebra in this geometry — this allows us to define the e-restricted tableaux which we

will prove provide bases of simple Hn(κ)-modules in Sect. 4.

2.1 The alcove geometry

Fix integers h, ℓ ∈ Z>0 and e ≥ hℓ. For each 1 ≤ i ≤ h and 0 ≤ m < ℓ we let εhm+i

denote a formal symbol, and define an ℓh-dimensional real vector space,

Eh,ℓ =
⊕

1≤i≤h
0≤m<ℓ

Rεhm+i

We have an inner product 〈 , 〉 given by extending linearly the relations

〈εhm+i , εht+ j 〉 = δi, jδt,m

for all 1 ≤ i, j ≤ h and 0 ≤ m, t < ℓ, where δi, j is the Kronecker delta. We let � and

�0 denote the root systems of type Aℓh−1 and Ah−1 × Ah−1 × . . . Ah−1 respectively

which consist of the roots

{εhm+i − εht+ j | 1 ≤ i, j ≤ h and 0 ≤ m, t < ℓ with (i, m) �= ( j, t)} and

{εhm+i − εhm+ j | 1 ≤ i, j ≤ h with i �= j and 0 ≤ m < ℓ}

respectively. We identify λ ∈Pℓ
n(h) with a point in Eh,ℓ via the transpose map

(λ(0), . . . , λ(ℓ−1)) �→
∑

1≤i≤ℓ
1≤ j≤h

(λ(m))T
i εhm+i , (2.1)

(where the T denotes the transpose partition). Given r ∈ Z and α ∈ � we let sα,re

denote the reflection which acts on Eh,ℓ by

sα,rex = x − (〈x, α〉 − re)α.

and we let We and W0 denote the Coxeter groups generated by the reflections

S = {sα,0 | α ∈ �} ∪ {sεh−ε1,−e} S0 = {sα,0 | α ∈ �0}
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respectively. We let ℓ : We → N denote the length function and we let ≤ denote the

Bruhat ordering for the Coxeter group We. For e ∈ Z>0 we assume that κ ∈ Zℓ is

h-admissible. We shall consider a shifted action of the Weyl group W e on Eh,ℓ by the

element

ρ :=(ρ1, ρ2, . . . , ρℓ)∈Zhℓ
≥0, ρi :=(e − κi , e − κi − 1, . . . , e − κi − h + 1)∈Zh

≥0,

that is, given an an element w ∈ W e, we set w ·ρ x = w(x + ρ)− ρ. We let E(α, re)

denote the affine hyperplane consisting of the points

E(α, re) = {x ∈ Eh,ℓ | sα,re · x = x}.

The connected components of Eh,ℓ \ (∪α∈�,r∈ZE(α, re)) are called alcoves. Note

that our assumption that κ ∈ Zℓ
≥0 is h-admissible implies that the origin lies in an

alcove. Given a hyperplane E(α, re) we remove the hyperplane from Eh,ℓ to obtain

two distinct subsets E>(α, re) and E<(α, re) where the origin ⊚ ∈ E<(α, re). The

dominant Weyl chamber, denoted E⊚
h,ℓ, is set to be

E⊚
h,ℓ =

⋂

α∈�0

E<(α, 0).

Definition 2.1 Let λ ∈ Eh,ℓ. There are only finitely many hyperplanes lying between

the point λ ∈ Eh,ℓ and the point ν ∈ Eh,ℓ. For a root εi − ε j ∈ �, we let

ℓεi−ε j
(λ, ν) denote the total number of these hyperplanes which are perpendicu-

lar to εi − ε j ∈ � (excluding any hyperplanes upon which λ or ν lies). We let

ℓ(λ, ν) =
∑

1≤i< j≤hℓ ℓεi−ε j
(λ, ν). We let ℓ(λ) := ℓ(λ,⊚) for ⊚ the origin and refer

to ℓ(λ) simply as the length of the point λ ∈ Eh,ℓ.

Definition 2.2 Given n ∈ N, we define the fundamental alcove to be

Fℓ
n(h) = {λ ∈P

ℓ
n | ℓ(λ) = 0}.

We have that We acts on the set of all alcoves. We can uniquely write any alcove,

A, in the form A = wFℓ
n(h) for some coset representative w in W0\We. This provides

an important labelling for alcoves. For λ ∈ wFℓ
n(h), we have that ℓ(λ) = ℓ(w).

Proposition 2.3 Fix integers h, ℓ ∈ Z>0 and e ≥ hℓ and suppose κ ∈ Zℓ is h-

admissible. A necessary condition for L(λ) and L(μ) to belong to the same block is

that they belong to the same We-linkage class, that is λ ∈ We · μ. Given λ ∈ wFℓ
n(h)

and μ ∈ w′Fℓ
n(h), we have that μ �κ λ if and only if w ≤ w′.

Proof A necessary condition for L(λ) and L(μ) to belong to the same block is that

res(λ) = res(μ); to see this simply note that the basis elements in equation (1.2)

respect residues. Reflection through a hyperplane E(εhm+i − εht+ j , re) corresponds

to a (residue preserving) swap of boxes between the i th column of the mth component

and the j th column of the t th component. The result follows. ⊓⊔
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Definition 2.4 Given a map s : {1, . . . , n} → {1, . . . , ℓh}we define pointsS(k) ∈ Eh,ℓ

by S(k) =
∑

1≤i≤k εs(i) for 1 ≤ k ≤ n. We define the associated path of length n in

Eh,ℓ by

S = (S(0), S(1), S(2), . . . , S(n)),

where we fix all paths to begin at the origin, so that S(0) = ⊚ ∈ Eh,ℓ. We let S≤k

denote the subpath of S of length k corresponding to the restriction of the map s to the

domain {1, . . . , k} ⊆ {1, . . . , n}. We let Shape(S) denote the point in Eh,ℓ at which S

terminates.

Remark 2.5 Let S be a path which passes through a hyperplane Eα,re at point S(k)

(note that k is not necessarily unique). Let T be the path obtained from S by applying

the reflection sα,re to all the steps in S after the point S(k). In other words, T(i) = S(i)

for all 1 ≤ i ≤ k and T(i) = sα,re · S(i) for k ≤ i ≤ n. We refer to the path T as the

reflection of S in Eα,re at point S(k) and denote this by sk
α,re · S. We write S ∼ T if the

path T can be obtained from S by a series of such reflections.

Definition 2.6 Let T denote a fixed path from ⊚ to ν ∈ Pℓ
n(h). We let Pathn(λ, T)

denote the set of paths from the origin to λ obtainable by applying repeated reflections

to T, in other words

Pathn(λ, T) = {S | S(n) = λ, S ∼ T}.

We let Path+n (λ, T) ⊆ Pathn(λ, T) denote the set of paths which at no point leave the

dominant Weyl chamber, in other words

Path+n (λ, T) = {S ∈ Pathn(λ, T) | S(k) ∈ E⊚
h,ℓ for all 1 ≤ k ≤ n}.

Definition 2.7 Given a path S = (S(0), S(1), S(2), . . . , S(n)), we define d(S(k), S(k−
1)) as follows. For α ∈ � we set dα(S(k), S(k − 1)) to be

• +1 if S(k − 1) ∈ E(α, re) and S(k) ∈ E<(α, re);

• −1 if S(k − 1) ∈ E>(α, re) and S(k) ∈ E(α, re);

• 0 otherwise.

We set deg(S(0)) = 0 and define

d(S(k − 1), S(k))=
∑

α∈�

dα(S(k − 1), S(k)) and deg(S)=
∑

1≤k≤n

d(S(k), S(k − 1)).

2.2 Semistandard tableaux as paths

Let e > hℓ. We now provide path-theoretic bases for the diagrammatic Cherednik

algebra. Let μ ∈ Pℓ
n(h). We define the component word of μ to be the series of

ℓ-partitions
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∅ = μ(0) +X1−−→ μ(1) +X2−−→ μ(2) +X3−−→ · · · +Xn−1−−−−→ μ(n−1) +Xn−−→ μ(n) = μ

where Xk = (rk, ck, mk) is the minimal node, with respect to ≤κ , of the partition

μ(k) ∈ P
ℓ
k (h). Using the component word of μ, we define a distinguished path Tμ

from the origin to μ as follows

Tμ = (+εX1 ,+εX2 , . . . ,+εXn ).

For λ ∈Pℓ
n(h), we let

S = (+εY1 ,+εY2 , . . . ,+εYn ) ∈ Path(λ, Tμ).

From S, we obtain a tableau S ∈ T(λ, μ) by setting S(Xk) = IYk
. We freely identify

paths and tableaux in this manner (and so we drop the overline). Under this identifi-

cation, we obtain a bijection SStd+(λ, μ) ↔ Path+(λ, Tμ) and hence we can rewrite

the basis of Theorem 1.13 in terms of paths (see [6, Theorem 5.21]) as follows. For

λ ∈Pℓ
n(h) we have that

�(λ) = {CS | S ∈ Path+(λ, Tμ), μ ∈P
ℓ
n(h)}. (2.2)

Definition 2.8 Let λ,μ ∈ Pℓ
n(h) and suppose that λ � μ. Then we let T

μ
λ ∈

Path(λ, Tμ) denote the unique path satisfying

deg(T
μ
λ ) = ℓ(μ)− ℓ(λ).

The above definition is well-defined by [6, Proposition 7.4] and these paths will be

very useful later on. Examples of this path/tableau for three distinct pairs (λ, μ) are

given in Fig. 2.

Remark 2.9 If e = hℓ, then all the results of this paper go through unchanged modulo

minor edits to the proofs. Annoyingly, the definition of the degree and reflections

of paths require some tinkering (akin to the case e = ∞ case covered in detail in

[6, Section 6.4]). In what follows, we only discuss the case e > hℓ explicitly. For

Cherednik algebras of symmetric groups, we provide an explicit and independent

proof of our main result in quantum characteristic e = h in Subsection 6.1.

2.3 Standard tableaux as paths

Given λ ∈Pℓ
n(h), a tableau t ∈ Std(λ) is easily identified with the series of partitions

t(k) for 0 ≤ k ≤ n, which in turn determine a path in E+h,ℓ via the map in Eq. (2.1). This

provides path-theoretic bases of Specht modules Sn(λ) for λ ∈Pℓ
n(h). We now restrict

our attention to λ ∈ Fℓ
n(h) ⊆ Pℓ

n(h) and define the subset of e-restricted standard

λ-tableaux which will index the basis of the simple module Dn(λ) for λ ∈ Fℓ
n(h).

Definition 2.10 Given λ ∈ Fℓ
n(h), we say that s ∈ Std(λ) is e-restricted if s(k) ∈

Fℓ
k(h) for all 1 ≤ k ≤ n. We let Stde(λ) denote the set of all e-restricted tableaux of

shape λ.
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Fig. 2 The black points label the

3-partitions of a block of

H8(0, 1, 2) with e = 4. The

origin is labelled as ⊙. There are

three separate paths drawn on

the diagram belonging to

Path+((14 | ∅ | 14), T(18|∅|∅)),

Path+((16 | 1 | 1), T(∅|18|∅)),

and Path+((12 | 1 | 15),

T(∅|∅|18)). These are coloured

red, blue, and violet respectively.

We have labelled some of the

points in the diagram for

reference (colour figure online)

Given λ ∈ Fℓ
n(h), we say that a node � ∈ Rem(λ) is good if λ − � ∈ Fℓ

n−1(h)

(we remark that this is easily seen to coincide with the classical definition of a good

node). We let Fh(λ) denote the set of all good removable nodes of λ. The following

result is obvious, but will be essential for the proof of our main theorem.

Proposition 2.11 Given λ ∈ Fℓ
n(h), we have that 〈cs, ct〉 = δs,t for s, t ∈ Stde(λ).

Furthermore,

k{cs | s ∈ Stde(λ)} ⊆ Dn(λ) and Stde(λ)↔
⊔

�∈Fh(λ)

Stde(λ−�).

Proof For λ ∈ Fℓ
n(h), we have that s ∈ Stde(λ) if and only if s↓n−1 ∈ Stde(ν) for

some ν ∈ Fℓ
n−1(h); the bijection follows. To see that {cs | s ∈ Stde(λ)} ⊆ Dn(λ) and

that 〈cs, ct〉 = δs,t for s, t ∈ Stde(λ), it is enough to show that

1res(s)
ω Sn(ν) �= 0 implies ν ⊲ λ or ν = λ and 1res(s)

ω Sn(λ) = cs (2.3)

for s ∈ Stde(λ). To see this, assume that cs for s ∈ Stde(λ) belongs to some simple

composition factor L(ν) of Sn(λ) for ν �= λ; in which case λ � ν and

1res(s)
ω L(ν) ⊆ 1res(s)

ω Sn(ν) �= 0

which gives us our required contradiction. Now we turn to the proof of Eq. (2.3). If

ν � λ, then ν ∈ Pℓ
n(h). Given t ∈ Std(ν) with t(rk, ck, mk) = k, we identify t with

the path

(+εhm1+c1 ,+εhm2+c2 ,+ . . . ,+εhmn+cn ).
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Given t ∈ Std(ν), we have that

Path+(λ, t) = {u ∈ Std(λ) | res(u) = res(t)}.

Given any s ∈ Stde(λ), we have that s(k) ∈ Fℓ
k(h) for all 1 ≤ k ≤ n and hence

s(k) /∈ E(α, me) for any α ∈ �, m ∈ Z. Hence

s /∈
⋃

ν∈Pℓ
n (h)

t∈Std(ν),t �=s

Path+(λ, t) (2.4)

and the result follows. ⊓⊔

Example 2.12 Let h = 1 and ℓ = 3 and κ = (0, 1, 2) ∈ (Z/4Z)3 as in Fig. 2. The

unique λ ∈ F3
n(h) is given by λ = ((13), (13), (12))}. The tableau tλ is the unique

element of Stde(λ) and hence D8(λ) is 1-dimensional.

3 The skeleton of our BGG resolutions

In Subsection 3.1 we construct the homomorphisms between standard and Specht

modules which will provide the backbone of our BGG complexes. We then consider

how these homomorphisms compose (in terms of “diamonds” and “degenerate dia-

monds" or “strands”) and it is these in-depth diagrammatic calculations that provide

the technical crux of the paper: In Subsection 3.2 we classify the diamonds in terms of

pairs of reflections in the alcove geometry; in Subsection 3.3 we localise to consider

the μ weight-spaces of cell-modules �(λ) for μ, λ two points in a given diamond;

and finally in Subsection 3.4 we use these results to prove that, within a diamond,

composition of homomorphisms commutes (up to scalar multiplication by ±1) or is

zero (for degenerate diamonds). We refer forward to equation (4.3) and (4.4) for the

motivation for the terminology of diamonds and strands.

3.1 One column homomorphisms

Let e > hℓ.

Given 1 ≤ i < j ≤ hℓ and α, β ∈ Pℓ
n(h), we suppose that ℓ(α) = ℓ(β) − 1 and

that β � α. Then there exists a unique hyperplane E(εi − ε j , μi j e) for 1 ≤ i, j ≤ hℓ

and μi j ∈ Z such that si− j,μi j e(α) = β. By definition, this amounts to removing a

series of nodes from the j th column of α and adding them in the i th column of α to

obtain β ∈Pℓ
n or vice versa. By not assuming that i < j , we can use the notation

si− j,μi j e(α) = β

to always mean that β is obtained by removing a series of nodes from the j th column

of α and adding them in the i th column of β. There are two distinct cases to consider.
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The most familiar case (to many Lie theorists) is that in which ℓεi−ε j
(α, β) = 1. In

other words μi j ∈ Z is the unique value such that

α ∈ E>(εi − ε j , μi j e) β ∈ E<(εi − ε j , μi j e).

We refer to such pairs (α, β) as maximal pairs. These pairs include those related by a

reflection “through a common alcove wall". The other case (which should be familiar

to those who study blob and Virasoro algebras) is that in which

ℓεi−ε j
(α, β) = 2ℓεi−ε j

(α)− 1

and so E(εi − ε j , μi j e) is just one of many hyperplanes lying between α and β;

these pairs (α, β) correspond to pairs which are as far away as possible in the alcove

geometry. We refer to such pairs (α, β) asminimal pairs (and they only exist for ℓ > 1).

We wish to distinguish between such pairs. Therefore, for a minimal (respectively

maximal) pair we set mi j := μi j (respectively Mi j := μi j ). We have that mi j ∈ {0, 1}
for any pair α, β ∈Pℓ

n(h).

Example 3.1 Let h = 1, ℓ = 3 and κ = (0, 1, 2) as in Fig. 2. The pair ((18 | ∅ |
∅), (12 | ∅ | 16)) is a minimal pair. There are three hyperplanes parallel to Eε1−ε3,0

separating these two points.

Remark 3.2 Note that, near the origin, it is possible that a reflection is both maximal

and minimal. For example, consider the pair (16 | ∅ | 12) and (14 | ∅ | 14) pictured

in Fig. 2.

Theorem 3.3 Let e > hℓ and suppose that κ ∈ Zℓ is h-admissible. Let α ∈ wαFℓ
n(h),

β ∈ wβFℓ
n(h) be such that wβ ≤ wα and ℓ(β) = ℓ(α) − 1. Then there exists

1 ≤ i, j ≤ hℓ and μi j ∈ N be such that si− j,μi j e(α) = β. We have that

α \ α ∩ β = {X1, X2, . . . , Xk} and β \ α ∩ β = {Y1, Y2, . . . , Yk}

with Xa � Xa+1 (respectively Ya � Ya+1) for 1 ≤ a < k is a sequence of nodes

belonging to the j th column of α (respectively i th column of β). There is a unique

Tα
β ∈ SStd+(β, α), as follows

Tα
β(�) =

{
� if � ∈ α ∩ β

Yk if � = Xk .

We have HomAn(κ)(�(α),�(β)) = k{ϕα
β }where ϕα

β is determined by ϕα
β (CTα ) = CTα

β
.

We define tαα∩β ∈ Std(α) and t
β
α∩β ∈ Std(β) to be the unique standard tableaux of

given shape determined by

tαα∩β(r , c, m) = tα∩β(r , c, m) = t
β
α∩β(r , c, m)
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for (r , c, m) ∈ α ∩ β. We have that φα
β (ctαα∩β

) = ctαα∩β
determines the corresponding

unique homomorphism in HomHn(κ)(Sn(α), Sn(β)). The homomorphisms ϕα
β and φα

β

are both of degree t1.

Proof For the statement for An(κ) see [6, Corollary 10.12]. By the definition of tαα∩β ,

we have that Path(λ, tαα∩β) = ∅ unless λ � α. Therefore e(tαα∩β)�(λ) = 0 unless

λ � α. Therefore ctαα∩β
∈ L(α) and thus it is enough to define a homomorphism, φα

β

say, by where it sends ctαα∩β
. Now, we have that

Cϕ(tαα∩β )CTα
β
= C

ϕ(t
β
α∩β )

∈ An(κ)

and so the result follows by applying the Schur idempotent. ⊓⊔

We now consider the restriction of one-column homomorphisms. This will be useful

in our inductive proofs. Before stating the proposition, we summarise some trivial

consequences of equation (1.4) in the language of reflections. Let α ∈ wαFℓ
n(h), β ∈

wβFℓ
n(h) be such that wβ ≤ wα and ℓ(β) = ℓ(α)−1. Let 1 ≤ i, j ≤ hℓ and μi j ∈ N

be such that si− j,μi j e(α) = β. There exists a unique �α ∈ (α \ β ∩ α) ∩ Remr (α)

and �β ∈ (β \ α ∩ β) ∩ Remr (β) for some r ∈ Z/eZ. For such a pair, we have that

si− j,μi j e(α−�α) = β−�β . Moreover, we have that r -res((Sn(α))) ∼= Sn−1(α−�α)

and r -res((Sn(β))) ∼= Sn−1(β − �β) and these restricted modules are isomorphic to

each other if and only α−�α = β−�β (or equivalently α−�α ∈ E(εi −ε j , μi j e)).

Proposition 3.4 Let e > hℓ and suppose that κ ∈ Zℓ is h-admissible. Let α ∈
wαFℓ

n(h), β ∈ wβFℓ
n(h) be such that wβ ≤ wα and ℓ(β) = ℓ(α) − 1. We

set 1 ≤ i �= j ≤ hℓ and μi j ∈ N to be such that si− j,μi j e(α) = β. Let

�α ∈ (α \ α ∩ β) ∩ Remr (α) and �β ∈ (β \ α ∩ β) ∩ Remr (β) for some r ∈ Z/eZ.

If α −�α �= β −�β , then

r−res(φα
β ) = φ

α−�α

β−�β
∈ HomHn−1(κ)(Sn−1(α −�α), Sn−1(β −�β)) (3.1)

and if α −�α = β −�β is equal to λ say, then

r−res(φα
β ) = idλ〈1〉 ∈ HomHn−1(κ)(Sn−1(λ), Sn−1(λ)〈1〉) (3.2)

where idλ is the trivial endomorphism of Sn−1(λ).

Proof We have already seen (in Theorem 3.3) that the homomorphism φα
β is simply

given by right multiplication by CTα
β
. This allows us to factorise the homomorphism

in the form

φα
β :

(
ιrn−1(CS)× CT�α

)
�→

(
ιrn−1(φ

α−�α

β−�β
(CS))× CT�β

)

and, ignoring the leftmost strand (as in (1.5)), we obtain the Hn−1(κ)-module homo-

morphism φ
α−�α

β−�β
. We have that deg(T�β

) = δα−�α,β−�β
and the result follows.

⊓⊔
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3.2 Diamonds formed by pairs of one-columnmorphisms

We wish to consider all possible ways of composing a pair of such one-column homo-

morphisms.

We let α, β ∈ E⊚
h,ℓ and we write β ∈ wβFh(n) and α ∈ wαFh(n). For the remainder

of this section we will assume that wβ ≤ wα with ℓ(β)+2 = ℓ(α). We have that wα =
si1 . . . siℓ for some sik

∈ S for 1 ≤ k ≤ ℓ and wβ = si1 . . . ŝi p . . . ŝiq . . . siℓ for some

1 ≤ p, q ≤ ℓ, where the hat denotes a generator missing from the product. Therefore

there exist precisely two points γ ∈ wγ Fh(n) and δ ∈ wδFh(n) such that wβ ≤
wγ , wδ ≤ wα and, without loss of generality, we have that wγ = si1 . . . ŝiq . . . siℓ

and wδ = si1 . . . ŝi p . . . siℓ . By assumption α, β ∈ E⊚
h,ℓ, therefore at least one of

γ or δ belongs to E⊚
h,ℓ. We say that such a quadruple (α, β, γ, δ) is a diamond if

α, β, γ, δ ∈ E⊚
h,ℓ. If (α, β, γ, δ) is not a diamond, then without loss of generality we

have that δ /∈ E⊚
h,ℓ; in which case we say that the triple (α, β, γ ) is a degenerate

diamond or a strand. When we wish to speak of both cases simultaneously, we refer

to the pair (α, β) as a (degenerate or non-degenerate) diamond pair.

The above quadruples (α, β, γ, δ) can be broken up into 6 families, for the sake

of the upcoming proofs. The first five cases of homomorphisms should be familiar

to those who have worked with Carter–Payne homomorphisms for quantum general

linear groups (for which W0 ≤ We is the maximal parabolic). The sixth case will only

occur when the parabolic W0 ≤ We is non-maximal.

The pair α and β lie in R3. We first consider the cases in which α, β differ in precisely

three columns. In other words, α, β belong to a plane R{ε j − εi , εk − εi } for some

1 ≤ i, j, k ≤ hℓ and (without loss of generality) we can assume that

〈α, εi 〉 > 〈α, ε j 〉 > 〈α, εk〉. (3.3)

(1) We have β := sk−i,μki es j−i,μ j i e(α) and γ := s j−i,μ j i e(α). Without loss of

generality, there are two subcases

(a) δ := sk− j,μk j e(α) ∈ E⊚
h,ℓ;

(b) δ := sk− j,μk j e(α) /∈ E⊚
h,ℓ;

(2) We have β := sk−i,μki esk− j,μk j e(α) and γ := sk− j,μk j e(α). Without loss of

generality, there are two subcases

(a) δ := s j−i,μ j i e(α) ∈ E⊚
h,ℓ;

(b) δ := s j−i,μ j i e(α) /∈ E⊚
h,ℓ;

(3) δ := s j−i,μ j i e(α) and γ := sk−i,μki e(α) β := sk− j,μk j e(δ) = s j−i,μ j i e(γ ), all

belong to E⊚
h,ℓ;

(4) δ := sk− j,μk j e(α), and γ := sk−i,μki e(α) β := s j−i,μ j i e(δ) = sk− j,μk j e(γ ), all

belong to E⊚
h,ℓ.

These first four cases can be pictured by projecting into the plane R{ε j − εi , εk − εi }
as depicted in Fig. 3.
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Fig. 3 The cases (1b), (2b), (3) and (4) respectively. We have shaded the non-dominant region in grey.

Cases (1a) and (2a) can be pictured by removing the shading from (1b) and (2b)

The pair α and β lie in R4. We now assume that α and β differ in four columns

(so that we cannot picture them belonging to a plane). Without loss of generality, we

assume that

〈α, εi 〉 > 〈α, ε j 〉 〈α, εk〉 > 〈α, εl〉.

This is the case in which

(5) γ := s j−i,μ j i e(α), δ := sl−k,μlk e(α), and β := sl−k,μlk e(γ ) = s j−i,μ j i e(δ) all

belong to E⊚
h,ℓ.

The pair α and β lie in R2. Finally, we have one additional case to consider in which

α and β differ only in 2 columns. In other words α and β belong to a line R{εi − ε j }.

(6a) We have β = si− j,(1−m j i )es j−i,m j i e(α) and γ := s j−i,M j i e(α) belong to E⊚
h,ℓ

and

(i) δ := s j−i,m j i e(α) does not belong to E⊚
h,ℓ;

(i i) For ℓ > 1 we have that δ := s j−i,m j i e(α) does belong to E⊚
h,ℓ;

(6b) For ℓ > 1 we have that β := si− j,m j i es j−i,M j i e(α), and γ := s j−i,M j i e(α)

and δ := s j−i,m j i e(α) belong to E⊚
h,ℓ and cannot be written in the form specified

in case (6a).

In the first two cases, the lightly coloured-in region denotes the “missing" region of

(1b) and (2b). For diamonds formed entirely of maximal pairs, the pictures in Fig. 3

consists only of six e-alcoves and their walls; thus the hyperplanes pictured are the

only hyperplanes between α and β. See Fig. 2 and Eq. (3.6) for such an example. For

(degenerate) diamonds involving one or two minimal pairs, there can be many other

hyperplanes between α and β which are not pictured. See Fig. 2 and Eq. (3.5) for such

an example. The fifth case arises from a pair of orthogonal reflections and cannot be

pictured in 2-dimensional space, however it is also the easiest case and so we do not

lose much by being unable to picture it. The subcases of (6) for which ℓ > 1 are easily

pictured and should be familiar to those who work with Virasoro and blob algebras.

See Fig. 2 and Eq. (3.4) for such an example (many further examples can be found in

[7]).
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Example 3.5 Let h = 1 and ℓ = 3 and κ = (0, 1, 2) as in Fig. 2. The diamond

consisting of

α = (18 | ∅ | ∅) β = (12 | ∅ | 16) γ = (16 | ∅ | 12) δ = (12 | ∅ | 16).

(3.4)

is as in case (6a). The diamond consisting of the 3-partitions,

α = (∅ | 18 | ∅) β = (16 | 1 | 1) γ = (17 | ∅ | 1) δ = (∅ | 17 | 1). (3.5)

is as in case (4) and is a mixture of minimal and maximal pairs. Let

α = (∅ | ∅ | 18) β = (12 | 1 | 15) γ = (∅ | 13 | 15) δ = (12 | ∅ | 16). (3.6)

The diamond (α, β, γ, δ) is as in case (4) and consists solely of maximal pairs.

Remark 3.6 We added in (6b) the condition that it “cannot be written in the form (6a)”

in order to ensure that these cases are mutually exclusive. Without that clause, these

cases would have a non-trivial intersection for points near the origin (see Remark 3.2).

We have added this clause as these two subcases are genuinely different, see Proposi-

tion 3.9 below.

Definition 3.7 Let (α, β, γ, δ) be a diamond. We define the (α, β)-vertex to be

ξ = (α ∩ β ∩ γ ∩ δ) ∈P
ℓ
n(h).

In case (6), there exists 0 < y < e and x ≥ 0 such that 〈α− ξ, εi 〉 = xe+ y. In cases

(1), (2) and (4), we let Wξ denote the copy of S3 generated by the reflections through

the hyperplanes E( j − i, μ j i e), E(k − j, μk j e), and E(k − i, μki e). Given s ∈ Wξ

we let

x = 〈α − ξ, εi 〉 = 〈s(α)− ξ, εs(i)〉 y = 〈α − ξ, ε j 〉 = 〈s(α)− ξ, εs( j)〉.

We let {X s(α)
1 , X

s(α)
2 , . . . , X

s(α)
x } denote the final x nodes of the s(i)th column of s(α)

and let {Y s(α)
1 , Y

s(α)
2 , . . . , Y

s(α)
y } denote the final y nodes of the s( j)th column of s(α).

Remark 3.8 In cases (1), (2) and (4) we have that 0 < y < e and res(Xk) = res(Yk)

for 1 ≤ k ≤ min{x, y}.

3.3 Paths in diamonds

We shall now consider reflections of the corresponding paths in the hyperplanes

described in our 6 cases above. We remark that each of these paths passes through

each hyperplane at most once. Therefore, we simplify our notation of Remark 2.5 by
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dropping the superscript on the reflection. We now consider the (dominant) paths in

Path(β, α). In case (1a) there at two paths

Sα
β := s j−k,μk j esk−i,μki e(T

α) and Tα
β := s j−i,μ j i esk− j,μk j e(T

α)

of degrees 0 and 2 respectively, which are both dominant. Generic examples of

such paths (drawn from the point at which they meet the hyperplane E(k − j, μk j e)

onwards) are pictured below

+εi

+ε j

+εk

and are of degree 0 and 2 respectively.

In case (2a) there is a unique path

Tα
β := sk−i,μki esk− j,μk j e(T

α)

which is of degree 2 and dominant. A generic example of such a path is pictured

below.

+εi

+ε j

+εk

In each of cases (1b) and (2b) there is a single path

s j−k,μ jk esk−i,μki e(T
α) and s j−i,μ j i esk−i,μki e(T

α)

of degree 2, neither of which is dominant. These are pictured below

+εi

+ε j

+εk
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In each of cases (3) and (4) there is a unique path

Tα
β := sk− j,μk j es j−i,μ j i e(T

α) Tα
β := s j−i,μi j esk− j,μk j e(T

α)

respectively, of degree 2. Generic examples of such paths are pictured below

+εi

+ε j

+εk

In case (5), the reflections are orthogonal and there is a unique (dominant) path and

if we assume (without loss of generality) that 〈α, εi 〉 > 〈α, εk〉, then this path is given

by

Tα
β := sl−k,μlk es j−i,μ j i e(T

α)

and is of degree 2. In case (6a) we have (x − 1) distinct dominant paths of degree 0

given as follows,

Sχ =
{

si− j,(Mi j−χ−1)esi− j,(Mi j−χ)e(T
α) for mi j = 1

si− j,(Mi j+χ+1)esi− j,(Mi j+χ)e(T
α) for mi j = 0

for 1 ≤ χ < x (for x as in Definition 3.7); we also have a unique path of degree 2

given by

Tα
β = s j−i,(1−m j i )esi− j,mi j e(T

α) ∈ Path(β, Tα)

which is dominant if and only if we are in case (6a)(i i). In case (6b) we have a unique

(dominant) path

Tα
β = si− j,(2m j i−M j i )es j−i,m j i e(T

α)

of degree 2. Using Eq. (2.2), we now summarise the above as follows.

Proposition 3.9 Let (α, β) be a diamond pair. We have that

dimt (1α�(β)) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 in cases (1b) and (2b)

t2 + 1 in case (1a)

t2 in cases (2a), (3), (4), (5) and (6b)

x − 1 in case (6a)(i)

t2 + x − 1 in case (6a)(i i)
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where x ∈ Z>0 is defined in Definition 3.7 and t is the grading indeterminate over

Z≥0 from Remark 1.16.

Example 3.10 In Fig. 2, we have that the tableaux

T
(18|∅|∅)

(14|∅|14)
= s

(6)
1−3,M13

◦ s
(2)
3−1,M31

(T(18|∅|∅)) T
(18|∅|∅)

(14|∅|14)
= s

(7)
3−1,m31

◦ s
(1)
1−2,M12

(T(18|∅|∅))

and T
(18|∅|∅)

(14|∅|14)
= s

(6)
1−2,m12

◦ s
(5)
3−2,m32

(T(18|∅|∅))

are as in cases (6a), (4), and (4) respectively and are all of degree t2.

3.4 Compositions of one-column homomorphisms in diamonds

We now consider the composition of the one-column homomorphisms in terms of the

path basis constructed in Proposition 3.9. Let T ∈ T(λ, μ) and T(X) = Iκ
Y ∈ Z[ǫ] for

X ∈ λ, Y ∈ μ; we abuse notation by writing either T(X) = Y or T(X) = Iκ
Y . From

Proposition 3.9, we deduce the immediate corollary.

Corollary 3.11 Let (α, β, γ ) be a strand (in other words, as in cases (1b), (2b) and

(6a)(i)). We have that ϕα
γ ◦ ϕ

γ

β = 0 ∈ HomAn(κ)(�(α),�(β)).

Proof Cases (1b) and (2b) are clear. Case (6a)(i) follows because the composition of

two homomorphism of degree t1 must be a vector of degree t2 and no such vector

exists (by Proposition 3.9). ⊓⊔

Proposition 3.12 Let (α, β, γ, δ) be a diamond. We have that

• CTα
β
= CTα

δ
CTδ

β
in all cases, namely (1a), (2a), (3), (4), (5), (6a)(i) and (6b);

• CTα
β
= CTα

γ
CT

γ
β

in the cases (2a), (3), (5).

Proof For γ ∈Pℓ
n (similarly for δ ∈Pℓ

n ) it is clearly enough to show that

Tα
γ T

γ

β = Tα
β ∈ T(β, α) (3.7)

on the level of bijective maps : β → α, and furthermore that if

(r , c, m) � (r ′, c′, m′) and T
γ

β (r , c, m) � T
γ

β (r ′, c′, m′) implies

Tα
γ T

γ
β (r , c, m) � Tα

γ T
γ
β (r ′, c′, m′) (3.8)

for any two nodes (r , c, m), (r ′, c′, m′) ∈ β \ ξ of the same or adjacent residue. This

is simply by the definition of the bases elements corresponding to these tableaux (and

the fact that double-crossings between strands of non-adjacent distinct residues can

be removed by relation (A5)). The cases listed in the above proposition are precisely

those for which Eqs. (3.7) and (3.8) are both true (in other words, 3.7 and 3.8 both

hold in all cases except in cases (1a), (4), and (6) for the product Tα
γ T

γ
β — which will

be discussed separately).
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We shall consider case (2), as the other cases are identical. It is clear that

S(r , c, m) = (r , c, m) if (r , c, m) ∈ ξ for Tλ
μ for λ,μ ∈ {α, β, γ, δ}. Thus it remains

to consider the restriction of these bijections to : β \ ξ → α \ ξ (via both γ \ ξ and

δ \ ξ ). We have that

T
γ
β (Xβ

p) = Y
γ
p T

γ
β (X

β
y+q) = X

γ
y+q T

γ
β (Y β

p ) = X
γ
p

Tα
γ (Y

γ
p ) = Y α

p Tα
γ (X

γ
y+q) = Xα

y+q Tα
γ (X

γ
p ) = Xα

p

and

Tδ
β(Xβ

p) = X δ
p Tδ

β(X
β
y+q) = X δ

y+q Tδ
β(Y β

p ) = Y δ
p

Tα
δ (X δ

p) = Y α
p Tα

δ (X δ
y+q) = Xα

y+q Tα
δ (Y β

p ) = Xα
p

and

Tα
β(Xβ

p) = Y α
p Tα

β(X
β
y+q) = Xα

y+q Tα
β(Y β

p ) = Xα
p

for 1 ≤ p ≤ y and 1 ≤ q ≤ x − y. Therefore equation (3.7) holds. To see that

equation (3.8) holds, one requires the following observation

X
β

j � Y
β

j Y
γ

j � X
γ

j X δ
j � Y δ

j Y α
j � Xα

j

for all 1 ≤ j ≤ y; one can apply this observation to each of the above tableaux in

turn. Thus equation (3.8) holds, as required. ⊓⊔

It remains to consider the γ subcases of (1a), (4), and (6) not considered above.

In all these cases, we shall see that equation (3.7) and (3.8) fail. Thus, we must

apply some relations in order to rewrite each product-diagram in the required form.

Given (r , c, m) ∈ α, we let y(r , c, m)1α denote the diagram 1α with a dot added on

the vertical solid strand with x-coordinate given by Iκ
(r ,c,m)

. Following [10], we set

yk = y(k, 1, ℓ).

Proposition 3.13 Let (α, β, γ, δ) be a diamond as in case (1a). Then

CTα
γ
CT

γ
β
= −y(Xα

y )1αCSα
β
= (−1)y+1CTα

β
+ A�β

n (κ). (3.9)

Proof In case (1a), we have Tα
γ ◦ T

γ
β = Sα

β ∈ T(β, α) as bijective maps. However, the

corresponding product of diagrams has a single double-crossing of non-zero degree;

this is between the strand from X
β
y+1 on the southern edge to Xα

y+1 on the northern

edge and the strand from Y
β
y on the southern edge to Xα

y on the northern edge. In

particular, res(X
β
y+1) = res(Y

β
y )− 1, and

X
β
y+1 � Y β

y T
γ

β (X
β
y+1)= X

γ

y+1 � Y
γ
y =T

γ

β (Y β
y ) Tα

γ (Y
γ
y )= Xα

y � Xα
y+1=Tα

γ (X
γ

y+1).
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For 1 ≤ p, p′ ≤ y the strand from X
β
y+p on the southern edge to Xα

y+p on the

northern edge double-crosses with the strand from Y
β

p′ on the southern edge to Xα
p′

on the northern edge; since y < e, we can remove all of the double-crossings for

(p, q) �= (1, 1) using relation (A5). We now resolve the final double crossing (for

(p, q) = (1, 1)) using relation the leftmost equality of (A6) and hence obtain

CTα
γ
CT

γ
β
= y(Xα

y+1)1αCSα
β
− y(Xα

y )1αCSα
β
.

Concerning the former diagram: we pull the dot down the strand and encounter no

like-crossings on the way; hence this term is equal to zero. It remains to prove the

second equality in Eq. (3.9). We let Uy ∈ T(α, β) denote the map

Uy(r , c, m) =

⎧
⎪⎨
⎪⎩

Xα
y for (r , c, m) = X

β
y

Y α
y for (r , c, m) = Y

β
y

Sα
β(r , c, m) otherwise.

.

We claim that

y(Xα
y )1αCSα

β
= −CUy + A�β

n (κ).

To see this, pull the dot at the top of the diagram y(Xα
y )1αCSα

β
down the strand on

which it lies (from Xα
y on northern edge to Y

β
y on the southern edge) towards the bottom

of the diagram. By Definition 1.10, we can do this freely until we encounter a like-

crossing of the form in relation (A3). Such a crossing involves the aforementioned

strand (between points Xα
y and Y

β
y on the northern and southern edges) and some

vertical strand of the same residue. Such a vertical strand either (i) corresponds to a

step of the form +εm for m /∈ {i, j, k} or (i i) is the vertical strand from X
β
y on the

southern edge to Y α
y on the northern edge. In the former case, the resulting error term

belongs to A
�β
n (κ). In the latter case, we apply relation (A3) to move the dot past the

crossing at the expense of acquiring an error term, which is equal to −CUy . Finally

(in the diagram which has a dot) we continue pulling the dot reaches the bottom of

the diagram, the resulting diagram again belongs to A
�β
n (κ). Thus the only non-zero

term acquired in this process is −CUy and the claim holds. If y = 1, then Uy = Tα
β

and we are done. Suppose that y > 1. Consider

(i) the solid strand from Y
β
y−1 on the southern edge to Xα

y−1 on the northern edge

(i i) the solid strand from X
β
y−1 on the southern edge to Y α

y−1 on the northern edge

(i i i) the ghost strand from Y
β
y on the southern edge to Y α

y on the northern edge.

These three strands together form a triple-crossing as on the right-hand side of the

rightmost equation in relation (A7). Applying relation (A7), we can undo the crossing

(at the expense of multiplication by minus one and an error term with the same number

of crossings). Consider the error term: We are free to pull the ghost strand (of the strand

connecting Y
β
y and Y α

y ) to the left to obtain a diagram which belongs to A
�β
n (κ). That
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leaves one remaining non-zero diagram which differs from −CUy in that we have

undone the aforementioned triple-crossing; to summarise

y(Xα
y )1αCSα

β
= CUy−1 + A�β

n (κ) with Uy(r , c, m) =

⎧
⎪⎨
⎪⎩

Xα
y−1 for (r , c, m) = X

β
y−1

Y α
y−1 for (r , c, m) = Y

β
y−1

Uy(r , c, m) otherwise.

Repeat this argument until all y crossings have been resolved, the results follows. ⊓⊔
Proposition 3.14 Let (α, β, γ, δ) be a diamond as in case (4). Then

CTα
γ
CT

γ
β
= (−1)x CTα

β
+ A�β

n (κ).

Proof We have that

Tα
γ ◦ T

γ
β (r , c, m) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Xα
p = Tα

β(Y
β
p ) if (r , c, m) = X

β
p for 1 ≤ p ≤ x

Y α
p = Tα

β(X
β
p) if (r , c, m) = Y

β
p for 1 ≤ p ≤ x

Y α
q = Tα

β(Y
β
q ) if (r , c, m) = Y

β
q for x + 1 ≤ q ≤ y

Tα
β(r , c, m) for (r , c, m) ∈ ξ

Consider

(i) the solid strand from Y
β
x on the southern edge to Xα

x on the northern edge;

(i i) the solid strand from X
β
x on the southern edge to Y α

x on the northern edge;

(i i i) the ghost strand of the strand from Y
β
x+1 on the southern edge to Y α

x+1 on the

northern edge.

These strands together form a crossing as on the right hand side of the rightmost

equation in relation (A7). Undoing this crossing we obtain an error term (correspond-

ing to the diagram on the lefthand-side of the rightmost equality in relation (A7))

which belongs to A
�β
n (κ) and another (non-zero) term. One can then repeat the above

argument with the latter diagram (except replacing the subscript ‘x ′ with ‘x − 1′).
Continuing in this fashion, we obtain the required result. ⊓⊔
Proposition 3.15 Let (α, β, γ, δ) be a diamond as in case (6b). Then

CTα
γ
CT

γ
β
= (−1)yCTα

β
+ A�β

n (κ).

Proof We let {Xα
1 , Xα

2 , . . . , Xα
ex , Y α

1 , . . . , Y α
y } denote the final xe+ y nodes of the i th

column of α. We let {Xβ
1 , X

β
2 , . . . , X

β
ex } denote the final xe nodes of the j th column

of β and {Y β
1 , . . . , Y

β
y } denote the final y nodes of the i th column of β. We have that

Tα
γ ◦ T

γ
β (r , c, m) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Tα
β(Y

β
p ) = Xα

p for (r , c, m) = X
β
p and 1 ≤ p ≤ y

Tα
β(X

β
p) = Y α

p for (r , c, m) = Y
β
p and 1 ≤ p ≤ y

Tα
β(X

β
q ) = Xα

q for (r , c, m) = X
β
q and y < q ≤ ex

Tα
β(r , c, m) for (r , c, m) ∈ ξ.
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Consider

(i) the solid strand from Y
β
y on the southern edge to Xα

y on the northern edge;

(i i) the solid strand from X
β
y on the southern edge to Y α

y on the northern edge;

(i i i) the ghost of the strand from X
β
y+1 on the southern edge to Xα

y+1 on the northern

edge.

These strands together form a crossing as on the right hand side of the latter equality

in relation (A7). Undoing this crossing we obtain an error term (corresponding to the

diagram on the lefthand-side of the latter equality in relation (A7)) which belongs to

A
�β
n (κ) and another (non-zero) term. One can then repeat the above argument with

the latter diagram (except replacing the subscript ‘y′ with ‘y − 1′). Continuing in this

fashion, we obtain the required result. ⊓⊔

Proposition 3.16 Let (α, β) be a diamond pair as in case (6a)(i i). Then

CTα
γ
CT

γ
β
= (−1)e(x+1)+yCTα

β
+ A�β

n (κ).

Proof We first fix some notation. We denote the final e nodes at the end of the j th

column of β by X
β
1 , . . . , X

β
e . We denote the final e(x−1)+y nodes at the end of the i th

column of β by X
β
e+1, . . . , X

β
ex , Y

β
1 , . . . , Y

β
y . We let Xα

1 , Xα
2 , . . . , Xα

ex , Y α
1 , . . . , Y α

y

denote the final ex + y nodes at the end of the i th column of α. Given σ ∈ Sx we

define Uσ ∈ T(β, α) as follows,

Uσ (X
β
ep−q) = Uσ (X

β

eσ(p)−q) Uσ (Y
β
t ) = Y α

t (3.10)

for 1 ≤ p,≤ x , 0 ≤ q < e, 0 ≤ t < y and such that Uσ (r , c, m) = (r , c, m) for

(r , c, m) ∈ ξ . We have that Tα
β = Uid for id ∈ Sx and Sχ = Uσ for σ = s1s2 . . . sχ for

1 ≤ χ < x (and so any element of SStd(β, α) can be written in the form of equation

(3.10)).

We now state a claim that will provide the crux of the proof. Set σ = s1s2 . . . sχ

for 1 ≤ χ ≤ x . Given 1 ≤ r < χ , we refer to the strand in CUσ from X
β
e on the

southern edge to Xα
χe on the northern as the principal strand. Let Cr

Uσ
denote the

diagram obtained from CUσ by placing a dot on the principal strand at any point in the

interval (Iκ
Xα

er
, Iκ

Xα
er+1

)× [0, 1].
For σ �= s1, we claim that

Cr
Uσ
= Cr−1

Uσ
+ (−1)e+1Cr−1

Uσ ′
(3.11)

Cr
Us1
= Cr−1

Us1
+ (−1)eCUs1

(3.12)

modulo A
�β
n (κ) where σ ′ = s1s2 . . . sr−1sr+1 . . . sχ . Diagrammatically, we can think

of our claim as simply a beefed-up version of relation (A3) in which we consider

crossings involving collections of strands (each of size e > 1). We let i = res(X
β
e ).

We now prove the claim. First apply relation (A3) to pull the dot through the cross-

ing i-strands and hence obtain Cr−1
Uσ

plus another term with a minus sign. For this
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latter diagram, the ghost of the principal i-strand can be pulled to the left through the

crossing solid (i + 1)-strands as in relation (A7). We hence obtain two diagrams: one

with the same number of crossings, and one in which the crossing of (i + 1)-strands

has been undone. The former is zero modulo the stated ideal. The latter diagram now

has a crossing of two solid (i+2)-strands and a ghost (i+1)-strand as in relation (A7).

Repeating as necessary, this process terminates with a diagram (occurring with coef-

ficient (−1)e) which traces out the bijection of Uσ ′ but with many double-crossings.

• If σ = s1, then all of these double-crossings are of degree zero;

• If σ �= s1, then precisely one of these double-crossings has non-zero degree: that

between the solid strand from X
β
e on the southern edge to Xα

re on the northern

edge and the ghost of the strand from X
β
re−e+1 on the southern edge to Xα

χe−e+1

on the northern edge.

In the latter case, we resolve this double-crossing as in relation (A7) and obtain two

diagrams: one is of the required form and the other belongs to the stated ideal. In either

case, the claim holds. Having proven our claim, we are now ready to prove the result.

We have that

Tα
γ ◦ T

γ
β (r , c, m) =

⎧
⎪⎨
⎪⎩

Us1...sx−1(X
β
t ) = Xα

xe−e+t for (r , c, m) = Y
β
t and 1 ≤ t ≤ y

Us1...sx−1(Y
β
t ) = Y α

t for (r , c, m) = X
β
t and 1 ≤ t ≤ y

Us1...sx−1(r , c, m) otherwise.

Therefore, using y applications of (A7) we obtain a diagram which traces out the same

bijection as Us1...sx−1 (modulo error terms). However the resulting diagram contains

a single degree 2 double-crossing between the solid strand from X
β
e to Xα

ex (on the

southern and northern edges, respectively) with the ghost of the strand from Y
β
1 to

Y α
1 (on the southern and northern edges, respectively). Resolving this crossing using

relation (A6), we obtain that

CTα
γ
CT

γ
β
= (−1)y+1CUs1 ...sx−1

+ A�β
n (κ).

We now successively apply equation (3.11) a total of x−1 times, followed by a single

application of equation (3.12). The error terms all belong to A
�β
n (κ) and the result

follows. ⊓⊔

Theorem 3.17 Let (α, β, γ, δ) be a diamond. We have that

ϕα
δ ◦ ϕδ

β = ϕα
β = εα,β,γ,δϕ

α
γ ◦ ϕ

γ
β where εα,β,γ,δ =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(−1)y+1 in cases (1a)

(−1)x in cases (4)

(−1)y in cases (6b)

(−1)e(x+1)+y in case (6a)(i i)

1 otherwise.

(3.13)
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Moreover the map ϕα
β is determined by ϕα

β (CTα ) = CTα
β

and dimt (HomAn(κ)(�(α),

�(β))) = t2 where t is the grading indeterminate over Z≥0 from Remark 1.16.

Proof Equation (3.13) is simply a restatement of Propositions 3.12 to 3.16; we remark

that we can ignore all mention of terms in the ideal A
�β
n (κ) in Propositions 3.14 to 3.16

as all these terms are zero in �(β) (by the definition of the cell module as a quotient

by precisely this ideal). To verify that the homomorphism space is 1-dimensional, it

remains to check that CS ∈ L(β) for S ∈ SStd+(β, α) for each S such that deg(S) = 0.

We will not need the dimension result in what follows and so we leave this as an exercise

for the reader. ⊓⊔

4 The BGG-resolutions for quiver Hecke algebras

We are now ready to prove (a stronger version of) Theorem B from the introduction

over k an arbitrary field. Given α ∈ Fℓ
n(h), we define an associated Hn(κ)-complex

and show that this complex forms a BGG resolution of Dn(α). We simultaneously

construct bases and representing matrices for Dn(α) and completely determine its

restriction along the tower of cyclotomic quiver Hecke algebras.

Following a construction going back to work of Bernstein–Gelfand–Gelfand and

Lepowsky [1,28], we are going to define a complex of graded An(κ)-modules

· · · −→ �2
δ2−→ �1

δ1−→ �0
δ0−→ 0, (4.1)

where

�ℓ :=
⊕

w∈Pℓ

�(w)〈ℓ(w)〉. (4.2)

We will refer to this as the BGG complex. For a diamond (α, β, γ, δ) we have homo-

morphisms of An(κ)-modules

�(γ )

�(δ)

�(α) �(β)

ϕα
γ

ϕα
δ

ϕ
γ
β

ϕδ
β

(4.3)

given by our one-column homomorphisms. By an easy variation on [1, Lemma 10.4]

and Theorem 3.17, it is possible to assign a sign ε(ν, μ) for each of the four homo-

morphisms ϕν
μ such that for every diamond the product of the signs associated to its

four arrows is equal to −εα,β,γ,δ . For a strand (α, β, γ ) we have homomorphisms
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�(γ )�(α) �(β).
ϕα

γ ϕ
γ
β

(4.4)

We can now define the An(κ)-differential δℓ : �ℓ → �ℓ−1 for ℓ ≥ 1 to be the sum

of the maps

ε(ν, μ)ϕν
μ : �(ν)〈ℓ〉 → �(μ)〈ℓ− 1〉

over all diamond pairs (ν, μ) with ℓ(ν) = ℓ. For λ ∈ Fℓ
n(h), we set C•(λ) =⊕

ℓ≥0 �ℓ〈ℓ〉 together with the differential (δℓ)ℓ≥0. We remark that each standard

module occurs with a grading shift which coincides with the homological degree in

which the module occurs within the complex. This grading shift/homological degree

is given by the length function of the indexing ℓ-partition.

Proposition 4.1 We have that Im(δℓ+1) ⊆ ker(δℓ), in other words C•(λ) is a complex.

Proof This is a standard argument using Theorem 3.17 and the fact that if ℓ(wα) =
ℓ(wβ)+ 2 and wβ ≤ wα , then there exists precisely two points γ, δ ∈ Eh,ℓ such that

wα ≥ wγ , wδ ≥ wβ . ⊓⊔

We now apply the Schur functor to the above to obtain a complex of modules in

the quiver Hecke algebra as follows,

C•(λ) := EωC•(λ) =
⊕

λ�μ

Sn(μ)[ℓ(μ)] with Eωδℓ = δℓ.

Theorem 4.2 Let e > hℓ, let κ ∈ Zℓ be h-admissible, let k be a field, and λ ∈ Fℓ
n(h).

The Hn(κ)-complex C•(λ) is exact except in degree zero, where

H0(C•(λ)) = Dn(λ).

We have Dn(λ) = k{cs | s ∈ Stde(λ)} and rad(Sn(λ)) = k{cs | s ∈ Std(λ) \Stde(λ)}.
Furthermore,

resn
n−1(Dn(λ)) =

⊕

�∈Fh(λ)

Dn(λ−�).

Proof We assume, by induction, that if λ ∈ Fℓ
n−1(h), then the complex C•(λ) forms a

BGG resolution and that {cs | s ∈ Stde(λ)} forms a basis of the simple module Dn(λ).

We now assume that λ ∈ Fℓ
n(h) and consider the complex C•(λ). We have that

resn
n−1(C•(λ)) =

⊕

r∈Z/eZ

Er
ω(C•(λ)).

We now consider one residue at a time. As λ belongs to an alcove, we have that λ (and

any μ � λ) has either 0 or 1 removable r -boxes for each r ∈ Z/eZ. We let Er
ω(λ)
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denote the unique ℓ-composition (respectively ℓ-partition) which differs from λ by

removing an r -node. For each residue, there are two possible cases.

• We have that Er
ω(λ) lies on an alcove wall or Er

ω(λ) /∈Pℓ
n . By restriction, we have

that Im(Er
ωδℓ+1) ⊆ ker(Er

ωδℓ) and so Er
ω(C•(λ)) forms a complex. We have that

Er
ω(λ) is fixed by reflection through some hyperplane and the ℓ-compositions of

n which dominate λ ∈ Fℓ
n(h) come in pairs (ν+, ν−) with ν− � ν+ and ℓ(ν+) =

ℓ(ν−)+ 1 and furthermore such that

Er
ω(ν+) = Er

ω(ν−) = ν ∈ S̃hℓ · (Er
ω(λ)).

We have that

Er
ω(Sn(ν+)) = Er

ω(Sn(ν−)) =
{

0 if either ν+ /∈Pℓ
n or ν− /∈Pℓ

n

Sn−1(ν) otherwise

Thus Er
ω(⊕λ�μSn(μ)〈ℓ(μ)〉) decomposes as follows,

Er
ω(⊕λ�μSn(μ)〈ℓ(μ)〉) =

⊕

ν�λ−�

Sn−1(ν)〈ℓ(ν)− 1〉
⊕

ν�λ−�

Sn−1(ν)〈ℓ(ν)〉.

(4.5)

Given ν � λ − �, the restriction of φν+
ν− ∈ HomHn(κ)(Sn(ν+), Sn(ν−)) is equal

to

idν〈1〉 ∈ HomHn−1(κ)(Sn−1(ν)〈ℓ(ν)− 1〉, Sn−1(ν)〈ℓ(ν)〉) (4.6)

by equation (3.2). By restriction, we have

Im(Er
ω(δℓ+1)) ⊆ ker(Er

ω(δℓ))

and by equation (4.6), we have that Er
ωδℓ+1 =

∑
ℓ(ν)=ℓ+1 1ν〈1〉 + . . . and so the

complex is exact. We conclude that H(Er
ω(C•(λ)) = 0.

• We have that Er
ω(λ) ∈ Fℓ

n−1(h). We have that

Er
ωSn(μ)〈ℓ(μ)〉 = Sn−1(μ−�)〈ℓ(μ−�)〉

if Remr (μ) �= ∅ and is zero otherwise. In the non-zero case, this is simply because

μ − � belongs to the same alcove as μ (and therefore the lengths coincide) for

μ � λ. Now, for a pair μ,μ′ with � ∈ Remr (μ) and �′ ∈ Remr (μ
′), we

have that Er
ωφ

μ

μ′ = φ
μ−�

μ′−�′ by equation (3.1). Thus Er
ω(C•(λ)) = C•(λ − �)

and the right hand side is exact except H0(C•(λ − �)) = Dn−1(λ − �) by our

inductive assumption. Thus Er
ω(H0(C•(λ))) = H0(C•(λ − �)) = Dn−1(λ − �)

and Er
ω(H j (C•(λ))) = 0 for all j > 0.
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Putting all of the above together, we have shown that

resn
n−1(H j (C•(λ))) =

{⊕
�∈Fh(λ) Dn−1(λ−�) if j = 0

0 otherwise.
(4.7)

Now, since Head(Sn(λ)) = Dn(λ) �⊂ Im(δ1), we are able to conclude that

resn
n−1(Dn(λ)) ⊆

⊕

�∈Fh(λ)

Dn(λ−�). (4.8)

Conversely, we have that

|Stde(λ)| =
∑

�∈Fh(λ)

|Stde(λ−�)| (4.9)

by Proposition 2.11. By induction, the right hand side of Eq. (4.9) is equal to the

dimension of the right hand side of equation (4.8). The lefthand-side of equation (4.9)

is a lower bound for the dimension of the lefthand-side of equation (4.8). Putting these

two things together, we deduce that

resn
n−1(Dn(λ)) =

⊕

�∈Fh(λ)

Dn(λ−�) (4.10)

and furthermore, the set {cs | s ∈ Stde(λ)} does indeed form a basis of Dn(λ); to

obtain the basis of the radical, recall that etL(μ) = 0 for λ � μ and t ∈ Stde(λ).

Putting equation (4.7) and equation (4.10) together, we have that

resn
n−1(H j (C•(λ))) =

{
resn

n−1 Dn(λ) if j = 0

0 otherwise
H j (C•(λ)) =

{
Dn(λ) if j = 0

0 otherwise

where the second equality follows because resn
n−1 Dn(μ) �= 0 for any λ � μ (even

though Er
ω(Dn(μ)) = 0 is possible for a given r ∈ Z/eZ, as seen above). ⊓⊔

Note that the restriction rule was used as the starting point in [37], where Kleshchev

obtains results concerning the dimensions of simple modules. Weirdly, our proof

deduces that the homology of the complex is equal to Dn(λ), that the basis Dn(λ)

is of the stated form, and the restriction of the simple module is of the stated form all

at once!

Theorem 4.3 For λ ∈ Fℓ
n(h) the action of Hn(κ) on Dn(λ) = k{cs | s ∈ Stde(λ)} is

as follows:

yk(cs) = 0 1
i
ω(cs) = δi,res(s) ψr (cs) =

{
csk↔k+1

if |res(s(r))− res(s(r + 1))| > 1

0 otherwise
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where sk↔k+1 is the tableau obtained from s by swapping the entries k and k + 1.

In particular, the subalgebra 〈yk, 1
i
ω | 1 ≤ k ≤ r , i ∈ (Z/eZ)n〉 ≤ Hn(κ) acts

semisimply on Dn(λ). The weight-spaces of Dn(λ) are all 1-dimensional and Dn(λ)

is concentrated in degree zero only. Finally, the cellular bilinear form is given by

〈cs, ct〉 = δs,t for s, t ∈ Stde(λ).

Proof The statements not relating to the action follow from Proposition 2.11 and

equation (2.4) and Theorem 4.2. The action of the idempotents is obvious. The other

zero-relations all follow because the product has non-zero degree (and the module

Dn(λ) is concentrated in degree 0). Finally, assume |res(s(r)) − res(s(r + 1))| > 1.

The strands terminating at (r , 1, ℓ) and (r + 1, 1, ℓ)on the northern edge either do or do

not cross. In the former case, we can resolve the double crossing in ψr cs without cost by

our assumption on the residues and the result follows. The latter case is trivial. Finally,

notice that sk↔k+1 ∈ Stde(λ) under the assumption that |res(s(r))−res(s(r+1))| > 1.

⊓⊔

For the sake of reference, we also note the following corollary of Theorem 4.2.

Corollary 4.4 Let e > hℓ, let κ ∈ Zℓ be h-admissible, let k be a field, and λ ∈ Fℓ
n(h).

The An(κ)-complex C•(λ) is exact except in degree zero, where

H0(C•(λ)) = L(λ).

Proof Under the conditions that e > hℓ and κ ∈ Zℓ is h-admissible, the idempotent

Eω does not kill any of the simple modules L(λ) for λ ∈ Pℓ
n(h). (See [6, Theorem

4.9] for more details.) Therefore the corresponding Serre subcategories are Morita

equivalent and the result follows. ⊓⊔

Remark 4.5 Let p > 0. Combinatorially computing the composition series of Sn(λ) for

λ ∈P1
n (h) for arbitrary primes seems to be an impossible task [63]. If we assume that

p ≫ h is suitably large then we can use Kazhdan–Lusztig theory to combinatorially

calculate dimk(Dn(λ)), this requires (as a minimum) that all partitions μ ∈ P1
n (h)

such that μ�λ belong to the first p2-alcove [50]. This is equivalent to the requirement

that the p-weight of λ (defined in Sect. 5) is less than p. For h = 3 this combinatorics

has been conjecturally extended (in terms of billiards in an alcove geometry) to the first

p3-alcove [44]. We stress that there is no restriction on the p-weight of λ ∈ F1
n(h).

Therefore understanding the composition series of unitary Specht modules is well

beyond the current state of the art. Thus our two descriptions of the simple modules

Dn(λ) for λ ∈ F1
n(h) provide the only contexts in which these modules can currently

be hoped to be understood.

Example 4.6 ( [6, Proposition 7.6]) Let ℓ ≥ 2, e = ℓ+1, and κ = (0, 1, 2, . . . , ℓ−1) ∈
(Z/eZ)ℓ, and k be arbitrary. We have that λ := ((n), (n), . . . , (n)) ∈ Fℓ

nℓ(h) and that

[Snℓ((n), (n), . . . , (n)) : Dnℓ(ν)] = tℓ(ν) + . . . (4.11)

modulo terms of lower order degree. Therefore every simple module D(ν) for λ�ν ∈
P

ℓ
nℓ(1) appears with multiplicity at least 1. Therefore as n → ∞, the number of
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composition factors of Snℓ((n), (n), . . . , (n)) tends to infinity and so is impossible

to compute. In contrast, the module Dnℓ(ν) is 1-dimensional and easily seen to be

spanned by ctλ for tλ as in Definition 1.4.

5 Background on the Cherednik algebras of symmetric group and the
combinatorics of unitary modules

For the remainder of the paper, we restrict our attention to the field C and rational

Cherednik algebras of type G(1, 1, n). We now discuss how the combinatorial descrip-

tion of resolutions simplifies for (diagrammatic) Cherednik algebras of symmetric

groups. In this case, we choose to emphasize the abacus presentation of partitions. We

first recall this classical combinatorial approach, then flesh out the notion of homolog-

ical degree introduced in [65] that is key to [65, Conjecture 4.5], and finally identify all

this as the level 1 case of the alcove geometry already studied in the previous sections.

5.1 The abacus of a partition

Let λ ∈ P1
n (h). Then λ can be encoded by an abacus with at least h beads, where

each bead stands for a column of λ. This is simply a sequence of spaces and beads

which records the shape of the border of λ, since knowing the border of λ is the same

as knowing λ. We form the Z-abacus Ah
Z(λ) with h beads by walking along the border

from the top right corner to the bottom left corner of the Young diagram of λ, writing

a space every time we walk down and a bead every time we walk left.

Example 5.1 The Z-abaci of (34, 1), (33, 2, 12) ∈P1
13(3) with 3 beads are as follows

• •
•

•
•

•

Fix e ≥ 2. We obtain an e-abacus Ae(λ) by looping the Z-abacus around e horizon-

tal runners. This can be described as follows: subdivide Ah
Z(λ) into segments of length

e starting from the leftmost position, then rotate each segment counterclockwise by

ninety degrees so that it is vertical. The partition is now written on e horizontal runners

(which we sometimes label according to residue, as in Remark 5.4). Thus the runners

of our e-abacus resemble a musical staff, and Ae(λ) resembles sheet music. Like a

staff, the runners of Ae(λ) are bounded to the left. We let them extend infinitely to

the right, because we want to think of being able to move beads in that direction by

adding boxes or e-strips at the bottom of the Young diagram of a partition. In French
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a musical score is called a partition, so we may say that our abaci are written in the

French style.

Example 5.2 We picture a 5-abacus with the residues labelled.

. . .

1
2
3
4
0

We let we(λ) denote the total number of vacant spots which have a bead to their

right and refer to this as the e-weight. If w(ρ) = 0 then we say that ρ is an e-core.

Given a partition λ, we define the e-core of λ to be the partition obtained by moving

all beads on Ae(λ) as far left as possible. We let

�(ρ,w) := {μ ⊢ |ρ| + we | e-core(μ) = ρ}

for ρ an e-core.

Example 5.3 The 4-abaci with 3 beads of (34, 1), (33, 2, 12), (3, 25) and (33, 14) ∈
P1

13(3) are as follows

We have that w4(λ) = 3 and 4-core(λ) = (1) for each of these examples.

Remark 5.4 Note that for μ ∈P1
n (h), its removable box of highest content has content

h−k, where k is the position of the first bead in the Z-abacus Ah
Z(μ). In particular, this

bead sits in runner k mod e in the e-abacus Ah
e (μ). Thus, in order to make the labels of

the runners of the e-abaci in μ correspond in a nice way to the contents of addable and

removable i-boxes of the partitions, one should label the runners from bottom to top

by h−1, h−2, . . . , 1, 0, e−1, e−2, . . . , h+1, h. With this convention, removing a

box of content i mod e corresponds to moving a bead on runner i − 1 down to runner

i ; and adding a box of content i mod e corresponds to moving a bead on runner i up

to runner i − 1.
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5.2 e-unitary partitions and posets

We recall the definition of e-unitary partitions from [65] and show that these are

precisely the partitions in F1
n = ∪h≥1F

1
n(h) studied in this paper.

Definition 5.5 [23,65] Fix e ≥ 2. Suppose λ has exactly h columns and form Ah
Z(λ)

the abacus on h beads. We call λ an e-unitary partition if all the beads on Ah
Z(λ) lie in

an interval of width e. In particular, Ae(λ) has at most one bead on each runner. Given

an e-unitary partition λ, we let Poe(λ) denote the set of all the e-abaci obtained from

λ by successively moving a bead on some runner one step to the right so long as we

also move a bead on a different runner one step to the left.

Example 5.6 When e = 4, (34, 1) is a 4-unitary partition, and (33, 2, 12), (3, 25),

(33, 14) ∈ Po4(λ).

Proposition 5.7 The set F1
n = ∪h≥1F

1
n(h) is precisely equal to the set of e-unitary

partitions.

Proof Suppose λ ∈ P1
n has exactly h columns and let γh, γ1 denote the positions of

the leftmost and rightmost beads on Ah
Z(λ). Now simply note that γ1 − γh ≤ e− 1 if

and only if 〈λ+ ρ, ε1 − εh〉 < e − 1 if and only if λ ∈ F1
n(h). ⊓⊔

Remark 5.8 If e = h then λ is e-unitary if and only if λ = (ek) for some k ∈ N. If λ

is an e-unitary partition, then any μ ∈ Poe(λ) is always e-restricted unless λ = (ek)

and μ = λ.

If an e-abacus Ae(μ) has at most one bead on each runner, let bi be the unique

bead on the runner labeled i if such a bead exists, and let βi ∈ Z≥0 be the horizontal

position of bi . Sometimes by abuse of notation we might just refer to βi as a bead. We

say that we shift the bead bi one unit to the left if we replace βi with βi −1. The effect

of this on the Young diagram of μ is to remove what is called an e-rimhook from the

border of μ: a connected subset R of e boxes of the Young diagram of μ such that

if b ∈ R is in row r and column c, then there is no box in the Young diagram of μ

situated in row r +1 and column c+1. Similarly, shifting bi one unit to the right adds

an e-rimhook to μ. That means precisely that shifting bi one unit to the right adds e

boxes x1, . . . , xe to μ in such a way that x1, . . . , xe form an e-rimhook in the border

of the partition μ ∪ {x1, . . . , xe}, removing which yields back μ.

Example 5.9 Let h = 3 and e = 4. We continue with the example of λ = (3, 3, 3, 1).

Shifting the bead on the top runner one unit to the left removes the green 4-rimhook

from λ yielding (3, 3, 3) as pictured below. Shifting the bead on the bottom runner

one unit to the right then adds a 4-rimhook to (3, 3, 3) yielding (3, 3, 3, 2, 1, 1).

� �
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� �

5.3 The affine and extended affine symmetric group actions

There is a natural action of the affine symmetric group S̃h on Poe(λ) when we take the

presentation of S̃h given by generators si , i ∈ Z/hZ, subject to the relations s2
i = 1,

si s j = s j si if |i − j | > 1, and si si+1si = si+1si si+1 (where all subscripts are taken

mod h). Sh = 〈s1, . . . , sh−1〉 acts by permutation of the h runners containing beads,

while s0 switches the top and bottom beads in the abacus, then moves the bottom bead

one step to the right and the top bead one step to the left. From the description of

Poe(λ) in Definition 5.5, S̃h acts transitively on Poe(λ).

Example 5.10 Illustration of the action of s0:

0 1 2 3 4 5 6 7 8 9

3

2

1

0

4

s0

0 1 2 3 4 5 6 7 8 9

The extended affine symmetric group Ŝh is the semidirect product Zh ⋊Sh . There

is a natural action of Ŝh on the set of e-abaci with exactly one bead on a fixed subset

of h runners, and no beads on the other runners: Zh acts as the group of horizontal

translations of the beads on their runners, and Sh as permutations of the h runners

containing the beads. This action is locally nilpotent for the subgroup Zh
<0 consisting

of left translations of the beads. In terms of partitions, the meaning is as follows: let

ρ be an e-core of some unitary partition; equivalently, Ae(ρ) has its beads pushed all

the way to the left and they are concentrated in the leftmost column of the e-abacus.

Let Pe(ρ)h be the union of all Poe(λ), λ an e-unitary partition such that the e-core of

λ is ρ and λ has h columns. Let ǫi = (0, . . . , 1, . . . , 0) ∈ Zh with the 1 in the i’th

position. Then ǫi acts on μ ∈ Pe(ρ)h by shifting the bead on the i’th runner containing

a bead one unit to the right; on the Young diagram of μ it adds an e-rimhook whose

arm-length is at most h − 1. Observe that Pe(ρ)h is generated by Ae(ρ) under the

action of Ŝh :

Ŝh ·Ae(ρ) = Pe(ρ)h

Pe(ρ)h is naturally identified with the monoid Zh
≥0 as a left Ŝh-module by identifying

an abacus A ∈ Pe(ρ)h with the h-tuple of its beads’ positions (β1, . . . , βh) ∈ Zh
≥0.

Note that adding or removing empty runners from the e-abacus (thus changing e while
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keeping h fixed) does not affect the action of Ŝh which acts only on the non-empty

runners.

5.4 The homological degree statistic

Let λ be an e-unitary partition. We recall the homological degree statistic on Poe(λ)

introduced by Berkesch–Griffeth–Sam.

Definition 5.11 Suppose A is an e-abacus with at most one bead on each runner. A

disorder of A is an unordered pair {i, j} such that runners i and j both contain a bead,

satisfying βi > β j and b j is above bi . In other words, a pair of beads of A yields a

disorder if one bead is above and strictly to the left of the other bead.

Definition 5.12 [65, Definition 4.3] Let μ ∈ Poe(λ). The homological degree of μ,

written hd(μ), is the sum of the differences of all horizontal positions of beads in

Ae(μ) minus the number of disorders of Ae(μ):

hd(μ) =
∑

i, j∈Z/eZ
bi ,b j �=∅

b j is below bi

|βi − β j | − #{disorders of Ae(μ)}

Example 5.13 In Example 5.10, let ν denote the partition whose abacus is on the left,

and let μ = s0(ν) as in the picture. Then A5(ν) has 6 disorders and hd(ν) = 1+ 2+
8+1+7+6−6 = 19; A5(μ) has 1 disorder and hd(μ) = 6+5+6+1+1−1 = 18.

Observe that s0 changed the homological degree by 1.

5.5 Homological degree produced recursively by elements of Ŝe

Notice that empty runners of Ae(μ) play no role in hd(μ); if the empty runners are

removed from Ae(μ), the homological degree remains the same. For simplicity of

the formulas and exposition, we therefore work in the case that there are no empty

runners, that is, h = e columns and λ = (ek) for some k ∈ N. The empty runners can

be put back in at the end.

Our first characterization of the homological degree produces this statistic recur-

sively starting from the empty partition by applying sequences of special elements

τi ∈ Ŝe, i = e − 1, e − 2, . . . , 1, 0, in a non-increasing order with respect to i .

Definition 5.14 Let τi ∈ Ŝe be defined as follows: τi fixes the bottom i runners; on

the top e− i runners, it first cyclically rotates the beads in the topwards direction, then

shifts one space to the right the bead on the (e − i)’th runner from the top.

Each τi is the “affine generator" of the subgroup Ŝe−i of Ŝe which fixes the bottom

i runners: τi together with Se−i generates Ŝe−i [41, Section 2.1]. We are interested

in applying τi to abaci whose bottom i runners have their beads pushed all the way to

the left.
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Example 5.15 Consider the 5-abacus of (311, 23, 111). Then τ2 acts as follows:

0 1 2 3 4 5 6 7

τ2

0 1 2 3 4 5 6 7

Observe that τ2 increased the homological degree of the abacus by 2.

Suppose τ is a partition all of whose parts are of size at most e − 1, and which

may contain parts of size 0, so τ = ((e − 1)ae−1 , (e − 2)ae−2 , . . . , 1a1 , 0a0). Thus τ

fits inside an e − 1 by k box, where k is the total number of parts of τ . Now identify

τ with the element of Ŝe given by the composition of operators τ
a0

0 τ
a1

1 . . . τ
ae−1

e−1 . By

abuse of notation we will also call this element τ . The proof of the following lemma

is straightforward:

Lemma 5.16 Let τ = ((e−1)ae−1 , (e−2)ae−2 , . . . , 1a1 , 0a0) with
∑e−1

i=0 ai = k ∈ Z≥0.

Then τ(Ae(∅)) = Ae(μ) with μ ∈ Poe(e
k). Any μ ∈ Poe(e

k) is produced in this way

from a unique such τ , and we have:

hd(μ) =
e−1∑

i=0

iai = |τ |

Let λ be an arbitrary e-unitary partition. By removing the empty runners from the

e-abaci in Poe(λ), there is likewise a natural bijection between the partitions μ in

Poe(λ) and partitions τ which fit inside an (h − 1) by k box,

{μ ∈ Poe(λ)}
�
≃←− {τ ⊂ (h − 1)k},

given by �(τ) = τ(∅) (where τ on the right-hand-side is the corresponding element

of Ŝh as described above). This bijection identifies hd(μ) with |τ |.

Remark 5.17 Such a bijection turns up elsewhere in representation theory: notably,

partitions τ which fit inside an (h − 1) by k box also parametrize (1) the simple and

standard modules of a regular block Bp of parabolic category Op for gl(h − 1 + k)

with respect to the maximal parabolic gl(h − 1) × gl(k) [55]; (2) the Schubert cells

in the Grassmannian Gr(k, h − 1 + k) = Gr(h − 1, h − 1 + k). The category Bp is

equivalent to perverse sheaves on the Grassmannian [9,55], explaining the coincidence

of (1) and (2). Let L(h−1)k denote the simple module in Bp labeled by τ = (h − 1)k ,

the unique maximal element of the poset (the poset structure is given by inclusion

of Young diagrams). The bijection following Lemma 5.16 identifies the labels of the

characters of unitary L(λ) ∈ [O1/e(Sn)] and L(h−1)k ∈ [Op]. Moreover, L(h−1)k has

a BGG resolution [4] and via the bijection � we obtain a natural bijection between the

Verma modules appearing in degree i of the respective resolutions in O1/e(Sn) and
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Op. However, the categories O1/e(Sn)≤λ and Bp are not equivalent if k > 2, and as

a poset Poe(λ) has “extra edges" coming from the S̃h-action if k > 2.

5.6 Homological degree via rimhooks of minimal leg-length

Consider again the case that there is exactly one bead on every runner of the abacus.

By the definition of τi , it follows that the effect of applying τ = ((e − 1)ae−1 , (e −
2)ae−2 , . . . , 1a1 , 0a0) to the empty partition is to build a Young diagram λ by succes-

sively dropping e-rimhooks which meet the leftmost column (with leg-lengths e − 1

(ae−1 times), e − 2 (ae−2 times) and so on) Tetris-style on top of the partition con-

structed so far, then letting the boxes slide down the columns so that the result is a

partition. This can change the shape of the previous rimhooks that were added, but

not the set of their leg-lengths. Thus we obtain a second combinatorial explanation

of the homological degree: if e = h then hd(λ) is the sum of the leg-lengths of the

e-rimhooks of minimal leg-length composing λ. If e > h then hd(λ) is the sum of

the leg-lengths of the e-rimhooks of minimal leg-length composing λ minus (e− h)k,

where k = e-weight(λ). This can be restated in a uniform way by considering the

arm-lengths instead of the leg-lengths of the rimhooks: hd(μ) is equal to (h − 1)k

minus the sum of armlengths of the (minimal leg-length) rimhooks removed.

Example 5.18 Let e = h = 5 and τ = (3, 3, 1, 0). Then τ(∅) = (5, 4, 25, 1) =: λ and

hd(λ) = 7. We show the process of applying τ on abaci and partitions and the four

5-rimhooks of minimal leg-lengths 3, 3, 1, 0 which compose λ:

τ3 τ3 τ1 τ0

5.7 Homological degree is the length function.

We now give a third combinatorial description of the homological degree by identifying

it with the length function on S̃h . This unifies the combinatorics of abaci with that of

alcove geometries and allows us to describe the BGG complex in type A in terms of

abaci. Let λ be a unitary partition, and suppose λ has h < e columns.
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Fig. 4 The conditions (1) and (2) on abaci in Lemma 5.19 in a picture: applying t will increase the

homological degree by 1 if and only if no bead lies in the red regions of the runners

Lemma 5.19 The following are equivalent for ν, μ ∈ Poe(λ), μ � ν:

• ℓ(ν) = ℓ(μ) + 1 and ν is obtained from μ by moving a column of boxes as in

Theorem 3.3;

• tμ = ν for some transposition t ∈ S̃h acting on abaci as above, subject to the

following conditions on the beads βi of Ae(μ):

(1) if t ∈ Sh and swaps runners i and j , then for each runner k between runners

i and j , βk /∈ [βi , β j ];
(2) if t is conjugate to s0 and acts nontrivially on runners i and j , runner i

below runner j , then: for each runner k below runner i , βk /∈ [βi , β j + 1]
and for each runner ℓ above runner j , βℓ /∈ [βi−1, β j ].

Therefore, the homological degree statistic on Poe(λ) coincides with the length func-

tion on Poe(λ) coming from the S̃h alcove geometry.

Proof This is a translation of 1-column moves from the language of Young diagrams

into the language of abaci. A direct computation using Definition 5.12 shows that the

conditions for a transposition t to increase the homological degree by 1 are exactly

those given by (1) and (2) (Fig. 4). ⊓⊔
See Fig. 5 for an example of the results of Section 5.5. and this section.

5.8 The Cherednik algebra of the symmetric group

Let Sn be the symmetric group on n elements. The group Sn acts on the algebra of

polynomials in 2n non-commuting variables C〈x1, . . . , xn, y1, . . . yn〉. Fix a number

c ∈ C. The rational Cherednik algebra Hc(Sn) is the quotient of the semidirect

product algebra C〈x1, . . . , xn, y1, . . . , yn〉⋊ Sn by the relations

[xi , x j ] = 0, [yi , y j ] = 0, [yi , x j ] = c(i j) (i �= j), [yi , xi ] = 1− c
∑

j �=i

(i j)

where (i j) denotes the transposition in Sn that switches i and j , see [21]. Hc has three

distinguished subalgebras: C[y] := C[y1, . . . , yn], C[x] := C[x1, . . . , xn], and the

group algebra CSn . The PBW theorem [21, Theorem 1.3] asserts that multiplication

gives a vector space isomorphism

C[x] ⊗ CSn ⊗ C[y]
∼=→ Hc



On unitary modules for quiver Hecke and Cherednik algebras… Page 47 of 71    29 

Fig. 5 On the left we have the alcoves corresponding to partitions in Poe(λ) when h = 3 and e = 5. The

fundamental alcove is at the bottom and contains (35) ∈ F15(3). Each alcove contains a number indicating

the length/homological degree for a point in that alcove. The grey region denotes the non-dominant region.

The dotted lines indicate that we tile one sixth of R2 when we let n → ∞. Crossing a wall of color i

corresponds to applying si to the partition in that alcove, with i : 0, 1, 2. On the right-hand side, we have

extracted the poset Poe(λ). The homological degree increases from the bottom (where it is zero) to the top

(where it is 6). The edges of the poset are coloured and decorated so as to facilitate comparison between

the two pictures (colour figure online)

called the triangular decomposition of Hc, by analogy with the triangular decompo-

sition of the universal enveloping algebra of a semisimple Lie algebra.

We define the category Oc(Sn) to be the full subcategory consisting of all finitely

generated Hc-modules on which y1, . . . , yn act locally nilpotently. Category Oc is

not always very interesting. By [18], see also [3, Section 3.9], Oc is semisimple (and

equivalent to the category of representations of Sn) unless c = r/e, with gcd(r; e) = 1

and 1 < e ≤ n. Equivalences of categories reduce the study of Or/e(Sn) to O1/e(Sn),

for 1 < e ≤ n [51]. For the rest of the paper we work with O1/e(Sn), unless otherwise

explicitly stated. It will be convenient to set
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O1/e :=
⊕

n≥0

O1/e(Sn).

The category O1/e(Sn) is a highest weight category with respect to the ordering

� on P1
n . The standard modules are constructed as follows. For each partition λ

of n, let Sn(λ) be the corresponding Specht module of CSn , this is an irreducible

representation. Extend the action of Sn on Sn(λ) to an action of C[y]⋊ Sn by letting

y1, . . . , yn act by 0. The algebra C[y]⋊ Sn is a subalgebra of H1/e and we define

�H1/e (λ) := Ind
H1/e

C[y]⋊Sn
Sn(λ) := H1/e ⊗C[y]⋊Sn

Sn(λ) = C[x] ⊗ Sn(λ)

where the last equality is only as C[x]-modules and follows from the triangular decom-

position. We let L H1/e (λ) denote the unique irreducible quotient of �H1/e (λ). We often

drop the subscripts on these modules when the context is clear.

Any module M ∈ O1/e(Sn) is finitely generated over the algebra C[x] and, as

such, it has a well-defined support supp(M) ⊆ Cn = Spec(C[x]). We now explain

a way to compute the supports of simple modules in O1/e(Sn) that was obtained in

[62]. To do this, for any i = 0, . . . , ⌊n/e⌋, denote by X i the variety

X i := Sn{(z1, . . . , zn) ∈ Cn : z1 = z2 = · · · ze, ze+1

= · · · = z2e, · · · , z(i−1)e+1 = · · · = zie}

By its definition, X i is a Sn-stable subvariety of Cn . Note that X0 = Cn , and these

subvarieties form a chain X0 � X1 � · · · � X⌊n/e⌋. Now recall that a partition λ is

said to be e-restricted if λi − λi+1 < e for every i ≥ 0, that is, if no two consecutive

parts of λ differ by more than e− 1 parts. By the division algorithm, for any partition

λ there exist unique partitions μ, ν such that λ = eμ+ ν and ν is e-restricted. Then,

according to [62, Theorem 1.6],

supp(L1/e(λ)) = X |μ|

So, for example, L1/e(λ) has full support if and only if λ is e-restricted. On the other

hand, if e divides n, then L1/e(λ) has minimal support if and only if λ = eμ, where

μ is a partition of n/e.

The categories O1/e(Sn) come equipped with induction and restriction functors

Resn
n−1 : O1/e(Sn) ⇄ O1/e(Sn−1) : Indn

n−1

that were constructed by Bezrukavnikov and Etingof in [3]. Their definition is quite

technical and will not be needed. In fact, Bezrukavnikov and Etingof constructed

restriction functors for any parabolic subgroup of Sn , [3]. It follows from their con-

struction that M has full support if and only if it is not killed by restriction to any

parabolic subgroup. We will use this property below without further mention.

Finally, we mention the Knizhnik-Zamolodchikov functor KZ : Oc(Sn) →
Hq(Sn) -mod where q = exp(2π

√
−1c) and Hq(Sn) is the finite Hecke algebra,
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defined over C, of the symmetric group Sn . This is an exact functor that identifies the

category of Hq(Sn)-modules with the quotient of Oc(Sn) by the Serre subcategory

generated by those simple modules L(λ) with proper support, see [29]. The KZ functor

is fully faithful on projective objects and, when c /∈ 1/2 + Z, it is also fully faithful

on standard objects.

5.9 Connection to diagrammatic algebra

Crucial to our arguments is the fact that the highest weight categoryO for the Cherednik

algebra of Sn is Morita equivalent to one of the finite-dimensional diagrammatic

algebra from Subsection 1.2. Let e ≥ 2, so that we have the highest weight category

O1/e(Sn). Recall from Subsection 1.2 that we can form the algebra An(κ) for κ =
0 ∈ Z and e ≥ 2 which is a quasi-hereditary cellular algebra. We remark that the

choice of the integer κ ∈ Z is immaterial in level 1, however we have chosen κ = 0 in

order to match-up with the classical residue combinatorics we have been using thus

far.

The following theorem is originally due, in a slightly different form, to Rouquier,

[51]. In the version we need it, it is due to Webster [59] where the proof is a uniqueness

of faithful quasi-hereditary covers argument. A constructive proof is given by Webster

in [60, Theorem 3.15].

Theorem 5.20 The categories O1/e(Sn) and An(0) -mod are highest-weight equiva-

lent. More precisely, for every n ≥ 0 there exist an equivalence �n : O1/e(Sn) →
An(0) -mod satisfying the following properties.

(a) For every partition λ ⊢ n, �n(�H1/e (λ)) = �An(0)(λ) and �n(L H1/e (λ)) =
LAn(0)(λ).

(b) The equivalences �n intertwine the restriction functors.

(c) Up to applying the Brundan-Kleshchev isomorphism Hq(Sn) ∼= Hn(0), see

[10], the functor �n intertwines the KZ functor and the Schur functor Eω.

Remark 5.21 Webster’s theorem [59, Theorem 4.8] (see also [60, Theorem 3.15]) is

much more general and connects the algebra An(κ) for ℓ > 1 with the category O

for the rational Cherednik algebra of the wreath product group Sn ≀Z/ℓZ. We will not

need this more general version of the theorem.

Thanks to Theorem 5.20 we can apply our results on the algebra An(0) to category

O1/e(Sn). We will exploit this in the next section to prove almost all cases of the

Berkesch–Griffeth–Sam conjecture. The general case of this conjecture will be proven

in Sect. 6 below.

5.10 Unitary modules and the BGS conjecture

For λ ∈ P1
n , fix a positive-definite, Sn-invariant Hermitian form on the irreducible

representation Sn(λ). A standard argument shows that this form can be extended to a

Hermitian form (·, ·) on the standard module �1/e(λ), which is H1/e-invariant in that

(yiv, v′) = (v, xiv
′) for every v, v′ ∈ �1/e(λ) and i = 1, . . . , n. The simple module
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L1/e(λ) is the quotient of �1/e(λ) by the radical of this form. In particular, L1/e(λ) is

equipped with a Hc-invariant, non-degenerate Hermitian form. We say that L1/e(λ) is

unitary if this form is positive-definite. Recall on the other hand that we have defined

a e-unitary partition in Definition 5.5. The connection between these two notions of

unitarity is given by the following result.

Theorem 5.22 [23] The Hermitian form on L1/e(λ) is positive-definite if and only if

λ is an e-unitary partition. Thus L1/e(λ) is unitary if and only if λ ∈ F1
n .

Applying the KZ functor to these simples, we obtain the complete set of simple

unitary modules for the Hecke algebra. We emphasise that the simples labelled by

λ = (ek) for some k ≥ 0 do not survive under the KZ functor and so there are

fewer unitary simples for the Hecke algebras. We remark that the set of simple unitary

modules for the Hecke algebra coincides with that of simple calibrated representations,

see e.g. [53].

Theorem 5.23 ( [54, Corollary 4.5]) For q = exp(2π
√
−1/e), the simple Hq(n)-

module DC
n (λ) is unitary if and only if λ is e-restricted and λ ∈ F1

n .

The following result was conjectured by Berkesch–Griffeth–Sam in [65, Conjecture

4.5]. Note that it is Theorem A from the introduction.

Theorem 5.24 Let L(λ) be a unitary, simple representation of H1/e(Sn). Then, L(λ)

has a BGG resolution of the form C•(λ), where the ℓ-th term is given by

Cℓ(λ) =
⊕

μ∈Poe(λ)
hd(μ)=ℓ

�(μ).

At present, we are in a position to prove Theorem 5.24 under the extra assumption

that L(λ) has full support. Note that this is equivalent to saying that λ �= (ek) for some

k ≥ 0.

Thus, assume λ has full support. Thanks to Lemma 5.19, upon applying the equiv-

alence �n from Theorem 5.20, the complexes in Theorems 5.24 and 4.2 coincide. The

result now follows from Corollary 4.4. The remaining case, when λ does not have full

support, will be dealt with in Sect. 6.1.

Remark 5.25 We remark that Theorem 5.22 is false when c = a/e with gcd(a; e) = 1

and a �= 1. For example, if e = n and λ is the trivial partition, it follows from results

of [23] that La/n(λ) is unitary if and only if a = 1. Nevertheless, one direction of

Theorem 5.22 still holds for a �= 1. Namely, it follows from [23, Theorem 5.5] that if

La/e(λ) is unitary then λ ∈ F1
n . Thus, Theorem 5.24 implies [65, Conjecture 4.5] in

full generality.

Remark 5.26 We would like to say a few words about cyclotomic rational Chered-

nik algebras. Associated to the group G(ℓ, 1, n) there is a rational Cherednik algebra

Hc(G(ℓ, 1, n)), where c = (c0, c1, . . . , cℓ−1) is now a collection of ℓ complex num-

bers. The definition of a unitary module goes through unchanged. We let ℓ = 2 and
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take the charge c0 = 1/e and c1 = 0 so that we are, essentially, working with a rational

Cherednik algebra associated to the Weyl group of type D. We have checked using

Griffeth’s classification of unitary modules [30] that if λ ∈ F2
n then L(λ) is indeed a

unitary module.

6 Berkesch–Griffeth–Sam’s conjecture and beyond

In this section we use techniques from homological algebra to complete the proof

of the conjecture of [65] that unitary H1/e(Sn)-modules have BGG resolutions with

standard modules in a given homological degree as predicted by abacus combinatorics.

The proof in earlier sections left out exactly the case that the unitary module of the

Cherednik algebra does not lift a unitary module of the Hecke algebra via the KZ

functor; there is at most one such unitary module for a fixed n. This step of the

proof also highlights an interesting property of these resolutions: in a sense, they are

independent of the quantum characteristic e. Namely, the shape of the BGG complex

depends only on the weight k of the block and the number h of non-empty runners in

the abacus of the unitary partition for e ≥ h. Using the property of the Ringel duality

that it is a perverse equivalence, we also obtain a BGG resolution of the spherical

module L(triv) when e divides n.

6.1 Changing quantum characteristics

Having constructed a BGG resolution for any unitary module with h < e columns,

we proceed to relate these complexes to each other for various e, and to construct the

complex in the special case h = e for the unitary module L(ek). As observed in Sect.

5, the e-abacus of any unitary module which is not of the form L(ek) will contain

empty runners; removing the empty runners produces the h-abacus of a partition of

the form (hk), with h < e and k equal to the weight of the block containing λ. So

we may try using the runner removal Morita equivalences of Chuang-Miyachi which

upgrade the combinatorial operation “removing runners" to an equivalence of highest

weight categories [14]. Given an e-core partition ρ and k ∈ N, let n := |ρ| + ek and

set

�(ρ, k) := {λ | λ ∈P
1
n , e−core(λ) = ρ,w(λ) = k} ⊆P

1
n ,

�+h (ρ, k) := {λ ∈ �(ρ, k) | λ ∈P
1
n (h)} ⊆ �(ρ, k)}

�−h (ρ, k) := {λ | λT ∈P
1
n (h), e−core(λ) = ρT , w(λ) = k} ⊆ �(ρT , k).

Notice that the transpose map gives a bijection between the sets �−h (ρ, k) and

�+h (ρ, k); under this map the partial ordering on the sets is reversed. Let O1/e(ρ, k)

denote the block of category O1/e corresponding to �(ρ, k). Note that the set

�−h (ρ, k) is co-saturated in �(ρT , k) so we can consider the quotient category of

O1/e(ρ
T , k) by the Serre subcategory spanned by simples whose label does not

belong to �−h (ρ, k). We denote this quotient by O
−
1/e,h(ρ, k) This is a highest weight
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category, with standard objects �−h (ν) := π(�1/e(ν)), where ν ∈ �−h (ρ, k) and

π : O1/e(ρ
T , k) → O

−
1/e,h(ρ, k) is the quotient functor. We remark that π admits a left

adjoint π ! : O−1/e,h(ρ, k) → O1/e(ρ
T , k), and π !(�−(ν)) = �(ν) for ν ∈ �−h (ρ, k).

Given ν ∈ �−h (ρ, k) we set AC M
h (ν) := Ah(νT ). Let r = (r0, . . . , rh−1, rh) ∈

Zh+1
≥0 , and construct a partition ν+ as follows. In the abacus AC M

h (ν), insert ri empty

runners between runners i − 1 and i (so r0 and rh are the number of empty runners

inserted at the top and bottom of the abacus, respectively). This creates a new e-abacus,

A, with e := h + r0 + · · · + rh runners. We denote by ν+ the unique partition such

that A = AC M
e (ν+). We let ρ = ∅+. We have a bijection

R : �−(∅, k) → �−(ρ, k)

given by R : ν �→ ν+ and we let R−1 : ν �→ ν− denote the inverse. We are now able

to recall the main result of Chuang–Miyachi.

Theorem 6.1 ([14]) The categories O
−
1/h,h(∅, k) and O

−
1/e,h(ρ, k) are equivalent as

highest weight categories. Moreover, the equivalence

R : O−1/h,h(∅, k) → O
−
1/e,h(ρ, k)

sends the standard module �−h (ν) to the standard module �−h (νR).

Note, however, that we cannot apply the above theorem directly since we are

interested in the subcategories O
+
1/h,h(∅, k) and O

+
1/e,h(ρT , k) rather than the quo-

tient categories O
−
1/h,h(∅, k) and O

−
1/e,h(ρ, k), where O

+
1/h,h(∅, k) denotes the Serre

subcategory spanned by the simples whose label belongs to �+(∅, k), and simi-

larly for O
+
1/e,h(ρ, k). Let us fix this. Following [29, Section 4], we note that the

rational Cherednik algebra H1/e := H1/e(Sn) has finite global dimension and

is isomorphic to its opposite algebra; an explicit isomorphism is given by w �→
w−1, x �→ x, y �→ −y. In particular, the functor RHomH1/e (•, H1/e) gives an

equivalence Db(H1/e-mod) → Db(H1/e-modopp). Let us denote by D the functor

RHomH1/e (•, H1/e)[n]. The following theorem summarizes various results of [29,

Section 4.3.2]. We denote by Db(O1/e(Sn)) the subcategory of Db(H1/e-mod) con-

sisting of complexes with homology in O1/e, and by O�
1/e the category of objects in

O1/e that admit a �-filtration.

Theorem 6.2 The functor D induces a derived equivalence D : Db(O1/e(Sn)) →
Db(O1/e(Sn)

opp) and an equivalence of exact categories D : O1/e(Sn)� →
(O1/e(Sn)�)opp. For λ ⊢ n, D(�(λ)) = �(λT ) (where both sides of the equation are

interpreted as complexes concentrated in degree 0).

By abuse of notation, we will write D : Db(O1/e) → Db(O
opp
1/e ) for

⊕
n≥0

RHomH1/e(Sn)(•, H1/e(Sn))[n]. Let us mention a property of D that will be impor-

tant later. The following is an immediate consequence of [42, Lemma 2.5] and the

definition of a perverse equivalence [42, Section 1.4].
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Lemma 6.3 For every n ≥ 0, the functor D induces a (contravariant!) abelian autoe-

quivalence of the category of minimally supported modules in category O1/e(Sn).

Let λ ∈ F1
n ⊆ P1

n (h) be such that (hk)+ = λ, where k is the e-weight of λ and

h the number of nonempty runners in Ae(λ). Define the functor R̃
−

via the following

composition

R̃
− := Dπ !R−1πD : Db(O1/e(ρ, k)) → Db(O1/h(∅, k))).

Each functor in the composition defining R̃
−

takes Vermas to Vermas, and is either

an equivalence of �-filtered categories or exact on �-filtered categories while being

an isomorphism on spaces of homomorphisms between Vermas. It follows that for

μ ∈ Poe(λ), R̃
−
�(μ) = �(μ−), and that R̃

−
takes a complex to a complex and sends

nonzero maps to nonzero maps (however, we cannot conclude from this that R̃
−

takes

a resolution to a resolution). Define C•(hk) = R̃
−
(C•(λ)). By construction, this is a

complex whose ℓ-th term is given by

Cℓ(h
k) =

⊕

μ∈Poe(λ)
hd(μ)=ℓ

�(μ−) =
⊕

τ∈Poh(hk)
hd(τ )=ℓ

�(τ)

and which has a map �(τ) → �(τ ′) whenever hd(τ ) = ℓ, hd(τ ′) = ℓ − 1, and

Ah(τ ) = tAh(τ ′) for some transposition t ∈ S̃h . C•(hk) is a complex that looks

identical to C•(λ) but with the partitions μ relabeled by μ−, and in particular L(hk)

is the head of C0(h
k) = �(hk).

We are now ready to prove Theorem 5.24, which answers [65, Conjecture 4.5] in

the affirmative.

Proof of Theorem 5.24 We have already shown, in Sect. 5.10 the case when L(λ) has

full support. It remains to show the case when λ = (ek) for some k > 0. Thus,

let n = ke and take (ek), the unique unitary partition of n with e columns. Choose

any e′ > e and any unitary partition λ ∈ Pu
e′ with e columns and e′-weight k. Let

C•(λ) be the BGG resolution of L(λ) and apply R̃
−

to it. By the remarks above,

R̃
−
(C•(λ)) = C•(ek) is the desired complex and L(ek) is the head of C0(e

k). We need

to show that C•(ek) is exact except in degree 0, where H0(C•) = L(ek).

As in the proof of the h < e case, if λ ∈ Poe(e
k)\{(ek)}, then λ is e-restricted. Thus

Ei (L(λ)) �= 0 for some i ∈ Z/eZ, so if L(λ) is a composition factor of a homology

group H j (C•) then Ei (C•) will fail to be exact. Similarly, it holds (by basic properties

of highest weight categories) that L(ek) occurs exactly once in the composition series

of all the C j , when j = 0.

Next, Ei (L(ek)) = 0 since ek has a single removable box and it is never a good

removable box. Thus, it suffices to check that Ei (C•) is exact for each i ∈ Z/eZ. This

is identical to the argument used in the first case of the proof of Theorem4.2, i.e. the

case where Ei (L(λ)) = 0. ⊓⊔
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We also make the observation that resolutions of unitary modules are, in a manner

of speaking, independent of e. Let h be the number of columns of λ and let k be the

e-weight of λ.

Corollary 6.4 Let λ ∈ F1
n . The shape of the BGG complex C•(λ) depends only on

h, k ∈ N.

Proof R̃
−

identifies C•(λ) with C•(hk), thus sends a resolution of L(λ) to a resolution

of L(hk). ⊓⊔

6.2 Ringel duality andmore BGG resolutions

We can also construct some new BGG resolutions as corollaries of Theorem 5.24 via

Ringel duality. These resolutions will also be used in the study subspace arrangements

in Sect. 8.1.3. The character of L(ek) = L(triv) ∈ O1/e(Sek) is dual to the character

of L(ek) in the sense that its character is obtained from that of L(ek) by taking the

transpose of each partition labelling a Verma module [22, Remark 5.1]:

L(ek) =
∑

μ∈Poe(e
k)

hd(μ)=ℓ

(−1)ℓ�(μT ).

This is every bit as much an alternating sum character formula as that of L(ek), so we

may naturally ask whether its character formula also comes from a BGG resolution.

Let C• be the BGG resolution of L(ek). We apply Ringel duality to construct a

complex, D(C•), in the principal block O(∅, k) ⊂ O1/e(Sek). The complex D(C•) is

obtained from C• by replacing �(μ) with �(μT ) for all μ ∈ Poe(e
k) and reversing

the direction of all the arrows (since D is a contravariant functor which takes Vermas

to Vermas). By [22], the alternating sum of the terms of D(C•) in the Grothendieck

group [O(∅, k)] coincides with the character of L(triv) = L(ek).

Corollary 6.5 D(C•) is a BGG resolution of L(triv) = L(ek).

Proof A resolution is quasi-isomorphic to the module it resolves, so in Db(O1/e(Sek)),

L(ek) is isomorphic to its resolution C•. Since the Ringel duality D is a derived

self-equivalence of Db(O1/e(Sek)) [29], this implies D(C•) ≃ D(L(ek)) in

Db(O1/e(Sek)). We know that at the end of the complex we have: �(ek − 1, 1) →
�(ek) → 0, and so L(ek) = Head(�(ek)) must occur in the homology of D(C•).
Therefore L(ek) is a composition factor of D(L(ek)).

We claim that D(L(ek)) = L(ek). This follows from [42, Lemma 2.5] which

states that D is a perverse equivalence with respect to the filtration by dimensions of

support: in particular, D is a self-equivalence of the semi-simple subcategory spanned

by the minimal support modules L(eσ). Since D2 = I d, it follows that D must

permute the minimal support simple modules L(eσ), σ ⊢ k. We have already seen

that D(L(ek) = D(L(e(1k))) contains L(ek) = L(e(k)) as a composition factor; it

follows that D(L(ek)) = L(ek).
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To conclude, D(C•) is equivalent to L(ek) in Db(O1/e(Sek)), where L(ek) is

considered as a complex concentrated in degree 0. Hence Hi (D(C•)) = δi0 L(ek), as

required. ⊓⊔

Let π denote the quotient functor which kills the Serre subcategory generated by

the simple modules {L(ν) | ν has more than e rows}.

Corollary 6.6 πD(C•) is a BGG resolution of L(triv) = L(ek) in the quotient category

π(O1/e(Ske)). By adding an arbitrary configuration of a ∈ Z>0 empty runners to the

abacus, RπD(C•) is a BGG resolution of RL(triv) in Rπ(O1/e(Ske)).

Proof The quotient functor π is exact, sends �(μ) to the standard module �(μ), and

sends L(μ) to the simple module L(μ). The first claim then follows from Corollary 6.5,

implying the second claim by Theorem 6.1. ⊓⊔

6.3 Computation of Lie algebra and Dirac cohomology

BGG resolutions for classical and affine Lie algebras over C are closely related to the

computation of Lie algebra cohomology [4,28,39]. Recently, a version of Lie algebra

cohomology (and homology) for rational Cherednik algebras over C was constructed

in [36]; h∗ :=
⊕

Cxi plays the role of the nilradical n ⊂ b ⊂ g, and the complex

reflection group W plays the role of the Cartan subalgebra.

Theorem 6.7 Let λ ∈ F1
n ⊆P1

n (h). We have that

Hi (h
∗, L(λ)) =

⊕

μ∈Poe(λ)
hd(μ)=i

Sn(μ).

Proof This follows immediately from our main theorem and [36, Proposition 6.1]. ⊓⊔

Likewise, if L(λ) ∈ Oc(G(ℓ, 1, n)) where c corresponds to the rank e and charge

s = (κ1, κ2, . . . , κℓ) ∈ Zℓ for the Fock space, and λ ∈ Fℓ
n , then

Hi (h
∗, L(λ)) =

⊕

μ�λ
ℓ(μ)=i

Sn(μ).

This also computes the Lie algebra cohomology H i (h∗, L(λ)). Indeed, by Poincaré

duality (cf. [36, Proposition 2.7]), we get

H i (h∗, L(λ)) = Hn−i (h
∗, L(λ))⊗∧nh,

where n := dim h. A consequence of the computation of Lie algebra cohomology

for unitary modules admitting a BGG resolution is that this immediately gives the

computation of the Dirac cohomology HD(L(λ)). This is defined as the usual Dirac

cohomology, where the Dirac operator D ∈ H1/e(Sn) ⊗ c has been constructed in
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[15]. Here c is the Clifford algebra associated to
⊕

Cxi ⊕
⊕

Cy j with its natural

nondegenerate bilinear form (xi , y j ) = δi j . For a module M ∈ O1/e(Sn), the algebra

H1/e(Sn)⊗c acts on the space M⊗∧•h, and the Dirac cohomology is defined to be, as

usual, ker(D)/ ker(D)∩ im(D). This is a representation of W̃ , a certain double-cover

of the group W . Then, by [36, Theorem 5.1], HD(L(λ)) =
⊕

μ≤λ Sn(μ)⊗ χ , where

χ is a 1-dimensional character of the double cover W̃ . We refer to [36] for details.

7 TheMullineuxmap on unitary simple modules

We first recall the Mullineux involution on the quiver Hecke algebra of the symmetric

group: Let M denote the Hn-automorphism determined by

M : e(i1, i2, . . . , in) �→ e(−i1,−i2, . . . ,−in) M : ψr �→ ψr M : yk �→ yk (7.1)

for 0 ≤ k ≤ n and 0 ≤ r < n and i = (i1, . . . , in) ∈ (Z/eZ)n , where ψr and yk are

generators of Hn as given in Remark 1.19.

Given a simple module Dn(λ), we let Dn(λ)M denote the module with the same

underlying vector space but with the multiplication defined by twisting the action

with the involution M. The relationship between these two simples was the subject of

a conjecture of Mullineux [48]. The combinatorics of this relationship is fiendishly

complicated in general and is only understood on the level of the labels of simple

modules. The purpose of this section is to examine the effect of the Mullineux map on

the simple modules Dn(λ) for λ ∈ F1
n . We show that the set of these simples is pre-

served under the Mullineux involution. Moreover, we construct an explicit Mullineux

isomorphism in terms of the bases and representing matrices of these simples given in

Theorems 4.2 and 4.3 — we remark that this is the time the Mullineux isomorphism has

been explicitly constructed (outside of the trivial semisimple case). Furthermore we

shall see that the Mullineux combinatorics drastically simplifies on unitary e-regular

partitions λ and that we can easily compute M(λ) on the e-abacus of λ. We define the

unitary branching graph, Y, to have vertices on level k given by

Yk = {λ | λ is e − restricted and λ ∈ F1
k}

and edges connecting levels k and k + 1 given by

Ek,k+1 = {λ→ μ | λ ∈ Yk, μ ∈ Yk+1 and λ = μ−� for � a good node}.

We first discuss how the abaci of an e-core ρ and its transpose ρt are obtained from one

another when ρ has at most e − 1 columns. Recall the basics of abaci from Sect. 5.1.

First, note that if ρ has at most h < e columns then ρt has at most e−h columns. Now,

let Ah
e (ρ) denote the e-abacus of ρ written with h beads, and perform the following

procedure on it: (1) swap the empty spots and the beads in the first column (so that the

resulting abacus has e− h beads), then (2) flip this abacus upside down. The resulting

abacus, Ae−h
e (ρt ), is the e-abacus of ρt written with e − h beads.
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Definition 7.1 Let λ ∈ Fn(h) for some 1 ≤ h < e and let ρ be the e-core of λ. Write

w(λ) = (e − h)q + r for some q ≥ 0, 0 ≤ r < e − h. Define λM to be the partition

with abacus obtained from Ae−h
e (ρt ) by moving the bottom r beads (q + 1)-units to

the right, and the top e − h − r beads q units to the right.

Proposition 7.2 If λ ∈ Yn , then λM ∈ Yn . Specifically: in the case λ = ρ, we have

ρM = ρt . Otherwise, we have λM ∈ Fn(e − h).

Proof If λ = ρ is an e-core, then w(λ) = 0 and algorithm just stops after the step

where we take the transpose of ρ. The abacus Ae−h
e (ρt ) clearly satisfies the criterion

for unitarity (Definition 5.5) since all of its beads are concentrated in the first column.

If w(λ) > 0, so λ is not an e-core, we must move the bottom-most bead of Ae−h
e (ρt )

at least one unit to the right to obtain Ae−h
e (λM). This guarantees that Ae−h

e (λM) does

not start with a bead, and since Ae−h
e (λM) has e − h beads, we conclude that λM

has precisely e − h columns. Finally, by construction, λM satisfies the conditions of

Definition 5.5. ⊓⊔

Example 7.3 Let e = 5, h = 2, λ = (228, 13), w(λ) = 11. We obtain λM = (319, 12)

as follows:

0 1 2 3 4 5 6

core

0 1 2

transpose

e − h beads

0 1 2

11 = 3 · 3+ 2

0 1 2 3 4

Theorem 7.4 The map M : Yk → Yk for k ≥ 0 is a well-defined graph involution.

Given

s = (λ(0) r1−→ λ(1) r2−→ . . .
rn−→ λ(n))

we let sM denote the path

sM = (λ
(0)
M

−r1−−→ λ
(1)
M

−r2−−→ . . .
−rn−−→ λ

(n)
M ).

We have that Dn(λM) ∼= (Dn(λ))M and that the isomorphism is determined by : cs �→
csM

.

Proof The Mullineux involution M is characterized as the unique involution on e-

regular partitions mapping ∅ to ∅ and such that M( f̃i (λ)) = f̃−i (M(λ)) [2,26,38]. We

want to identify λM with M(λ) for all vertices λ of Y. By construction we have that

λM is also vertex of Yk whenever λ is, and that (λM)M = λ. It is clear that ∅M = ∅.

Thus if i ∈ {0, . . . , e − 1} is such that f̃i (λ) ∈ F1
n , we need to show that

(
f̃i (λ)

)
M
= f̃−i (λM).
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We remark that, if λ ∈ F1
n , then f̃i (λ) adds the leftmost addable box of content

residue i , if any. In order to keep track of the action of f̃i on abaci, we follow the

conventions of Remark 5.4, so we label the runners of an e-abacus with h beads, at

most one bead per runner, from bottom-to-top by h−1, h−2, . . . , 1, 0, e−1, . . . , h.

This is done so that the labels of the runners correspond nicely to the contents of

addable/removable boxes. Note that the labeling of runners changes in the process of

constructing λM, when Ae(ρ) with h beads is replaced by Ae(ρ
t ) with e − h beads.

The abacus Ae(λ) has a bead (resp. empty space) on runner i if and only if Ae(λM)

has an empty space (resp. bead) on runner −i − 1. Finally, observe that if the top

runner is labeled m in these conventions, that f̃m increases the weight w of a partition

by at most 1 but all f̃i , i �= m, do not increase the weight. Now set ρ̂ to be the core of

f̃i (λ). We consider two cases.

Case 1. w( f̃i (λ)) = w(λ). So either i �= h or i = h and λ is a core. In the latter

case, f̃i (λ) is also a core, and both ( f̃i (λ))M and f̃−i (λM) coincide with the transpose

of f̃i (λ). In the former case, the abaci Ae(ρ) and Ae(ρ̂) coincide on all runners except

those labeled by i and i − 1. Thus, Ae(ρ
t ) and Ae(ρ̂

t ) only differ on runners −i − 1

and−i : Ae(ρ̂
t ) has a bead on runner−i − 1 and an empty space on runner−i , while

the opposite is true for Ae(ρ
t ). Thus, ( f̃i (λ))M is obtained from λM by sliding the

bead on runner−i up runner−i − 1. But this is exactly how we obtain f̃−i (λM) from

λM. We are done in this case.

Case 2. w( f̃i (λ)) = w(λ) + 1. So i = h, and the abacus of f̃i (λ) is obtained

from that of λ by moving the bead on the top runner (labeled h) down to the bottom

runner (labeled h − 1) and then one unit right. Just as in the first case, the abaci

Ae(ρ
t ) and Ae(ρ̂

t ) only differ on runners −h and −h − 1. Note that these are the

top and bottom runners of the abacus, respectively. Write division with remainder

w = w(λ) = (e− h)q + r , so that λM is obtained from Ae(ρ
t ) by moving the bottom

r beads q + 1 units to the right, and the remainder e− h− r beads q units to the right.

We have a subdivision into two further cases.

Case 2.1. r < e−h−1. So w+1 = (e−h)q+ (r +1) is division with remainder,

and ( f̃i (λ))M is obtained from Ae(ρ̂
t ) by moving the bottom r+1 beads q+1 units to

the right, and the remaining beads q units to the right. Note that the beads 2, . . . , r+1

of Ae(ρ̂
t ) coincide with the beads 1, . . . , r of Ae(ρ

t ). Thus, ( f̃i (λ))M is obtained

from λM by taking the bead in the top runner, moving it down to the bottom runner

and sliding one unit to the right. This is precisely f̃−i (λM).

Case 2.2. r = e − h − 1. So w + 1 = (e − h)(q + 1). Here, ( f̃i (λ))M is obtained

from Ae(ρ̂
t ) by moving all beads q + 1 units to the right, while λM is obtained from

Ae(ρ
t ) by moving all beads q + 1 units to the right, except the one in the top runner,

that we only move q units to the right. So we see that, again, ( fi (λ))M is obtained

from λM by taking the bead in the top runner, moving it down to the bottom runner

and sliding one unit to the right. So ( f̃i (λ))M = f̃−i (λM).

This proves that the involution Y → Y given by λ �→ λM coincides with the

Mullineux involution restricted to Y. Now, the bases of Dn(λ) for λ ∈ F1
n are given by

the paths in the unitary branching graph terminating at said vertices. By Theorem 4.3

we can match up these bases through the action of the idempotents under the twisting

by the Mullineux map (see equation (7.1)). ⊓⊔
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Fig. 6 A pair of tableaux

t ∈ Std7(310, 24) and

tM ∈ Std7(48, 13) indexing

basis elements swapped under

the isomorphism

D35(310, 24)M ∼= D35(48, 13)

Example 7.5 Let e = 7. We have that M(310, 24) = (48, 13). We depict these parti-

tions, and the manner in which they can constructed via adding rim 7-hooks in Figure

6. Furthermore, we provide an example of t ∈ Std7(3
10, 24) and tM ∈ Std7(4

8, 13).

Note that the map on the level of tableau preserves the rim hooks drawn in the two

diagrams!!

8 Graded free resolutions of algebraic varieties, Betti numbers, and
Castelnuovo–Mumford regularity

We now consider the consequences of our results for computing minimal resolutions of

linear subspace arrangements. Easy examples of ideals whose resolutions we compute

include the braid arrangements of type A and type D. Such minimal resolutions are

difficult to compute geometrically [40]. As a consequence, we prove a combinatorial

formula for the Betti numbers of the ideal of the m-equals arrangement predicted in

[65]. We also calculate the Castelnuovo–Mumford regularity for the coordinate ring

of these arrangements, a notoriously difficult problem in general (see [16,57]).

It is pointed out in [20] that BGG resolutions via parabolic Verma modules for

Lie algebras can be used to provide commutative algebra resolutions of determinantal

ideals by viewing the coordinate ring as a unitarizable highest weight module. We

employ our Cherednik algebra resolutions in an analogous fashion. The first of these

commutative algebra resolutions, given in Sect. 8.1.1, was predicted in [65] and con-

cerns the smallest ideal, Ie,1,n , of the polynomial representation (this is the vanishing

ideal of the subspace arrangement, Xe,1,n , consisting of e equal coordinates for e ≤ n).

We then provide a cyclotomic generalisation of this resolution in Sect. 8.1.2. The third

resolution, given in Sect. 8.1.3, concerns the smallest quotient, C[Xe,k,n], of the poly-

nomial representation (this is the coordinate ring of the subspace arrangement, Xe,k,n ,

consisting of k clusters of e equal coordinates for ke = n); the ideal vanishing on this
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space was studied in [65], however since neither this ideal nor its quotient is unitary

(in general) the authors did not predict any resolution arising via Cherednik algebras.

8.1 Commutative algebra

Let us discuss the consequences that the existence of the BGG resolution has for the

study of graded modules over C[x1, . . . , xn] = C[x]. First of all, for every μ ⊢ n, the

standard module �1/e(μ) is free as a C[x]-module. So the resolution C•(λ) is, in fact,

a free resolution of L1/e(λ) when we view all involved modules as C[x]-modules.

An observation now is that every module in category O1/e(Sn) automatically

acquires a grading compatible with the usual grading on C[x], as follows. Consider

the deformed Euler element1 eu := 1
2

∑n
i=1 xi yi + yi xi ∈ H1/e. This is a grading

element of H1/e in the sense that [eu, xi ] = xi , [eu, yi ] = −yi , and [eu, w] = 0 for

w ∈ Sn . Any module in category O1/e(Sn) is now graded by generalized eigenspaces

for eu:

M =
⊕

a∈C

Ma, Ma := {m ∈ M : (eu− a)km = 0 for k ≫ 0}.

Note that, since the grading on M was defined using an element of H1/e, every mor-

phism in category O1/e(Sn) has degree 0. In particular, this grading is different from

the grading of objects in O1/e(Sn) that has been used so far in this paper. The grad-

ing by generalized eigenspaces of eu, however, is better-suited for the purposes of

commutative algebra.

A priori, M ∈ O1/e(Sn) is only C-graded, but in our case we can do better. Since

[eu, w] = 0 for w ∈ Sn , eu may be seen as an endomorphism of the Sn-module

Sn(τ ) ∼= 1 ⊗ Sn(τ ) ⊆ C[x] ⊗ τ = �1/e(τ ). Thus, eu acts by a scalar cτ on Sn(τ ),

and by the definition of �1/e(τ ) we get that �1/e(τ )a �= 0 if and only if a = cτ + k

for some k ∈ Z≥0. Moreover,

�1/e(τ )cτ+k = C[x]k ⊗ Sn(τ )

where C[x]k denotes the subspace of homogeneous polynomials of degree k in the vari-

ables x1, . . . , xn . We will write C[x]⊗ Sn(λ) to refer to the C[x]-module �1/e(λ)[cλ],
where the brackets denote the usual grading shift. Thus, C[x] ⊗ Sn(λ) is Z≥0-graded,

and (C[x] ⊗ Sn(λ))k = C[x]k ⊗ Sn(λ).

Now consider the resolution of the graded C[x]-module L1/e(λ)[cλ], where the i-th

term of the complex is given by

⊕

μ∈Poe(λ)
hd(μ)=i

(C[x] ⊗ Sn(μ))[cλ − cμ]

We remark that, since λ and μ belong to the same block of category O1/e(Sn), cλ−cμ

is actually an integer. Of course, this is the same as the BGG resolution C•(λ), but

1 We remark that our Euler element ‘eu’differs from the one used in [65] by the constant n(e− n+ 1)/2e.
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we write it in this way to emphasize that we are only interested in the C[x]-module

structure. By abuse of notation, we also denote this complex by C•(λ). Note that

(C[x] ⊗ Sn(μ))[cλ − cμ] = �1/e(μ)[cλ], from where it follows that all the maps in

the complex have degree 0 as maps of graded C[x]-modules. In particular, C•(λ) is a

graded-free resolution of L1/e(λ)[cλ].
The value of cλ can be expressed in terms of the content of the boxes of λ, namely

cλ =
n

2
− 1

e

∑

�∈λ

column(�)− row(�)

It follows from Sect. 5.6 or from Lemma 5.19 that if hd(μ) < hd(ν) then cμ < cν .

In particular, when viewing the differential in the resolution C•(λ) as matrices with

coefficients in C[x], no nonzero entry of the differential is a degree 0 element of C[x].
It follows immediately that:

Lemma 8.1 The complex C•(λ) is a minimal graded free resolution of L1/e(λ)[cλ].

Lemma 8.1 implies a combinatorial formula for computing many interesting invari-

ants of the module L1/e(λ)[cλ]. In the rest of this section, if L1/e(λ) is unitary we write:

n := |λ|, k := e-weight(λ), h := #columns(λ)

Recalling the basics of abaci in Sect. 5.1 this means that the abacus Ae(λ) has h

nonempty runners and there are k vacant spaces in Ae(λ) with some bead to their

right.

Proposition 8.2 Suppose L1/e(λ) is unitary. Then,

(1) βi, j =
∑

μ∈Poe(λ)
cλ−cμ=− j

hd(μ)=i

dim(Sn(μ)),

(2) pdim(L1/e(λ)) = (h − 1)k,

(3) depth(L1/e(λ)) = n − (h − 1)k

where βi, j denotes the (i, j)-graded Betti number of L1/e(λ)[cλ], and pdim stands for

the projective dimension as a graded C[x]-module.

Proof Statement (1) is clear from the form of the resolution C•(λ). The maximal

homological degree of a partition in Poe(λ) is acquired by sliding all the beads to

the left and then sliding the highest bead k spaces to the right. (2) follows from here.

Finally, by the Auslander-Buchsbaum formula, (3) is equivalent to (2). ⊓⊔

Another consequence of Lemma 8.1 and the fact that the function cλ is strictly

increasing on homological degrees, is the computation of the Castelnuovo-Mumford

regularity of the module L1/e(λ)[cλ]. Recall that, by definition, the regularity of a

module M is

reg(M) := max{ j : there exists i such that βi,i+ j (M) �= 0}



   29 Page 62 of 71 C. Bowman et al.

In other words, for a minimal graded-free resolution C• of M , for each i =
0, . . . , pdim(M), let ni be the maximum degree of a generator of Ci , and mi := ni− i .

Then, reg(M) = maxi {mi }. The Castelnuovo-Mumford regularity is a measure of the

computational complexity of the module M and it is, in general, incredibly difficult

to compute, cf. [16,57].

Proposition 8.3 Suppose L1/e(λ) is unitary. Let μ0 ∈ Poe(λ) be obtained by, first,

sliding all beads of Ae(λ) to the left, and then, sliding the upmost beat k spaces to the

right. Then,

reg(L1/e(λ)[cλ]) = (cμ0 − cλ)− (h − 1)k

Proof As in the paragraph above the statement of the proposition, let us denote by ni the

maximum degree of a generator of C(λ)i , and mi := ni− i . Note that ni := max{cμ−
cλ : μ ∈ Poe(λ), hd(μ) = i}. Since the c-function is increasing in homological degree,

the sequence (ni ) is increasing and therefore the sequence (mi ) is nondecreasing. So

the regularity of L1/e(λ)[cλ] is mpdim(L1/e(λ)). Since pdim(L1/e(λ)) = (h − 1)k, the

result follows. ⊓⊔
Example 8.4 Consider e = 5, n = 15 and λ = (34, 2, 1). Then, pdimL1/e(λ) = 4, so

L1/e(λ) is not Cohen-Macaulay and a minimal graded-free resolution of L1/e(λ)[cλ]
is

0 → (3, 2, 110)[−9] → (3, 22, 17)[−5] → (3, 26)[−3] ⊕ (33, 16)[−3]
→ (33, 22, 12)[−1] → (34, 2, 1)

→ L1/e(λ)[cλ] → 0

where for brevity, we write μ[d] in place of (C[x] ⊗ Sn(μ))[d]. From the resolution,

we see that reg(L1/e(λ)[cλ]) = 5.

8.1.1 The e-equals ideal

We examine these results in the situation where the modules L1/e(λ) have a clear

geometric meaning. The representation theoretic import of Xe,1,n was first noticed and

explained in [65]. Resolutions of the ideals vanishing on these subspace arrangements

are given by BGG resolutions of the corresponding unitary module for H1/e(Sn).

Let n = (e−1)p+q, with 0 ≤ q < e−1. Consider the partition λ = ((e−1)p, q)

of n. Note that the e-abacus of λ has exactly one empty runner, and the module L1/e(λ)

is unitary. In fact, it follows from [62] that L1/e(λ) is isomorphic to the socle of the

polynomial representation

�1/e(triv) ∼= C[x1, x2, . . . , xn]

which by [23, Theorem 5.10] coincides with the e-equals ideal Ie,1,n of functions

vanishing on the set

Xe,1,n := Sn{(z1, . . . , zn) ∈ Cn : z1 = · · · = ze}.
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Note that Xe,1,n is an arrangement of
(

n
e

)
linear subspaces of Cn , each of dimension

n−e+1. When e = 2, X2,1,n is nothing but the braid arrangement in Cn , which consists

of the reflection hyperplanes for the action of Sn on Cn . Let us give a set of generators

for the ideal Ie,1,n , following [23,24]. Consider the partition λT = ((p+1)q , pe−1−q),

which has exactly e − 1 parts. Now consider the polynomial

pλT (x1, . . . , xn) = V (x1, . . . , xλT
1
)V (xλT

1 +1, . . . , xλT
1 +λT

2
) · · · V (xλT

1 +···+λT
e−2+1, . . . , xn)

where V (x1, . . . , xk) is the Vandermonde determinant
∏

i< j (xi − x j ). Then, the ideal

Ie,1,n is generated by the Sn images of the polynomial pλT .

Since L1/e(λ) and L1/e(triv) lie in the same block of category O1/e, the weight of

the partition λ is k = ⌊n/e⌋. Thus, as was observed in [65], the projective dimension

of the algebra of functions C[Xe,1,n] = C[x1, . . . , xn]/Ie,1,n is pdim(C[Xe,1,n]) =
pdim(L1/e(λ)) + 1 = (e − 2)⌊n/e⌋ + 1. Since dim(Xe,1,n) = n − e + 1, it follows

that C[Xe,1,n] is Cohen-Macaulay if and only if e = 2 or ⌊n/e⌋ = 1. This way, we

recover part of [22, Proposition 3.11].

Example 8.5 Consider e = 4, n = 10. The minimal submodule in �1/e(triv) is

I4,1,10, and it is isomorphic to L1/e(3
3, 1). Note that cλ = 23/4. The resolution

of L1/4(3
3, 1)[−23/4] is given by

0 → (2, 18)[−8] → (22, 16)[−6] → (25)[−3] ⊕ (32, 14)[−2]
→ (32, 2, 12)[−1] → (33, 1) → L1/4(3

3, 1)[−23/4] → 0

A resolution of the coordinate ring C[x1, . . . , x10]/I4,1,10 looks similar, but each

term is further shifted by −12 (because ctriv − cλ = −12), and the end of the

sequence is (33, 1)[−12] → (10) → C[x]/I4,1,10 → 0. Note that the regularity

of C[x1, . . . , x10]/I4,1,10 is 15.

Let us now compute the regularity of the subspace arrangement Xe,1,n .

Proposition 8.6 The regularity of the C[x]-module C[Xe,1,n] is given by

reg(C[Xe,1,n]) =
{
⌊n/e⌋(n − e + 1)− 1, if n/e ∈ Z

⌊n/e⌋(n − e + 2)− 1, else.

Proof Let us write n = (e−1)p+q = ep1+q1, with 0 ≤ q < e−1 and 0 ≤ q1 < e.

As above, let λ = ((e− 1)p, q) be the partition such that L1/e(λ) is isomorphic to the

socle of �1/e(triv). Note that the e-core of any partition in the block of triv = (n) is (q1)

and the e-weight is p1. It then follows from the rimhook description of homological

degree in Sect. 5.6 that the partition μ0 with highest homological degree in Poe(λ)

is given by adding p1 vertical strips of length e in the leftmost column to the e-core

of λ: thus μ0 = (a, 1n−a) where a = q1 if q1 > 0 and a = 1 if q1 = 0, and

hd(μ0) = (e − 2)p1. Now it follows by a direct computation that

reg(C[Xe,1,n]) = cμ0 − ctriv − (e − 2)p1 − 1 = (n − a)n

e
− (e − 2)p1 − 1
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which coincides with the formula in the statement of the proposition. ⊓⊔

8.1.2 More BGG resolutions and a generalisation of the e-equals ideal.

We take ℓth powers and obtain a generalisation of the e-equals ideal. These subspaces

arrangements admit commutative algebra resolutions which can be constructed via

BGG-resolutions for the Cherednik algebra of G(ℓ, 1, n) (which we also construct in

this section). Consider the ideal Ie,1,n(ℓ) of polynomials vanishing on the set

Xe,1,n(ℓ) := Sn{(z1, . . . , zn) ∈ Cn : zℓ
1 = zℓ

2 = · · · = zℓ
e}.

Note that Xe,1,n(ℓ) is an arrangement of ℓe
(

n
e

)
linear subspaces of Cn , each of dimen-

sion n − e + 1. When e = ℓ = 2, X2,1,n(2) is the braid arrangement of type Dn ,

consisting of reflection hyperplanes for the reflection representation of the Weyl

group of type Dn on Cn . To give a set of generators for the ideal Ie,1,n(ℓ), recall

from the previous subsection the partition λ = ((e − 1)p, q) and the polynomial

pλT ∈ C[x1, . . . , xn]. According to [24, Proposition 2.5], a set of generators of the

ideal Ie,1,n(ℓ) is given by the Sn-images of pλT (xℓ
1, . . . , xℓ

n).

Our next goal is to construct a graded-free resolution of the algebra of functions

C[x1, . . . , xn]/Ie,1,n(ℓ). In order to do this, we will use the following well-known

commutative algebra result.

Lemma 8.7 Let F1, F2, F3 be free C[x1, . . . , xn]-modules of finite rank, with bases

{v1
1, . . . , v1

i1
}, {v2

1, . . . , v2
i2
} and {v3

1, . . . , v3
i3
}, respectively. Let A : F1 → F2,

B : F2 → F3 be morphisms defined in the given bases by matrices ( fi j (x1, . . . , xn)),

(g jk(x1, . . . , xn)), respectively, and define new morphisms Ã, B̃ by the matrices

( fi j (xℓ
1, . . . , xℓ

n)), (g jk(xℓ
1, . . . , xℓ

n)), respectively. If im(A) = ker(B), then im( Ã) =
ker(B̃).

Note that, for μ ∈ P1
n , the module C[x1, . . . , xn] ⊗ Sn(μ) has a distinguished

basis indexed by Std(μ). Thus, if λ is a unitary partition, we can apply Lemma 8.7

to the complex C•(λ) (viewed as a complex of free C[x1, . . . , xn]-modules) to obtain

a complex C̃•(λ), which is exact outside of degree 0. By construction, thanks to [24,

Proposition 2.5], when λ = ((e − 1)p, q), the zeroth homology of C̃•(λ) coincides

with the ideal Ie,1,λ(ℓ). Moreover, by multiplying the grading shifts of C•(λ) by ℓ, this

obtains a minimal graded-free resolution of Ie,1,λ, and extending by C[x1, . . . , xn], of

the algebra of functions C[Xe,1,n(ℓ)]. We then obtain the following result.

Proposition 8.8 The projective dimension of C[Xe,1,n(ℓ)] coincides with that of

C[Xe,1,n], which is (e − 2)⌊n/e⌋ + 1 so that, regardless of ℓ, C[Xe,1,n(ℓ)] is Cohen-

Macaulay if and only if e = 2 or ⌊n/e⌋ = 1. The regularity of C[Xe,1,n(ℓ)] is given

by

reg(C[Xe,1,n(ℓ)]) =
{
⌊n/e⌋(ℓ(n − 1)− e + 2)− 1 if n/e ∈ Z

⌊n/e⌋(ℓn − e + 2)− 1 else
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We have obtained the complex C̃•(λ) by means of pure commutative algebra. As it

turns out, C̃•(λ) is a complex of standard modules for the rational Cherednik algebra

of the group G(ℓ, 1, n) := Sn ⋉ (Z/ℓZ)n under a special class of parameters. The

group G(ℓ, 1, n) is a complex reflection group, acting naturally on Cn , and the rational

Cherednik algebra depends on a function c̃ : S → C, where S ⊆ G(ℓ, 1, n) is the

set of reflections and c̃(s) = c̃(wsw−1) for every s ∈ S, w ∈ G(ℓ, 1, n). Here,

for a complex number c ∈ C, we will take any function c̃ such that c̃(s) = c, if

s ∈ G(ℓ, 1, n) is conjugate to a reflection in Sn . Any other reflection in G(ℓ, 1, n) is

conjugate to a nonzero element of, say, the first copy of Z/ℓZ, so we have ℓ− 1 more

parameters for Hc̃(G(ℓ, 1, n)), let us call them c1, . . . , cℓ−1.

The rational Cherednik algebra Hc̃(G(ℓ, 1, n)) admits a presentation very simi-

lar to that of the rational Cherednik algebra Hc(Sn) of the symmetric group. We

will not give this presentation. Instead, we remark that Hc̃(G(ℓ, 1, n)) is the subal-

gebra of EndC(C[x1, . . . , xn]) generated by the functions xi of multiplication by xi

(i = 1, . . . , n), the elements of G(ℓ, 1, n) (naturally viewed as automorphisms of

C[x1, . . . , xn]) and the Dunkl–Opdam operators:

D̃i := ∂i − c
∑

j �=i

ℓ−1∑

t=0

1

xi − ξ t x j

(1− (i j)t )−
ℓ−1∑

k=1

2ck

(1− ξ−k)xi

(1− ξ k
i )

where ξ := exp(2π
√
−1/ℓ), ξi ∈ G(ℓ, 1, n) is the element that acts by multiplication

by ξ on the i-th coordinate in Cn , and (i j)t ∈ G(ℓ, 1, n) is (i j)t = ξ t
i ξ
−t
j (i j). Let us

remark that a similar presentation exists for the algebra Hc(Sn), the Dunkl operators

are now given by

Di = ∂i − c
∑

j �=i

1

xi − x j

(1− (i j)).

We will need the following result, that relates the operators Di and D̃i .

Lemma 8.9 For g ∈ C[x1, . . . , xn], denote by g̃ := g(xℓ
1, . . . , xℓ

n). Then, for any

i = 1, . . . , n:

D̃i (g̃) = ℓxℓ−1
i D̃i (g)

Proof First of all, note that g̃ is invariant under the action of (Z/ℓZ)n on C[x1, . . . , xn],
and so it follows that
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D̃i (g̃) = ∂i (g̃)− c
∑

j �=i

ℓ−1∑

t=0

g̃ − (i j)g̃

xi − ξ t x j

.

Now let h(x1, . . . , xn) ∈ C[x1, . . . , xn] be such that g − (i j)g = (xi − x j )h. Note

that it follows that g̃ − (i j)g̃ = (xℓ
i − xℓ

j )̃h, so

ℓ−1∑

t=0

g̃ − (i j)g̃

xi − ξ t x j

=
ℓ∑

t=0

ℓ−1∏

k=0
k �=t

(xi − ξ k x j )̃h = ℓxℓ−1
i h̃

and the result follows. ⊓⊔

The algebra Hc̃(G(ℓ, 1, n)) still admits a triangular decomposition Hc̃(G(ℓ, 1, n))

= C[x1, . . . , xn] ⊗ CG(ℓ, 1, n) ⊗ C[y1, . . . , yn], where yi is the Dunkl–Opdam

operator D̃i . In particular, one can still define standard modules. For an irre-

ducible representation E of G(ℓ, 1, n), we have the standard module �c̃(E). As a

C[x1, . . . , xn]-module, �c̃(E) = C[x1, . . . , xn] ⊗ E .

The irreducible representations, Sn(λ), of G(ℓ, 1, n) are indexed by the set Pℓ
n ,

and each Sn(λ) has a natural basis indexed by the set Std(λ). In particular, if λ ∈P1
n ,

we can consider the ℓ-partition λ̃ ∈ Pℓ
n given by λ̃ = (λ,∅, . . . ,∅). The sets Std(̃λ)

and Std(λ) are obviously identified. Moreover, G(ℓ, 1, n) admits a natural surjection

to Sn , and the irreducible representation Sn (̃λ) of G(ℓ, 1, n) is simply given by the

Sn-irreducible Sn(λ) under this surjection.

Proposition 8.10 Let c ∈ C. Then, for any λ,μ ∈P1
n and any parameter c̃ as above,

there is a natural identification

∼ : HomHc(Sn)(�c(λ),�c(μ))
∼=−→ HomHc̃(G(ℓ,1,n))(�c̃ (̃λ),�c̃(μ̃))

given as follows. For a standard Young tableau t ∈ Std(λ), if f ∈ HomHc(Sn)(�c(λ),

�c(μ)) is given by f (1 ⊗ t) =
∑

s∈Std(μ) fts(x1, . . . , xn) ⊗ s, then f̃ (1 ⊗ t) =∑
s∈Std(μ) fts(xℓ

1, . . . , xℓ
n)⊗ s.

Proof We need to show, first, that f̃ |1⊗Sn (̃λ) is a map of G(ℓ, 1, n)-representations.

This follows from the fact that, for any polynomial g ∈ C[x1, . . . , xn], g(xℓ
1, . . . , xℓ

n)

is invariant under the action of (Z/ℓZ)n . Now we need to show that, for any standard

Young tableau t ∈ Std(λ), f̃ (1⊗ t) is annihilated by all Dunkl operators D̃i . This is

a direct consequence of Lemma 8.9.

This shows that f �→ f̃ does define a morphism, which is clearly injective.

To show that it is bijective, let h : �c̃ (̃λ) → �c̃(μ̃) be a morphism. In partic-

ular, h|1⊗Sn (̃λ) is a map of G(ℓ, 1, n)-modules. This implies that, if h(1 ⊗ t) =∑
s∈Std(μ) hts(x1, . . . , xn) ⊗ s, then hts(x1, . . . , xn) ∈ C[xℓ

1, . . . , xℓ
n] for every s ∈

Std(μ). Thanks to Lemma 8.9, this implies that h = f̃ for some f : �c(λ)→ �c(μ).

⊓⊔
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Remark 8.11 If c /∈ 1/2 + Z, then the existence of an isomorphism between

HomHc(Sn)(�c(λ),�c(μ)) and HomHc̃(G(ℓ,1,n))(�c̃ (̃λ),�c̃(μ̃)) follows from [29,

Proposition 5.9].

By Proposition 8.10 and Lemma 8.7, we have that if λ is a unitary partition of n,

then the complex C̃•(λ) is actually a complex of standard modules for Hc̃(G(ℓ, 1, n)),

which is exact outside of degree zero, and thus it is a BGG resolution of its zeroth

homology.

Remark 8.12 The zeroth homology of C̃•(λ) is not necessarily an irreducible

Hc̃(G(ℓ, 1, n))-module. For example, if λ = ((e − 1)p, q), we have seen that

H0(C̃•(λ)) is the ideal Ie,1,n(ℓ). When ℓ = 2, e < n is even and the parameter

c̃ is such that c̃(s) = 0 if s is not conjugate to a reflection in Sn , then this is an

indecomposable, but not irreducible, Hc̃(G(ℓ, 1, n))-module.

Remark 8.13 Even if the zeroth homology of C̃•(λ) is irreducible (and thus it neces-

sarily coincides with L c̃ (̃λ)) the natural Hermitian form on L c̃ (̃λ) does not need to

be positive-definite, even if that for Lc(λ) is. An example of this is given by taking

ℓ = 2, odd n, e = n, λ = (e − 1, 1) and the parameter c̃ as in Remark 8.12 . In this

case, L c̃ (̃λ) = Ie,1,n(2), which does not admit an invariant positive-definite Hermitian

form, cf. [24, Proposition 7.1]

8.1.3 The (k, e)-equals ideal

We now consider the subspace arrangements of k distinct clusters of e equal parameters

for n = ke. We show that the BGG resolution of L(triv) is a minimal resolution of the

coordinate ring of this subspace arrangement and generalise this to type G(ℓ, 1, n) as

before.

Let n = ke, as we have seen, in this case we can give a BGG resolution of L1/e(triv).

It follows from [23, Theorem 5.10] that rad(�1/e(triv)) is the ideal Ie,k,n of functions

vanishing on

Xe,k,n := Sn{(z1, . . . , zn) ∈ Cn : z1 = · · · = ze, ze+1

= · · · = z2e, . . . , z(k−1)e+1 = · · · = zke}.

Recall that the resolution of L1/e(triv) is obtained as the Ringel dual of the resolution

of L1/e(e
k). Thus, the projective dimension of the algebra of functions C[Xe,k,n] =

C[x]/Ie,k,n
∼= L1/e(triv)[ctriv] is (e − 1)k. By the Auslander–Buchsbaum formula,

the depth of C[Xe,k,n] is n − (e− 1)k = k. So C[Xe,k,n] is always Cohen-Macaulay,

and we recover a special case of [22, Proposition 3.11].

Let us now analyze the regularity of L1/e(triv)[ctriv]. By an argument similar to

the proof of Proposition 8.6, this is given by c(ke) − ctriv − (e − 1)k. By a direct

computation, this is

reg(L1/e(triv)[ctriv]) =
k(n − e − k + 1)

2
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Example 8.14 Assume e = 3, n = 6. Then we have that a resolution of L(triv)[ctriv] =
C[x1, · · · , x6]/I3,2,6 is given by

0 → (23)[−6] → (3, 2, 1)[−5] → (32)[−4] ⊕ (4, 12)[−4]
→ (5, 1)[−2] → (6) → C[x]/I3,2,6 → 0

and reg(C[x]/I3,2,6) = 2.

Of course, for ℓ ≥ 1 we also have the subspace arrangement

Xe,k,n(ℓ) := Sn{(z1, . . . , zn) ∈ Cn : zℓ
1 = · · · = zℓ

e, zℓ
e+1 = · · · = zℓ

2e, . . . , zℓ
(k−1)e+1 = · · · = zℓ

ke}

And its defining ideal Ie,k,n(ℓ). Since Ie,k,n is the unique maximal submodule in

�1/e(triv) and the submodules of this standard module are linearly ordered, the ideal

Ie,k,n is generated in a single degree. Thus, the exact same argument as that in the

proof of [24, Proposition 2.5], if q1(x1, . . . , xn), . . . , qt (x1, . . . , xn) are generators

of Ie,k,n of minimal degree, then q1(xℓ
1, . . . , xℓ

n), . . . , qt (xℓ
1, . . . , xℓ

n) are generators

of Ie,k,n(ℓ). It follows that the complex C̃•(triv) is a minimal graded-free resolution

of the algebra of functions C[Xe,k,n(ℓ)], and the variety Xe,k,n(ℓ) is always Cohen-

Macaulay. Moreover, the regularity of C[Xe,k,n(ℓ)] is given by ℓ(c(ke)−ctriv)−(e−1)k,

or more explicitly,

reg(C[Xe,k,n(ℓ)]) = k[ℓ(n + e − k − 1)− 2(e − 1)]
2

.

We remark that in general as Hc̃(G(ℓ, 1, n))-modules, C[Xe,k,n(n)] does not coincide

with L c̃(triv). For example, if ℓ = 2, e = n is even and c̃(s) = 0 for a reflection

s not conjugate to an element of Sn , then L 1̃/e(triv) is finite-dimensional, while

C[Xe,1,n(2)] is not.

Remark 8.15 Changing the parameter of the rational Cherednik algebra to c = a/e > 0

with gcd(a; e) = 1 does not change the shape of the resolution C•(λ), so the projective

dimension and depth of La/e(λ) are independent of a ∈ Z>0 when λ is e-unitary.

However, the value of cλ is not independent of a ∈ Z>0, and we get

βi, j (La/e(λ) = βi, j/a(L1/e(λ))

where we implicitly agree that βi, j/a = 0 if j/a /∈ Z. For any such a ∈ Z>0 the

module La/e((m − 1)p, q) can be identified with an ideal of C[x] whose vanishing

set coincides with Xe,1,n . This ideal is radical if and only if a = 1, cf. [23, Theorem

5.10]. Similar considerations apply to La/e(triv).
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