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Abstract

This paper investigates estimation of sparsity-induced weak factor (sWF) models, with

large cross-sectional and time-series dimensions (N and T , respectively). It assumes

that the kth largest eigenvalue of a data covariance matrix grows proportionally to Nαk

with unknown exponents 0 < αk ≤ 1 for k = 1, . . . , r. Employing the same rotation of

the principal components (PC) estimator, the growth rate αk is linked to the degree of

sparsity of kth factor loadings. This is much weaker than the typical assumption on the

recent factor models, in which all the r largest eigenvalues diverge proportionally to N .

We apply the method of sparse orthogonal factor regression (SOFAR) by Uematsu et al.

(2019) to estimate the sWF models and derive the estimation error bound. Importantly,

our method also yields consistent estimation of αk. A finite sample experiment shows

that the performance of the new estimator uniformly dominates that of the PC estimator.

We apply our method to forecasting bond yields and the results demonstrate that our

method outperforms that based on the PC. We also analyze S&P500 firm security returns

and find that the first factor is consistently near strong while the others are weak.

∗Correspondence: Yoshimasa Uematsu, Department of Economics and Management, Tohoku University,

27-1 Kawauchi, Aobaku, Sendai 980-8576, Japan (E-mail: yoshimasa.uematsu.e7@tohoku.ac.jp).

1



Keywords. Sparsity-induced weak factor models, (Adaptive) SOFAR estimator, Estimation

error bound, Estimating diverging exponents, Interpreting factors, Group factor structure.

1 Introduction

The approximate factor model with large cross-sectional and time-series dimensions (N and

T , respectively) has become an increasingly important tool for the analysis of finance, eco-

nomics, psychology, and biology, among many other academic fields. In finance, the model

was firstly introduced by Chamberlain and Rothschild (1983), then developed in subsequent

articles by Connor and Korajczyk (1986, 1993), Bai and Ng (2002), Bai (2003), Fan et al.

(2008), Fan et al. (2011, 2013), among many others. In macroeconomics, Stock and Watson

(2002a,b) propose to extract a small number of factors from the large macroeconomic and

financial series and use them to forecast a macroeconomic variable of interest. Ludvigson

and Ng (2009) take a similar approach to forecast bond yields. See, for example, Fan et al.

(2018) for an excellent review of the high-dimensional factor models and their applications.

1.1 Weak factor model, rotation, and sparsity

Suppose that a vector of zero-mean stationary time series xt = (xt1, . . . , xtN )′ ∈ R
N , t =

1, . . . , T , is generated from the factor model

xt = B∗f∗t + et, (1)

where B∗ = (b∗
1, . . . ,b

∗
r) ∈ R

N×r with b∗
k ∈ R

N is a matrix of deterministic factor loadings

which has full column rank, f∗t ∈ R
r is a vector of zero-mean latent factors, and et ∈ R

N is

an idiosyncratic error vector independent of f∗t . For the present time, suppose r is given. Let

Σx = E[xtx
′
t], Σ

∗
f = E[f∗t f

∗
t
′], and Σe = E[ete

′
t] with assuming all the eigenvalues of Σ∗

f and

Σe are bounded away from zero and from above (uniformly in N). We then observe that

λk(Σx) ≍ λk(B
∗Σ∗

fB
∗′) for each k = 1, . . . , r and λr+1(Σx) = O(1), where λk(·) denotes the

kth largest eigenvalue.

In the studies on high-dimensional factor models which employ the principal components

(PC) estimator, including Connor and Korajczyk (1986, 1993), Stock and Watson (2002a,b),
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Bai and Ng (2002, 2006, 2013), Bai (2003) and Fan et al. (2018), it is typically assumed

that all the r largest eigenvalues diverge proportional to N , namely, λk(B
∗Σ∗

fB
∗′) ≍ N

for all k = 1, . . . , r. We call the models the strong factor (SF) models. This SF assumption

seems unduly restrictive. The SF model does not permit slower divergence rates than N , nor

different divergence rates among the r largest eigenvalues. The original approximate factor

model proposed by Chamberlain and Rothschild (1983) is an important exception, which

assumes that λr(B
∗Σ∗

fB
∗′) → ∞ as N → ∞. Furthermore, the SF model implies a large

gap between the values of λr(Σx) and λr+1(Σx), but it is often missing in representative

financial and economic data sets; see the discussion in Fan et al. (2013) by Onatski.

In light of the above discussion, we will significantly relax the SF condition as follows:

λk(B
∗Σ∗

fB
∗′) ≍ Nk := Nαk with 0 < αk ≤ 1 for each k = 1, . . . , r. (2)

We call the factor models with (2) the weak factor (WF) models in this paper. The WF

models allow different divergence rates of the signal eigenvalues, which can be slower than N .

Our definition of the WF models is similar to that in De Mol et al. (2008) and Onatski (2012,

p.246), but the reader is cautioned that the definition varies in the literature. For example,

Onatski (2012), Bryzgalova (2016), Lettau and Pelger (2020) assume non-diverging factors

(i.e. αr = 0), which Chamberlain and Rothschild (1983) and ourselves exclude. Chudik et al.

(2011) categorize the factors according to the values of the exponents.

It is well known that estimation of factor models, including (1), has an identification

issue. To identify the factors and the loading matrix separately, we must impose r2 (or

more) restrictions on the model. To directly identify the true loading matrix B∗, e.g. for

studying a structural shock in macroeconomics, r2 (or more) restrictions, together with

cross-section ordering of xti, should be imposed. Such restrictions are typically exogenously

informed by economic or financial theory; see the “named factor normalization” in Stock and

Watson (2016), for example.1) However, such exogenous information is not always available.

For many empirical studies, it is sufficient to identify the subspace spanned by the column

vectors of F∗. In these cases, the identification can be achieved by imposing an arbitrarily

chosen set of r2 restrictions, e.g. for mathematical convenience.
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To discuss our identification restrictions further, observe that the column and row spaces

of F∗ = (f∗1 , ..., f
∗
T )

′ and B∗′ are identical to those of F∗Q and Q−1B∗′, respectively, for any

invertible matrix Q. We choose a specific rotation which is also used for the PC estimator.

That is, we put f0t = Hf∗t and B0′ = H−1B∗′ with Σf = E[f0t f
0
t
′
] = Ir and B0′B0 being a

diagonal matrix. Then the model in (1) becomes

xt = B0f0t + et, (3)

and is identifiable. Because the eigenvalues of (2) are invariant to any rotation, we have

Nk ≍ λk(B
0B0′) = λk(B

0′B0) = b0′
k b

0
k for each k = 1, . . . , r, (4)

where the last equality is due to the specific choice of the rotation matrix, H. In our

approach, we assume B0 is sparse and link the degree of sparsity in b0
k to the divergence

rate of λk(Σx), Nk.
2) This is called the sparsity-induced weak factor (sWF) model, and we

investigate the estimation. As the earlier discussion implies, the WF structure in (4) can be

induced by non-sparse factor loadings. For instance, this is the case when a factor affects

all the variables at similar strengths thinly, but we do not consider this class in the paper.3)

1.2 Empirical evidence of the sWF models

Influential empirical studies often give implicit yet strong evidence of sWF models under the

restrictions we impose. Stock and Watson (2002b) and Ludvigson and Ng (2009) extract

the PC factors from standardized N macroeconomic variables (xti). They run N time-series

regressions of the variables on each of the extracted PC factors, then report N values of R2s

rather than the PC loadings; see figure 1 in Stock and Watson (2002b) and figures 1–5 in

Ludvigson and Ng (2009). They find interesting local spikes in some R2s while the rest are

very close to zero. As an illustration, we have conducted a similar exercise by extracting

two PC factors from the standardized 131 macroeconomic variables between January 1982

and December 2001, which is used in Ludvigson and Ng (2009).4) Figure 1 reports the

R2s for the time-series regressions of the variables on the second PC factor. The values of

R2s for 79 variables out of 131 (60.3%) are less than 0.01. This factor has virtually zero
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explanatory power for these variables. Thus, it is to be regarded as a sWF model under

the orthogonality restrictions. The corresponding PC loadings are illustrated in Figure 2.

Note that such figures are not reported in Stock and Watson (2002b) and Ludvigson and Ng

(2009). As can be seen, taking into account the standardization of xti, the absolute values of

the loadings corresponding to the near-zero R2s are disproportionately large. This strongly

indicates that ℓ1-norm regularization of the loadings will improve the estimation efficacy.

Such estimators will be proposed and investigated in this paper, and in Section 6.2, Figure

11 will visualize that the sparse loading estimates can provide sharper and richer information

about the factors than the R2s and the PC loadings (e.g. the signs of the loadings), which

are illustrated by Figures 1 and 2.
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Figure 1: R2 for regression of xit on f̂PC
t2
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Figure 2: PC estimates b̂PCi2

Another strand of empirical support for the sWF models comes from the literature on

hierarchical (group) factor structures, which contain two types of factors: global and local.

The factor loadings of the global factors are all non-zeros, whereas the local factors are asso-

ciated with the loadings with non-zero elements only among specific cross-sectional groups.

Ando and Bai (2017), Choi et al. (2018) provide empirical evidence for such a structure in

financial and macroeconomic data sets. Importantly, the sWF model (3) nests the hierarchi-

cal factor model, to which the same identification restrictions have typically been imposed,

and thus our method can be applied; see Section 5.3. In this context, Andreou et al. (2019)

propose a test for the number of factors in the group factor models.

Finally, the sparsity assumption is testable, and an inferential method is explored in the

separate paper, Uematsu and Yamagata (2021). Therein, we find evidence of high degrees
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of sparsity in B0 with the FRED-MD data set discussed in McCracken and Ng (2016) and

in the firm security excess returns of the S&P500 index.

1.3 Contributions

Unlike the PC estimator, our estimator for the sWF models requires ℓ1-norm regularization;

see Section 3.1. Although the numerical optimization becomes much more complicated due to

the imposition of both sparsity and orthogonality on the estimator, we can obtain a highly

efficient estimator by employing the recently developed framework, the sparse orthogonal

factor regression (SOFAR) of Uematsu et al. (2019). This provides a low-rank and sparse

estimator of the coefficient matrix in multivariate linear regression models; see Section D in

Supplementary Material. Hereafter the new estimator is called the SOFAR estimator.

As theoretical contributions, we will establish the estimation error bounds of the SOFAR

and PC estimators as well as validating the method of Onatski (2010) for determining the

number of factors for the sWF models. Our results reveal that when the model is even

slightly weaker than the strong one, the SOFAR utilizes the sparsity and can converge faster

than the PC estimator. Even when all the factors are strong, the SOFAR estimator is

likely to converge at least as fast as the PC estimator. We also propose the adaptive SOFAR

estimator, which yields factor selection consistency. This property asymptotically guarantees

the true support recovery of the sparse loadings. The assumptions we will make are in line

with the literature of the approximate factor models with serially correlated factors as well

as cross-sectionally and serially correlated errors. Thus the statistical theory substantially

departs from that in Uematsu et al. (2019), which considers multivariate linear regression

models with i.i.d. Gaussian errors.

Importantly, the factor selection consistency enables us to consistently estimate each

exponent αk of the divergence rates. Recently estimation of the exponents has drawn great

attention among empirical researchers since it is a useful measure of the strength of the cross-

sectional correlations. Assuming sparse loadings, Bailey et al. (2016, 2021) and Gao et al.

(2020) propose methods that make use of cross-sectional averages of data for estimation and

inference of the exponent, but they can only identify the largest divergence rate, α1. This

is essentially because they focus on estimation of the structural model (1). In contrast, our
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method can identify all the divergence rates because we impose the identification restrictions

and focus on the rotated model (3).5) We implement extensive finite sample experiments

in terms of determining the number of factors and estimation accuracy, and find that the

SOFAR estimate uniformly dominates the PC estimate over all the designs we consider.

We also conduct empirical analysis with a large data set of macroeconomic variables and

S&P 500 monthly returns. In the first analysis, we compare the out-of-sample performance

of forecasting bond yields using extracted factors from the macroeconomic variables via our

method and the PC method. The statistical evidence suggests that our SOFAR outperforms

the PC. In the second analysis, we compare the PC and the SOFAR loading estimates to

illustrate the usefulness of looking into sparse factor loadings (rather than the R2s discussed

above) for finding properties of the extracted factors. In the third analysis, applying our

method to the residuals of the regressions of the S&P 500 monthly excess returns on the

Fama and French (2015) five factors uncovers a hidden, very weak factor with the exponent

0.39. The factor affects only eight firm securities, all of which belong to the Technology

Hardware & Equipment sector. The fourth analysis shows that the first factor in S&P 500

monthly returns is consistently near strong, while the second to fourth exponents vary over

months between 0.90 and 0.65.

1.4 Related work

To our knowledge, this is the first study to propose a method that can estimate the WF

models, separately identifying rotations of B∗ and F∗, while taking the possibly different

rates (2) into account.6) There are some studies that consider WF models, but most of them

have focused only on the case in which all the divergence rates are identical. Such examples

are seen in De Mol et al. (2008) and Lam et al. (2011); the former consider the Bayesian

forecasts with the PC estimates for WF models, and the latter propose an efficient estimator

for WF models with a specific correlation structure. Another related recent work is Daniele

et al. (2020) who extend Bai and Li (2012) and Bai and Liao (2017) to sparse factor models.

Given initial estimators of B0 and f0t , some researchers consider identifying a specific

rotation which achieves a desired criterion. Perhaps the most well-known criterion is the

varimax rotation of Kaiser (1958), which finds the rotation that maximizes the sum of the
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variances of the squared loadings. Recently, Freyaldenhoven (2020) has proposed another

criterion to discover a rotation which maximizes the sparsity in the loadings. Our estimator

is complementary for them as it can add a potentially more efficient initial estimator.

We finally mention a large literature named sparse principal component analysis (sPCA),

which introduces sparsity in the loadings of principal components by minimizing a penalized-

regression-type criterion; see Zou et al. (2006), Shen and Huang (2008), among many others.

The sPCA is related to, but significantly different from, ours in the following two points.

First, it does not consider any factor model such as (3). Second, sPCA does not separately

identify factors and loadings when r > 1. For example, the sPCA of Zou et al. (2006) can be

interpreted as estimating Bft as a predictor of xt, allowing sparsity in B. However, they solve

the problem by imposing the r(r + 1)/2 restrictions, F′F/T = Ir, only. A similar comment

applies to Shen and Huang (2008). We emphasize that this paper considers estimation of

F0 and B0 in model (3) under relevant assumptions for economic and financial data, which

requires very different mathematical proofs from those for sPCA. See Uematsu et al. (2019)

for discussions on the relation between sPCA and SOFAR.

1.5 Organization and notational remarks

The rest of this paper is organized as follows. Section 2 formally defines the sWF mod-

els. Section 3 proposes the (adaptive) SOFAR estimator for the sWF models. Section 4

investigates the theoretical properties, including determination of the number of weak fac-

tors, the estimation error bounds of the SOFAR and PC estimators, and factor selection

consistency. Section 5 confirms the validity of our method via Monte Carlo experiments.

Section 6 gives four empirical illustrations. Section 7 concludes. All the proofs are collected

in Supplementary Material.

For any matrix M = (mti) ∈ R
T×N , we define the Frobenius norm, ℓ2-induced (spec-

tral) norm, entrywise ℓ1-norm, and entrywise ℓ∞-norm as ‖M‖F = (
∑

t,im
2
ti)

1/2, ‖M‖2 =

λ
1/2
1 (M′M), ‖M‖1 =

∑
t,i |mti|, and ‖M‖max = maxt,i |mti|, respectively. We denote by IN

and 0T×N the N ×N identity matrix and T ×N zero matrix, respectively. We use . (&) to

represent ≤ (≥) up to a positive constant factor. For any positive sequences an and bn, we

write an ≍ bn if an . bn and an & bn. For any positive values a and b, a ∨ b and a ∧ b stand
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for max(a, b) and min(a, b), respectively. The indicator function is denoted by 1{·}.

2 Sparsity-Induced Weak Factor Models

Consider the factor model in (3) more precisely. Stacking the vectors vertically as X =

(x1, . . . ,xT )
′, F0 = (f01 , . . . , f

0
T )

′, and E = (e1, . . . , eT )
′, we rewrite it as the matrix form

X = F0B0′ +E = C0 +E, (5)

where C0 is called the matrix of common components. By the construction, the model sat-

isfies the restrictions: EF0′F0/T = Ir and B0′B0 is a diagonal matrix. Then the covariance

matrix reduces to

Σx = B0B0′ +Σe.

As discussed in our Introduction, we consider sparsity-induced WF (sWF) models. Specif-

ically, we assume sparse factor loadings B0 such that the sparsity of kth column (i.e.,

the number of non-zero elements in b0
k ∈ R

N ) is Nk := Nαk for k ∈ {1, . . . , r}, where

1 ≥ α1 ≥ · · · ≥ αr > 0 and exponents αk is unknown. Note that Nr must diverge since

αr > 0 and N → ∞. We may relax the exact sparseness by introducing the approximate

sparse loadings; that is, B0 = (bik) such that
∑N

i=1 |bik| ≍ Nk. This does not necessar-

ily require exact zeros in B0. However, we choose not to pursue this direction to avoid a

complicated technical issue.

By the sparsity assumption and the diagonality of B0′B0, there exist some positive

constants d1, . . . , dr such that

B0′B0 = diag
(
d21N1, . . . , d

2
rNr

)

and d21N1 ≥ · · · ≥ d2rNr > 0. Then, under the assumption maxN λ1(Σe) < ∞, we have

λj(Σx)





≍ λj(B
0B0′) = λj(B

0′B0) = d2jNj for j ∈ {1, . . . , r},

= O(1) for j ∈ {r + 1, . . . , N}.
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Apparently, this specification fulfills the requirement of the WF structure (4).

We confirm the connection between C0 = F0B0′ and its singular value decomposition

(SVD) C0 = U0D0V0′. Here, U0 ∈ R
T×r and V0 ∈ R

N×r are respectively matrices of the

(scaled) left- and sparse right-singular vectors of C0 that satisfy restrictions U0′U0/T = Ir

and V0′V0 = N with N = diag(N1, . . . , Nr), and D0 = diag(d1, . . . , dr) is composed of

the (scaled) singular values. In view of the restrictions on model (5), it is reasonable to

set F0 = U0 and B0 = V0D0. This construction yields F0B0′ = C0 and satisfies the

restrictions.

3 Estimation

We propose our SOFAR estimator based on the SOFAR framework of Uematsu et al. (2019)

for the sWF models. In this section, we denote by r̂ an estimate of the number of factors.

The actual method of estimating r is introduced in Section 4.1.

3.1 SOFAR estimation

Once the sWF model is defined, it is natural to introduce a sparsity-inducing penalty term,

such as the ℓ1-norm of B, to obtain a sparse estimate of B0 in the same fashion as the Lasso

by Tibshirani (1996). The SOFAR estimator is defined as

(F̂, B̂) = argmin
(F,B)∈RT×r̂×RN×r̂

{
1

2

∥∥X− FB′
∥∥2
F
+ η‖B‖1

}
(6)

subject to F′F/T = Ir̂ and B′B diagonal,

where r̂ is the predetermined number of factors and η > 0 is a regularization coefficient. If

η = 0 in (6), then the resulting estimator reduces to the PC estimator (F̂PC, B̂PC).

It is well known that the PC estimator is easily obtained by the eigenvalue problem on

XX′; specifically, for given r̂, F̂PC is obtained as T 1/2 times the eigenvectors corresponding to

the top r̂ largest eigenvalues of XX′ and B̂PC = X′F̂PC/T . On the other hand, the SOFAR

estimator is no longer computed by the eigenvalue problem. Even some algorithms used for

the lasso, such as coordinate descent, cannot be directly applied to the problem due to the

10



restrictions, sparsity and orthogonality (diagonality). In order to overcome this difficulty,

we apply the SOFAR algorithm proposed by Uematsu et al. (2019) to solve (6). Roughly

speaking, the algorithm provides estimates for the SVD of a coefficient matrix in a multiple

linear regression, while simultaneously exhibiting both low-rankness in the singular values

matrix and sparsity in the singular vectors matrices. Recall the connection between (F,B)

and (U,D,V), which has been defined by the SVD of C, in Section 2. Then for given r̂, the

SOFAR algorithm can solve (6) to get (F̂, B̂) = (Û, V̂D̂).

The algorithm to compute the SOFAR estimate is based on the augmented Lagrangian

method coupled with the block coordinate descent, and is numerically stable. For detailed

information on the algorithm, see Uematsu et al. (2019) and a brief review in Section D of

Supplementary Material. The associated R package (rrpack) is available at https://cran.

r-project.org/package=rrpack.

3.2 Adaptive SOFAR estimation

It is interesting to observe which factors truly contribute to xti. Expecting the true support

recovery ofB0, we introduce the adaptive SOFAR based on a similar principle to the adaptive

lasso proposed by Zou (2006). Let B̂ini = (b̂iniij ) denote the first-stage initial estimator, such as

the PC estimator. Then the (i, j)th element of the weighting matrix W = (wij) is defined as

wij = 1/|b̂iniij |. The adaptive SOFAR estimator is defined as a minimizer of the second-stage

weighted SOFAR problem:

(F̂ada, B̂ada) = argmin
(F,B)∈RT×r̂×RN×r̂

{
1

2

∥∥X− FB′
∥∥2
F
+ η‖W ◦B‖1

}
(7)

subject to F′F/T = Ir̂ and B′B diagonal,

where A ◦B represents the Hadamard product of two matrices A and B of the same size.

Estimating exponents αk, k = 1, ..., r, is of great interest to empirical research since, as

discussed in Bailey et al. (2016, 2021), they are interpreted as the strength of the influence

of the common factors and of the cross-sectional correlations. Recall that the kth column

of B0, b0
k, has Nk = Nαk non-zero entries. Similarly, let N̂k denote the number of non-zero

elements in b̂ada

k . As the lasso in a linear regression, we may expect that the adaptive SOFAR

11



estimate B̂ada can successfully recover the true sparsity pattern of B0. If this is true, the

estimators of exponents αk can naturally be obtained as α̂k = log N̂k/ logN by a simple

algebraic formulation. In Section 4.3, we will prove this estimator is consistent for αk.

4 Theory

We first reveal the asymptotic behavior of the eigenvalues of XX′ for the sWF model in

Section 4.1. This helps us to determine the number of factors. Next we derive the estimation

error bounds for the SOFAR and PC estimators in Section 4.2. Furthermore, the asymptotic

property of the adaptive SOFAR estimator is derived in Section 4.3.

For the sake of convenience, define n = N ∧ T . Then we have N = N(n) → ∞ and

T = T (n) → ∞ as n → ∞. Furthermore, following Vershynin (2018), we introduce a sub-

Gaussian random variable: a random variable Y ∈ R is said to be sub-Gaussian and denoted

as Y ∼ subG if there exists some constant c > 0 such that P(|Y | ≥ y) ≤ 2 exp(−y2/c) for all

y ≥ 0. Throughout this paper, including all the proofs in Supplementary Material, ν > 0 is

a fixed large constant, and n is sufficiently large.

Write T = N τ for some constant τ > 0 to understand the size of T relative to N . Recall

that Nk = Nαk for some αk ∈ (0, 1].

Assumption 1 (Latent factors). The factor matrix F0 = (f01 , . . . , f
0
T )

′ is specified as the

vector linear process f0t =
∑∞

ℓ=0Ψℓζt−ℓ, where ζt = (ζt1, . . . , ζtr)
′ with {ζtk}t,k are i.i.d.

subG that has E ζ2tk = 1 and
∑∞

ℓ=0ΨℓΨ
′
ℓ = Ir. Moreover, there exist constants Cf > 0 and

ℓf ∈ N such that ‖Ψℓ‖2 ≤ Cf ℓ
−(ν+2) for all ℓ ≥ ℓf .

Assumption 2 (Factor loadings). Each column b0
k of B0 has the sparsity Nk = Nαk with

0 < αr ≤ · · · ≤ α1 ≤ 1 and B0′B0 = diag{d21N1, . . . , d
2
rNr} with 0 < drN

1/2
r ≤ · · · ≤ d1N

1/2
1 .

For k such that αk = αk−1, it holds that d
2
k−1 − d2k ≥ κ1/2d2k−1 for some constant κ > 0.

Assumption 3 (Idiosyncratic errors). The error matrix E = (e1, . . . , eT )
′ is independent of

F0 and is specified as the vector linear process et =
∑∞

ℓ=0Φℓεt−ℓ, where εt = (εt1, . . . , εtN )′

with {εti}t,i are i.i.d. subG and Φ0 is a nonsingular, lower triangular matrix. Moreover, there

exist constants Ce > 0 and ℓe ∈ N such that ‖Φℓ‖2 ≤ Ceℓ
−(ν+2) for all ℓ ≥ ℓe.
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Assumptions 1 and 3 specify the stochastic processes {f0t } and {et}, respectively, to be

the stationary vector linear processes that satisfy the summability condition
∑∞

ℓ=0(‖Ψℓ‖2 +

‖Φℓ‖2) < ∞. The decaying rates are at most polynomial, which includes a wide range of

multivariate weakly dependent processes (Chen and Wu, 2018). Under this condition we can

achieve the concentration inequalities in Lemma 1 in Supplementary Material, which play a

crucial role in deriving the error bounds. Assumption 2 is key to our analysis and provides

the sWF models. The sparsity in B0 makes the divergence rate of λk(B
0′B0) possibly slower

than N for each k = 1, . . . , r.

4.1 Determining the number of factors

Before investigating the properties of the estimator, we first observe the asymptotic behavior

of the eigenvalues of XX′ under the sWF model. This result yields important information

for determining the number of weak factors, r.

Theorem 1. Suppose that Assumptions 1–3 and condition

α1 < 2αr (8)

hold. Then for any finite integer kmax > r, the kth largest eigenvalue of (N ∨ T )−1XX′,

denoted by λk, satisfies

λk





&
NkT

N ∨ T
for k ∈ {1, . . . , r},

= O(1) for k ∈ {r + 1, . . . , kmax},

with probability at least 1−O((N∨T )−ν). In particular, λr diverges if the following condition

is true:

αr + τ > 1. (9)

Theorem 1 suggests the means of determining the number of weak factors. Condition (8)

is needed for a technical reason. Theorem 1 presents a case in which the method of Onatski
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(2010) works. Namely, for δ > 0, define

r̂(δ) = max {k = 1, . . . , kmax − 1 : λk − λk+1 ≥ δ} .

Then, the following important corollary is obtained.

Corollary 1. Suppose that Assumptions 1–3 hold. If conditions (8) and (9) are true, then

for any fixed positive constant δ, we have r̂(δ) → r with probability at least 1−O((N ∨T )−ν).

In practice, δ should appropriately be predetermined. In fact, Onatski (2010) suggested

the edge distribution (ED) method based on a calibration; see that paper for full details. If δ

is appropriately chosen, r̂(δ) will successfully detect the true number of factors r even when

the biggest gap is observed not between λr and λr+1 but among λ1, . . . , λr. Meanwhile, the

method of Ahn and Horenstein (2013), which was designed for SF models, is likely to fail

in detecting r in the WF models because it defines r̂ as the point at which the largest gap

is observed among λ1, . . . , λkmax ; this is not always the case for the WF models. In Section

5, we will check the validity of Onatski’s ED estimator in our model through numerical

simulations.

4.2 Estimation error bound

Here we introduce the condition that restricts the class of sWF models:

α1 + (1 ∨ τ)/2 < 3αr/2 + τ/2. (10)

This condition is used to derive a nontrivial error bound in the following theorems. With-

out this condition, it is not guaranteed that the error bound is positive and meaningful.

To understand the role of this condition more precisely, see Section C and Remark 2 in

Supplementary Material.

It is easy to observe that condition (10) implies both conditions (8) and (9). Thus we

suppose r is known in view of Corollary 1 provided that condition (10) is true. Define

Kn =
N1 log

1/2(N ∨ T )

Nr(Nr ∧ T )
, γn =

N1/2(Nr ∧ T )1/2

N
1/2
1 T 1/2

.
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Theorem 2 (SOFAR). Set ηn ≍ T 1/2 log1/2(N ∨ T ) in optimization (6). If Assumptions

1–3 and condition (10) hold, then the following error bounds hold with probability at least

1−O((N ∨ T )−ν):

T−1/2‖F̂− F0‖F . N
1/2
1 Kn, N

−1/2
1 ‖B̂−B0‖F . T 1/2Kn.

Theorem 3 (PC). If Assumptions 1–3 and condition (10) hold, then the following error

bounds hold with probability at least 1−O((N ∨ T )−ν):

T−1/2‖F̂PC − F0‖F . N
1/2
1 Kn(1 + γn), N

−1/2
1 ‖B̂PC −B0‖F . T 1/2Kn(1 + γn).

All the bounds share Kn while γn only appears in the PC bounds. First, when the

model contains strong factors only (i.e., Nr = N), the convergence rates in Theorems 2

and 3 reduce to that obtained by Bai and Ng (2013) up to the logarithmic factor. In

fact, Kn = (N ∨ T )−1 log1/2(N ∨ T ) and γn ≤ 1 in this case. The extra (but low) cost

log1/2(N ∨ T ) is incurred in using the union bound under the subG tail assumptions, which

leads to an effective treatment of the sparsity; see the proof of Theorem 2 with Lemma 1 in

Supplementary Material.

We also observe that the convergence rates of the SOFAR and the PC estimators become

identical if γn = O(1), which occurs when N1 = N , or T is larger than N , for instance. On

the other hand, when the model has weak factors with N1 < N and relatively smaller T ,

the SOFAR can take advantage of utilizing the sparsity and achieve a sharper upper bound.

Therefore, the SOFAR estimator is likely to converge at least as fast as the PC estimator

even when all the factors are strong. Of course a precise discussion requires a lower bound,

but this is beyond the scope of this paper and left for a future study.

Remark 1. We are interested in the class of sWF models that can consistently be estimated

by the SOFAR and PC, respectively. As for the SOFAR, the lower bound of αr is 1/3, which

is achievable when α1 = αr and τ = 2/3. Likewise, the upper bound of the difference α1−αr

is found to be 1/4, which is attainable when τ ∈ (3/4, 1] and α1 = 1. Contrarily, the PC

restricts αr to be strictly larger than 1/2, though the upper bound of the difference is the

same.
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In sum, the SOFAR can consistently estimate the sWF models with exponents αk smaller

than 1/2. The SOFAR bound is sharp enough to allow weaker factors compared with the

PC, since the SOFAR can manage the sparsity well thanks to the ℓ1-regularization. The

finite sample evidence in Section 5 shows that the SOFAR estimator seems quite robust to

the violation of the restrictions on the region of (τ, α1, αr) discussed in Remark 1.

4.3 Factor selection consistency

We prove the factor selection consistency, which guarantees that the adaptive SOFAR re-

covers the true sparsity pattern of the loadings and correctly selects the relevant factors. As

a corollary, we also establish the consistency of the estimated exponents, α̂k, k = 1, ..., r.

Before stating the theorem, define S = supp(B0) ⊂ {1, . . . , N} × {1, . . . , r}, the index set of

non-zero signals in B0. For any matrix A = (aik) ∈ R
N×r, define AS = (aik1{(i, k) ∈ S}).

Write b0n = min(i,k)∈S |b0ik|.

Introduce additional conditions for the factor selection consistency:

α1 < τ ∧ (4αr/3), (11)

3α1/2 + τ − 2αr < β ≤ α1 + 3τ/2− 2αr, (12)

where β is such that ηn/b
0
n ≍ Nβ log1/2(N ∨ T ).

Condition (11) consists of the two inequalities, α1 < τ and α1 < 4αr/3, which are

technically important in the proof. The first condition requires sufficiently large T relative

to the largest signal strength N1. The second condition further restricts the model; it

implies condition (10) if τ ≥ 1. Condition (12) determines the relation between ηn and b0n.

The interval is not empty when α1 < τ . If b0n is assumed to be a (small) fixed constant, (12)

becomes a condition for ηn only. Note that even decaying b0n is allowed by an appropriate

choice of ηn.

Theorem 4 (Adaptive SOFAR). If Assumptions 1–3 and conditions (10)–(12) hold, then

for the weighting matrix W constructed by any estimator B̂ini such that

P

(
‖B̂ini −B0‖max . b0n

)
→ 1, (13)
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the adaptive SOFAR estimator satisfies

T−1/2
∥∥∥F̂ada − F0

∥∥∥
F
= Op

(
N

1/2
1 Kn

)
, N

−1/2
1

∥∥∥B̂ada

S −B0
S

∥∥∥
F
= Op

(
T 1/2Kn

)
, (14)

P

(
supp(B̂ada) = S

)
→ 1. (15)

The rates of convergence (14) are identical to those in Theorem 2. Thus the most

interesting property of the adaptive SOFAR is the factor selection consistency given by (15).

If the PC estimator is used for the initial estimator, b0n & N
1/2
1 Kn(1 + γn) log

1/2(N ∨ T )

is allowed in (13) (see Lemma 6 in Supplementary Material). This lower bound can shrink

to zero in many cases. Finally, we prove that the estimated exponent α̂k = log N̂k/ logN ,

defined in Section 3.2, is consistent for αk because of (15).

Corollary 2. If the model selection consistency in (15) holds, then we have

P (α̂k = αk for all k = 1, . . . , r) → 1.

It is well-known that the adaptive Lasso can establish the asymptotic normality for the

non-zero subvector of the estimator. Likewise, the asymptotic normality of the adaptive

SOFAR estimator might be proved. However, we do not consider it, due to the criticism

raised by Leeb and Pötscher (e.g., Leeb and Pötscher (2008) and references therein). Instead,

it is interesting to investigate inferential theory based on “debiasing” the SOFAR estimator

in a manner similar to Javanmard and Montanari (2014). This direction is explored in

Uematsu and Yamagata (2021).

5 Monte Carlo Experiments

In this section, we conduct thee Monte Carlo experiments. Indexes i, t, and k run over

1, . . . , N , 1, . . . , T , and 1, . . . , r, respectively, unless otherwise noted. We consider the Data

Generating Process (DGP), xti =
∑r

k=1 b
0
ikf

0
tk +

√
θeti. The factor loadings b0ik and factors

f0
tk are formed such that N−1

∑N
i=1 b

0
ikb

0
iℓ = 1{k = ℓ} and T−1

∑T
t=1 f

0
tkf

0
tℓ = 1{k = ℓ},

by applying Gram–Schmidt orthonormalization to b∗ik and f∗
tk, respectively, where b∗ik ∼

i.i.d.N(0, 1) for i = 1, . . . , Nk and b∗ik = 0 for i = Nk+1, . . . , N , and f∗
tk = ρfkf

∗
t−1,k+vtk with
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vkt ∼ i.i.d.N(0, 1 − ρ2fk) and f∗
0k ∼ i.i.d.N(0, 1). The idiosyncratic errors eti are generated

by eti = ρeet−1,i + βεt,i−1 + βεt,i+1 + εti, where εti ∼ i.i.d.N(0, σ2
ε,ti) with σ2

ε,ti being set such

that Var(eti) = 1. The DGP is in line with the existing representative literature, such as

Bai and Ng (2002), Onatski (2010), and Ahn and Horenstein (2013), among many others,

but the main difference is that the absolute sums of the factor loadings over i are allowed to

diverge proportionally to Nk = Nαk .

As the benchmark DGP, we set r = 2, ρfk = ρe = 0.5 for all k, β = 0.2, and θ = 1.

We focus on the performance of the estimators for different values of exponents (α1, α2).

In particular, we consider the combinations (0.9, 0.9), (0.8, 0.5)7) and (0.5, 0.4). All the

experimental results are based on 1,000 replications.

5.1 Determining the number of weak factors

Based on Corollary 1 and the discussion in Section 4.1, we confirm the validity of r̂(δ). As

already explained, the estimator is the maximum value of k with which λk−λk+1 exceeds the

threshold δ. Following the ED algorithm of Onatski (2010), we compute δ̂ by calibration.

The other competitor statistics include the ER (eigenvalue ratio) and GR (growth ratio)

estimators of Ahn and Horenstein (2013). We also consider the information criteria IC3 and

BIC3 proposed by Bai and Ng (2002). Note that these competitors are designed for SF

models. Especially, the ER and GR just identify the maximum gap between the ordered

eigenvalues. Hence, when the gap, λk − λk+1, is relatively large, these statistics will pick up

k as the estimate of r even when k < r.

Table 1 reports the average of the estimated number of factors over the replications by

the ED, GR, and BIC3.
8) We set the maximum number of factors, kmax, as five. As can

be seen in Table 1, when α1 and α2 are both close to unity, all the methods perform well;

see the case of exponents (α1, α2) = (0.9, 0.9). However, the performance of GR and BIC3

deteriorates when the gap of the values between α1 and α2 widens, or when both values

α1 and α2 are further away from unity; e.g., see the cases when (α1, α2) = (0.8, 0.5) and

(α1, α2) = (0.5, 0.4). In contrast, ED performs very well, and its estimation quality is very

similar to that when both exponents are close to unity. Even under the most challenging

set up (α1, α2) = (0.5, 0.4), ED consistently estimates the number of factors for sufficiently
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large T and N .

We conclude that the finite sample evidence suggests that the ED method of Onatski

(2010) provides a reliable estimation of the number of factors in sWF models, while the

methods of GR and BIC3 may not be as reliable as the ED in general.

Table 1: Average of the chosen number of factors for sWF models by ED, GR, and BIC3

ED GR BIC3

T,N 100 200 500 1000 100 200 500 1000 100 200 500 1000
(α1, α2) = (0.9, 0.9)
100 2.05 2.04 2.02 2.01 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
200 2.04 2.04 2.03 2.02 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
500 2.04 2.04 2.03 2.02 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
1000 2.02 2.04 2.03 2.02 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
(α1, α2) = (0.8, 0.5)
100 1.96 1.96 1.95 1.90 1.30 1.18 1.04 1.00 1.30 1.17 1.02 1.00
200 2.02 2.02 2.03 2.02 1.40 1.30 1.09 1.01 1.39 1.36 1.12 1.01
500 2.03 2.03 2.02 2.02 1.61 1.45 1.24 1.10 1.41 1.51 1.53 1.42
1000 2.02 2.03 2.02 2.02 1.52 1.45 1.24 1.10 1.43 1.51 1.53 1.42
(α1, α2) = (0.5, 0.4)
100 1.54 1.52 1.36 1.14 1.50 1.47 1.39 1.33 1.03 1.00 1.00 1.00
200 1.83 1.88 1.89 1.86 1.52 1.53 1.50 1.39 1.03 1.02 1.00 1.00
500 2.00 2.00 2.01 2.02 1.67 1.64 1.65 1.59 1.03 1.05 1.02 1.01
1000 1.92 2.00 2.01 2.02 1.60 1.64 1.65 1.59 1.04 1.05 1.02 1.01

5.2 Finite sample properties of the SOFAR estimator

Here we investigate the finite sample properties of our SOFAR estimator in comparison

with the PC estimator. Here we treat the number of factors, r, as given. We report the

results of the adaptive SOFAR estimator with regularization coefficient η determined by

BIC, which we recommend to use.9) For performance comparison purposes, we consider the

ℓ2-norm losses based on the scaled estimators: L(F̂) = ‖
∑r

k=1 T
−1/2[abs(f̂k) − abs(f0k )]‖2,

L(B̂) = ‖
∑r

k=1N
−1/2
k [abs(b̂k) − abs(b0

k)]‖2, and L(Ĉ) = ‖
∑r

k=1 T
−1/2N

−1/2
k [Ĉk −C0

k]‖F,

where abs(a) takes elementwise absolute value of a real vector a. Due to the scaling, the

performance of the estimators can be comparable across different combinations of the values

of N , T , and αk’s.

Table 2 reports the averages and standard deviations (s.d.) of α̂1 and α̂2 based on Corol-

lary 2, and the average of the norm losses of the scaled estimated factors, factor loadings, and

common components by the SOFAR (SO in the tables) and PC estimators over the replica-

tions. First, focus on (α̂1, α̂2). In a nutshell, they are sufficiently accurate but tend to slightly
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underestimate when αk is closer to one, and overestimate when it is around 0.5. The precision

improves as T and N increase. For example, see the results when (α1, α2) = (0.8, 0.5). Now

we turn to the performance of the SOFAR and PC estimates. In terms of the norm loss given

above, the SOFAR uniformly beats the PC across all the designs. Perhaps surprisingly, the

SOFAR estimate of the factors is much more accurate than the PC even in the experimental

design most favorable to the PC, in which (α1, α2) = (0.9, 0.9). Moreover, as expected the

accuracy of the SOFAR estimates of factor loadings is uniformly superior to that of the PC

estimates. This gap in accuracy becomes wider when the exponents are further from unity.

Consequently, the accuracy of the SOFAR estimator of the common component is uniformly

superior to that of the PC estimator.

Table 3 reports the same information as Table 2, but for more challenging models

(α1, α2) = (0.5, 0.4). Remarkably, even when one of the exponents is 0.4, our SOFAR

method provides sufficiently accurate estimates of α1 and α2 as well as estimates of the

factors, factor loadings, and common components that are far superior to the PC method.

To summarize, the SOFAR estimator performs very well when the exponents are close

to unity, thus the signal of common components is high, even with a smaller sample size.

When the signal of common components is weak, namely when the value(s) of exponent(s)

are around 0.5 or below, the SOFAR estimator is sufficiently precise in terms of norm loss,

but requires a larger sample size. Significantly, even when the gap between α1 and α2 is

larger than that condition (10) implies, the SOFAR estimator is sufficiently accurate, and its

accuracy improves as the sample size rises. Conversely, the PC estimator fails to improve the

performance when N rises, due to its inability to identify zero elements in sparse loadings,

and consequently the PC estimator is uniformly superseded by the SOFAR estimator.

5.3 A hierarchical factor structure

Estimation of a hierarchical factor structure or a multi-level factor structure has recently

been gaining serious interest in the literature. Ando and Bai (2017) and Choi et al. (2018)

consider two types of factors, called global and local factors. The global factors have loadings

with non-zero values for all the cross-section units, whereas the local factors have non-zero

loadings among the cross-section units of some specific groups. They propose sequential
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Table 2: Performance of the SOFAR (SO) and PC estimators for approximate factor models with two factor components with (α1, α2) =
(0.9, 0.9), (0.8, 0.5)

T=100 T=200 T=500 T=1000

Design (α1, α2) (0.9, 0.9) (0.8, 0.5) (0.9, 0.9) (0.8, 0.5) (0.9, 0.9) (0.8, 0.5) (0.9, 0.9) (0.8, 0.5)
N=100 mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.

α̂1 0.86 0.02 0.75 0.03 0.87 0.01 0.76 0.02 0.88 0.01 0.78 0.02 0.89 0.01 0.78 0.01
α̂2 0.85 0.02 0.52 0.07 0.86 0.02 0.52 0.06 0.88 0.01 0.51 0.05 0.88 0.01 0.51 0.04

SO PC SO PC SO PC SO PC SO PC SO PC SO PC SO PC

L2(F̂)×100 6.2 11.6 13.8 21.8 5.1 7.8 13.1 17.0 4.2 5.3 12.8 14.4 3.9 4.5 12.3 13.1

L2(B̂)×100 9.0 9.9 10.4 38.2 4.7 5.5 4.8 19.2 2.2 2.6 2.1 8.2 1.4 1.6 1.2 4.4

L2(Ĉ)×100 8.2 14.5 20.9 50.6 5.6 8.7 16.5 31.2 4.1 5.5 14.4 20.5 3.6 4.3 13.6 16.7
N=200 mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.

α̂1 0.86 0.01 0.75 0.02 0.87 0.01 0.76 0.01 0.88 0.01 0.78 0.01 0.89 0.01 0.78 0.01
α̂2 0.86 0.01 0.52 0.05 0.87 0.01 0.51 0.04 0.88 0.01 0.50 0.03 0.89 0.01 0.50 0.03

SO PC SO PC SO PC SO PC SO PC SO PC SO PC SO PC

L2(F̂)×100 4.6 10.1 10.4 19.5 3.5 6.4 9.2 13.6 2.8 4.1 8.8 10.5 2.5 3.1 8.7 9.5

L2(B̂)×100 9.1 10.4 10.0 50.0 4.7 5.7 4.5 24.2 2.2 2.8 1.8 9.7 1.4 1.6 1.0 5.0

L2(Ĉ)×100 6.8 13.1 16.4 56.8 4.1 7.5 12.1 31.6 2.6 4.0 10.1 17.8 2.1 2.9 9.5 13.3
N=500 mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.

α̂1 0.87 0.01 0.75 0.01 0.88 0.01 0.77 0.01 0.88 0.00 0.78 0.01 0.89 0.00 0.78 0.01
α̂2 0.86 0.01 0.52 0.04 0.87 0.01 0.51 0.03 0.88 0.00 0.51 0.02 0.89 0.00 0.50 0.02

SO PC SO PC SO PC SO PC SO PC SO PC SO PC SO PC

L2(F̂)×100 3.5 9.3 7.0 18.8 2.3 5.6 6.0 11.2 1.8 3.2 5.5 7.3 1.5 2.2 5.3 6.2

L2(B̂)×100 9.4 11.2 10.8 74.8 4.5 6.0 4.6 35.0 2.2 3.0 1.6 13.5 1.3 1.7 0.8 6.7

L2(Ĉ)×100 6.1 12.7 13.4 76.0 3.3 6.9 8.9 37.6 1.7 3.2 6.5 17.4 1.2 2.0 5.9 11.3
N=1000 mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.

α̂1 0.87 0.01 0.76 0.01 0.88 0.00 0.77 0.01 0.89 0.00 0.78 0.00 0.89 0.00 0.79 0.00
α̂2 0.86 0.01 0.53 0.03 0.87 0.00 0.51 0.03 0.88 0.00 0.51 0.02 0.89 0.00 0.51 0.02

SO PC SO PC SO PC SO PC SO PC SO PC SO PC SO PC

L2(F̂)×100 2.8 9.0 5.2 20.1 1.9 5.4 4.3 10.6 1.4 2.9 3.8 5.7 1.2 2.0 3.6 4.5

L2(B̂)×100 9.4 12.0 11.5 101.8 4.7 6.5 4.8 46.8 2.1 3.1 1.7 17.5 1.3 1.9 0.8 8.6

L2(Ĉ)×100 6.0 12.7 12.3 99.6 3.0 6.8 7.2 46.3 1.4 2.9 4.8 19.0 0.9 1.7 4.1 11.0
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Table 3: Performance of the SOFAR (SO) and PC estimators for approximate factor models
with two factor components with (α1, α2) = (0.5, 0.4)

T=500 T=1000

Design (α1, α2) (0.5, 0.4) (0.5, 0.4)
N=500 mean s.d. mean s.d.

α̂1 0.47 0.03 0.47 0.03
α̂2 0.41 0.04 0.40 0.04

SO PC SO PC

L2(F̂)×100 13.4 17.9 13.1 15.2

L2(B̂)×100 4.6 48.3 2.9 24.4

L2(Ĉ)×100 17.3 48.6 16.0 31.1

T=500 T=1000

Design (α1, α2) (0.5, 0.4) (0.5, 0.4)
N=1000 mean s.d. mean s.d.

α̂1 0.48 0.02 0.48 0.02
α̂2 0.40 0.03 0.40 0.03

SO PC SO PC

L2(F̂)×100 9.7 15.2 9.5 12.0

L2(B̂)×100 3.7 65.6 2.3 32.2

L2(Ĉ)×100 13.0 57.4 12.0 32.9

procedures to identify the global and local factors separately.10) In fact, the sWF model

nests the hierarchical factor structure, and hence our SOFAR method can be readily applied.

In contrast to the existing approaches, given the total number of global and local factors, our

approach permits us to consistently estimate the hierarchical model in one go. Furthermore,

our method can identify “near global” (or “near local”) factors as the strongest, which

influence many but not all the variables; see Section 6.2 for the evidence of such factors. The

aforementioned existing methods may not distinguish between the near global factors and

the global (or strictly strong) factors.

As an illustration, we generate the data of a four-factor model as above. The first factor

is global, i.e., bi1 ∼ i.i.d.N(0, 1) for i = 1, . . . , N . The other three factors are local, i.e., bi2

is drawn from N(0, 1) for the first third, bi3 for the second third, and bi4 for the last third

of cross section units while the rest are zero. We obtained simulated data with N = 450

and T = 120, and estimated the model given r = 4 by the PC and SOFAR. To visualize the

quality of the factor loadings, we provide heat maps of three N×N matrices,
∑4

k=1 ωkb
0
kb

0
k
′
,

∑4
k=1 ωkb̂kb̂

′
k and

∑4
k=1 ωkb̂PC,kb̂

′
PC,k, which are reported in Figures 3-5, respectively. To

clarify the difference between the global factor loadings and local ones, which overlap in the

heat maps, we use the weight ω1 = 1/8 and ω2 = ω3 = ω4 = 1. As is clear, the SOFAR

estimator successfully recovers the hierarchical pattern, while the PC estimator fails.

6 Empirical Applications

Here we provide four empirical applications. Section 6.1 compares the out-of-sample forecast

performance of the predictive regressions with the SOFAR and the PC factors. Section 6.2
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Figure 3: True factor loadings Figure 4: SOFAR estimate Figure 5: PC estimate

investigates the properties of the extracted SOFAR factors in Section 6.1 by looking into

the sparsity pattern and the signs of the loadings. In section 6.3 we search the residuals

of the Fama and French (2015) five-factor regressions for omitted weak factors. Section 6.4

considers estimation of the exponents using a large number of excess stock returns.

6.1 Forecasting bond yields

We consider out-of-sample forecasting of bond yields using extracted factors via our SOFAR

and the PC, from a large number of macroeconomic variables in line with Ludvigson and

Ng (2009). We use the same data set provided by Sydney Ludvigson’s web page. The data

consists of the continuously compounded (log) annual excess returns on an n-year discount

bond at month t, y
(n)
t , and a balanced panel of i = 1, . . . , 131 monthly macroeconomic series

at month t, xti, spanning the period from January 1964 to December 2003. We consider the

maturities n = 2, 3, 4, 5. For more details, see Section 3 of Ludvigson and Ng (2009).

We conduct one-year-ahead out of sample forecast comparisons. In order to minimize

possible adverse effects of structural breaks, we set the rolling window at 252 months. The

forecast comparison procedure is explained below. For the Tth month rolling window and

maturity n, we extract factors {f̂tk}r̂Tk=1 from standardized xti via our SOFAR and the PC,

i = 1, . . . , N = 131, t = T, . . . , TT − 12, where t denotes the months from January 1964

to December 2003, T and TT denote the start and end months of the Tth rolling window,

respectively. Observe that r is estimated for each window according to Section 4.1, where the
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estimates vary from one to six over the forecast windows. Then, run the predictive regression

y
(n)
t+12 = β̃

(n)
0 +

r̂T∑

k=1

β̃
(n)
k f̂tk + ε̃

(n)
t , t = T, . . . ,TT − 12, n = 2, 3, 4, 5

and obtain the forecast error ε̂
(n)
TT+12|TT

= y
(n)
TT+12−ŷ

(n)
TT+12|TT

, with ŷ
(n)
TT+12|TT

= β̃
(n)
0 +

∑r̂T
k=1 β̃

(n)
k f̂TTk.

This produces H = 217 forecast errors.

In Table 4, we report the mean absolute deviation of the forecast errors, MAE(n) =

H−1
∑H

s=1

∣∣∣ǫ̂(n)s|s−12

∣∣∣ and the mean squared forecast errors,MSE(n) = H−1
∑H

s=1(ǫ̂
(n)
s|s−12)

2, n =

2, 3, 4, 5, for our estimation method (WF-SF) and principal component method (PC), and

Diebold-Mariano forecasting performance test statistics with associated p-values, based on

the MAEs and the MSEs. As can be seen, the MAEs and the MSEs of WF-SF are smaller

than those of the PC for all the maturities. For all the maturities, the Diebold-Mariano

forecasting performance test strongly rejects the null of the same forecasting performance,

in favor of the alternative that our method outperforms the PC method. The average values

of alphas over the windows are {α1, α2, α3, α4, α5, α6} = {0.92, 0.82, 0.87, 0.78, 0.77, 0.74},

which suggests that even the (first) strongest factor component is not a strictly strong fac-

tor. As is evidenced in the previous section, the accuracy of our estimator is much higher

than the PC estimator under such situations, and the better forecasting performance may

not be too surprising in this empirical exercise.

Table 4: Mean absolute forecast errors, mean squared forecast errors, and Diebold-Mariano
(DM) forecast comparison test results

Mean Absolute Forecast Errors Mean Squared Forecast Errors
SO PC DM statistic [p-value] SO PC DM statistic [p-value]

y
(2)
t+12 1.16 1.19 -3.58 [0.000] 2.31 2.42 -4.14 [0.000]

y
(3)
t+12 2.30 2.35 -3.54 [0.000] 9.16 9.53 -4.13 [0.000]

y
(4)
t+12 3.35 3.43 -3.73 [0.000] 19.57 20.34 -4.33 [0.000]

y
(5)
t+12 4.20 4.28 -3.20 [0.001] 30.54 31.66 -4.08 [0.000]

Notes: For the computation of the long-run variance for the Diebold-Mariano test statistic,

the window is chosen by Schwert criterion with the maximum lag of 14.
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6.2 Interpreting the factors by analyzing the sparse loadings

Since no statistical methods will recover the structural or true factors F∗ and factor loadings

B∗ in model (1), it is irrelevant to discuss their detailed properties based on the consistent

estimates of their rotations, F0 and B0 in sWF model (3). Nonetheless, it is certainly

useful to look into the properties of (F0,B0) or its consistent estimate (F̂, B̂). As discussed

in Ludvigson and Ng (2007, 2009), when the loadings are not sparse, all the variables xti

are subject to the factors, and any economic labeling to a factor, such as “output” and/or

“unemployment,” can be irrelevant. For this reason, to illustrate the characterization of the

factors, empirical studies based on the PC estimate typically report the R2 statistic of the

time-series regression of (xti)t on each factor (f̂PC

tk )t for k for each i; see figure 1 of Stock and

Watson (2002b) and figures 1-5 in Ludvigson and Ng (2009).

Importantly, our SOFAR estimate of the sparse loading matrix, B0, can provide more

information on the individual factors than the PC estimates, because b0ik = 0 literally means

f0
tk has no influence upon xti. Therefore, together with the orthogonality of the factors, the

information about the association of a factor to the variables and its strength is contained

in the corresponding loadings. In addition, the sign of a non-zero loading reveals whether

the associated variable responds in the same or opposite direction to the other variables, in

terms of the corresponding factor.

As an illustration, we investigate a set of extracted factors from the 131 macroeconomic

variables used in Section 6.1 in more detail. In particular, we estimate the model using the

variables between January 1982 and December 2001. Two factors (i.e., r̂ = 2) are extracted

by the PC and SOFAR methods (adaptive, BIC). The exponents are {α̂1, α̂2} = {0.91, 0.71}.

Figures 6 and 8 display the R2s of the regressions of the 131 individual time series on

the first PC factor and the first SOFAR factor over the period, respectively. These R2s

are plotted as bar charts, and the variables are ordered as described in the aforementioned

data file. As can be seen from the figures, the patterns of R2s of the PC and SOFAR

factors are very similar. The variables 70–83 and 101–131, except 78 and 113, have little

association in terms of R2. The striking difference in the PC and SOFAR results is found

in their loading estimates, which are reported in Figures 7 and 9, respectively. The SOFAR

loadings associated with the near-zero R2s are (rightly) zeros, whereas the magnitude of the
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corresponding PC loadings are not as small as R2s. These contrasts in the PC and SOFAR

estimation results are more pronounced for the second factor. The PC results are as reported

in Figures 1 and 2 in Section 1.2, and the SOFAR results are reported in Figures 10 and 11.

In summary, the SOFAR loadings contain sharper information on which variables are

associated with which factor than is the case with the PC. Among the variables with non-

zero loadings, the value of the SOFAR loadings can provide information on the strength and

direction of the influence of the factor, relative to the other variables.

With this encouraging result, we investigate the properties of each empirical factor, mak-

ing use of the information contained in the SOFAR loadings. Based on the description of

each of the 131 variables in the aforementioned data file, we categorize the 131 variables

as follows: 1-24 Output ; 25-32 Unemployment ; 33-49 Employment ; 50-59 Housing ; 60-69

Orders; 70-76 Money Supply ; 77-80 Credits; 81-84 Stock Prices ; 85-93 Interest Rate; 94-101

Spreads; 102-106 Exchange Rates; 107-127 Prices; 128-130 Wages; 131 Consumer Expecta-

tion. From Figure 9 it is easily seen that the first SOFAR factor is almost exclusively loaded

on Output, Unemployment, Employment, Housing, Orders, Interest Rates, and Spreads, with

a few exceptions only. Observe that the signs of the loadings on the unemployment variables

are different from those on the employment variables, as expected. Figure 11 reveals that the

second SOFAR factor is exclusively loaded on Money Supply, Exchange Rates, and Prices,

with scarce exceptions.
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Figure 6: R2 for regression of xit on f̂PC
t1
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Figure 7: PC estimates b̂PCi1
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Figure 8: R2 for regression of xit on f̂ada
t1
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Figure 9: adaptive SOFAR estimates b̂adai1
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Figure 10: R2 for regression of xit on f̂ada
t2
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Figure 11: adaptive SOFAR estimates b̂adai2

6.3 Are there any omitted weak factors in the Fama-French five factor regres-

sion model?

In this subsection, we examine the regression residuals of the celebrated Fama and French

(2015) five-factor model in order to check whether any weak common factors have been

left-out. We consider monthly security excess returns, which constitute the S&P500 index

on April 2018, with 500 months os observations back, leaving 194 securities. The firm

security return is computed as explained in Section 6.4, and other variables are obtained

from the Kenneth R. French Data Library. See Fama and French (2015) for more details

of the data and the regression. Specifically, we run the time series regression rti − rft =

ai + bi (rmt − rft) + siSMBt + hiHMLt + riRMWt + ciCMAt + eti, where rti is the i-

th security monthly return at the month t, rft is the one-month treasury bill rate, rmt is

the market return, SMBt is the return on a diversified portfolio of small stocks minus the

return on a diversified portfolio of big stocks, HMLt is the difference between the returns
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on diversified portfolios of high and low B/M stocks, RMWt is the difference between the

returns on 13 diversified portfolios of stocks with robust and weak profitability, and CMAt

is the difference between the returns on diversified portfolios of the stocks of low and high

investment firms, which is called conservative and aggressive.

We have applied our method to the obtained residual, êti, say. The ED estimates that

there is one factor, and the adaptive SOFAR picks up eight non-zero factor loadings (α̂ =

0.39), all of which have the same sign. Interestingly, all the associated firms belong to the

same industrial category, Technology Hardware & Equipment: Advanced Micro Devices,

Analog Devices, Applied Materials, Intel, Texas Instruments, Western Digital, Skyworks

Solutions and Xerox Holdings. This result could not be found using the conventional PC

method.

6.4 Estimating exponents with stock returns

Here we estimate the sWF model using excess returns of components of the Standard &

Poor’s 500 Stock Index (S&P 500). In particular, we obtain the 500 securities each month

over the period from January 1984 to April 2018 from Datastream. The monthly excess

return of security i for month t is computed as re,ti = 100×(Pti−Pt−1,i)/Pt−1,i+DYti/12−rft,

where Pti is the end-of-the-month price, DYti is the percent per annum dividend yield, and

rft is the one-month US treasury bill rate chosen as the risk-free rate.11) We standardize the

obtained excess returns and denote them as r∗e,ti.

For each window month, T = September 1998 to April 2018, we chose securities that

contain the data extending 120 months back (T = 120) from T. This gives the different

number of securities for each window T (NT). The average number of securities over the

estimation windows is 443 (N̄ = 443). As will be shown below, three or four factors are

estimated over the windows. We identify the factors and signs of the factors and factor

loadings, given the estimates of the initial window month, T = September 1989, based on

the correlation coefficients between the factors at T and the appropriately lagged T.12)

We report α̂k, k = 1, 2, 3, 4, of the stock return covariance matrix, which are associated

with the four factors. Observe that, as discussed earlier, the estimated exponents are in-

variant to the rotation of the estimated common components. Figure 12 plots α̂k over the
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estimation window months, T = September 1989 to April 2018. Apart from the first factor,

which is always strong, the strengths of the signals vary over the months and can become

quite weak. These strongly imply a potentially substantial efficiency gain in estimation of

the approximate factor models through our SOFAR over the PC. It is also interesting that

the orders in terms of values of the exponents, α2, α3, and α4, change over the period.

In line with the well-observed phenomenon that the correlation among the securities in

the financial market rises during periods of turmoil, sharp rises of exponents in some months

can be observed. For example, α2 goes up sharply around February 2000 then rises gradually.

This period corresponds to the peak of the dot-com bubble and its burst on March 2000 (the

main contributor to the factor loadings of the second factor is the Technology industry, see

Section F.1 in Supplementary Material). Similarly, a sharp rise of α3 is observed from July

2008 to April 2009. This period coincides with the 2008 financial crisis. In just ten months,

it goes up by 0.12, from 0.74 to 0.86 (one of the main contributors to the factor loadings of

the third factor is the Financial industry, see Section F.1 in Supplementary Material).

Figure 12: Plot of the estimated αk from September 1989 to April 2018.
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7 Conclusion

This paper has considered estimation of the sparsity-induced weak factor (sWF) models

in a high-dimensional setting. We suppose sparse factor loadings B0 that lead to the WF

structure, λk(B
0′B0) ≍ Nαk with 0 < αk ≤ 1 for k = 1, . . . , r. This model is much less

restrictive than the widely employed strong factor (SF) model in the literature, in which

λk(B
0′B0) ≍ N for k = 1, . . . , r. The SOFAR estimator and its adaptive version enable us

to consistently estimate the sWF models, separately identifying B0 and F0. As theoretical

contributions, we have established the estimation error bound of the SOFAR estimators, the

factor selection consistency of the adaptive SOFAR estimator, and consistent estimation of

each exponent αk, as well as validating the method of Onatski (2010) for determining the

number of weak factors. All the theoretical results are supported by the Monte Carlo exper-

iments, and four empirical examples demonstrate the practical usefulness of our estimator

in comparison to the principal components (PC) estimator.

The proposed method has large potential applicability and many direction to extend. The

hierarchical factor model, which contains global and local factors, are recently considered by

Ando and Bai (2017), Choi et al. (2018) and Andreou et al. (2019). Our sWF model nests the

hierarchical factor model, and hence the SOFAR method can be applied to readily estimate

such models. It is of interest to estimate the stock returns covariance matrix for optimal

portfolio allocation and portfolio risk assessment. This can be achieved by consistently

estimating the covariance matrix of idiosyncratic errors, in line with Fan et al. (2008) and Fan

et al. (2011), which is an interesting extension of this paper. Having provided the consistent

estimation in this paper, the statistical inference for the sWF models becomes an important

research agenda. This is considered in Uematsu and Yamagata (2021). Yet another possible

extension of interest is the estimation of panel data models with interactive effects, which is

considered by Pesaran (2006) and Bai (2009), among others: yti = x′
tiβ+uti, uti = f ′tbi+εti.

For the PC based estimators, such as Bai (2009), uti is typically assumed to be a SF model

and estimated by PC, given an initial estimator of β. The SOFAR estimation, instead of

the PC, would potentially improve the precision of the estimates of β.
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Notes

1)In the finance literature, see also Kleibergen (2009).

2)Although sparsity of B0 is not generally rotation invariant, we can identify the r signal eigenvalues of model

(1) as long as B
0 is sparse. Also the sparse structure of B0 is invariant to orderings of cross-section units;

see Bai et al. (2016).

3)As an illustration, when b
0
k is not sparse and composed of non-zero values of order N (αk−1)/2, it is easy to

see that λk(B
0′
B

0) = b
0
k
′
b
0
k diverges proportionally to Nαk . Connor and Korajczyk (2019) consider such a

structure with observed factors.

4)https://www.sydneyludvigson.com/data-and-appendixes

5)Bailey et al. (2021) mainly consider the estimation and inference of the divergence rates of structural loadings

B
∗ in (1) when F

∗ is observed.

6)Very recently, Freyaldenhoven (2021) has proposed a method to estimate the number of common components,

the divergence rates of which exceed a preassigned threshold in the sWF model.

7)When α1 = 0.8, the smallest value of αr implied by condition (10) is 0.6, which is much larger than 0.5.

8)To save space, we do not report the results for ER and IC3 since the performance of ER is very similar to

that of GR, and the performance of IC3 is mostly outperformed by BIC3. These results are available upon

request from the authors.

9)We also examined all the combinations of SOFAR and adaptive SOFAR with AIC, cross-validation, BIC and

GIC. The results are available upon request from the authors.

10)Andreou et al. (2019) propose a similar sequential method to estimate the number of global and local factors

separately.

11)https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

12)For example, define (T−1)-dimensional vector of ℓth factor of T as f̂ℓT = (f̂ℓT,1, f̂ℓT,2, . . . , f̂ℓT,T−1)
′ and that of T−

1 as f̂ℓT−1 = (f̂ℓT−1,2, f̂ℓT−1,2, . . . , f̂ℓT−1,T)
′, ℓ = 1, . . . , r. For f̂ℓT, if max1≤k≤r |corr(f̂ℓT, f̂kT−1)| = |corr(f̂ℓT, f̂2T−1)|

and corr(f̂ℓT, f̂2T−1) < 0, say, f̂2T ≡ −f̂ℓ,T and b̂i2T ≡ −b̂iℓT.

Supplementary Materials

Supplementary Material consists of six sections. Section A contains the proofs of the main

results. Section B contains some lemmas and their proofs. Section C contains some details

on derivation of the estimation error bound, which relates to the proof of Theorems 2 and

3. Section D contains a brief review of SOFAR. Section E contains additional experimental

results. Section F contains additional estimation results.
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A Proofs of the Main Results

For any matrix M = (mti) ∈ R
T×N , we define the Frobenius norm, ℓ2-induced (spec-

tral) norm, entrywise ℓ1-norm, and entrywise ℓ∞-norm as ‖M‖F = (
∑

t,im
2
ti)

1/2, ‖M‖2 =

λ
1/2
1 (M′M), ‖M‖1 =

∑
t,i |mti|, and ‖M‖max = maxt,i |mti|, respectively, where λi(S) refers

to the ith largest eigenvalue of a symmetric matrix S. We denote by IN and 0T×N the

N ×N identity matrix and T ×N zero matrix, respectively. We use . (&) to represent ≤

(≥) up to a positive constant factor. For any positive sequences an and bn, we write an ≍ bn

if an . bn and an & bn. For any positive values a and b, a ∨ b and a ∧ b stand for max(a, b)

and min(a, b), respectively. The indicator function is denoted by 1{·}. We say that event E

occurs with high probability if P(E) → 1 as n → ∞.

A.1 Proof of Theorem 1

Proof. Following Ahn and Horenstein (2013), we evaluate the eigenvalues of XX′. Recall

notation of the SVD, C0 = U0DV0′. Define P = V0N−1V0′, Q = IN − P, and U∗ =

U0 + EV0N−1(D0)−1. Then, we can write XX′ = U∗D0ND0U∗′ + EQE′ since V0′V0 =

N = diag(N1, . . . , Nr) by the definition. We also define W1:k as the matrix of k eigenvectors

corresponding to the first k largest eigenvalues of U∗D0ND0U∗′.
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We first evaluate the r largest eigenvalues of XX′. Because

λk(U
0D0ND0U0′) = d2kNkT for k ∈ {1, . . . , r}, (A.1)

it is sufficient to show that for any k ∈ {1, . . . , r},

λk(XX′) = λk(U
∗D0ND0U∗′) +O(N ∨ T ), (A.2)

λk(U
∗D0ND0U∗′) = λk(U

0D0ND0U0′) +O
(
TN

1/2
1 log1/2(N ∨ T ) +N ∨ T

)
. (A.3)

Then (A.1)–(A.3) lead to the desired result under condition (8).

We show (A.2). Lemma A.5 of Ahn and Horenstein (2013) yields the upper bound

k∑

j=1

λj(XX′) =

k∑

j=1

λj(U
∗D0ND0U∗′ +EQE′)

≤
k∑

j=1

λj(U
∗D0ND0U∗′) + kλ1(EQE′ +EPE′)

=

k∑

j=1

λj(U
∗D0ND0U∗′) + kλ1(EE′) .

k∑

j=1

λj(U
∗D0ND0U∗′) + T ∨N,

where the last inequality follows from Lemma 1(a), with probability at least 1−O((N∨T )−ν).

Moreover, the lower bound is given by

k∑

j=1

λj(XX′) ≥ T−1 tr(W′
1:kXX′W1:k)

= T−1 tr(W′
1:kU

∗D0ND0U∗′W1:k) + T−1 tr(W′
1:kEQE′W1:k)

≥
k∑

j=1

λj(U
∗D0ND0U∗′).

Hence, these two inequalities imply (A.2).
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Next, we verify (A.3). By the construction of U∗, the upper bound is

k∑

j=1

λj(U
∗D0ND0U∗′) = T−1 tr(W′

1:kU
0D0ND0U0′W1:k)

+ 2T−1 tr(W′
1:kU

0D0V0′E′W1:k) + T−1 tr(W′
1:kEPE′W1:k)

.

k∑

j=1

λj(U
0D0ND0U0′) + TN

1/2
1 log1/2(N ∨ T ) +N ∨ T,

where the last inequality holds by Lemma 2 with probability at least 1 − O((N ∨ T )−ν).

Similarly, the lower bound is

k∑

j=1

λj(U
∗D0ND0U∗′) &

k∑

j=1

λj(U
0D0ND0U0′)− TN

1/2
1 log1/2(N ∨ T ).

Hence, these two inequalities imply (A.3).

Finally, we consider the lower and upper bounds of λr+j(XX′) for j = 1, . . . , kmax.

Because λr+j(U
∗D0ND0U∗′) = 0 for all j ≥ 1, Lemma 2 entails

λr+j(XX′) ≤ λr+j(U
∗D0ND0U∗′) + λ1(EQE′) = λ1(EQE′) . T ∨N

with probability at least 1−O((N ∨ T )−ν). This completes the proof.

A.2 Proof of Theorem 2

Proof. The optimality of the SOFAR estimator implies

2−1‖X− F̂B̂′‖2F + ηn‖B̂‖1 ≤ 2−1‖X− F0B0′‖2F + ηn‖B0‖1.

By plugging model (5) and letting ∆ = F̂B̂′ − F0B0′, this is equivalently written as

2−1‖E−∆‖2F + ηn‖B̂‖1 ≤ 2−1‖E‖2F + ηn‖B0‖1.
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Define ∆f = F̂− F0 and ∆b = B̂−B0. Expanding the first term and using decomposition

∆ = ∆fB0′ +∆f∆b′ + F0∆b′ give

(1/2)‖∆‖2F ≤ trE∆′ + ηn

(
‖B0‖1 − ‖B̂‖1

)

≤
∣∣∣trEB0∆f ′

∣∣∣+
∣∣∣trE∆b∆f ′

∣∣∣+
∣∣∣tr∆bF0′E

∣∣∣+ ηn

(
‖B0‖1 − ‖B̂‖1

)
. (A.4)

Bound the three trace terms in (A.4). By applying Hölder’s inequality and the property of

norms, they are bounded as

∣∣∣trEB0∆f ′
∣∣∣ ≤ ‖EB0‖max‖∆f‖1 ≤ r1/2T 1/2‖EB0‖max‖∆f‖F,

∣∣∣trE∆b∆f ′
∣∣∣ ≤ ‖E∆b‖2‖∆f‖∗ ≤ ‖E‖2‖∆b‖F‖∆f‖F,

∣∣∣tr∆bF0′E

∣∣∣ ≤ ‖∆b‖1‖F0′E‖max,

where ‖·‖∗ denotes the nuclear (Schatten-1) norm. From these inequalities, the upper bound

of (A.4) becomes

(1/2)‖∆‖2F ≤ r1/2T 1/2‖EB0‖max‖∆f‖F + ‖E‖2‖∆b‖F‖∆f‖F

+ ‖∆b‖1‖F0′E‖max + ηn

(
‖B0‖1 − ‖B̂‖1

)
. (A.5)

From Lemma 1, there exist some positive constants c1–c3 such that the following event occurs

with probability at least 1−O((N ∨ T )−ν) for any fixed (large) constant ν > 0:

E =
{
‖E‖2 ≤ c1(N ∨ T )1/2

}
∩
{
‖EB0‖max ≤ c2N

1/2
1 log1/2(N ∨ T )

}

∩
{
‖F0′E‖max ≤ c3T

1/2 log1/2(N ∨ T )
}
.

Set the regularization parameter to be ηn = 2c3T
1/2 log1/2(N ∨ T ). Then on event E , we

have ‖F0′E‖max ≤ ηn/2, and thus (A.5) is further bounded as

‖∆‖2F . (N1T )
1/2 log1/2(N ∨ T )‖∆f‖F + (N ∨ T )1/2‖∆f‖F‖∆b‖F

+ ηn

(
‖∆b‖1 + 2‖B0‖1 − 2‖B̂‖1

)
. (A.6)
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Define index set S = {(i, k) : b0ik 6= 0}, the support of B0. Note that |S| =
∑r

k=1Nk ≤ rN1.

The last parenthesis of (A.6) is rewritten and bounded as

‖∆b‖1 + 2‖B0‖1 − 2‖B̂‖1 = ‖∆b
S‖1 + ‖∆b

Sc‖1 + 2‖B0
S‖1 − 2‖B̂S‖1 − 2‖B̂Sc‖1

≤ ‖∆b
S‖1 + ‖∆b

Sc‖1 + 2‖B0
S‖1 − 2

(
‖B0

S‖1 − ‖∆b
S‖1
)
− 2‖B̂Sc‖1

= 3‖∆b
S‖1 − ‖B̂Sc‖1 ≤ 3(rN1)

1/2‖∆b
S‖F ≤ 3(rN1)

1/2‖∆b‖F.

Meanwhile, Lemma 3 establishes the lower bound of (A.6). Consequently, combining these

upper and lower bounds yields

N2
r

N1
‖∆f‖2F +

TNr

N1
‖∆b‖2F . (N1T )

1/2 log1/2(N ∨ T )‖∆f‖F

+ (N ∨ T )1/2‖∆b‖F‖∆f‖F +N
1/2
1 ηn‖∆b‖F. (A.7)

Using (A.7), we can derive the upper bound

‖∆f‖F + ‖∆b‖F .

(
T 1/2

N
1/2
r

+
N

1/2
r

T 1/2

)
N

3/2
1

N
3/2
r

log1/2(N ∨ T )

≍ N
3/2
1 T 1/2

Nr(Nr ∧ T )
log1/2(N ∨ T ).

(See Section C for the derivation.) This completes the proof.

A.3 Proof of Theorem 3

Proof. Following the proof of Theorem 2, we derive the bound. From (A.5) with putting

ηn = 0 and using the bound ‖∆b
PC

‖1 ≤ r1/2N1/2‖∆b
PC

‖F, we have

(1/2)‖∆PC‖2F ≤ r1/2T 1/2‖EB0‖max‖∆f
PC

‖F

+ ‖E‖2‖∆b
PC‖F‖∆f

PC
‖F + r1/2N1/2‖∆b

PC‖F‖F0′E‖max.
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In the same way as the proof of Theorem 2, we obtain

N2
r

N1
‖∆f

PC
‖2F +

TNr

N1
‖∆b

PC‖2F . (N1T )
1/2 log1/2(N ∨ T )‖∆f

PC
‖F

+ (N ∨ T )1/2‖∆b
PC‖F‖∆f

PC
‖F + (NT )1/2 log1/2(N ∨ T )‖∆b

PC‖F.

From this, we can derive the upper bound

‖∆f
PC

‖F + ‖∆b
PC‖F .

{
T 1/2

N
1/2
r

+
N1/2

N
1/2
1

(
1 +

N
1/2
r

T 1/2

)}
N

3/2
1

N
3/2
r

log1/2(N ∨ T )

≍ N
3/2
1 T 1/2

Nr(Nr ∧ T )
(1 + γn) log

1/2(N ∨ T ),

where γn = N1/2(Nr ∧ T )1/2/(N1T )
1/2. (See Section C for the derivation.) This completes

the proof.

A.4 Proof of Theorem 4

Proof. Throughout this proof, we omit the superscript of the adaptive estimators (F̂ada, B̂ada)

and simply write them as (F̂, B̂). Recall S = supp(B0), which is a subset of {1, . . . , N} ×

{1, . . . , r}. For any matrix B = (bik) ∈ R
N×r, define BS ∈ R

N×r as the matrix whose

(i, k)th element is bik1{(i, k) ∈ S}. Similarly, define BSc ∈ R
N×r whose (i, k)th element

is bik1{(i, k) ∈ Sc}. By the definition, note that B0
S = B0 and B0

Sc = 0. Recall that the

objective function for obtaining the adaptive SOFAR estimator is given by

Qn(F,B) :=
1

2

∥∥X− FB′
∥∥2
F
+ ηn‖W ◦B‖1 (A.8)

subject to F′F/T = Ir and B′B being diagonal. The strategy of this proof consists of two

steps. In the first step, we show that the oracle estimator (F̂o, B̂o
S), which is defined as a

minimizer of Qn(F,BS), is consistent to (F0,B0
S) with some rate of convergence. In the

second step, we prove that the oracle estimator is indeed a minimizer of the unrestricted

problem, minQn(F,B) over RT×r × R
N×r.

(First step) We derive the rate of convergence of the oracle estimator. To this end, it

6



suffices to show that as n → ∞, there exists a (large) constant C > 0 such that

P

(
inf

‖U‖F=C, ‖VS‖F=C
Qn(F

0 + rnU,B0
S + rnVS) > Qn(F

0,B0
S)

)
→ 1, (A.9)

where U ∈ R
T×r and V ∈ R

N×r are fixed matrices, and

rn =
N1(N1T )

1/2 log1/2(N ∨ T )

Nr(Nr ∧ T )
.

This implies that the oracle estimator (F̂o, B̂o
S) lies in the ball

{
(F,BS) ∈ R

T×r × R
N×r : ‖F− F0‖F ≤ Crn, ‖BS −B0

S‖F ≤ Crn
}

with high probability, which gives the desired rate of convergence. In this proof, write

ℓn = log(N ∨ T ) for notational simplicity.

To show (A.9), we first have

Qn(F
0 + rnU,B0

S + rnVS)−Qn(F
0,B0

S)

= 2−1‖X− (F0 + rnU)(B0
S + rnVS)

′‖2F − 2−1‖X− F0B0
S‖2F

+ ηn‖W ◦ (B0
S + rnVS)‖1 − ηn‖W ◦B0

S‖1

≥ − tr(rnE
′F0V′

S + rnE
′UB0

S
′
+ r2nE

′UV′
S)

+ 2−1‖rnF0V′
S + rnUB0

S
′
+ r2nUV′

S‖2F − rnηn‖WS ◦VS‖1

=: (I) + (II) + (III). (A.10)

By Hölder’s inequality, we bound (I) as

|(I)| ≤ rn
∣∣trV′

SE
′F0
∣∣+ rn

∣∣∣trB0
S
′
E′U

∣∣∣+ r2n
∣∣trV′

SE
′U
∣∣

. rn‖VS‖1‖E′F0‖max + rn‖B0
S
′
E′‖max‖U‖1 + r2n‖VS‖F‖ES‖2‖U‖F

. rnN
1/2
1 T 1/2 (‖VS‖F + ‖U‖F) ℓ1/2n + r2n(N1 ∨ T )1/2‖U‖F‖VS‖Fℓ1/2n .

7



Next, we bound (II) from below as

(II) = 2−1‖rnF0V′
S + rnUB0

S
′
+ r2nUV′

S‖2F

≥ 2−1r2n

(
‖UB0

S
′‖2F + ‖F0V′

S‖2F + r2n‖UV′
S‖2F

)

− r2n
(
rn
∣∣trVSU

′F0V′
S

∣∣+ rn
∣∣trB0

SU
′UV′

S

∣∣+
∣∣trB0

SU
′F0V′

S

∣∣)

= (IIa) + (IIb).

In view of the Rayleigh quotient, (IIa) is further bounded from below as

(IIa) = 2−1r2n

(
trB0

S
′
B0

SU
′U+ trF0′F0V′

SVS + r2n trU
′UV′

SVS

)

≥ 2−1r2n

(
λmin(B

0
S
′
B0

S)‖U‖2F + λmin(F
0′F0)‖VS‖2F

)

& r2n
(
Nr‖U‖2F + T‖VS‖2F

)
.

Meanwhile, |(IIb)| is bounded from above as

|(IIb)| . r3n

(
T 1/2‖U‖F‖VS‖2F +N

1/2
1 ‖U‖2F‖VS‖F

)
+ r2nN

1/2
1 T 1/2‖U‖F‖VS‖F.

Combining (IIa) and (IIb) yields

(II) & r2n
(
Nr‖U‖2F + T‖VS‖2F

)

− r3n

(
T 1/2‖U‖F‖VS‖2F +N

1/2
1 ‖U‖2F‖VS‖F

)
− r2nN

1/2
1 T 1/2‖U‖F‖VS‖F.

We then consider (III) in (A.10). Lemma 4 yields

|(III)| = rnηn‖WS ◦VS‖1 ≤ rnηn‖WS‖F‖VS‖F . N
1/2
1 rn(ηn/b

0
n)‖VS‖F,

where b0n = min(i,k)∈S |b0ik|, with high probability.

8



Putting together the pieces obtained so far with (A.10), we have

inf
‖U‖F=C, ‖VS‖F=C

Qn(F
0 + rnU,B0

S + rnVS)−Qn(F
0,B0

S)

& inf
‖U‖F=C, ‖VS‖F=C

{
r2n
(
Nr‖U‖2F + T‖VS‖2F

)
− r3n

(
T 1/2‖U‖F‖VS‖2F +N

1/2
1 ‖U‖2F‖VS‖F

)

− r2nN
1/2
1 T 1/2‖U‖F‖VS‖F − rnN

1/2
1 T 1/2 (‖VS‖F + ‖U‖F) ℓ1/2n

− r2n(N1 ∨ T )1/2‖U‖F‖VS‖Fℓ1/2n −N
1/2
1 rn(ηn/b

0
n)‖VS‖F

}

& r2n (Nr ∨ T )C2 − r2nN
1/2
1 T 1/2ℓ1/2n C2 − r3n(N1 ∨ T )1/2C3 − rnN

1/2
1 (ηn/b

0
n)C

=: (i) + (ii) + (iii) + (iv). (A.11)

Under conditions α1 < τ and 3α1 < 4αr implied by (11), a simple calculation reveals that

(i)/|(ii)| → ∞ and (i)/|(iii)| → ∞. Furthermore, by the upper bound of condition (12),

we find that (i) ≍ |(ii)| and hence (i) + (iv) tends to positive if C > 0 is taken to be large

enough. In consequence, the lower bound (A.11) is positive for such C > 0 and (A.9) holds.

(Second step) Set F̂ = F̂o and B̂ = B̂o
S . If the estimator (F̂, B̂) is indeed a minimizer of

the unrestricted problem, minQn(F,B) over RT×r × R
N×r, the proof completes. Note that

supp B̂ = S by the construction. Taking the same strategy as in Fan et al. (2014), we check

the optimality of (F̂, B̂). By a simple calculation, the (sub-)gradients of Qn with respect to

F and B are given by

∇FQn(F,B) = FB′B−XB, ∇BQn(F,B) = BF′F−X′F+ ηnT,

where the (i, k)th element of T ∈ R
N×r is defined as

tik





= wik sgn(bik) for bik 6= 0,

∈ wik[−1, 1] for bik = 0.

9



Then (F̂, B̂) is a strict minimizer of (7) if the following conditions hold:

F̂B̂′B̂−XB̂ = 0T×r, (A.12)

T B̂S − (X′F̂)S + ηnWS ◦ sgn B̂S = 0N×r, (A.13)
∥∥∥W−

Sc ◦
{
T B̂Sc − (X′F̂)Sc

}∥∥∥
max

< ηn, (A.14)

where F̂′F̂ = T Ir has been used, and W− ∈ R
N×r is the matrix with its (i, k)th elements

given by 1/wik. Since (F̂, B̂S) is a minimizer of Qn(F,BS), it satisfies the Karush–Kuhn–

Tucker (KKT) conditions. Therefore, we only need to check condition (A.14), which is

verified by Lemma 5. This completes the proof of Theorem 4.

A.5 Proof of Corollary 2

Proof. Recall that α̂j = log N̂j/ logN with N̂j = | supp(b̂ada
j )| and αj = logNj/ logN by the

definition. Because {supp(B̂ada) = supp(B0)} ⊂ {N̂j = Nj for all j = 1, . . . , r}, we have

P (α̂j = αj for all j = 1, . . . , r)

= P

(
N̂j = Nj for all j = 1, . . . , r

)
≥ P

(
supp(B̂ada) = supp(B0)

)
.

The last probability tends to one by the factor selection consistency. This completes the

proof of Corollary 2.

B Related Lemmas and the Proofs

Lemma 1. Suppose that Assumptions 1–3 hold. Then the following inequalities simultane-

ously hold with probability at least 1−O ((N ∨ T )−ν):

(a) ‖E‖2 . (N ∨ T )1/2,

(b) ‖EB0‖max . ‖b0
1‖2 log1/2(N ∨ T ),

(c) ‖E′F0‖max . T 1/2 log1/2(N ∨ T ).

Proof. Throughout the proof, set Ln = N∨T . Prove (a). The tth row of E, e′t ∈ R
N , is speci-

fied as et =
∑∞

ℓ=0Φℓεt−ℓ, where εt ∈ R
N is composed of i.i.d. subG(σ2

ε) by Assumption 3. We

10



also define Ẽℓ = (ε1−ℓ, . . . , εT−ℓ)
′ ∈ R

T×N . Then, we can write E = (
∑Ln−1

ℓ=0 +
∑∞

ℓ=Ln
)ẼℓΦ

′
ℓ

and hence,

‖E‖2 ≤
∥∥∥∥∥

Ln−1∑

ℓ=0

ẼℓΦ
′
ℓ

∥∥∥∥∥
2

+

∥∥∥∥∥∥

∞∑

ℓ=Ln

ẼℓΦ
′
ℓ

∥∥∥∥∥∥
2

.

Consider the first term. By the submultiplicativity of the spectral norm, we have

∥∥∥∥∥

Ln−1∑

ℓ=0

ẼℓΦ
′
ℓ

∥∥∥∥∥
2

≤
Ln−1∑

ℓ=0

‖Ẽℓ‖2‖Φℓ‖2 ≤ max
ℓ∈{0,...,Ln−1}

‖Ẽℓ‖2
Ln−1∑

ℓ=0

‖Φℓ‖2.

By Assumption 3, the last sum is bounded as

Ln−1∑

ℓ=0

‖Φℓ‖2 ≤
∞∑

ℓ=0

‖Φℓ‖2 ≤ Ceℓe + Ce

∞∑

ℓ=ℓe

ℓ−(ν+2) < ∞.

Because of the union bound and the inequality for the largest singular value of a sub-Gaussian

matrix (Vershynin, 2018, Theorem 4.4.5), there are positive constants M and C1 such that

P

(
max

ℓ∈{0,...,Ln−1}

∥∥∥(N ∨ T )−1/2Ẽℓ

∥∥∥
2
> M

)

≤ Ln max
ℓ∈{0,...,Ln−1}

P

(∥∥∥(N ∨ T )−1/2Ẽℓ

∥∥∥
2
> M

)

≤ 2(N ∨ T ) exp {−C1(N ∨ T )} . (N ∨ T )−ν .

Thus we conclude
∥∥∥
∑Ln−1

ℓ=0 ẼℓΦ
′
ℓ

∥∥∥
2
. (N ∨T )1/2 with probability at least 1−O((N ∨T )−ν).

Next show that with the same order of the probability the second term has a smaller

upper bound than the first term. By the Markov inequality and the submultiplicativity of

the spectral norm, it holds that for all x ≥ 0,

P



∥∥∥∥∥∥

∞∑

ℓ=Ln

ẼℓΦ
′
ℓ

∥∥∥∥∥∥
2

> x


 ≤

∞∑

ℓ=Ln

‖Φℓ‖2 E ‖Ẽℓ‖2/x.

By Vershynin (2018, Chapter 4.4.2), we have maxℓ E ‖Ẽℓ‖2 . (N ∨ T )1/2. Assumption 3
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with a standard estimate of remainder gives

∞∑

ℓ=Ln

‖Φℓ‖2 .
∞∑

ℓ=Ln

ℓ−(ν+2) ≤
∫ ∞

Ln−1
x−(ν+2)dx . (Ln − 1)−(ν+1) ≍ (N ∨ T )−(ν+1).

Thus by setting x to be a positive large constant, the second term is bounded by a positive

constant with probability at least 1−O((N ∨ T )−ν). This completes the proof of (a).

Prove (b). By the definition, for t ∈ {1, . . . , T} and k ∈ {1, . . . , r}, the (t, k)th element of

EB0 is given by e′tb
0
k =

∑∞
ℓ=0 ε

′
t−ℓΦ

′
ℓb

0
k. As the proof of (a), the summation is decomposed

into two parts,
∑∞

ℓ=0 =
∑Ln−1

ℓ=0 +
∑∞

ℓ=Ln
.

Consider the first summation. Let akℓ = ‖Φ′
ℓb

0
k‖−1

2 Φ′
ℓb

0
k. We have

max
t,k

∣∣∣∣∣

Ln−1∑

ℓ=0

ε′t−ℓΦ
′
ℓb

0
k

∣∣∣∣∣ ≤ max
t,k

Ln−1∑

ℓ=0

∣∣ε′t−ℓakℓ
∣∣ ‖Φ′

ℓb
0
k‖2

≤ max
t,k

max
ℓ∈{0,...,Ln−1}

∣∣ε′t−ℓakℓ
∣∣ ‖b0

k‖2
Ln−1∑

ℓ=0

‖Φℓ‖2,

where
∑∞

ℓ=0 ‖Φℓ‖2 < ∞ by Assumption 3 and the same argument as in the proof of (a). Note

that ‖akℓ‖2 = 1 for all k and ℓ. Therefore, by the union bound and the general Hoeffding

inequality (Vershynin, 2018, Theorem 2.6.3), there exists a constant C2 > 0 such that

P

(
max
t,k,ℓ

∣∣ε′t−ℓakℓ
∣∣ > x

)
≤ rTLnmax

t,k,ℓ
P
(∣∣ε′t−ℓakℓ

∣∣ > x
)
. (N ∨ T )2 exp

(
−x2/C2

)
.

Setting x = C
1/2
2 (ν + 2)1/2 log1/2(N ∨ T ) yields the bound

max
t,k,ℓ

∣∣ε′t−ℓakℓ
∣∣ ≤ C

1/2
2 (ν + 2)1/2 log1/2(N ∨ T ),

which holds with probability at least 1 − O((N ∨ T )−ν). With this probability, combining

the obtained inequalities gives the bound for the first summation

max
t,k

∣∣∣∣∣

Ln−1∑

ℓ=0

ε′t−ℓΦ
′
ℓb

0
k

∣∣∣∣∣ . max
k

‖b0
k‖2 log1/2(N ∨ T ).

Next consider the second summation in the same way as the proof of (a). The Markov
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inequality and Hölder’s inequality entail

P


max

t,k

∣∣∣∣∣∣

∞∑

ℓ=Ln

ε′t−ℓΦ
′
ℓb

0
k

∣∣∣∣∣∣
> x


 ≤ Emax

t,k

∣∣∣∣∣∣

∞∑

ℓ=Ln

ε′t−ℓΦ
′
ℓb

0
k

∣∣∣∣∣∣
/x

≤
∞∑

ℓ=Ln

Emax
t

‖εt−ℓ‖∞max
k

∥∥Φ′
ℓb

0
k

∥∥
1
/x

. Emax
t

‖εt‖∞max
k

∥∥b0
k

∥∥
1

∞∑

ℓ=Ln

∥∥Φ′
ℓ

∥∥
1
/x.

The sub-Gaussian property implies Emaxt ‖εt‖∞ . log1/2(N ∨ T ). By Assumption 2, we

also obtain maxk
∥∥b0

k

∥∥
1
≤ N

1/2
1 maxk

∥∥b0
k

∥∥
2
. Under Assumption 3, we have

∞∑

ℓ=Ln

∥∥Φ′
ℓ

∥∥
1
=

∞∑

ℓ=Ln

‖Φℓ‖∞ ≤ N1/2
∞∑

ℓ=Ln

‖Φℓ‖2

≤ CeN
1/2

∞∑

ℓ=Ln

ℓ−(ν+2) ≤ CeN
1/2

∫ ∞

Ln−1
x−(ν+2)dx . N1/2(Ln − 1)−(ν+1).

Thus setting x = maxk ‖b0
k‖2 log1/2(N ∨ T ) yields

P


max

t,k

∣∣∣∣∣∣

∞∑

ℓ=Ln

ε′t−ℓΦ
′
ℓb

0
k

∣∣∣∣∣∣
& max

k
‖b0

k‖2 log1/2(N ∨ T )




. N/(Ln − 1)ν+1 = O((N ∨ T )−ν).

Combining the results gives the proof of (b).

(c) Let φ′
ℓ,i and ψ

′
m,k denote the ith and kth row vectors of Φℓ and Ψm, respectively.

Note that maxk ‖ψm,k‖1 ≤ r1/2‖Ψm‖2 and maxi ‖φℓ,i‖2 ≤ ‖Φℓ‖2 by definition of the spectral
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norm. Thus we have

‖E′F‖max = max
i∈{1,...,N}

max
k∈{1,...,r}

∣∣∣∣∣

∞∑

ℓ=0

∞∑

m=0

T∑

t=1

φ′
ℓ,iεt−ℓζ

′
t−mψm,k

∣∣∣∣∣

≤ max
i,k

∑

ℓ

∑

m

∣∣∣∣∣
∑

t

φ′
ℓ,iεt−ℓζ

′
t−mψ

′
m,k

∣∣∣∣∣

≤ max
i,k

∑

ℓ

∑

m

∥∥∥∥∥
∑

t

w′
ℓ,iεt−ℓζ

′
t−m

∥∥∥∥∥
∞

‖φℓ,i‖2‖ψm,k‖1

≤ r1/2max
i

∑

ℓ

∑

m

∥∥∥∥∥
∑

t

ξt,ℓmi

∥∥∥∥∥
∞

‖Ψm‖2‖Φℓ‖2.

where wℓ,i := ‖φℓ,i‖−1
2 φℓ,i and ξt,ℓmi := w′

ℓ,iεt−ℓζ
′
t−m. Since {εti} are i.i.d. subG random

variables (Assumption 3), there exists some constant C2 > 0 such that

P
(
|w′

ℓ,iεt−ℓ| > x
)
≤ 2 exp

{
−x2/(C2‖wℓ,i‖22)

}
= 2 exp

(
−x2/C2

)
.

This implies that w′
ℓ,iεt−ℓ is subG. Furthermore, because {ζtk} are i.i.d. subG random vari-

ables (Assumption 1) independent of w′
ℓ,iεt−ℓ, each element of {ξt,ℓmi}t is a sequence of i.i.d.

sub-exponential (subE) random variables. (See Vershynin (2018) for a detailed discussion

on subG and subE random variables.)

The sum is divided as follows:

∞∑

ℓ=0

∞∑

m=0

=




Ln−1∑

ℓ=0

+
∞∑

ℓ=Ln



(

Ln−1∑

m=0

+
∞∑

m=Ln

)

=

Ln−1∑

ℓ=0

Ln−1∑

m=0

+

Ln−1∑

ℓ=0

∞∑

m=Ln

+

∞∑

ℓ=Ln

Ln−1∑

m=0

+

∞∑

ℓ=Ln

∞∑

m=Ln

.

Consider the first sum. Note that

max
i

Ln−1∑

ℓ=0

Ln−1∑

m=0

∥∥∥∥∥
∑

t

ξt,ℓmi

∥∥∥∥∥
∞

‖Ψm‖2‖Φℓ‖2

≤ max
i

max
ℓ,m

∥∥∥∥∥
∑

t

ξt,ℓmi

∥∥∥∥∥
∞

Ln−1∑

ℓ=0

Ln−1∑

m=0

‖Φℓ‖2‖Ψm‖2,

where
∑∞

ℓ=0

∑∞
m=0 ‖Φℓ‖2‖Ψm‖2 is bounded by Assumptions 1 and 3. By the Bernstein
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inequality for a sum of subE random variables (Vershynin, 2018, Theorem 2.8.1) together

with the union bound, for any 0 ≤ x . T 1/2, there exists a constant C3 > 0 such that

P

(
max

i
max
ℓ,m

∥∥∥∥∥
∑

t

ξt,ℓmi

∥∥∥∥∥
∞

> xT 1/2

)
≤ 2NL2

nrmax
ℓ,m,i

exp
(
−x2/C3

)
.

Taking x = C
1/2
3 (ν + 3)1/2 log1/2(N ∨ T ) establishes the upper bound,

max
i

max
ℓ,m

∥∥∥∥∥
∑

t

ξt,ℓmi

∥∥∥∥∥
∞

. T 1/2 log1/2(N ∨ T ),

which holds with probability at least 1−O((N ∨ T )−ν).

Next consider the second summation. In a similar manner to the proof of (b), we have

P

(
max

i

Ln−1∑

ℓ=0

∞∑

m=Ln

∥∥∥∥∥
∑

t

ξt,ℓmi

∥∥∥∥∥
∞

‖Φℓ‖2‖Ψm‖2 > x

)

≤
Ln−1∑

ℓ=0

∞∑

m=Ln

‖Φℓ‖2‖Ψm‖2
∑

t

Emax
i

‖ξt,ℓmi‖∞ /x

≤ Tr log(N)

∞∑

ℓ=0

‖Φℓ‖2
∞∑

m=Ln

‖Ψm‖2/x.

By the sub-Gaussianity of Assumptions 1 and 3, we have
∑∞

ℓ=0 ‖Φℓ‖2 < ∞ and

∞∑

m=Ln

‖Ψm‖2 .
∞∑

m=Ln

m−(ν+2) ≤ (N ∨ T )−(ν+1).

Therefore, taking x ≍ log(N ∨T ) entails that the second sum is O(log(N ∨T )), which holds

with probability at least 1 − O((N ∨ T )−ν). As for the remaining two summations, we can

achieve the same results under Assumptions 1 and 3. This completes the proof of (c).

Lemma 2. Suppose the same conditions as Theorem 1. Then, for any H ∈ R
T×k (k ≤ r)

such that H′H = T Ik, the following inequalities simultaneously hold with probability at least
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1−O((N ∨ T )−ν):

(a) T−1
∣∣∣trH′U0D0V0′E′H

∣∣∣ . TN
1/2
1 log1/2(N ∨ T ),

(b) T−1 trH′EPE′H . N ∨ T,

(c) λ1(EQE′) . T ∨N,

(d) T−1 tr(H′EQE′H) . T ∨N.

Proof. Recall U0D0V0′ = C0 = F0B0′. We derive the results on the event that Lemma 1

hold, which occurs with probability at least 1−O((N ∨ T )−ν). Prove (a). Low rankness of

each matrix and Lemma 1(b) give

∣∣∣trH′U0D0V0′E′H

∣∣∣ ≤ ‖HH′‖F‖F0‖F‖B0′E′‖F . ‖HH′‖F‖F0‖F‖B0′E′‖2

. TT 1/2T 1/2‖B0′E′‖max . T 2N
1/2
1 log1/2(N ∨ T ).

Prove (b). Since the rank of P is at most r, Lemma 1(a) gives

trH′EPE′H . ‖HH′‖F‖EPE′‖2 ≤ T‖E‖22‖P‖2 . T (N ∨ T ).

Prove (c). By the argument of the proof of Lemma A.8 in Ahn and Horenstein (2013) and

Lemma 1(a), the bound

λ1(EQE′) ≤ λ1(EQE′ +EPE′) = λ1(EE′) = ‖E‖22 . T ∨N.

Prove (d). From the triangle inequality and result (c), we have

tr(H′EQE′H) . ‖HH′‖F‖EQE′‖2 ≤ ‖HH′‖F(‖EE′‖2 + ‖EPE′‖2) . T (T ∨N).

This completes all the proofs of (a)–(d).

Lemma 3. Suppose the same conditions as Theorem 2. Then for any ηn ≥ 0 we have

‖∆‖2F &
N2

r

N1
‖F̂− F0‖2F +

TNr

N1
‖B̂−B0‖2F.
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Proof. Recall the notation based on the SVD of C0 and Ĉ: U0 = F0, V0D0 = B0, Û = F̂,

and V̂D̂ = B̂. To establish the statement, it suffices to prove the following two inequalities:

(a) ‖∆‖2F &
N2

r

N1
‖Û−U0‖2F,

(b) ‖∆‖2F &
TNr

N1
‖D̂V̂′ −D0V0′‖2F.

First we prove (a). We define matrices: Û∗ = T−1/2Û, D̂∗ = D̂N̂1/2, V̂∗ = V̂N̂−1/2,

U0
∗ = T−1/2U0, D0

∗ = D0N1/2, and V0
∗ = V0N−1/2, where N̂ is any p.d. diagonal matrix.

Then, we can see that

T−1/2∆ = Û∗D̂∗V̂
′
∗ −U0

∗D
0
∗V

0
∗
′
=: ∆∗.

For this expression, we can apply the proof of Lemma 3 in Uematsu et al. (2019). That is,

under Assumptions 1 and 2, we have

‖Û∗ −U0
∗‖2F =

r∑

k=1

‖û∗k − u0
∗k‖22 . d2∗1‖∆∗‖2F

r∑

k=1

1

δd4∗k

= d21N1‖∆∗‖2F
r∑

k=1

1

δd4kN
2
k

. ‖∆∗‖2F
N1

N2
r

.

Rewriting this inequality with the original scaling gives result (a).

Next, we prove (b). We begin with rewriting ∆∗ as

Û∗(D̂∗V̂
′
∗ −D0

∗V
0
∗
′
) = ∆∗ − (Û∗ −U0

∗)D
0
∗V

0
∗
′
.

The triangle inequality and unitary property of the Frobenius norm entail that

‖D̂∗V̂
′
∗ −D0

∗V
0
∗
′‖F ≤ ‖∆∗‖F + ‖(Û∗ −U0

∗)D
0
∗‖F.
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We can bound the second term of the upper bound as in the proof of (a). That is, we have

‖(Û∗ −U0
∗)D

0
∗‖2F ≤ ‖∆∗‖2F

cd2∗1
δ

r∑

k=1

1

d2∗k

= ‖∆∗‖2F
cd21N1

δ

r∑

k=1

1

d2kNk
. ‖∆∗‖2F

N1

Nr
.

Because N1/Nr ≥ 1, combining these inequalities gives

‖D̂∗V̂
′
∗ −D0

∗V
0
∗
′‖2F ≤ 2‖∆∗‖2F + 2‖(Û∗ −U0

∗)D
0
∗‖2F . ‖∆∗‖2F

N1

Nr
= ‖∆‖2F

N1

TNr
.

Noting that the left-hand side is equal to ‖D̂V̂′ −D0V0′‖2F, we obtain (b). This completes

the proof.

Lemma 4. Suppose the same conditions as Theorem 4. Then we have with high probability

‖WS‖F ≤ 2(rN1)
1/2

b0n
.

Proof. Let b0n = min(i,k)∈S |b0ik| and b̂n = min(i,k)∈S |b̂iniik |. For any x > 0, we have

P (‖WS‖F > x) ≤ P

(
‖WS‖F > x | b̂n > b0n/2

)
+ P

(
b̂n ≤ b0n/2

)
. (A.15)

Set x = 2(rN1)
1/2/b0n in (A.15). Then the first probability in the upper bound of (A.15) is

bounded as

P

(
‖WS‖F >

2(rN1)
1/2

b0n
| b̂n > b0n/2

)
≤ P

(
rN1

b̂
2

n

>
4rN1

(b0n)
2
| b̂n > b0n/2

)

≤ P

(
2

b̂nb
0
n

>
4

(b0n)
2
| b̂n > b0n/2

)
= P

(
b0n/2 > b̂n | b̂n > b0n/2

)
= 0.

By condition (13), the second probability of the upper bound of (A.15) is bounded as

P

(
b̂n ≤ b0n/2

)
≤ P

(
‖B̂ini −B0‖max ≥ b0n/2

)
= o(1).

These two bounds together with (A.15) imply the result.
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Lemma 5. Suppose the same conditions as Theorem 4. Then we have

∥∥∥W−
Sc ◦ (X′F̂)Sc

∥∥∥
max

< ηn

with probability at least 1−O((N ∨ T )−ν).

Proof. Let ∆̂ = F̂− F0. Then we have

∥∥∥W−
Sc ◦ (X′F̂)Sc

∥∥∥
max

≤
∥∥W−

Sc

∥∥
max

∥∥∥(X′F̂)Sc

∥∥∥
max

=
∥∥∥B̂ini

Sc

∥∥∥
max

∥∥∥(B0F0′∆̂)Sc + (E′∆̂)Sc + (E′F0)Sc

∥∥∥
max

≤
∥∥∥B̂ini −B0

∥∥∥
max

(∥∥∥(B0F0′∆̂)Sc

∥∥∥
max

+
∥∥∥(E′∆̂)Sc

∥∥∥
max

+
∥∥(E′F0)Sc

∥∥
max

)

≤ b0n

(∥∥∥B0F0′∆̂

∥∥∥
max

+
∥∥∥E′∆̂

∥∥∥
max

+
∥∥E′F0

∥∥
max

)
,

where the last inequality follows by condition (13). By the property of norms and Lemma

1, we further obtain

‖B0F0′∆̂‖max + ‖E′∆̂‖max + ‖E′F0‖max

≤ T 1/2r‖B0‖max‖F0‖max‖∆̂‖F + T 1/2‖E‖max‖∆̂‖F + ‖E′F0‖max

. T 1/2rn log
1/2(N ∨ T ) + T 1/2rn log

1/2(N ∨ T ) + T 1/2 log1/2(N ∨ T )

with probability at least 1−O((N ∨ T )−ν). Therefore, we have

η−1
n

∥∥∥W−
Sc ◦ (X′F̂)Sc

∥∥∥
max

. (b0n/ηn)(1 ∨ rn)T
1/2 log1/2(N ∨ T ) (A.16)

with probability at least 1 − O((N ∨ T )−ν). The desired strict inequality is then obtained

eventually by the lower bound of condition (12). This completes the proof.

Lemma 6. Suppose that Assumptions 1–3 and condition (10) hold. Then we have

‖B̂PC −B0‖max . T−1/2‖F̂PC − F0‖F log1/2(N ∨ T )

with probability at least 1−O((N ∨ T )−ν).
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Proof. Let ∆̂ = F̂PC − F0 in this proof. By the definition of the PC estimator under PC1

restriction, we have

B̂PC = T−1X′F̂PC = T−1(B0F0′ +E′)F̂PC

= T−1(B0F0′ +E′)F0 + T−1(B0F0′ +E′)∆̂

= B0 + T−1E′F0 + T−1B0F0′∆̂+ T−1E′∆̂.

Then by Lemma 1 and the proof of Lemma 5, we have

‖B̂PC −B0‖max . T−1/2 log1/2(N ∨ T ) + T−1/2‖∆̂‖F log1/2(N ∨ T ).

with probability at least 1−O((N ∨ T )−ν). This completes the proof.

C Derivation of the Estimation Error Bound

We explain the derivation of the estimation error upper bounds in the proofs of Theorems 2

and 3. Let x = ‖∆f‖F and y = ‖∆b‖F for Theorem 2 (SOFAR). Multiplying both sides of

(A.7) by N1/N
2
r yields

x2 + any
2 ≤ bnx+ cnxy + dny, (A.17)

where

an = T/Nr, bn = M(N
3/2
1 T 1/2/N2

r ) log
1/2(N ∨ T ),

cn = M(N1/N
2
r )(N ∨ T )1/2, dn = bn,

with M being some positive constant. For the proof of Theorem 3 (PC), let x = ‖∆f
PC

‖F
and y = ‖∆b

PC
‖F with setting

dn = M(N1N
1/2T 1/2/N2

r ) log
1/2(N ∨ T ) ≥ bn.

We treat the two cases simultaneously.
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We are ready to find a maximum value of x+ y, where (x, y) satisfies inequality (A.17).

Set x = −y +m for some positive value m, and plug this into (A.17). Then we have

(−y +m)2 + any
2 ≤ bn(−y +m) + cn(−y +m)y + dny,

which is equivalently written as

f(y) := (an + cn + 1)y2 + (bn − dn − cnm− 2m)y +m2 − bnm ≤ 0.

We derive the region of m that satisfies the inequality. Because an + cn + 1 is positive and

f(y) = 0 must have at least a solution, it is required that

D(m) := {bn − dn − (cn + 2)m}2 − 4(an + cn + 1)(m2 − bnm) ≥ 0.

Collecting the terms gives

D(m) = −{4(an + cn + 1)− (cn + 2)2}m2

+ {4bn(an + cn + 1) + 2(dn − bn)(cn + 2)}m+ (bn − dn)
2

= −(4an − c2n)m
2 + 2(2anbn + bncn + cndn + 2dn)m+ (bn − dn)

2.

Derive the domain of m such that D(m) ≥ 0. Under condition (10),

2α1 + 1 ∨ τ < 3αr + τ,

it holds that an/c
2
n → ∞. Thus it can be assumed that 4an > c2n for sufficiently large n.

Note that D(m) becomes concave by this condition. The two solutions to D(m) = 0 are

then computed as

m1 =
2(2anbn + bncn + cndn + 2dn) +

√
4(2anbn + bncn + cndn + 2dn)2 + 4(4an − c2n)(bn − dn)2

2(4an − c2n)
,

m2 =
2(2anbn + bncn + cndn + 2dn)−

√
4(2anbn + bncn + cndn + 2dn)2 + 4(4an − c2n)(bn − dn)2

2(4an − c2n)
.

Hence, we obtain 0 ∨ m2 ≤ m ≤ m1. As for m2, we can observe m2 ≤ 0 since 4an > c2n
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with an easy algebra. Thus it is sufficient to evaluate m1. By a simple calculation, we have

m1 ∈ [m,m], where

m =
2(2anbn + bncn + cndn + 2dn) +

√
4(4an − c2n)(bn − dn)2

2(4an − c2n)

=
2(2anbn + bncn + cndn + 2dn) + (dn − bn)

√
4(4an − c2n)

2(4an − c2n)

and

m =
2(2anbn + bncn + cndn + 2dn) +

√
4(2anbn + bncn + cndn + 2dn)2 +

√
4(4an − c2n)(bn − dn)2

2(4an − c2n)

=
4(2anbn + bncn + cndn + 2dn) + (dn − bn)

√
4(4an − c2n)

2(4an − c2n)
.

Since they are the same up to a positive constant factor, we obtain the sharp bound

m1 ≍
2(2anbn + bncn + cndn + 2dn) + (dn − bn)

√
4(4an − c2n)

2(4an − c2n)

=
2anbn + (bn + dn)cn + 2dn

4an − c2n
+

dn − bn√
4an − c2n

.

Recall an/c
2
n → ∞. For sufficiently large n, we consequently obtain

m ≤ m1 .
anbn + dncn + dn

an
+

dn√
an

. bn +
dn√
an

+
dn
an

=

(√
anbn + dn +

dn√
an

)
1√
an

.

The SOFAR upper bound is obtained by putting dn = bn:

m .

(√
an + 1 +

1√
an

)
bn√
an

≍
(
T 1/2

N
1/2
r

+
N

1/2
r

T 1/2

)
N

3/2
1

N
3/2
r

log1/2(N ∨ T )

≍ N
3/2
1 T 1/2

Nr(Nr ∧ T )
log1/2(N ∨ T ).
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The PC upper bound is obtained by recalling dn ≥ bn and dn/bn = N1/2/N
1/2
1 :

m .

(√
an +

dn
bn

+
dn√
anbn

)
bn√
an

≍
{

T 1/2

N
1/2
r

+
N1/2

N
1/2
1

(
1 +

N
1/2
r

T 1/2

)}
N

3/2
1

N
3/2
r

log1/2(N ∨ T )

=

(
T 1/2

N
1/2
r

+
N

1/2
r

T 1/2

)
N

3/2
1

N
3/2
r

log1/2(N ∨ T ) +

{
N1/2

N
1/2
1

(
1 +

N
1/2
r

T 1/2

)
− N

1/2
r

T 1/2

}
N

3/2
1

N
3/2
r

log1/2(N ∨ T ).

The first term is the same as the SOFAR bound. The second term is further transformed as

{
N1/2

N
1/2
1

(
1 +

N
1/2
r

T 1/2

)
− N

1/2
r

T 1/2

}
N

3/2
1

N
3/2
r

log1/2(N ∨ T )

=
N1/2N1

N
3/2
r

log1/2(N ∨ T ) +

(
N1/2

N
1/2
1

− 1

)
N

3/2
1

T 1/2Nr
log1/2(N ∨ T )

=
N1/2N1

N
3/2
r

log1/2(N ∨ T ) + (1 +O(1))
N1/2N1

T 1/2Nr
log1/2(N ∨ T )

≍ N1/2N1

Nr(Nr ∧ T )1/2
log1/2(N ∨ T ).

Combining the terms gives the PC upper bound.

Remark 2. If 4a2n ≤ c2n, then the solutions to D(m) = 0 are negative or complex. This does

not lead to achieving a meaningful upper bound. Condition (9) ensures 4a2n > c2n eventually,

under which we successfully derive the upper bounds in the theorems.

D A Brief Review of SOFAR

Uematsu et al. (2019) have proposed the estimation method called the SOFAR for general

high-dimensional multivariate regression models. We briefly review the framework here.

Consider estimation of the multivariate linear regression model

Y = XC0 +E,

where Y is a T × q response matrix, X is a T × p input matrix, E is a T × q error matrix,

and C0 is the p × q coefficient matrix. To manage the high dimensionality (p, q → ∞)

efficiently, the coefficient matrix C0 is supposed to have the sparse and low-rank singular
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value decomposition (SVD) structure:

C0 = U0D0V0′,

where U0 and V0 are sparse and orthogonal matrices of the left- and right-singular vectors,

respectively, with U0′U0 = I and V0′V0 = I and D0 is the low-rank diagonal matrix of the

singular values.

The SOFAR estimator (Û, D̂, V̂) is defined as a minimizer of the problem

minimize
∥∥Y −XUDV′

∥∥2
F
+ λa ‖UD‖1 + λb ‖VD‖1 + λd ‖D‖1 ,

subject to U′U = I, V′V = I, D diagonal.

As for the statistical theory of the SOFAR estimator, Uematsu et al. (2019) establish the

estimation error bound like Theorem 2 under the assumptions of nonrandom regressors X

and coefficient C0 with Gaussian errors E that has i.i.d. rows. Regarding the numerical

contribution, they provide the SOFAR optimization algorithm with a convergence property

based on the augmented Lagrangian method and block coordinate descent, which is available

in R package rrpack.

The SOFAR procedure is readily applicable to estimation of the sWF models. If we set

X = IN in the model, it reduces to the sWF model with the (non-sparse) factors F0 = U0

and the (sparse) factor loadings B0 = V0D0 as in Section 2. The SOFAR estimator for the

sWF model is obtained by setting λa = 0 and λd = 0.

E Additional experimental results

E.1 Orthogonality restrictions in F0 and B0 are violated

In the experiments summarised in Table 2, the data generating process (DGP) is given by

xti =
∑r

k=1 f
0
tkb

0
ik + eti, where the factor loadings b0ik and factors f0

tk are formed such that

N−1
∑N

i=1 b
0
ikb

0
iℓ = 1{k = ℓ} and T−1

∑T
t=1 f

0
tkf

0
tℓ = 1{k = ℓ}, by applying Gram–Schmidt

orthonormalization to b∗ik and f∗
tk, respectively, where b∗ik ∼i.i.d.N(0, 1) for i = 1, . . . , Nk

and b∗ik = 0 for i = Nk + 1, . . . , N , and f∗
tk = ρfkf

∗
t−1,k + vtk with vkt ∼i.i.d.N(0, 1 − ρ2fk)
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and f∗
0k ∼i.i.d.N(0, 1). In order to investigate the effect of the violation of the orthogonal-

isations, we examine the performance of estimators for the DGP xti =
∑r

k=1 f
∗
tkb

∗
ik + eti.

Except for this change, the experimental design is identical to that for Table 2. The re-

sults are summarised in Table 5. As can be seen, the results are qualitatively very similar

to those reported in Table 2: The adaptive SOFAR estimator accurately estimates the ex-

ponents (α1,α2) and mostly dominates the PC estimator. Here the PC estimator for the

loadings slightly outperforms the SOFAR estimator when the factors are very close to strong

((α1,α2)=(0.9,0.9)).

Table 5: Performance of the SOFAR (SO) and PC estimators for approximate factor models
with two factor components with (α1, α2) = (0.9, 0.9), (0.8, 0.8), (0.8, 0.5) and (0.5, 0.4), when
the orthogonality restrictions in F0 and B0 are violated
Design (α1,α2) (0.9,0.9) (0.8,0.8) (0.8,0.5) (0.5,0.4)*

N = T = 100
mean s.d. mean s.d. mean s.d. mean s.d.

α̂1 0.86 0.02 0.77 0.02 0.75 0.04 0.48 0.05
α̂2 0.85 0.02 0.75 0.03 0.56 0.15 0.45 0.11

SO PC SO PC SO PC SO PC

L2(F̂)×100 11.62 16.13 13.18 18.02 16.12 23.64 13.59 19.36

L2(B̂)×100 14.63 14.22 15.43 19.73 16.25 43.75 15.74 29.08

L2(Ĉ)×100 8.16 14.52 10.53 20.09 25.83 53.50 10.50 25.02

N = T = 200
mean s.d. mean s.d. mean s.d. mean s.d.

α̂1 0.88 0.01 0.77 0.01 0.77 0.01 0.48 0.03
α̂2 0.87 0.01 0.77 0.02 0.55 0.07 0.45 0.06

SO PC SO PC SO PC SO PC

L2(F̂)×100 8.93 11.15 9.90 12.21 10.78 14.90 10.01 13.14

L2(B̂)×100 10.52 10.39 11.04 13.86 8.14 26.96 12.64 22.80

L2(Ĉ)×100 4.15 7.41 5.62 10.77 15.14 33.27 8.40 17.96

Note: * For this model, θ = 0.2.

F Additional Estimation Results

F.1 Estimating exponents with stock returns

In addition to reporting the divergence rates in Section 6.4, we summarize the estimates

of the factor loadings, focusing on analysis of the contributions of industrial sectors to the

non-zero factor loadings. Such contributions can be regarded as measures of sensitivities of
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industrial sectors to the factor. We also look into the signs of the factor loadings. Notice

that the firm securities with negative loadings react to the factor in the opposite direction to

those with positive loadings. Therefore, given the systematic risk factor, the different sign

of the factor loadings could be interpreted in terms of the different investment positions, for

example, being long and short. Note that our analyses on the measures of sensitivities of

industrial sectors and the signs of the factor loadings are conditional on the identification

restrictions on the factors and factor loadings.

For the above purposes, all the firms are categorized into one of the ten industrial sec-

tors based on the Industry Classification Benchmark (ICB)13): (i) Oil & Gas; (ii) Basic

Materials; (iii) Industrials; (iv) Consumer Goods ; (v) Health Care; (vi) Consumer Services ;

(vii) Telecommunications; (viii) Utilities; (ix) Financials; (x) Technology. Then, for a given

factor, the factor loadings are grouped into the negatives and the positives. For each group,

the portion of the sum of the absolute value of the factor loadings which belong to each

industrial sector is computed and reported. Specifically, we compute the following statistics

for factor ℓ and industry s for given estimation window:

T−
bℓ,s

=

∑N
i=1 b̂iℓ1{b̂iℓ < 0}1{i ∈ s}
∑N

i=1 b̂iℓ1{b̂iℓ < 0}
, T+

bℓ,s
=

∑N
i=1 b̂iℓ1{b̂iℓ > 0}1{i ∈ s}
∑N

i=1 b̂iℓ1{b̂iℓ > 0}

where b̂iℓ is the estimated factor loading of ith firm security, and 1{A} is the indicator

function which takes unity if A is true and zero otherwise. We regard the portion T−
bℓ,s

and

T+
bℓ,s

as the statistical measure of the negative and positive sensitivities of the sth industry to

the ℓth factor. The average of the portion of the industrial sectors in S&P500 and the average

of T−
bℓ,s

and T+
bℓ,s

for the four factors over the estimation windows τ =Sept 1998,...,April 2018,

are reported in Figure SP2.

Figure SP2(a) shows the portion of the industrial sectors to which the securities consists

of S&P500 belong, and the measure T+
b1,s

for the first factor. All the loadings to the first

factor have the same sign (and it is chosen to be positive), which strongly suggests that

this is the market factor. As one might expect, the ‘beta’ (the factor loading) of defensive

industries, Oil&Gas, Health Care, Telecoms, and Utilities is relatively small. The ‘beta’ of

cyclical industries such as Industrials, Financials, and Basic Materials, is noticeably high.
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The averages of the measures of negative and positive industrial contributions to the second

factor loadings are reported in Figure SP2(b). It shows that Utility and Financials account

for around 43% and 23% of negative loadings, respectively, while Technology, Industrials and

Basic Materials share 40%, 17%, and 14% of positive loadings, respectively. The averages

of T−
bℓ,s

and T+
bℓ,s

for the third factor are reported in Figure SP2(c). It is clear that this is

the Oil&Gas factor, which share the 67% of the negative loadings. Financials, Consumer

Services, and Consumer Goods share 29%, 23%, and 19% of positive loadings, which means

that these industrial sectors move in the opposite direction to the Oil&Gas with respect to

the third factor. In view of Figure SP2(d), the dominating industry of the fourth factor is

Utility, which shares 43% of the positive loading, together with Health Care with 17% of

the share. No dominant industry is found for negative loadings, which are equally shared by

cyclical industries.

In turn, we discuss each factor in more detail by analyzing Table SP1, and Figures SP1

and SP2. The first factor does seem to be almost always “strong,” in that the absolute sum

of factor loadings is proportional to N . As reported in Table SP1, the average of α1 over the

month windows is 0.995 and the standard deviation is very small (0.004), with the minimum

value of 0.979. Also, as is shown later, all the values of the factor loadings to this factor

have the same sign, which strongly suggests that this is the market factor. Now we turn

our attention to the rest of the factors. The divergence rates for the rest of the common

components, α2, α3 , and α4, exhibit very different trajectories over the months, and their

orders in terms of value change (i.e., their plots cross).

Let us look at the trajectory of α2. From Figure SP2(b), under our identification con-

dition, we can understand the second factor of Utility and Financials versus Technology,

Industrials and Basic Materials. In Figure SP1 it is seen that α2 moves around 0.80 until

October 1998, but from this month it sharply declines and stays below 0.75 to October 1999.

Then it rises sharply to achieve 0.83 in February 2000. Indeed, this period corresponds to

the turbulence of the Basic Material stock index during 1998-2003, the fall of the Industrials

stock index around 2001-2 and the dot com bubble towards the peak in 2000. Since then,

during most of the 2000s, α2 goes above 0.85. After achieving the peak of 0.895 in April

2009, it steadily decreases and stabilizes around 0.75 from November 2012 onward, during
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which often this factor is not often estimated but the fourth factor is.

Now let us analyze the movement of α3. From Figure SP2(c), under our identification

condition, we can understand the third factor of Oil&Gas versus Financials, Consumer

Services and Consumer Goods. According to Table SP1, α3 has the lowest average. In

Figure SP1, it looks co-moving with α2, around 0.1 below, between September 1989 and

July 2008. The exceptions are the periods from 1991 to 1992 and from 1999 to 2000, during

which α3 and α2 are very close. A sharp rise of α3 is observed from July 2008 to April 2009.

This period coincides with the 2008 financial crisis. In just ten months, it goes up by 0.12,

from 0.74 to 0.86. We can therefore surmise that the Oil&Gas industry was sharply affected

by the crisis. α3 exceeds α2 in December 2010, and this change of the order remains up to

the latest data point, April 2018.

Now let us analyze the movement of α4. From Figure SP2(d), under our identification

condition, we can understand the fourth factor of Utility and Health Care versus cyclical

industries. As shown in Figure SP1, the first estimate of the fourth factor appears in February

2004, with the value of α4 being 0.80. Since its appearance, it is often not estimated, but it is

from March 2010 onward, seemingly becoming increasingly strong toward the latest month,

April 2018. Since its first appearance, the value of α4 is mostly between 0.75 and 0.80. After

the sharp one-off drop in February 2015,14) α4 rises to become the highest next to the first

factor from November 2016 onward.

G Some Examples of Rotation

Inspired by a suggestion from the AE and referee, we illustrate when the sparsity of B∗ is

preserved. We find that sparsity is rotation variant, which implies that the degree of spar-

sity of B0 can rise after the rotation of sparse or dense B∗. Of course we can easily give an

example in which B0 is less sparse than B∗; see Freyaldenhoven (2020).

Example 1: B∗ is sparse and B0 is more sparse. Suppose r = 2 and consider a N × r
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Figure 13: the portion of the industrial sectors in S&P500 and in the
positive/negative 1st factor loadings

Figure 14: the portion of the industrial sectors in the posi-
tive/negative second factor loadings

Figure 15: the portion of the industrial sectors in the posi-
tive/negative third factor loadings

Figure 16: the portion of the industrial sectors in the posi-
tive/negative fourth factor loadings
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matrix

B∗ =


 b∗

1 b∗
1

b∗
2 0


 ,

where b∗
1 and b∗

2 are N1 × 1 and N2 × 1 vectors with non-zero elements such that b∗
1 6= b∗

2

and N = N1 +N2. Consider the r × r rotation matrix

H =


 0 1

1 −1


 , H−1 =


 1 1

1 0


 .

It is easily seen that

B∗H−1 = B0 =


 b∗

1 0

0 b∗
2


 ,

which is sparser than B∗. Note that B0′B0 = diag(b∗′
1 b

∗
1,b

∗′
2 b

∗
2).

Example 2: B∗ is dense but B0 is sparse. Suppose r = 2 and consider a N × r dense

matrix

B∗ =


 ab∗

1 b∗
1

ab∗
1 −ab∗

1


 ,

where a 6= 0,−1 and b∗
1 is an N/2 × 1 vector with non-zero elements. Consider the r × r

rotation matrix

H =
1

1 + a


 a 1

1 −1


 , H−1 =


 1 1

1 −a


 .

It is easily seen that

B∗H−1 = B0 =


 (a+ 1)b∗

1 0

0 a(a+ 1)b∗
1


 ,
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which is sparse. Note that B0′B0 = b∗′
1 b

∗
1 diag((a+ 1)2, a2(a+ 1)2).
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