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PROTOCOL Open Access

The Safety INdEx of Prehospital On Scene
Triage (SINEPOST) study: the development
and validation of a risk prediction model to
support ambulance clinical transport
decisions on-scene—a protocol
Jamie Miles1,2* , Richard Jacques3, Janette Turner1 and Suzanne Mason1

Abstract

Background: Demand for both the ambulance service and the emergency department (ED) is rising every year and

when this demand is excessive in both systems, ambulance crews queue at the ED waiting to hand patients over.

Some transported ambulance patients are ‘low-acuity’ and do not require the treatment of the ED. However,

paramedics can find it challenging to identify these patients accurately. Decision support tools have been

developed using expert opinion to help identify these low acuity patients but have failed to show a benefit beyond

regular decision-making. Predictive algorithms may be able to build accurate models, which can be used in the

field to support the decision not to take a low-acuity patient to an ED.

Methods and analysis: All patients in Yorkshire who were transported to the ED by ambulance between July 2019

and February 2020 will be included. Ambulance electronic patient care record (ePCR) clinical data will be used as

candidate predictors for the model. These will then be linked to the corresponding ED record, which holds the

outcome of a ‘non-urgent attendance’. The estimated sample size is 52,958, with 4767 events and an EPP of 7.48.

An XGBoost algorithm will be used for model development. Initially, a model will be derived using all the data and

the apparent performance will be assessed. Then internal-external validation will use non-random nested cross-

validation (CV) with test sets held out for each ED (spatial validation). After all models are created, a random-effects

meta-analysis will be undertaken. This will pool performance measures such as goodness of fit, discrimination and

calibration. It will also generate a prediction interval and measure heterogeneity between clusters. The performance

of the full model will be updated with the pooled results.

Discussion: Creating a risk prediction model in this area will lead to further development of a clinical decision

support tool that ensures every ambulance patient can get to the right place of care, first time. If this study is

successful, it could help paramedics evaluate the benefit of transporting a patient to the ED before they leave the

scene. It could also reduce congestion in the urgent and emergency care system.

Trial Registration: This study was retrospectively registered with the ISRCTN: 12121281
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Background
Demand in the emergency care system is increasing. In

prehospital care, this translates to an increase of around

5% per annum and in the emergency department (ED) is

around 3–6% [1, 2]. When the ED is busy, ambulance

crews can be held in a queue at the ED and this is

known as offload delay. In the winter of 2019/2020 in

England, there were 137,009 offload delays of between

30 and 60min and 39,304 delays of over an hour [3].

With crews held at the ED, it reduces the prehospital

fleet capacity to respond to emergencies and subse-

quently puts patients in the community at risk.

One of the contributors to demand in the system is

the case-mix of patients that access emergency care.

The majority of ambulance service patients require

fewer critical interventions and more community-

based care [4, 5].

This appears to be at a juxtaposition to the training of

paramedics. Numerous studies have found that there is

role confusion when paramedics are presented with a

low-acuity patient, as their foundational knowledge and

education was rooted in emergency care [6–11]. This

meant that decisions to leave a patient at home (non-

conveyance) are the most complex to make and this was

further compounded by a perceived lack of managerial

support [6].

As a result, transport decisions are not always ac-

curate and there could be between 9 and 32% avoid-

able conveyances to the ED [4, 12–14]. Miles et al.

used vignettes of real patient journeys and asked

paramedics to make transport decisions. They found

that there was clear agreement between the sample

paramedics (k=0.63), and the overall accuracy in

decision-making was 0.69 (95% confidence interval

(CI) 0.66–0.73). Reassuringly, the sensitivity for trans-

port decisions was high (0.89, 95% CI 0.86–0.92)

meaning that there were few decisions not to convey

a true emergency. However, the specificity was 0.51

(95% CI 0.46–0.56) meaning that almost half of the

sample decided to transport a low-acuity patient [15].

There is a paucity of evidence for transport decision-

support tools for paramedics. One example, which has

been adopted by numerous ambulance services, is the

paramedic pathfinder tool [16, 17]. This was developed

using a Delphi approach with a multidisciplinary team of

experts. The tool was user tested in 2014 on a sample of

481 patients (361 medical patients and 114 trauma). Re-

sults for medical patients showed a sensitivity of 0.94

(95% CI 0.91–0.97) and specificity of 0.58 (95% CI 0.49–

0.66). For trauma sensitivity was 0.96 (95% CI 0.88–0.99)

and specificity 0.6 (95% CI 0.48–0.72). These results are

not a significant improvement on paramedics making

their own decisions, which limits the usefulness of the

pathfinder tool.

A recent systematic review by Miles et al. looked at

whether computer algorithms could triage the acuity of

all patients entering emergency care and support deci-

sion making [18]. They found 92 models from 25 stud-

ies. The review demonstrated that it is possible to triage

patients accurately using machine-learning algorithms

but only six studies had a prehospital focus. Two studies

demonstrated that prehospital variables could predict

hospital admission. Meisel et al. used logistic regression

to create an admission prediction score with a C-statistic

of 0.80 [19]. Li and Handly used a panel of algorithms,

with the most successful being a modified support vector

machine, which had an accuracy of 0.81 [20].

Seymour et al. used logistic regression to derive a risk

score to predict critical illness in prehospital patients.

Their model had a C-statistic of 0.77 (95% CI 0.76–0.78)

[21]. van Rein developed a triage model for trauma pa-

tients and found that the model had a C-statistic of 0.82

(95% CI 0.81–0.83) [22].

These studies have demonstrated that it is possible to

develop accurate models prehospital for triaging patients

using clinical data. However, they have been developed

to predict high-acuity patients as opposed to low-acuity.

Objectives

Primary research question

Can ambulance service clinical data predict an avoidable

attendance at the ED in adults?

Primary objective

To build risk prediction models using prehospital clin-

ical data as input candidate variables, and ED experience

as the output variable.

Primary outcome measure

An avoidable attendance at ED as defined by O’Keeffe

et al. (2018). This is described as ‘First attendance

with some recorded treatments or investigations, all

of which may have reasonably been provided in a

non-emergency care setting, followed by discharge

home or to GP care’ [13].

Secondary research questions

What is the simulated transportability of the model de-

rived from the primary outcome?

Secondary objectives

Evaluate model test performance under different spatial

test sets.

Compare the different models for accuracy and feasi-

bility to embed in practice.

Secondary outcome measure

There are no secondary outcome measures
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Methods and analysis plan
This protocol has used the Transparent Reporting of a

multivariable prediction model for Individual Prognosis

or Diagnosis (TRIPOD) guidelines in its structure [23].

The final study publication will also adhere to these

guidelines.

Source of data

This study is an observational cohort study using retro-

spective data. All patients attended by Yorkshire Ambu-

lance Service (YAS) have an electronic patient care

record (ePCR) completed by the paramedic treating

them. This contains all demographic and clinical data re-

lating to that episode. If the patient is transported to an

emergency department (ED), a similar record is created

for their ED episode containing all demographic and

clinical information. These two records will be linked to-

gether to create a single patient journey for each patient

from the moment the paramedic arrived on scene, to

their outcome at ED. This cohort is the primary analysis

cohort and will be used for model development, and

internal-external validation.

The data collection period started on 1st July 2019, as

this was the earliest date that Yorkshire Ambulance ser-

vice had a region-wide rollout of the electronic patient

care record (ePCR). The end date was the 29th February

2020. The end date was chosen for a maximum sample

size, without the data being compromised by the

COVID-19 pandemic. The data was not extracted until

after the end date.

Participants

The study is set in pre-hospital care but uses ED experi-

ence as the outcome. There is one ambulance service in-

volved (YAS) and sixteen EDs throughout Yorkshire.

Patients were eligible for inclusion if they were over

18 years old at the time of attendance and had a com-

pleted record in the ambulance service data, and the ED

data (if they were transported). The patients can be de-

scribed as largely ‘unselected’. This means all patients

are eligible, irrespective of any demographic or disease

process. The only restriction in selection is age being

over eighteen. This is due to ambulance service policies

often mandating the transport of children to hospital.

Outcome

The outcome of the model is a non-urgent attendance at

the ED. The reference standard is described by O’Keeffe

et al. who state: “first attendance with some recorded

treatments or investigations all of which may have rea-

sonably been provided in a non-emergency care setting,

followed by discharge home or to GP care.” [13]. This

definition has been transformed into a data-driven coded

definition and is found in the routinely collected Emer-

gency Care Data Set (ECDS), and the former Commis-

sioning Data Set (CDS) in the UK [24]. The full coded

definition can be found in the supplementary material.

The definition is calculated by examining each patient’s

ED experience across six variables. These are depart-

ment type, attendance category, arrival mode, investiga-

tions, treatments and discharge status. For a patient to

be coded as non-urgent, they need to only have experi-

enced the values recorded in the definition. As an illus-

trative example, please see Table 1.

The justification for this reference standard is that it

has been adopted by National Health Service (NHS)

Digital as the accepted definition of non-urgent attend-

ance at the ED. There are two modifications to this

standard for this study in that arrival mode was defined

as non-ambulance arrival, but this has been changed to

ambulance arrival only. The included investigations and

treatments have been expanded to reflect the practice of

the ambulance service and the provision of primary care.

The modifications were decided by an expert group.

Candidate predictors

In order to inform the protocol and the sample size cal-

culation, a combination of previously published litera-

ture and an exploration of prehospital data was used

(not used in model development). Previous prediction

modelling studies of emergency triage have published

variables that were significant in their models. Physio-

logical variables for example pulse rate and blood pres-

sure appear to be the most significant predictors of

Table 1 Illustrative example of how the definition is applied to patients

Variable Patient 1 Patient 2 Patient 3

Department type Type 1 Type 1 Type 1

Arrival mode Ambulance Ambulance Ambulance

Attendance category First First First

Investigations None Urinalysis, pregnancy test Urinalysis, chest X-ray

Treatments Guidance/advice Recording vital signs, prescription None

Discharge status Discharged Discharged Discharged

Non-urgent attendance Yes Yes No
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acuity. This is followed by patient comorbidities and

whether the case originated from a non-residential set-

ting [25, 26]. A sample of ambulance ePCRs (114,715)

was used to identify clinically useful candidate variables

in the ambulance data. The model is designed to be

pragmatic so if a candidate predictor had more than 30%

missing data it was removed. If a variable was likely to

contain missing data as it did not occur (judged by evi-

dence of a positive class within the variable) then ‘none’

was imputed. For example, the variable ‘drug_name’ only

gets completed if a drug is given. In the sample data,

there were 106,052 (93%) missing values in this field,

and in rest a specific drug was named (e.g. Adrenaline 1:

1000). Therefore, ‘no drug’ can be imputed into the

missing values as it is assumed nothing was adminis-

tered. This is the same process that NHS Digital use in

their definition of the outcome. In the sample, there

were 503 variables in the data. Four-hundred and forty-

three variables had more than 30% missing data and

were excluded from the analysis. This left 60 variables

available for analysis, physiological variables, interven-

tions, treatments and source of call (residential home,

care home etc.) were all included.

Statistical analysis methods

An XGBoost algorithm will be used to develop the

models. This has been chosen as it can accept missing

data in the candidate variables during model develop-

ment, which may have an advantage when transforming

it into an electronic decision support tool. Another

strength of a gradient boosted algorithm is that it can in-

crease the cost of errors on a minority class being pre-

dicted, which is a benefit in a dataset with a class

imbalance. It also has a strength over neural networks

when handling tabular data, which is how the data will

be structured in the analysis, and finally, it is fast at pro-

cessing data compared with other machine learning al-

gorithms. This is important when it comes to the

number of models required in a grid search (discussed

later).

Sample size

Minimum sample size was derived using ‘pmsampsize

v1.1.0’ package for R v3.6.1 for Windows [27]. This

package is based on the work of Riley et al. for calculat-

ing sample sizes for prediction models [28, 29]. A sys-

tematic review of similar outcomes including discharge

from ED, critical care requirement and hospitalisation

informed the sample size [18]. From these studies, the

average C-statistic was 0.80. Candidate variables were

examined in the non-conveyed data to estimate parame-

ters. A limitation with XGBoost is the handling of cat-

egorical variables. This requires each category within a

variable to become its own binary variable which has a

single degree of freedom. There was a total of 637 pa-

rameters identified in the data. The total parameters per

variable can be found in the supplementary material. A

study examining avoidable conveyances reported a con-

servative estimate of 9% avoidable conveyances in the

same population as this study [13]. The C-statistic was

transformed into a Cox-Snell R2 via the pmsampsize

package [30]. The arguments used in pmsampsize were

therefore type = binary, C-statistic = 0.80, parameters =

637 and prevalence = 0.09. This gave an estimated mini-

mum sample size of 52,958, with an anticipated 4767

events and an EPP of 7.48. A frequency analysis of the

actual ePCR dataset shows there were 328,763 patients

eligible for inclusion. However, the outcome measure re-

quires data linkage, with unsuccessful linkage causing

cases to be excluded [31]. This will likely result in fewer

incidents to be included in the study.

Missing data

Missing values within the candidate variables will be

handled as described above. If a variable contains miss-

ing values, it will be assessed as to whether they are the

negative class within the variable as opposed to missing.

This will be done by analysing the variable in the context

of the ePCR to check if the field is only completed if the

event happened. If this is the case, the missing values

will be imputed with ‘none’. Once this has been com-

pleted, any variable with more than 30% missing data

will be excluded from analysis, as this provides evidence

that the variable is not routinely collected and could

cause model failure in practice, if included. Once the

candidate predictors have been assessed for missing

values, missing fields in each case will be examined. If

any case does not have the outcome variable, but an ED

record present, they will be excluded from the analysis.

During model development, missing data will be handled

via sparsity-aware split finding. This happens as part of

the XGBoost algorithm. It uses non-missing data at each

split to generate a default split. Then if there is missing

information at the node, the algorithm defaults down

the branch [32].

Variable handling

Nominal, ordinal and binary will be treated in the same

way and will be one-hot encoded into binary variables.

Continuous variables will remain in their natural format.

Feature engineering of a previous attendance within 24 h

of the current incident will also be engineered into a

binary variable. The rationale to create this variable is so

the model is aware of a second contact with the emer-

gency service (ensuring it accounts for repeat presenta-

tions, which can indicate a missed problem the first

time). All variables will be included in the model devel-

opment initially. Then, the model will undergo Recursive
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Feature Elimination (RFE). A feature importance score

will be assigned to each feature and the least important

stripped from the model. The model will be developed

again with the same default hyperparameters but with

one less feature. This repeats with the accuracy being re-

corded each time. The optimum set of features to take

forward into model development will be identified by

the model with the highest C-statistic with the default

parameters. The data will be subset to only the features

that yielded the optimum C-statistic and this subset will

be used for all further modelling.

Hyperparameters

To prevent model overfitting, there will be tuning of

hyperparameters before developing each model. This will

be done with a fixed set of values for certain hyperpara-

meters within a restricted search space. In order to opti-

mise the search space for the grid search, individual

hyperparameters will be tuned on the whole dataset se-

quentially and the 3 best performing values within each

hyperparameter will be taken forward to create the re-

stricted grid search space for all subsequent modelling.

The following hyperparameters will be tuned:

To control model complexity the following hyperpara-

meters will be tuned:

max_depth—The maximum depth of each tree. The

initial search space will be between 2 and 10, with inter-

vals of 1.

min_child_weight—This is a threshold for whether to

continue partitioning a tree based on the sum of in-

stance weight, with larger numbers creating a more con-

servative model. The initial search space will be 1 and

10, with intervals of 1.

gamma—Also known as min_split_loss. Like min_

child_weight, it is a threshold for further partitions, but

is based on the minimum loss reduction. Initial search

space will be between 0 and 10 with intervals of 0.5.

To introduce randomness, making the training data

more robust to noise, the following hyperparameters will

also be tuned.

subsample—This is the percentage of the training data

that is randomly sampled at each boosting iteration. Ini-

tial search space will be between 0.5 and 1, with intervals

of 0.1.

colsample_bytree—Indicates what fraction of columns

(features) are selected for tree development per tree. Ini-

tial search space will be between 0 and 1, with intervals

of 0.1.

eta—step size shrinkage. The initial search space will

be between 0 and 1, with intervals of 0.1.

Once the restricted search space has been defined,

each time the modelling process requires hyperpara-

meter tuning, the grid search will run a total of 729 iter-

ations to find the optimum set of hyperparameters.

All other parameters will be fixed at the default value.

Development of the model

Conventional modelling strategies involve developing an

unadjusted model on the dataset and then evaluating the

apparent validity by testing the performance on the same

dataset it was developed on. Then, through a process of

resampling multiple times, models for each ‘resample’

can be developed by following the exact same modelling

steps as in the apparent model. Once this has been com-

pleted, the average performance can then act as a pen-

alty on the original model, creating an optimism-

adjusted model. This is known as internally validating a

model as it has been developed using resampling sam-

ples, but from the same data [33]. External validation

should occur in a different sample from the development

data, and preferably in a different geography and/or time

frame [33].

Apparent validation

In the strategy proposed here, the algorithm does not

create an unpenalized model to begin with. This is be-

cause tuneable hyperparameters are used to determine

how the algorithm is developed on the data, prior to

model development. In this way, the resultant model is

already penalised at the point of development. To obtain

the apparent validity of the full model, the three-step

process of tuning hyperparameters, building a model on

the optimal hyperparameters, and then evaluating the

performance will occur on the full dataset. This will be

the final model, as it has used the most information of

the underlying population in development. The perform-

ance however will still be optimistic, even with the tuned

hyperparameters as it has been evaluated in the same

data it was derived from.

Internal-external validation

This study benefits from using individual patient data

(IPD) from regional datasets clustered by ED. This pro-

vides an opportunity for internal-external cross-

validation (IECV).

Cross-validation (CV) is a method whereby the data is

split into K number of partitions (folds) and one-fold is

left out as a ‘test set’. The remaining folds are used col-

lectively to train a model. Once the trained model has

been applied to the test set, performance measures are

recorded, and the set is placed back in the data. The

next fold is then held out and the process repeated. This

repeats until all folds have been held out. The benefit of

cross-validation is that it provides a spread of perform-

ance instead of a point estimate. This is useful for indi-

cating model stability.

Nested cross-validation is a variant of CV and consists

of an inner-loop and an outer-loop. Like the CV
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procedure above, the data is split into ten random parts.

Then, one tenth is removed as an outer loop test set and

the remaining nine tenths are split into random folds

again. Due to the quantity of models being developed

using this method, this is likely to be 5 random folds.

One fifth of the inner loop is removed (inner loop test

set), and hyperparameters can be grid-scanned using the

data from the remaining four fifths. Optimum hyper-

parameters are then applied to the inner test set for

performance checking. The inner test set is then re-

placed, and the next fifth removed. The process repeats

until all five folds have been removed and tested. The

best performing inner loop model has its hyperpara-

meter values applied to the whole inner loop (in-effect,

outer-loop training set) to develop a model. This is then

applied to the outer-loop test set for model performance.

This outer loop tenth is then replaced and the process

repeated. Performing nested CV internally validates the

Fig. 1 Summary of steps
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model as it is resampling; however, the random splits

mean it is not being tested in a new geography.

As a way of simulating this, outer loop test sets are

not random but in fact spatial clusters. In this way, the

model is being internally-externally validated as it is re-

sampling from the same data but testing it in a new

population.

For spatial validation, a different ED will be used for

each outer loop holdout. For example, ‘the Sheffield ED

model’ will be trained on all EDs except for Sheffield,

and then the performance tested on the Sheffield data.

There are sixteen EDs in Yorkshire and therefore there

will be sixteen spatial clusters.

A limitation of this modelling strategy is the computa-

tional expense. For every model, there needs to be 729

models built to identify the optimal hyperparameters.

This is then repeated 5 times in each of the inner loops.

With 29 clusters (including the full dataset), this means

that there will be ~ 102,060 models required to be devel-

oped. If it becomes too expensive, then the number of

inner loop folds can be reduced from 5 to 3, and any

hyperparameter that has the default value as the

optimum value in the preliminary search space will be-

come fixed.

The different cluster results will then be pooled into a

random-effects meta-analysis [34]. This is to estimate

the average performance, the magnitude of heterogeneity

between clusters and the range of performance across

settings [35]. The predictor effects will not change from

the internally validated model, but the performance

measures will be updated according to the results of the

meta-analysis. It would also be possible to derive a pre-

diction interval for how the model would be expected to

perform in a similar population.

Evaluating the model performance

For hyperparameter tuning, the C-statistic will be used

to measure performance. For the apparent and IECV

models, there will be three evaluations. The first is the

goodness-of-fit as a general measure of model perform-

ance. This will be the Cox-Snell pseudo R2. For discrim-

ination, the C-statistic will be used and receiver

operating characteristic (ROC) curve plotted. For cali-

bration, the plot, intercept and slope will be calculated.

All the evaluation metrics will be entered into the meta-

analysis to pool and update the performance of the final

(full) model. Below is a figure graphically representing

the modelling steps (Fig. 1).

Discussion
Benefit of a new tool

This study aims to develop a prediction model that can

be used to create a tool supporting paramedics in mak-

ing appropriate and effective decisions for patients who

may not require the level of care provided by a hospital.

It is important as it is aiming to navigate care decisions

that will safely provide patients with the right care, first

time. If a paramedic can see the probability that their pa-

tient may have an avoidable attendance, it opens an op-

portunity to explore community options. It also

empowers the patient to be an active partner in develop-

ing a self-care plan.

It could also have secondary benefits such as freeing

ambulance fleet capacity to respond to a patient still

waiting for help. With less patients being transported to

the ED with low-acuity problems, it could also contrib-

ute to minimising delays in care for those who do need

specialist ED interventions.

Presenting the model as a tool

It is anticipated that the prediction model can be pre-

sented as a probability of the positive class to the clin-

ician. As an illustrative example, once all predictor

variables are inputted into the ePCR by the clinician, it

may display the following message—‘The probability of

this patient having an avoidable attendance at ED is

32%’.
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