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Abstract

Survival extrapolation plays a key role within cost effectiveness analysis and is often sub-

ject to substantial uncertainty. Use of external data to improve extrapolations has been iden-

tified as a key research priority. We present findings from a pilot study using data from the 

COU-AA-301 trial of abiraterone acetate for metastatic castration-resistant prostate cancer, 

to explore how external trial data may be incorporated into survival extrapolations. Exter-

nal trial data were identified via a targeted search of technology assessment reports. Four 

methods using external data were compared to simple parametric models (SPMs): informal 

reference to external data to select appropriate SPMs, piecewise models with, and without, 

hazard ratio adjustment, and Bayesian models fitted with a prior on the shape parameter(s). 

Survival and hazard plots were compared, and summary metrics (point estimate accuracy 

and restricted mean survival time) were calculated. Without consideration of external data, 

several SPMs may have been selected as the ‘best-fitting’ model. The range of survival 

probability estimates was generally reduced when external data were included in model 

estimation, and external hazard plots aided model selection. Different methods yielded var-

ied results, even with the same data source, highlighting potential issues when integrat-

ing external trial data within model estimation. By using external trial data, the most (in)

appropriate models may be more easily identified. However, benefits of using external data 

are contingent upon their applicability to the research question, and the choice of method 

can have a large impact on extrapolations.
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1 Introduction

Extrapolations of future overall survival (OS) are a key component of many economic evalu-

ations in health technology assessment (HTA). Due to an absence of data (especially in the 

longer term), extrapolations are inherently uncertain. Depending on the choice of OS extrapo-

lation, a given intervention may be considered cost effective when evaluated as part of an eco-

nomic model (and therefore be reimbursed), or potentially not be reimbursed if not deemed 

cost effective.

Often when undertaking survival extrapolation of treatment effectiveness for HTA, the 

main source of evidence comes from its pivotal clinical trial(s); however, other sources of evi-

dence may help with extrapolations. A better understanding of how these external data may be 

used to improve extrapolations has been identified as a key research priority, and is of particu-

lar interest where standard approaches that do not make use of external data yield unrealistic 

OS extrapolations (Jackson et al. 2017).

In this article, we consider a case study of abiraterone acetate (AA, Zytiga®, Janssen-Cilag 

Ltd) for castration-resistant metastatic prostate cancer previously treated with a docetaxel-con-

taining regimen. AA was the subject of a National Institute for Health and Care Excellence 

(NICE) technology appraisal, for which the pivotal COU-AA-301 trial provided the key clini-

cal evidence to support decision making related to both the clinical and cost effectiveness of 

AA (National Institute for Health and Care Excellence (NICE) 2012).

Two published COU-AA-301 analyses are available: an interim analysis by de Bono et al. 

(median follow-up of 12.8 months) and a final analysis by Fizazi et al. (median follow-up of 

20.2 months) (de Bono et al. 2011; Fizazi et al. 2012). At the time of submission to NICE, 

extrapolations of lifetime OS based on COU-AA-301 were uncertain, and so any extrapola-

tions from these data were subject to several limitations.

While the COU-AA-301 data are limited, a number of other trials have been conducted in 

a metastatic prostate cancer population, which may provide useful information when deter-

mining appropriate OS extrapolations (Dellis et al. 2019). While absolute values of OS may 

vary across trials (due to differences in patient characteristics and treatments received), tra-

jectories (shapes) of survival curves may be similar (an assumption commonly made within 

the context of conducting a network meta-analysis). For example, trial inclusion criteria can 

lead to an artificial suppression of mortality, followed by increasing mortality due to death 

amongst more frail patients and then a potential decrease to the lower mortality rates of less 

frail patients. Other trial data in the same disease area can be obtained from the published lit-

erature, with patient-level data recreated using existing algorithms (Guyot et al. 2012). Though 

some differences in patient populations and intervention effects are expected, it is anticipated 

that there are likely similarities across trials in patterns of survival over time.

Using the COU-AA-301 trial as a motivating example, this research aims to explore if 

extrapolations could be improved by combining COU-AA-301 and external trial data. More 

specifically, the research was focused on the feasibility of using external data within the con-

text of HTA decision making.
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2  Methods

In this section, the approach taken to identify suitable external data is described, along 

with how these data were used to inform survival projections. The section concludes with 

a description of how survival projections compare when external data are included using 

different methods, using a range of quantitative and qualitative approaches.

2.1  Identification of suitable external sources

The NICE website was searched for published technology appraisal guidance for prostate 

cancer interventions using the search term “prostate”. For each appraisal, the pivotal trial 

used to inform the manufacturer’s economic analysis was identified via final NICE guid-

ance. Using information from NICE guidance, published references providing information 

on OS from each trial were identified via a targeted search. Data from multiple interim 

analyses (where reported) were identified.

2.2  Extraction of relevant data

Kaplan–Meier estimates of survival probabilities (KMs) for the outcome of OS were 

extracted from each source. These curves were digitised using WebPlotDigitizer (v4.3) 

(Rohatgi 2020). After procurement of the digitised data, pseudo-individual level data were 

estimated using a published algorithm (Guyot et al. 2012).

The identified pivotal trials were categorised based on cancer stage and line of therapy. 

In addition, baseline median serum prostate specific antigen and the percentage of patients 

with bone metastases/disease spread to the bone were extracted—two established prognos-

tic variables in prostate cancer, that may also be used to establish the extent of disease (and 

thus, the comparability of studies) (Fizazi et al. 2015; Kuriyama et al. 1996). Using these 

four criteria, suitably similar trials were determined and deemed eligible for consideration 

in informing the estimation of OS (with explicit rationale for excluding individual studies 

documented).

2.3  Inspection of survival data

Data from the latest interim analysis from external studies were taken forward. For each 

trial, the treatment arm was denoted as either “active” or “placebo”.1 An initial comparison 

of KMs was undertaken to identify any studies that may appear to exhibit different patterns 

of OS over time. To further understand the pattern of OS over time, hazard plots were also 

produced to provide an estimate of the instantaneous risk (hazard) of death at each point in 

time.

1 Trial reporting was used to determine grouping. One exception was made for mitoxantrone monother-

apy, which was included in the “placebo” group. A systematic literature review by Collins et al. found that 

mitoxantrone + corticosteroids versus corticosteroids was not associated with any statistically significant 

improvement in OS (Collins et al. 2006).
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2.4  Approaches taken to leverage external data within survival estimation

The approaches to fitting survival models with and without external data are described 

in Fig. 1. The first two approaches have no formal incorporation; with either no consid-

eration of external data at all (1) or informal consideration when determining the most 

suitable extrapolation (2). The next two approaches adopt a piecewise approach with 

external data used after a given timepoint, without adjustment (3) or with further adjust-

ment via the specification of a hazard ratio (HR) assuming proportional hazards (4). The 

final approach (5) considers models fitted within a Bayesian framework, incorporating 

external evidence via a prior distribution assumed for the shape parameter (method ini-

tially proposed by Soikkeli et al.) (Soikkeli et al. 2019). A more detailed explanation of 

the latter three methods is provided in the supplementary appendix [SA].

All models were fitted using R statistical software, via the flexsurv and survHE pack-

ages (Baio 2018; Jackson et  al. 2019; R Core Team 2020). The combination of the 

flexsurv and survHE packages allows for all models to be fitted within R, as well as 

subsequent analyses to be undertaken in R as needed (such as generation of plots and 

extraction of parameters).

2.5  Comparison of survival projections

To compare the different approaches a range of methods were used, including visual 

inspection of the fitted survival models (versus the COU-AA-301 final analysis KM) and 

interpretation of hazard-based plots. Other metrics, such as statistical goodness-of-fit 

scores (information criteria; Akaike [AIC], Bayesian [BIC] and deviance [DIC]) (Spiegel-

halter et al. 2014), point estimate accuracy (i.e., the absolute difference in estimated sur-

vival probabilities at a given time point between the KM estimate and the survival model) 

and restricted mean survival time (RMST) at multiple time-points were also produced for 

completeness. However, for the purpose of this research, focus was placed on the plausibil-

ity of the models based predominantly on the qualitative assessment of the hazard function 

(and how the external data may be used to guide model fitting; for example, if there is an 

indication that long-term hazards will be monotonic or have a turning-point).

3  Results

3.1  Exploration of interim analysis data from COU‑AA‑301

A summary of the interim analysis data from COU-AA-301 is provided in Fig.  2. Two 

alternative hazard plots were produced based on smoothed and piecewise constant hazard 

estimates, using the R package muhaz (Hess and Gentleman 2019). The default settings of 

this package were used, with the maximum time value aligned with the end of the KM.

Until approximately 1 year of follow-up, there is a clear advantage associated with AA 

versus placebo. However, after this time, the curves appear to converge, illustrated in the 

hazard plots by the smoothed curves crossing. Interim analysis data from COU-AA-301 are 

limited after 1 year (median follow-up approximately 12.8 months). Up to this time-point, 

the hazard of mortality appears to be increasing for both treatment arms. Owing to their 
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Fig. 1  Summary of modelling fitting approaches. *Depending on the functional form chosen, applying a 

HR to a base curve may limit the interpretability of treatment effects on specific model covariates. Guyot 

et al. also highlight that an HR estimated via a Cox PH model will not have the same numerical value as an 

HR estimated by fitting a parametric model to both arms (Guyot et al. 2011). Despite these limitations, for 

the purpose of this research, this technical limitation was overlooked but should nevertheless be taken into 

consideration when interpreting results and considering the use of this method in other contexts. **Note for 

the generalised gamma model, two shape parameters were extracted. ***For the purpose of this analysis, 

the shape parameter was extracted and used as the mean of the prior distribution, with a standard deviation 

(SD) of 5% of the mean value assumed to apply. This imposes a strong prior belief that the ‘true’ shape 

parameter of the model fitted to the COU-AA-301 data is similar to that of the external trial data
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relatively simpler interpretation, smoothed hazard plots were considered for the remainder 

of the analysis.

3.2  Identification of suitable external studies

Nine published technology appraisals of prostate cancer treatments were identified (further 

information provided in SA Table  1). OS data could not be identified for one appraisal 

which was excluded. Information relating to disease stage, prior use of chemotherapy, 

serum prostate specific antigen, and presence of bone metastases were collated and com-

pared across trials for the remaining eight appraisals. Subsequently, three studies were not 

considered sufficiently similar to COU-AA-301 and were excluded (SA Table 2).

A total of five studies were therefore deemed potentially suitable to inform survival 

modelling. Two studies (PREVAIL and TAX327) were conducted in a chemotherapy-naïve 

population, whereas the other three studies (AFFIRM, ALSYMPCA, and TROPIC) were 

conducted in a chemotherapy-experienced/ intolerant population. Importantly, two separate 

curves are available for enzalutamide, across both a treatment-experienced and a treatment-

naïve population (AFFIRM and PREVAIL, respectively).

3.3  Inspection of data from suitable studies

Plots of OS from each of the included studies, including COU-AA-301, are presented in 

Fig. 3, alongside hazard plots.2

Figure  3 shows that outcomes in PREVAIL are noticeably better versus the other 

studies. This is perhaps because PREVAIL was the only study to have been conducted 

in a chemotherapy-naïve population, except for TAX327 (the pivotal study of docetaxel, 

i.e., chemotherapy used prior to the availability of targeted therapies). In addition, 

the PREVAIL study was published in 2017—the most recent study of those included, 

whereas the TAX327 study was published in 2008 (i.e., the oldest of the included 

Fig. 2  Survival and hazard plots from interim analysis of COU-AA-301

2 Hazard estimates were produced for the maximum follow-up time, and so the ends of the plots should 

be interpreted with caution. Separate hazard plots were also produced using only OS times after the 

12.8 months cut-point (SA Table 1).
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studies). The longest available follow-up data come from TAX327, wherein the KM 

estimates extend up to 5.5–6.5 years. All external trials had longer follow-up than the 

COU-AA-301 interim analysis.

Qualitatively, hazard functions by treatment arm were similar across the trials (as 

at the start of follow-up, when there is the most data, all functions show an initial 

increase followed by decreasing hazards), although there is clear variability across the 

different trials and considerable uncertainty in estimates at the end of follow-up (due 

to small patient numbers). There is an apparent increase in hazards for at least the first 

year across the active arms, after which a turning point is seen for some study arms 

(e.g., enzalutamide in AFFIRM). Conversely, for the placebo arms, hazards appear to 

decrease by as early as 6 months (e.g., placebo in AFFIRM). All the hazard plots exhibit 

a non-monotonic pattern, most of which have one turning point. Exceptions to this (e.g., 

Radium-223 in ALSYMPCA) are likely due to at least one event close to the end of 

follow-up seen in these two OS curves (see Fig. 3).

The trials with relatively longer follow-up (e.g., TAX327 and PREVAIL) do not 

exhibit a fall in hazards at the same timepoint as the other studies. This could be due 

to administrative censoring, small numbers of patients at risk, or differences in study 

populations across studies.

Owing to the clear differences in PREVAIL versus each of the other studies (includ-

ing AFFIRM, also a study of enzalutamide), PREVAIL was not considered sufficiently 

Fig. 3  Survival and hazards from included studies. Note: As noted previously, mitoxantrone monotherapy 

was designated in the “placebo” group on the basis of a systematic literature review by Collins et al., which 

found that mitoxantrone + corticosteroids versus corticosteroids was not associated with any statistically 

significant improvement in OS (Collins et al. 2006)
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comparable to inform subsequent modelling. A pooled OS curve (data for the remaining 

four studies) was considered hereafter.

3.4  Presentation and visual inspection of different approaches

3.4.1  Simple parametric models (SPMs) with no use of external data

Simple parametric model (SPM) fits to the COU-AA-301 interim analysis data are pro-

vided in Fig.  4. The corresponding hazard plots are provided in SA Fig.  2. In addition, 

AIC, BIC, and DIC scores for the different models are provided in SA Table 3.

The Weibull SPM may be considered a reasonable fit for either arm based purely on 

visual fit. Of note, the Weibull provides a very similar fit to the more flexible generalised 

gamma model. As the Weibull is a special case of the generalised gamma distribution, this 

suggests that a more complicated model is not required. The Weibull also provided the best 

fit for the AA arm, versus the log-logistic for the placebo arm. However, several other mod-

els provided AIC/BIC scores within 2–3 points of the ‘best-fitting’ model, and so could 

also be considered reasonable fits. In addition, the hazard plots (shown in SA Fig. 2) sug-

gest a monotonic model may be inappropriate for longer-term extrapolation.

Other than the exponential, none of the SPMs provided an especially poor fit to the 

KMs (acknowledging that fit towards the tail end of the KMs may be poor, though this part 

of the KM should be interpreted with caution). This was confirmed by the similarity of IC 

values. Therefore, excluding any consideration of external data, several of the SPMs could 

have been selected as the ‘best’ fitting.

3.4.2  Simple parametric models (SPMs) with informal use of external data

Figure 4 also compares the SPMs alongside the pooled external data. Comparing the KMs 

from COU-AA-301 and the external data, the pooled curve follows a similar shape to 

the COU-AA-301 curve, but outcomes are slightly better for the pooled cohort. Through 

inspection of Fig. 3 this is unsurprising, given that the curves for the individual studies that 

inform the pooled curve are associated with either similar or better survival versus COU-

AA-301, for both arms.

Based on Fig. 4, the exponential SPM is clearly incapable of fitting to the shape of the 

KM from either COU-AA-301 or the pooled external data. The Gompertz SPM may be 

considered to provide a pessimistic extrapolation for both arms, noting that by approxi-

mately 3 years nearly all patients are projected to have died (versus > 10% of patients still 

alive in the external data).

Conversely, the log-logistic and lognormal SPMs provide estimates of OS probabilities 

for the AA arm that are greater than the external data in the longer term, and are therefore 

likely optimistic. Corresponding estimates for the placebo arm resemble the external data 

in the longer term, as the curves fall within the 95% CI limits seen at the tail end of the 

KM; and therefore, these SPMs may also be optimistic (though more credible than the AA 

arm fits). Projections for the generalised gamma and Weibull SPMs exhibit a similar shape 

to the external data.

For the generalised gamma SPM fits to both arms independently, the longer-term haz-

ards (> 2 years) are estimated to be much greater for AA versus placebo (SA Fig. 2). Nota-

bly, the generalised gamma SPM estimates consistently increasing hazards in the longer 

term, even though this model is theoretically capable of reflecting non-monotonic hazards. 
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Given that a turning point in the hazard function may be expected, it is likely that the gen-

eralised gamma (and other models with monotonic hazards) may under-estimate longer-

term OS. Accordingly, the availability of the external data increases our confidence that a 

model that assumes monotonic hazards (such as the Weibull) is likely inappropriate in this 

context.

Fig. 4  Simple parametric models fitted to interim analysis compared with external data. Note: Inset plots 

illustrate difference between fitted models towards the end of the original Kaplan–Meier curve from the 

original COU-AA-301 data cut
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3.4.3  Piecewise models (PWMs)

To produce the piecewise models (PWMs), the same parametric models were fitted to re-

based,3 pooled external data (SA Fig. 3). Plots of the PWMs (alongside corresponding haz-

ard plots) are provided in SA Fig. 4. Sensitivity analyses were also considered with alterna-

tive cut points (± 3 months either side of the base-case of 12.8 months); however, results 

were largely unchanged when the cut point was varied, and so are not presented here.

The log-logistic and lognormal PWMs provided notably higher estimates of longer-term 

OS probabilities, which may be considered unrealistic based on the fit of these models to 

the rebased external data (SA Fig. 3). Estimates for the remaining four PWMs were largely 

in agreement. However, due to a combination of there being no adjustments made to the 

estimated hazards from the external data and the specification of a cut-point where the 

KMs are close together, the extrapolated tails fit to the external data KM well across both 

arms. This may be considered unrealistic for the AA arm in particular, as the earlier por-

tion of the KMs suggest improved OS in the external versus COU-AA-301 data, and pro-

vides motivation for considering adjustment of the extrapolated portion (discussed further 

within approach 3).

A further observation is that the PWMs incorporate a turning point in the hazards (SA 

Fig.  4). This is especially relevant in consideration of the fit of the generalised gamma, 

Gompertz, and Weibull models; as the SPM fits exhibited a constantly increasing hazard of 

death, which was misaligned with the estimated external data hazards.

3.4.4  Hazard ratio‑based models (HRMs)

Cox PH models were fitted to estimate a HR between the re-based COU-AA-301 data and 

the pooled external data (separately for the active and placebo arms) (Cox 1972). For the 

active arms, a HR of 0.675 (95% CI: 0.482, 0.946) was estimated for the external data 

versus COU-AA-301, indicating a relatively lower hazards for the external data after the 

cut-point of 12.8 months. For the placebo arms, an equivalent HR of 0.977 (95% CI: 0.586, 

1.628) was estimated (external data versus COU-AA-301), indicating little difference in the 

hazard of death between the sources after the cut-point. Consequently, the HR-based mod-

els (HRMs) for the AA arm are expected to produce different estimates compared to the 

PWMs; however, for the placebo arm, the results are expected to be very similar.

Plots of the HRMs are provided in SA Fig. 5. For the placebo arm, the HRMs yielded 

very similar results to the PWMs (due to a HR close to 1) and so are not discussed further. 

For the AA arms, an important difference versus the PWMs is the fact that the extrapolated 

tails fall close to, or even below, the external data (based on an HR of < 1 for the exter-

nal versus COU-AA-301 data). The HRMs may therefore be considered to provide a more 

realistic extrapolation versus the PWMs, notwithstanding the implications of applying a 

Cox PH-derived HR to a parametric model specified in a non-PH framework.

3.4.5  Bayesian simple parametric models (BSPMs) with prior for shape parameter(s)

Plots of the Bayesian SPMs (BSPMs) are provided in SA Fig. 6. The BPSMs showed gen-

erally more consistent extrapolations of OS compared with the SPMs. However, some 

3 See Fig. 1 for explanation of re-based data.
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extrapolations still yielded unrealistic longer-term hazards; namely, the Gompertz and 

Weibull BPSMs which yielded constantly increasing hazards in the longer term for both 

arms. These models are constrained to have monotonic hazards, which the external data 

suggest is unlikely to be appropriate. Conversely, the lognormal and log-logistic mod-

els were shown to produce estimates of longer-term survival probabilities similar to the 

external data, which (while an improvement on the extent of over-estimation shown for the 

SPMs) may still be deemed too optimistic. As the exponential model does not have a shape 

parameter, it could not be considered within this analysis.

3.5  Quantitative comparison of approaches

As described previously, three approaches were considered to compare the different models 

(statistical goodness-of-fit scores, point-estimate accuracy, and RMST). For the latter two 

approaches, the main result was based on the median follow-up in the COU-AA-301 final 

analysis (20.2 months, or 1.68 years), and so each of the percentages expressed below are 

indicative of OS evaluated at this time. Results are provided over a range of timepoints in 

the supplementary appendix, as well as AIC/BIC scores.

In terms of point-estimate accuracy (evaluated at 20.2  months), the most plausible 

SPMs fitted to the AA arm yielded estimates between 32.2 and 37.4% (point estimate 

value4: 36.4%). The PWM estimates were all > 36.4% (range: 37.7–41.1%), likely due to 

the lack of adjustment to account for differences in the absolute risk of death in the exter-

nal trial population. All the HRMs under-estimated (range: 30.7–34.9%), suggesting an 

over-adjustment. Excluding the Gompertz and Weibull BSPMs (given expectation of non-

monotonic hazards), 20.2-month OS was estimated within 1.3% (range: 35.8–37.7%). The 

most plausible SPMs fitted to the placebo arm under-estimated (range: 25.0–26.9%, point 

estimate value: 28.5%). The PWM and HRM estimates covered a broader range around 

the point estimate value (range: 25.9–30.9%); whereas the BSPMs under-estimated (range: 

20.8–26.6%). Full results are presented in SA Tables 4 and 5.

Through inspection of RMST, estimates based on each modelling approach generally 

yielded more consistent estimates when making use of the external data (across both arms), 

and produced a narrower range of estimates. For example, for the AA arm, the HRMs esti-

mated 10-year RMST to be 1.40–1.79 years across all six models, versus 1.22–2.10 for the 

SPMs. Despite this narrower range, each of the approaches demonstrates high variation 

dependent upon the functional form assumed. Full results are presented in SA Table 6 and 

7.

4  Discussion

This study demonstrates the feasibility of using external trial data from several different 

studies to inform extrapolations, based on the COU-AA-301 case study. By incorporating 

external data either implicitly or explicitly within parametric model fitting, the decision of 

which model(s) may be the most appropriate for HTA decision making can be aided and 

4 Please note that within the context of this study, the point estimate value refers to the actual trial data 

which should not be conflated with the true underling survival experience of patients outside the COU-

AA-301 trial.
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estimates of long-term survival probabilities may be improved. However, this finding is 

conditional upon the external data source providing ‘useful’ information concerning the 

expected pattern of OS for the target study.

After the end of the COU-AA-301 follow-up, estimates were shown to differ greatly 

between the SPMs versus those that incorporated the external data within their estima-

tion, especially those that initially predicted lower survival probabilities. The fact that the 

range of estimates in the longer term was narrowed following use of external information 

is helpful in discounting some models not deemed to provide credible extrapolations. For 

example, the SPMs estimated OS for the AA arm at 20.2 months between 32.2 and 37.4%, 

whereas the BSPMs estimated an equivalent range of 35.8–37.7% (point estimate value: 

36.4%). External data may also provide insight into the long-term behaviour of the hazard 

function. For example, a turning point in the hazard was seen for the placebo arm in each 

of the external trials, and in some of the active arms. This information can help to rule-out 

models which do not incorporate a turning-point.

A somewhat unexpected finding was the large variation in results based on different 

approaches to incorporating the external information. Previous research has typically 

focused on a specific method to incorporate external data, rather than comparing across 

different methods—for example, Soikkeli et al. presented models with a prior distribution 

set for the shape parameter(s) (Soikkeli et al. 2019). Our findings highlight a broader issue 

concerning the use of external data, in that the choice of approach (e.g., parametric func-

tion and/or method used to incorporate external data) can have a large effect on results, yet 

it may be difficult to choose which approach is the most suitable in a given scenario. This 

problem is exacerbated further by the fact that it is not always possible to rely on standard 

methods for comparing models when fitted with different data sets such as information 

criteria, as good within-sample fit is not always predictive of good extrapolations (Kearns 

et  al. 2021). Further research is required into identifying which methods work best and 

when, and may also consider more flexible survival models (Kearns et al. 2019).

This study shows how hazard plots are helpful in choosing between different models. 

However, their interpretation for the external data is challenging, given that studies were 

naïvely pooled which may lead to unusual peaks and troughs related to the period of fol-

low-up for each component study. In addition, the hazard estimates for the external data in 

the longer-term specifically are informed predominantly by one study (TAK-327), owing 

to its substantially longer follow-up. Despite these limitations, the hazard plots indicate 

a similar shape for the first year, yet longer-term hazards appear to plateau before falling 

towards the end of follow-up. It would be of interest to identify if similar hazard shapes 

were observed for other cancer trials. Similarity of hazard shapes for other trials would also 

demonstrate the appropriateness of incorporating external evidence to improve long-term 

extrapolations in other settings.

It was not possible to easily adjust for differences in patient characteristics within the 

context of this study, as the analysis makes use of several published studies (thus neces-

sitating the re-creation of pseudo-individual level data). Differences between the exter-

nal studies and the target study could therefore explain some of the inconsistencies in the 

results produced. Were individual-level data available for all studies, re-balancing of patient 

characteristics (e.g., via propensity scoring methods) may increase confidence in extrapola-

tions. However, even without such adjustments being possible, the external data may still 

reveal helpful information in guiding extrapolations (e.g., identification of expected turning 

points in the hazard function).

The methods considered within this study are by no means an exhaustive set of 

approaches that may be taken to incorporate external data within extrapolations and are 
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limited to those that make specific use of other trial data. An alternative Bayesian analy-

sis (beyond specifying a prior for the shape parameter of the model under consideration) 

may also address the problem of potential imbalances noted above (to an extent), and 

while beyond the scope of this pilot study, is an area for future research to expand upon 

these findings. Such research could also consider if incorporating external evidence 

helps to appropriately quantify extrapolation uncertainty (Kearns et al. 2020).

In our analysis, we considered external trial data to inform OS estimation. However, 

other types of external information may be of relevance to inform the most appropriate 

selection of survival model (or perhaps inform the estimation of OS itself). For exam-

ple, Cope et  al. explored how expert opinion may be incorporated with trial data to 

extrapolate OS (Cope et  al. 2019). Here, expert opinion may be used to validate the 

assumption of a turning point in the hazard function during the extrapolated phase, 

as suggested by the external trial data. In another study by Guyot et  al., a Bayesian 

analysis was undertaken to incorporate registry data, general population survival, and 

clinical opinion within extrapolations based on trial data (Guyot et al. 2017). The best 

approach(es) to combine external data, clinical opinion, and any other relevant informa-

tion sources within OS estimation remains an outstanding area for further research; and 

could be considered within a Bayesian framework.

Another implication of this research is the question of how much data should be inte-

grated within survival estimation versus how much should be reserved for validation. 

In machine learning, it is relatively commonplace to separate a given data source into 

training, validation, and/or test sets (Brownlee 2017). However, within the context of 

estimating OS from trial data, there is no established ‘gold standard’ approach to select-

ing other studies for estimation versus validation.

In conclusion, this study provides an illustration of how external data may be incor-

porated into OS estimation; and that by doing so, the range of extrapolations produced 

by plausible models was narrowed. Use of external data (either formally or informally) 

may therefore aid decision makers faced with choosing between a broad range of seem-

ingly-plausible survival models. Further research is required to further investigate how 

external data (and other information sources) may be robustly incorporated within OS 

probability estimates.
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