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RESEARCH ARTICLE Open Access

Mapping the EORTC QLQ-C30 to EQ-5D-3L
in patients with breast cancer
Laura A. Gray* , Monica Hernandez Alava and Allan J. Wailoo

Abstract

Background: The types of outcomes measured collected in clinical studies and those required for cost-

effectiveness analysis often differ. Decision makers routinely use quality adjusted life years (QALYs) to compare the

benefits and costs of treatments across different diseases and treatments using a common metric. QALYs can be

calculated using preference-based measures (PBMs) such as EQ-5D-3L, but clinical studies often focus on objective

clinician or laboratory measured outcomes and non-preference-based patient outcomes, such as QLQ-C30. We

model the relationship between the generic, preference-based EQ-5D-3L and the cancer specific quality of life

questionnaire, QLQ-C30 in patients with breast cancer. This will result in a mapping that allows users to convert

QLQ-C30 scores into EQ-5D-3L scores for the purposes of cost-effectiveness analysis or economic evaluation.

Methods: We use data from a randomized trial of 602 patients with HER2-positive advanced breast cancer

provided 3766 EQ-5D-3L observations. Direct mapping using adjusted, limited dependent variable mixture models

(ALDVMM) is compared to a random effects linear regression and indirect mapping using seemingly unrelated

ordered probit models. EQ-5D-3L was estimated as a function of the summary scales of the QLQ-C30 and other

patient characteristics.

Results: A four component mixture model outperformed other models in terms of summary fit statistics. A close fit to

the observed data was observed across the range of disease severity. Simulated data from the model closely aligned to

the original data and showed that mapping did not significantly underestimate uncertainty. In the simulated data,

22.15% were equal to 1 compared to 21.93% in the original data. Variance was 0.0628 in the simulated data versus

0.0693 in the original data. The preferred mapping is provided in Excel and Stata files for the ease of users.

Conclusion: A four component adjusted mixture model provides reliable, non-biased estimates of EQ-5D-3L from the

QLQ-C30, to link clinical studies to economic evaluation of health technologies for breast cancer. This work adds to a

growing body of literature demonstrating the appropriateness of mixture model based approaches in mapping.

Keywords: QLQ-C30, EQ-5D-3L, Utility mapping, Mixture models, ALDVMM

Background
There is often a disparity between the requirements of

cost-effectiveness analysis and evidence of their efficacy

from clinical studies. One area where this occurs relates

to the types of outcomes measured compared to those

required for decision making. In many jurisdictions,

decision makers routinely use quality adjusted life years

(QALYs) to compare the benefits and costs of treat-

ments across different diseases and different treatments

using a common metric. A year spent in full health is

represented with a value of 1 QALY. QALYs can be cal-

culated using preference-based measures (PBMs) of

health outcomes, or health utilities, but clinical studies

often focus on objective clinician or laboratory measured

outcomes and non-preference-based patient outcomes.
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This type of evidence gap is particularly apparent in

breast cancer where studies of new pharmaceuticals

often focus on time to disease progression, survival and

cancer specific measures of quality of life. Preference-

based measures are administered and reported much less

frequently. In this situation, one solution that analysts

can employ to enable a cost per QALY analysis to be

undertaken is to estimate preference-based health utility

values that would have been observed had such mea-

sures been administered, from the outcomes that were.

This linking of clinical and economic outcome measures

requires data from outside the clinical studies of treat-

ment efficacy and is typically referred to as mapping. It

is a technique in widespread use, underpinning many

economic evaluations in different disease areas, includ-

ing breast cancer [1–5]. In evaluations of health tech-

nologies for patients with breast cancer mapping has

previously been used, for example in economic models

considered as part of the NICE technology appraisal

process [6] and has been widely used to bridge this evi-

dence gap in other disease areas.

Often, very simple linear models have been used to es-

timate these PBMs from clinical measures. However, lin-

ear models have been shown to underperform and fit

data poorly in this type of analysis and when used to es-

timate PBMs which have non-standard distributions due

to their unusual scale [5, 7–9]. Generally these models

overestimate PBMs in those with poor health and under-

estimate it in those with better health. This could mean

that the benefits to patients of new treatments for breast

cancer are undervalued and appear less cost-effective,

often meaning that patients have less access to these

treatments.

In this paper, we map from the EORTC QLQ-C30 to

EQ-5D-3L, UK tariff, using bespoke mixture models and

compare results to other mapping methods in a sample

of breast cancer patients. Using data from the TH3RESA

breast cancer trial, we compare this technique with re-

sponse mapping which has also been shown to outper-

form many statistical techniques previously used in

utility mapping [10], as well as to a linear model. EQ-

5D-3L is the most commonly used PBM used to meas-

ure generic health utilities. It comprises five dimensions

(mobility, self-care, usual activities, pain, anxiety/depres-

sion) with three levels for each dimension (no problems,

moderate problems, extreme problems). The European

Organisation for Research and Treatment of Cancer

(EORTC) quality of life questionnaire (QLQ) assesses

health-related quality of life (QoL) of patients with can-

cer participating in international clinical trials. The

QLQ-C30 core questionnaire is commonly used in clin-

ical trials and other clinical studies and is made up of 30

questions [11]. It includes single-item measures as well

as multi-item scales; these include a global health status

(QoL) scale, five functional scales for physical, role, emo-

tional, cognitive and social functioning, three symptom

scales for symptoms of fatigue, nausea and vomiting and

pain, and six single-item measures for dyspnoea, insom-

nia, appetite, constipation, diarrhoea, and financial diffi-

culties. Each of these are conveyed on a 0–100 scale

where higher levels of functioning, QoL or levels of

symptoms are represented by a higher score.

There are studies which have mapped QLQ-C30 to

EQ-5D in patient with breast cancer previously. Crott

and Briggs performed mapping from the QLQ-C30 ver-

sion 1.0 to the UK EQ-5D tariff using approximately 800

observations from patients with locally advanced breast

cancer in a randomized controlled trial [3]. Kim et al.

also used OLS in a study using data from 149 patients

with breast cancer, and mapped QLQ-C30 to EQ-5D-3L

[12]. However, the results in each of these mapping

studies exhibited some degree of bias. All used linear re-

gression methods that have been shown repeatedly in

other applications to underestimate health utility for

those in good health and overestimate it for those in

poor health [7, 13]. The distribution of EQ-5D has a

number of non-standard characteristics. It is multi-

modal, has a large spike at 1 (representing full heath)

and a gap between full health and the next feasible value.

It also has a lower bound at − 0.594. Other studies have

mapped QLQ-C30 to EQ-5D in cancer patients, some of

whom had breast cancer and compared mapping using

OLS to other regression techniques including 2-part

models, Tobit models, response mapping and polyno-

mial splines [1, 14, 15]. However, all of the techniques

compared in these papers have failed to address all of

these characteristics simultaneously. The distributional

features of health utility data make such mapping ap-

proaches sub-optimal. The ISPOR Good Practice Guide

recognises this and recommends the use of models that

are less likely to suffer from bias [16]. More recently, a

HTA report has demonstrated how recently developed

bespoke methods have been repeatedly shown to per-

form well for this purpose [17]. Furthermore, Woodcock

and Doble mapped QLQ-C30 to EQ-5D in cancer pa-

tients, some of whom had breast cancer, and compared

linear models to response mapping, 2-part beta models

and mixture models. They found that the 2-part beta

models performed best overall, OLS estimated EQ-5D

well when patients were in good health, but that mixture

models performed better for patients in poor health [18].

Methods
Data

The data used in this study is from the trastuzumab

emtansine versus treatment of physician’s choice for pre-

treated HER2-positive advanced breast cancer (TH3RESA)

study. The TH3RESA study was a phase 3 open-label
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randomized controlled trial that randomized patients be-

tween 2011 and 2012. It includes data on 602 patients

who were recruited from medical centres across 22 coun-

tries in Europe, North America, South America, and Asia-

Pacific. Eligible patients were adults who had HER2-

positive, recurrent or unresectable locally advanced breast

cancer or metastatic breast cancer and had previously re-

ceived taxane therapy in any setting or more than one

HER2-directed regimens in an advanced setting; these in-

cluded trastuzumab and lapatinib. Patients were randomly

assigned in a ratio of 2:1 to trastuzumab emtansine (3.6

mg/kg intravenously every 21 days) or the physician’s

choice of treatment [19]. Patients were enrolled if they

had non-measurable or measurable disease defined by the

Response Evaluation Criteria in Solid Tumors (RECIST)

version 1.1. Patients completed the EORTC QLQ-C30

[20] version 3c [21] and the EQ-5D-3L questionnaire sim-

ultaneously, on the first day of each treatment cycle until

disease progression (assessed by the investigator) or their

treatment was discontinued. Multiple observations are re-

corded for each individual so we provide robust standard

errors. UK value sets [22] are used throughout.

Observations with missing data on variables used in

the mapping algorithms are removed from analysis. As

this is trial data, we do not believe that missing data will

influence results.

Statistical analysis

The distributional characteristics of EQ-5D-3L are such

that standard statistical models for mapping are inappro-

priate and tend to lead to biased estimates [7, 9, 13, 17].

A bespoke method for directly mapping to EQ-5D-3L

utility scores based on an adjusted limited dependent

variable mixture model (ALDVMM) approach has been

validated for mapping in several different disease areas

[7–9, 23, 24]. This method was applied in Stata v14,

using the publicly available Stata command ‘aldvmm’

[25]. The command was developed specifically for esti-

mation of the EQ-5D-3L. Here we use the UK tariff, but

the command can also be used for any international tar-

iff, the EQ-5D-5L and other health state utility measures.

In brief, each component in the mixture is normally dis-

tributed and limited at full health [1] and below at the

“pits” state, 33,333 (− 0.594). The command allows a gap

in the distribution between full health and the next feas-

ible value (in the UK case this is 0.883) corresponding to

the EQ-5D-3L. Therefore, even a single component

model is capable of reflecting a mass of observations at

the upper full health limit, and does not produce values

in the three non-feasible areas: above 1, below − 0.594 or

between 0.883 and 1. Mixing more than one of these

components adds flexibility to reflect other non-normal

characteristics of the typical EQ-5D distribution such as

multimodality.

We considered different numbers of components

within the mixture models and chose the optimal num-

ber of components based on a number of different mea-

sures of fit (mean error, root mean squared error

(RMSE), Akaike, Bayesian and Quasi information criteria

(AIC, BIC and QIC, respectively)) and judgements about

parsimony of the model. For the sake of comparison, we

also estimated a random effects linear regression model

and response mapping using seemingly unrelated or-

dered probit models. Response mapping is the term used

for a two stage mapping approach. Instead of directly

modelling the EQ-5D utility scores, response mapping

first estimates the probability of responding at level 1, 2

or 3 on each of the five dimensions of health, independ-

ently, as a function of QLQ-C30 and other covariates.

Stage two then calculates the expected utility scores

based on the probabilities for each of the 243 EQ-5D-3L

states.

We estimate seemingly unrelated ordered probit

models which combine the estimation results of the five

EQ-5D dimensions into a single parameter vector and

simultaneous variance-covariance matrix. This is done

using the cmd Stata command for estimating conditional

mixed process models with multilevel random effects

and coefficients.

The QLQ-C30 can be reported at different levels of

aggregation. Different options therefore arise for the

analysis. In its most granular form, each of the individual

30 questions can be entered as explanatory variables.

However, clinical studies rarely report the results to each

individual question, limiting the usefulness of any map-

ping to those situations where the economic analyst has

access to the raw patient level data. Furthermore, there

are clear correlations between many of the questions

which provides a rationale for combining them into sub-

scale scores. For example, the nausea and vomiting scale

is formed from two questions [26]. We therefore under-

took analyses that used the global health status scale,

functional and symptom scales and items. In all cases,

we rescaled these variables by dividing by 100. We also

included age as a covariates, but not sex due to the small

proportion of males in the sample (< 0.25%). In the case

of the mixture models, the subscale scores are included

as covariates in the individual components. Global

health status and the square of global health status were

included as covariates influencing the probability of

component membership.

To compare models, we use a range of measures and

visual techniques, as well theoretical appropriateness of

the model to determine which the best model is. This is

in accordance with the ISPOR good practice guide [16].

We report widely used measures of overall model fit

such as mean absolute error (MAE) and root mean

squared error (RMSE) as well as comparing the mean
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predicted and mean observed values. We also use

Akaike, Bayesian and Quasi Information Criteria to

compare models with the same dependent variables. In

addition, we use visual measures of fit. This is because

the measures reported above only provide a summary of

overall fit. For use in economic evaluation, mapping

models need to consider how different models fit, and

how this may differ, across the entire health distribution.

We will use cumulative distribution functions, showing

the actual and predicted data to determine how closely

each model fits the data across the distribution. We will

also use the mean observed versus the mean expected

values of EQ. 5D across different values of global health

status allowing us to examine model performance across

the spectrum of disease.

Next, we take the preferred models and using simu-

lated data, compare the results using this model to the

original data. This allows us to assess how well the

chosen model will estimate any uncertainty in the

model.

Results
Dataset

From a total of 3817 observations, 161 (4.2%) were

dropped due to missing values for EQ-5D or QLQ-C30

scores, leaving a sample of 3201 observations. Table 1

reports summary statistics on patient characteristics at

baseline and quality of life for all time points in the pa-

tients included in our sample. All but 9 of the 602 pa-

tients were female and mean age was 54 years. At

baseline, most patients had stage II (31%) or stage III

(37%) disease. The sample spanned the entire range of

disease severity measured by EQ-5D (− 0.594 to 1), with

111 distinct health states of the 243 that can be de-

scribed by EQ-5D.

Figure 1 shows the data exhibit characteristics typical

for EQ-5D. Mean EQ-5D was 0.715. Around 3% of ob-

servations or 101 observations were below zero and 861

(23%) were equal to one. The distribution (displayed in

Fig. 1) is tri-modal and has a gap between the mass of

observations at full health and the next feasible value

(0.883). Figure 2 displays the distribution of responses to

the five EQ-5D dimension questions. It shows that

whilst all response categories are included in the sample,

the number responding level “3”, the greatest level of

impairment, are relatively low. Only 1% of respondents

reported being at level 3 for mobility or self-care.

QLQ-C30 scores spanned their entire feasible 0–100

range for the global health status assessment and each of

the functional and symptom scales as well as the single

items. High scores for the global score and the func-

tional scales represent higher levels of quality of life

whereas high scores for the symptom scales and items

correspond to high levels of symptomatology. “Fatigue”

Table 1 Sample descriptive statistics

n Mean or % Sd Min Max

Baseline age (yrs) 602 53.6 10.5 27 89

EQ-5D 3766 0.715 0.263 −0.594 1

Global health status/QoL 3816 61.85 22.82 0 100

Physical Function 3817 76.74 21.98 0 100

Role Function 3817 70.84 29.47 0 100

Emotional Function 3817 74.67 22.99 0 100

Cognitive Function 3817 81.01 21.94 0 100

Social Function 3817 74.14 28.38 0 100

Fatigue 3817 35.67 25.65 0 100

Nausea / vomiting 3817 7.47 14.72 0 100

Pain 3817 27.32 27.49 0 100

Dyspnoea 3817 18.3 25.75 0 100

Insomnia 3817 27.05 28.85 0 100

Appetite loss 3817 16.77 26.39 0 100

Constipation 3817 19.53 27.56 0 100

Diarrhoea 3817 6.58 16.65 0 100

Financial problems 3817 21.47 31.37 0 100

Sex - female 598 99.34

Baseline Disease Stage

Stage 0 6 1.02

Stage I 70 11.93

Stage IIA 103 17.55

Stage IIB 81 13.8

Stage IIIA 111 18.91

Stage IIIB 58 9.88

Stage IIIC 41 6.98

Stage IV 117 19.93

Fig. 1 Histograms of EQ-5D-3L Utility Values
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has a mean score of 36 and is the dimension with the

highest level of problems.

Model results

We found that a linear regression suggested that “role

functioning” and “appetite loss” were insignificant in es-

timating EQ-5D. These were also non-significant, inter

alia, in the mapping work of Crott and Briggs and were

removed from the final analysis in their stepwise regres-

sion approach [3]. However, when using response map-

ping we found that these scores were statistically

significant in estimating some of the domains of EQ-5D.

We therefore kept these scores in our analysis.

We estimated ALDVMM models with different num-

bers of components and with different variables within

components and as predictors of component probabilities.

The preferred models included global health status, the

functional scales, the symptom scores/items as well as age

to predict each component. Each of these components has

a probability which is a function of a set of independent

variables. The probabilities of each component were de-

termined by global health status and its squared term. We

tried different combinations of variables predicting the

component probabilities but found that including only

global health and global health squared performed best.

This is in line with previous research [17] showing that

some measure of disease severity typically should be in-

cluded as predictors of component membership.

In order to make the results more comparable, all ex-

planatory variables included within components and

component probabilities are included in the linear model

and response mapping, we also include age squared in

order to add further flexibility to the linear and response

models. Table 2 shows summary fit statistics for ALDV

MM models with 1 to 4 components, as well as for the

response mapping approach estimated using seemingly

unrelated ordered probit models and a linear model esti-

mated using OLS.

The random effects linear regression model appears to

fit the data reasonably well based on summary fit mea-

sures. It has a low root mean squared error (RMSE) and

the predicted mean is close to that of the observed data.

The response mapping is less accurate at estimating the

mean EQ-5D-3L and has a larger RMSE than all other

Fig. 2 Distribution of EQ-5D responses by dimension
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models, however, the mean absolute error (MAE) is

marginally lower for the response mapping than for the

linear model. In general, the ALDVMMs outperform

both the linear and response mapping when looking at

the MAE, RMSE and mean prediction, particularly when

looking at the 3- and 4- component models. Note that

AIC, BIC and QIC cannot be compared between the lin-

ear regression, response mapping and the mixture

models.

Of the four ALDVMMs, the 4-component model is

preferred. It has the lowest RMSE, the estimated mean is

close to that of the observed data and it has the lowest

AIC, BIC and QIC values. Model preference was deter-

mined on the summary fit statistics given in Table 2 as

well as looking visually at the distribution of EQ-5D and

how the models with different numbers of components

fit the observed data.

In order to further compare the results of our models,

we examined model performance across the spectrum

of disease. This is because the summary fit statistics

given in Table 2 do not tell us how the models fit at

different parts of the distribution, they only give an

average fit. With so many explanatory variables the

most informative manner for displaying this is via the

cumulative distribution function (CDF). The CDF for

the 4-component ALDVMM, the response mapping

and the linear model are presented in Fig. 3. The 4-

component ALDVMM fits the observed data very

closely across the spectrum of severity. Most notably,

the ALDVMM exhibits little bias regardless of the

health of the patient. There is a relatively large disparity

in the observed data and predictions using response

mapping across the distribution, potentially due to the

small values that are observed in the most severe re-

sponse for mobility and self-care (see Fig. 2). Although

the linear model appears to predict the data better than

the response mapping at certain parts of the distribu-

tion, it exhibits an under estimation of EQ-5D in those

with good health and an overestimation in those in

worse health as is generally the case when using linear

models.

Figure 4 shows the mean observed and mean expected

values of the global health measure of the QLQ-C30 in

the 4-component ALDVMM, response mapping and lin-

ear regression. Again, the mixture model outperforms

the linear model and the response mapping, showing

very little difference between the observed and predicted

values. Although both the response mapping and the lin-

ear model predict well in the centre of the global health

score distribution, they both fail to predict well at either

end of this distribution. It is worth noting that, in line

with previous findings [7, 13], the linear regression

shows the usual underestimation for those in good

health and overestimation for those in poor health. Pre-

dicting well across the entire distribution is important if

results are to be used in cost-effectiveness analyses in

order to give unbiased and reliable conclusions.

Together, Table 2, Figs. 3 and 4 suggest that although

the linear and response mapping models can predict

mean values relatively well in this example, they can

struggle to estimate well across all parts of the distribu-

tion, particularly for those in very good or very poor

health. It is this aspect of fit that matters most when

using a mapping function in an applied cost effectiveness

analysis.

In order to illustrate the predictive accuracy in terms

of uncertainty of the preferred ALDVMM, we simulated

1000 data points from the 4 component ALDVMM

model for each of the observations. Figure 5 shows the

distribution of those simulations by component. The

plot illustrates the gap in feasible values below full

health, in all components.

There is a 0.2213 probability of observations being in

component 1, which has a mean EQ-5D of 0.6720 (sd

0.070). Observations are most likely to be assigned to

component 2 which has a mean EQ-5D of 0.8238 and

standard deviation 0.242 with a probability of 0.3213.

This component generates a substantial mass point at 1,

full health. Observations are least likely to be in compo-

nent 3 with a probability of 0.1686. Component 3 has a

mean EQ-5D of 0.4740 and a standard deviation of

0.371. Both component 2 and 3 contribute to the entire

Table 2 Comparisons of fit statistics

MAE RMSE AICa BICa QICa Meanb Absolute Difference

Linear regression 0.1203 0.1680 – – – 0.7103 0.0047

Response mapping 0.1191 0.1702 – – – 0.7057 0.0093

1 component ALDVMM 0.1196 0.1696 − 2302.11 − 2164.82 − 2289.01 0.7201 0.0051

2 component ALDVMM 0.1173 0.1684 − 2538.83 −2164.82 − 2515.96 0.7201 0.0051

3 component ALDVMM 0.1172 0.1677 − 2528.40 − 2154.39 − 2459.09 0.7171 0.0021

4 component ALDVMM 0.1173 0.1675 − 2673.51 − 2168.59 − 2629.49 0.7182 0.0032

MAE Mean Absolute Error, RMSE Root Mean Squared Error, AIC Akaike Information Criteria, BIC Bayesian Information Criteria
aNote that AIC, BIC and QIC cannot be compared between linear regression, response mapping and mixture models and so they are not included for the linear

model or response mapping
bmean observed = 0.7150
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range of EQ-5D. Component 4 has mean EQ-5D of

0.7781 and standard deviation 0.126 with observations

having a 0.2888 probability of being assigned to it. Over-

all, the simulated data closely aligned to the original

data. 22.15% of the simulated data were equal to 1 com-

pared to 21.93% in the comparable original data. The es-

timated mean EQ-5D was 0.7180 compared to the

observed mean of 0.7150. The variance was 0.0628 in

the simulated data versus 0.0693 in the original data,

and the skewness was − 1.502 in the simulated data and

− 1.522 in the observed data. This use of simulated data

compared with observed data shows that mapping can

appropriately reflect uncertainty in utility responses well.

The mapping from QLQ-C30 to EQ-5D-3L using the

4 component ALDVMM estimated in this study can be

implemented using Excel or Stata. An excel calculator

and a Stata .stir file and corresponding .do file can be

Fig. 3 Cumulative distribution function for 4 component ALDVMM,

random effects linear model and response mapping using ordered

probit models

Fig. 4 Mean expected vs Mean observed values for 4 component

ALDVMM, random effects linear model and response mapping using

ordered probit models
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found in the supplementary materials. These files make

it easy for the user to calculate the EQ-5D-3L from any

combination of QLQ-C30 scores.

Discussion
This paper provides estimates for the prediction of EQ-

5D-3L as a function of QLQ-C30 scale scores and symp-

toms for patients with breast cancer, based on a large

trial dataset comprising over 3800 observations. The es-

timates resulting from this study allow analysts to take

results of clinical studies that did not collect EQ-5D to

derive EQ-5D-3L utilities based on the QLQ-C30. Our

results add to a growing literature demonstrating that

many of the problems associated with the application of

standard statistical methods, widely used in mapping,

are largely eliminated by using the bespoke mixture

model approach. This is further outlined by comparisons

with Crott and Briggs who used OLS regressions to map

from QLQ-C30 to EQ-5D-3L; Fig. 2 of their paper

shows how using OLS in this context underestimated

EQ-5D in healthy patients and overestimates it in those

in poor health. Similarly, Young et al. [15], estimated

EQ-5D from QLQ-C30 using a variety of model types

(including linear regression, tobit, two-part models,

splining and response mapping using multinomial logis-

tic regression), in a dataset derived by combining separ-

ate studies of patients with breast cancer (n = 100), lung

cancer (n = 99) and multiple myeloma (n = 572). In their

study, all models exhibited substantial over-prediction of

EQ-5D for those in poorer health, and this tendency ex-

tended over a wide range of EQ-5D. For values of over

approximately 0.6 all models under-predicted EQ-5D. In

general, models mapping between QLQ-C30 and EQ-5D

have not performed well in different cancer types [3, 15,

27]. Methods that do not take into account the non-

standard distributional characteristics of EQ-5D dis-

cussed previously have a tendency to result in bias.

These biases matter because they result in new health

technologies appearing less cost effective than they

might truly be. The use of mixture models used in our

study appears to overcome these problems. The results

in this study are similar to those found in other applica-

tions including asthma [9], rheumatoid arthritis [8, 13],

osteoarthritis [24], ankylosing spondylitis [7] and trau-

matic brain injury [28], in that they suggest mixture

models are better equipped at predicting EQ-5D than

other regression models.

These results contrast with those of Woodcock and

Doble [18], in that we find that ALDVMM outperforms

a linear model estimated using OLS in both patients

with very good and very poor health.

Given the degree of variability in preference data of

this type, the preferred 4-component model has an ex-

cellent predicted fit across the utility distribution. The

unusual characteristics of the EQ-5D distribution are

closely mirrored by the mixture model. In particular, it

is worth noting that whilst it is often claimed that map-

ping substantially underestimates the uncertainty in

Fig. 5 Distribution for each component of the preferred 4 component mixture model
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utility responses, this study shows that this is not the

case. By comparing simulated data to observed data we

demonstrate that the results of this study produce good

estimates of uncertainty. This is an important finding

because if mapping algorithms are to be used in eco-

nomic analysis, it is important that uncertainty as well as

mean predictions can be estimated accurately.

The improvement in accuracy that the 4-component

ALDVMM provides compared to the response mapping

and linear prediction is both significant and important.

Take Fig. 4, for example. The linear model shows a dif-

ference in predicted EQ-5D of 0.62 if patients were to

move from the worst (0.30) to the best (0.92) health

state described by QLQ-C30. The value of this same

change using the estimates from the ALDVMM model is

0.78. The ALDVMM predicts poor health to yield a

lower EQ. 5D score (0.16) and a higher good health

score (0.95). This is not a trivial difference but a 26.4%

increase from using a more suitable statistical model.

The use of results from the linear model in an economic

evaluation would risk undervaluing the benefits of an ef-

fective health technology.

The use of the ALDVMM model ensures that whether

the mapping is used to populate health states for a deci-

sion model (such as pre and post progression) or to pre-

dict data for individual patients within a clinical study,

its outputs will be coherent and consistent with the

underlying EQ-5D instrument. In addition, values can-

not be predicted outside the feasible zones as they can

for other regression models.

Conclusion
Utility mapping, from cancer specific scores such as

QLQ-C30 to PBMs such as the EQ-5D-3L, underpin

economic evaluations for decision making bodies. Many

mapping methods which are commonly used are in-

appropriate and can undervalue the benefits of new

treatments of cancer patients, making them seem less

cost-effective than they are and therefore jeopardizing

patient access to newly available treatments. This study

provides a robust mapping method and corresponding

algorithm (in the form of excel file or Stata file) which

can allow benefits to patients to be appropriately

assessed.
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