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COMPUTATIONAL ELECTROMAGNETIC (CEM) MODEL VALIDATION AGAINST MEASURED AND
CALCULATED RESULTS

J F Dawson, M P Robinson and T Konefal

University of York, UK

INTRODUCTION

The Applied Electromagnetics Research Group at the
University of York are both users and developers of
numerical electromagnetic codes.  CEM codes are used
extensively to allow us to determine field data which is
impractical or impossible to measure, also to optimise
the design of electromagnetic systems. However the
"art" of numerical electromagnetic modelling is to
produce a model which is simple enough to compute,
yet containing the essential detail required to
accurately model the real physical system. In order to
validate the model, measured or analytical results are
used. The first challenge is to find a system which can
be both modelled and measured accurately. The second
is to discover where the error lies when the result
disagree! The third is deciding which model result
most accurately fits the measured data.

The paper presents examples of the validation of
numerical models using measured and calculated
results from a range of research projects undertaken at
York. These aim to show that both the measurement
and computational model are approximate
representations of the real-world, and that significant
effort must be made to ensure that they are sufficiently
similar if useful results and validation are to be
obtained. We shall also discuss how the choice of
metrics for the comparison of numerical, analytical
and measured data is influenced by the nature of the
EM problem being investigated

MODEL VALIDATION
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Figure 1: Transmission Through 5mm thick 30kS/m

conducting sheet, Analytic, ideal, and actual model).

Validation with analytic solution

The simplest solution to the problem of validating a
numerical model occurs when an analytic solution also
exists. There is no need to consider any uncertainty
associated with measurement. The development of a
thin conducting layer model for our TLM code is a
good example of this (1).

Transmission through a thin conducting layer.
Figure 1 shows a comparison of the analytic solution,
an ideal model and the actual implementation. The
effect of finite precision of the (32bit floating point)
implementation can be seen as the transmission
coefficient ceases to fall as it meets the numerical
noise floor.
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Figure 2: 3-D Validation geometry for the thin

conducting layer model.
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Figure 3: Electric field screening ratio for sphere –

TLM simulation with thin conducting boundary model

compared with analytic solution.
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Figure 2 shows a 3-D TLM model of a spherical shell
constructed from the thin conducting layer model.
Figure 3 shows the electric field screening ratio
predicted by the model and an analytic solution (1).
The analytic solution here does not account for the
(real) resonance which can be seen in the model.

Model validation against measurement

Most of the numerical modelling carried out in the
York research group undergoes comparison with
measured data in order to validate the model. The
main difficulty encountered here is developing a
scenario which can be both measured and modelled
accurately. A typical example is shown below.

Radiated emissions from a heatsink. The sample
heatsink has many fins. Due to the complexity of
modelling the full details we opted to model a simpler
geometry Figure 4.

Figure 4: The solid block heatsink used for

comparison with the numerical models

In order to allow validation of the numerical model the
set-up shown in Figure 5 was used for both
measurements and the computational model. The
heatsink was supported at each corner by a small
dielectric support (not included in the numerical
model) over a ground plane. The centre of the heatsink
was fed by a 50Ω source via a short wire (0.7 mm
diameter) protruding from the ground plane. This is
similar to the common mode excitation due to voltage
drops in the leads of an IC package and can also be
easily produced in the laboratory to allow validation of
the model by measurement. A 3cm high monopole at 1
m from the centre of the heatsink, connected to a 50Ω
load was used to sense the radiated field for model
validation purposes.

Microwave absorber was placed around the edges of
the ground plane to limit the effect of reflections from
nearby objects, as the measurements were carried out
on a laboratory bench.  Measurements were performed
using a network analyser to determine the
transmission from heatsink to monopole (S21). The
connecting cables to the heatsink and antenna were
underneath the ground plane and so did not interact
with the measurement.

In the model an ideal infinite ground plane was used,
the absorber and cables were not included.

The use of an OATS or anechoic chamber, with a Bi-
log type antenna might well be the obvious choice for
many engineers when presented with this problem.
The reason for our chosen setup was entirely due to the
fact that we could model the entire system (almost).

Metal plate for
excitation

Heatsink on dielectric support Monopole antenna

Copper ground plane

Screened cable

Top view

Side view

Figure 5: Measurement set-up for validation of

numerical models

Figure 6 shows one example of the coupling between
the heatsink and small antenna. The measurement
noise floor is also shown – it is very easy to think you
have data when all you measure is noise.
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Figure 6: Comparing the measured and simulated S21

from heatsink feed to monopole base for the block

heatsink - not grounded.

As we were interested in the effect of grounding the
heatsink, Figure 7 shows the ratio of coupling
measured with no grounding to that measured with the
heatsink grounded at each corner. Again the
measurement noise floor is shown, and accounts for
the deviation between measured and simulated results
at low frequencies.
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Figure 7: Comparing the measured and simulated

effect of grounding just the corners of the block

heatsink (Power grounded / Power not grounded).

COMPARISON OF DATA

We now consider the role of data comparison in the
validation of CEM models.  Subjective expressions
such as ‘poor agreement’ or ‘excellent agreement’ are
widely used in the literature but a numerical metric is
clearly more desirable.  In EMC applications we often
have to consider the frequency variation of a quantity
such as shielding effectiveness (SE) or radiated field.
The simplest metrics for comparing such data sets are
not necessarily the most appropriate.

Frequency responses in EMC problems often show a
number of resonances, which occur when structures
such as enclosures and cables are electrically large.
The peaks of these resonances are important because
that is when the greatest amount of energy is entering
or leaving an electronic system and potentially causing
EMI.  The Q-factor is also very significant as it is
closely related to the electromagnetic losses in a
system, although its importance often receives too little
attention in the literature.

Figure 8: plot of SE for ‘TLM’ (solid) and ‘ILCM’

(dashed)

An example is shown in Figure 8, which shows the SE
of an enclosure calculated by the transmission line

matrix (TLM) method and by a much faster
intermediate level computer model (ILCM).  The
vertical axis shows –SE to emphasise the resonant
peaks.  Most EMC experts would say that these curves
show good agreement: the plots run close together in
the smoothly varying response at low frequency, and
the resonant features above 500MHz occur at
approximately the right frequencies.

A common way of comparing curves is to consider the
differences at each frequency, and calculate either the
mean absolute error (MAE) or mean square error
(MSE). The problem with applying such metrics to
EMC data is that small offsets in peak frequency can
generate large values of MAE or MSE. We have
generated three artificial data sets to illustrate this
point.  (Figure 9 and Figure 10).  Which is closer to A:
B or C?

Figure 9 11: data sets ‘A’ (solid) and ‘B’ (dashed)

Figure 10: data sets ‘A’ (solid) and ‘C’ (dashed)

We can see ‘by eye’ that AB is a better match than
AC.  The peaks are slightly offset but in fact the peaks
in C are at the same frequencies as those in B.  In C
the trend is approximately correct but the peak values
are wrong by 15-20dB which would be very poor for
EMC modelling.  However if we try to use metrics
such as MSE to compare the curves the results are
counter-intuitive.  In Table 1 we present the mean
absolute error and root-mean-square (rms) error on
both logarithmic (decibel) and linear scales.



TABLE 1 – comparison of data sets using four
different metrics
metric A and B A and C
mean absolute error (dB) 3.7 3.2
rms error (dB) 5.4 4.9
mean absolute error (linear)1.7×103 1.1×103

rms error (linear) 5.1×103 4.0×103

All four metrics actually give AC as closer to AB.  The
problem is that these metrics only consider ‘vertical’
errors, but what we have is large vertical errors but
only small horizontal errors.  It is not just a simple
frequency shift because some peak offsets are positive
and others negative.

Alternative methods

An alternative method is to extract parameters that
characterise the peaks, and compare these rather than
the raw data.  We have written a program that finds
the peak frequency fp, Q-factor and peak power for
each resonance, by applying a curve-fitting algorithm
to the points near the maxima in the frequency
response (3).

The peak parameters for data sets A, B, C are shown
in Figure 11 and Figure 12. We can see that the
distance between equivalent points is much less for AB
than for AC. If we normalise the values of fp and Q to
the range of the axes in Figure 11 and Figure 12, then
the average Euclidean distance between equivalent
points is 0.067 for AB but 0.68 for AC. So an average
distance in ‘fQ’ space might be a better metric than
MEA or MSE.  The method could be extended by also
including peak power for a distance in 3-d ‘fQP’
space.

Figure 11: comparison of peak parameters for data

sets ‘A’ (circles) and ‘B’ (stars)

There are two problems with this metric.  First, how to
choose appropriate scales for the f, Q and P axes?
Secondly, what to do if there are different numbers of
peaks in the data sets?  CEM models may sometimes
produce extra or missing peaks.  An example is given

by Figure 13, which shows the peak parameters for the
raw data in Figure 8.  The first four pairs of points can
be easily matched but at frequencies above 2000MHz it
becomes more difficult.  Spurious peaks may also be
caused by measurement noise, so it is important to
have a knowledge of the noise floor of the
instrumentation, as highlighted above.  Dealing with
these problems is an ongoing area of our research.

Figure 12: comparison of peak parameters for data

sets ‘A’ (circles) and ‘C’ (stars)

Figure 13: comparison of peak parameters for SE data

obtained by ‘TLM’ (circles) and ‘ILCM’ (stars)

A number of alternative methods have been considered
by Weissenfeld (4) as part of a study into an innovative
shielding measurement.  One of these draws
inspiration from dynamic time warping (DTW) which
is a technique used for matching of audio data (5).
The algorithm involves expanding or compressing
parts of the horizontal axis in order to match up the
resonant peaks, and then calculating the mean square
difference.  The result is two metrics: an average
frequency shift and an ‘improved’ MSE.  Initial results
have been encouraging, although this algorithm also
has problems dealing with different numbers of peaks
in the two data sets.

These alternative methods offer the possibility of a
more appropriate metric than MAE or MSE, although
they are clearly less straightforward to apply.



Statistical comparisons

When enclosures and other structures are electrically
very large, then the mode density can become so great
that hundreds or thousands of resonances contribute to
the overall frequency response.  An example is given
by Figure 14, which shows –SE for an enclosure that is
much larger than that of Figure 8.  As the mode
density increases, the exact frequency of each peak
becomes very sensitive to small changes in the
geometry of the enclosure, and so attempting to
validate such a model against other data by MSE or
peak-parameter comparison would be difficult.

Figure 14: plot of SE calculated by TLM for a large

enclosure, showing a greater mode density at higher

frequencies

A alternative approach is to consider the statistical
distribution of the quantity being modelled.  If a
sufficient number of modes is excited, the values of
one component of the E-field at random positions in
an enclosure, e.g Ey, should follow the Rayleigh
distribution.  An interesting question is how many
modes are needed for this to be true.  We have found
by Monte-Carlo modelling that a key parameter α is
the ratio of the mode density (i.e. modes per Hz) to the
average bandwidth of each mode.  Figure 15 shows
that as α increases, the shape of the probability density
function becomes closer to that of a perfect Rayleigh
distribution.

It would be useful to have a single number to describe
how closely the distribution resembles the ideal for a
multi-mode enclosure.  We have found that a suitable
metric here is the ratio of mean to standard deviation
which is 1.06 for a single mode in a rectangular cavity,
and 1.91 for the Rayleigh distribution.  Table 2 shows
how this ratio quantifies the shift in the distribution as
the mode density increases.

CONCLUSIONS

Gaining measurement data against which to validate
numerical models requires careful attention to detail to
ensure that the two systems are identical. The best
method of comparing data sets depends on the nature

of the data being compared.  Mean square error may
be a good metric for slowly varying frequency
responses, while for resonant responses alternative
methods such as peak-parameter comparison may be
more suitable.  For very high mode densities statistical
parameters would be most appropriate.

Figure 15: probability density functions for α=30

(solid), α=1 (dotted) and α=0.1 (dashed)

TABLE 2 – ratio of mean of Ey to standard deviation
of Ey for different values of α

αααα ratio of mean to standard deviation
0.1 1.09
1 1.55
30 1.90

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support of
BAE Systems, Sun Microsystems, and QinetiQ who
have supported parts of  the work reported here.

REFERENCES

1. Cole, J. A., Dawson, J. F., Porter S. J., 1996,
"Efficient Modelling of Thin Conducting Sheets
within the TLM method", IEE  3rd Int. Conference on
Computation in Electromagnetics, Bath, 10-12 April ,
pp45-50
2. Dawson, J. F., Marvin, A. C., Porter, S. J.,
Nothofer, A., Will, J. E. ,Hopkins, S., 2001, “The
effect of grounding on radiated emissions from
heatsinks”, IEEE International symposium on EMC,
Montreal, 13-17 Aug  pp. 1248-1252
3. Robinson, M. P., Clegg, J., Stone D A, 2003. “A
novel method of studying total body water content
using a resonant cavity: experiments and numerical
simulation” Phys. Med. Biol. 48 pp 113-125
4. Weissenfeld, A., 2003, “New type of shielding
measurement for equipment enclosures” Studienarbeit
Thesis, University of Hanover
5. Keogh, E. J., Pazzani, M. J. 1999, “Scaling up
Dynamic Time Warping to Massive Datasets”,

Principles and Practice of Knowledge Discovery in
Databases, Prague, Czech Republic


