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Abstract

In this paper, we consider statistical inference for high-dimensional approximate fac-

tor models. We posit a weak factor structure, in which the factor loading matrix can

be sparse and the signal eigenvalues may diverge more slowly than the cross-sectional

dimension, N . We propose a novel inferential procedure to decide whether each compo-

nent of the factor loadings is zero or not, and prove that this controls the false discovery

rate (FDR) below a pre-assigned level, while the power tends to unity. This “factor

selection” procedure is primarily based on a debiased version of the SOFAR estimator of

Uematsu and Yamagata (2021), but is also applicable to the principal component (PC)

estimator. After the factor selection, the re-sparsified SOFAR and sparsified PC estima-

tors are proposed and their consistency is established. Finite sample evidence supports

the theoretical results. We apply our method to the FRED-MD dataset of macroeco-

nomic variables and the monthly firm-level excess returns which constitute the S&P 500

index. The results give very strong statistical evidence of sparse factor loadings under

the identification restrictions and exhibit clear associations of factors and categories of

the variables. Furthermore, our method uncovers a very weak but statistically significant

factor in the residuals of Fama-French five factor regression.

∗Correspondence: Yoshimasa Uematsu, Department of Economics and Management, Tohoku University,
27-1 Kawauchi, Aobaku, Sendai 980-8576, Japan (E-mail: yoshimasa.uematsu.e7@tohoku.ac.jp).
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1 Introduction

Factor models have become increasingly important tools for the analysis of psychology, fi-

nance, economics, and biology, among many others. This paper discusses statistical inference

for high-dimensional approximate factor models. These were first introduced by Chamber-

lain and Rothschild (1983), then developed in subsequent articles by Connor and Korajczyk

(1986, 1993), Bai and Ng (2002), Bai (2003), Fan et al. (2008), and Fan et al. (2011, 2013),

among many others.

Recently, Uematsu and Yamagata (2021) have considered estimation of the sparsity-

induced weak factor (sWF) models by extending the sparse orthogonal factor regression

(SOFAR) of Uematsu et al. (2019). The key assumption of the model is that the load-

ing matrix is sparse under the PCA restriction. If it is true, the SOFAR can more efficiently

estimate the sWF models than the PC. In this paper, we will propose an inferential method

and its theory for testing sparsity of the loading matrix.

1.1 Sparsity-induced weak factor models

Suppose that a vector of zero-mean stationary time series xt ∈ R
N , t = 1, . . . , T , is generated

from the factor model xt = B∗f∗t + et, where B∗ = (b∗
1, . . . ,b

∗
r) ∈ R

N×r with b∗
k ∈ R

N is

a matrix of deterministic factor loadings which has full column rank, f∗t ∈ R
r is a vector

of zero-mean latent factors, and et ∈ R
N is an idiosyncratic error vector independent of

f∗t . For a while suppose r is given. Let Σx = E[xtx
′
t], Σ

∗
f = E[f∗t f

∗
t
′], and Σe = E[ete

′
t]

with assuming Σ∗
f is positive definite and all the eigenvalues of Σe are bounded away from

zero and from above (uniformly in N). Then, the covariance matrix of data is expressed as

Σx = B∗Σ∗
fB

∗′ +Σe and λk(Σx) ≍ λk(B
∗Σ∗

fB
∗′) for each k = 1, . . . , r, where λk(·) denotes

the kth largest eigenvalue.

In the studies on high-dimensional factor models which employ the principal components

(PC) estimator, including Connor and Korajczyk (1986, 1993), Stock and Watson (2002a,b),

Bai and Ng (2002, 2006, 2013), Bai (2003) and Fan et al. (2018), it is typically assumed
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λk(B
∗Σ∗

fB
∗′) ≍ N for all k = 1, . . . , r, which is fairly restrictive. We call the models with

this condition the strong factor (SF) models. The SF model suggests a large gap between

the rth and the (r + 1)th eigenvalues. However, in representative financial and economic

data sets such a gap is often missing; for example, see the discussion for Figure 11 in Fan

et al. (2013) by Onatski. Inspired by the original approximate factor model proposed by

Chamberlain and Rothschild (1983), we characterize the “weakness” of the factor model by

λk(B
∗Σ∗

fB
∗′) ≍ Nαk with 0 < αk ≤ 1 for each k = 1, . . . , r. Following De Mol et al. (2008),

(Onatski, 2012, p.246) and Uematsu and Yamagata (2021), we call it the weak factor (WF)

model in this paper. The WF models allow different divergence rates of the signal eigenvalues

possibly slower than N . This structure is thought to be more appropriate for modeling the

financial and economic variables. Very recently, the weak factor models have started to be

used in the finance literature; see Anatolyev and Mikusheva (2021), Giglio et al. (2021), and

Kleibergen et al. (2021), for example.

To separately identify factors and factor loadings, we employ a specific rotation that is

also used for the PC estimator: B∗f∗t = B∗H−1Hf∗t = B0f0t , whereB
0′B0 = diag(b0

1
′
b0
1, . . . ,b

0
r
′
b0
r)

and E[f0t f
0′
t ] = Ir. Then, we obtain the model of our interest:

xt = B0f0t + et, (1)

with which we have λk(B
∗Σ∗

fB
∗′) = λk(B

0B0′) = λk(B
0′B0) = b0

k
′
b0
k for k = 1, . . . , r. The

last equality is due to the specific choice of the rotation matrix, H. Our approach links

the degree of sparsity in b0
k to the divergence rate of λk(Σx). Namely, suppose that b0

k

contains only ⌊Nαk⌋ nonzero elements, which naturally entails b0
k
′
b0
k ≍ Nαk , and hence

λk(B
∗Σ∗

fB
∗′) ≍ Nαk . Consequently we obtain λk(Σx) ≍ Nαk . It is called the sparsity-

induced weak factor (sWF) model. Freyaldenhoven (2021) considers a similar model and

propose a method of determining the number of relevant factors using the PC estimator.

Note that “sparse factor models” are not new in the literature. For instance, several authors,

including Wang (2008), Cheng et al. (2016), Choi et al. (2018), and Choi et al. (2021), have

considered sparse factor loadings, but their focus is different from ours and their modeling

frameworks do not necessarily connect with the sWF structure.
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Three remarks may be worth noting. First, we have b∗′
k b

∗
k 6= λk(Σx) in general, which

means that the degree of sparsity in B∗ cannot be straightforwardly linked to the divergence

rate of λk(Σx). Second, since the sparsity is rotation variant (i.e., it must generally mean

that a rotation can raise or reduce the degree of sparsity), starting from a sparse B∗ does

not make much sense for our purpose. Third, we are cautioned that the definition of “weak

factor” varies in the literature. For example, Onatski (2012), Bryzgalova (2016), Lettau and

Pelger (2020) assume non-diverging factors (i.e. αr = 0), which Chamberlain and Rothschild

(1983) and we exclude. See also Chudik et al. (2011) for categorizing the factors according

to the values of the exponents.

1.2 Empirical evidence of the sWF models

Influential empirical studies often give implicit yet strong evidence of sparse B0 in the sWF

models. For example, in order to analyze the characteristics of the factor f0t , Stock and

Watson (2002b) and Ludvigson and Ng (2009) investigate the association of f0
tk to groups of

the variables for each k = 1, . . . , r. Specifically, they extract the PC factors from standardized

N macroeconomic variables, then run N time-series regressions of the variables on each of the

extracted PC factors to report N values of R2s. They find high R2 values for a small number

of variables while the rest are very close to zero. Using similar macroeconomic variables,

Uematsu and Yamagata (2021) directly estimate the sparse B0 by the adaptive SOFAR

method, which embodies characteristics of factors. Observe that these studies provide point

estimation of a sparse loading matrix, but formal statistical inference on zeros in B0 has not

been considered.

1.3 Testing sparsity in sWF models

In this paper, we consider statistical inference on the sparsity in B0, regarding the sWF

model (with αk < 1 for some k) as the model under the null hypothesis of sparse B0. This

is important, because the WF structure, λk(Σx) ≍ Nαk with αk < 1 for some k ≤ r, can be

induced by non-sparse factor loadings, as the earlier discussion implies. For instance, it is

the case when a factor affects all the variables at similar strengths thinly. In a conventional

setting, we may consider a test for the null hypothesis of b0ik = 0 for all (i, k) ∈ H for given
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subset H ⊂ [N ] × [r], where [N ] := {1, . . . , N}. A standard testing procedure will work

when H is small. For our purpose, however, it is interesting to see whether b0ik = 0 for each

(i, k) ∈ [N ]× [r], which makes it difficult to apply the standard testing procedure.

1.4 Toward global inferences

Let S ⊂ [N ]× [r] denote the support (i.e., the index set of nonzero elements) of B0. Given

H as above, the hypothesis of Section 1.3 is formally rewritten as

H0 : (i, k) ∈ Sc for all (i, k) ∈ H vs. H1 : (i, k) ∈ S for some (i, k) ∈ H. (2)

This conventional hypothesis testing is sometimes labeled as a local inference since it only

focuses on a subset of indexes, H. It is noteworthy that rejection of H0 is not informative as

it merely tells us that not all the elements in H are zeros, especially when H is very large.

Alternatively, it is more interesting to investigate whether each entry in B0 is significantly

null or not. To this end, we consider a multiple testing for a sequence of pairs of hypotheses

H
(i,k)
0 : (i, k) ∈ Sc vs. H

(i,k)
1 : (i, k) ∈ S for each (i, k) ∈ [N ]× [r]. (3)

In such multiple testing problems, it is important to control the type I error while pursuing

a higher power. A classical measure of type I errors is the family-wise error rate (FWER)

and can be controlled by the methods of Bonferroni (1935) or Holm (1979), for instance.

However, the FWER control is too stringent and will lead to a very conservative variable

selection, especially in high dimensions. Instead of the FWER, it is more suitable to control

the false discovery rate (FDR) as another measure of type I errors. The FDR was first

introduced by Benjamini and Hochberg (1995) and is defined as the expectation of the false

discovery proportion (FDP):

FDR = E[FDP] with FDP =
|Sc ∩ Ŝ|
|Ŝ| ∨ 1

,

where Ŝ ⊂ {1, . . . , N}×{1, . . . , r} is a set of indexes discovered by some statistical procedure.

5



The associated power is defined as

Power = E

[
|S ∩ Ŝ|
|S| ∨ 1

]
.

The FDR controlled multiple testing is expected to keep high power even in high-dimensional

settings. This inferential framework for (3) can be called a global inference, in contrast with

the local inference for (2).

1.5 Contributions

In light of the recent development of global inferences described above, we first propose the

debiased SOFAR estimator of the sparse loadingsB0, learned from Javanmard and Montanari

(2014), van de Geer et al. (2014), and Zhang and Zhang (2014) in a linear regression context,

and establish its asymptotic normality. In addition, we show that the PC estimator is

asymptotically normal even for the sWF models, which is an extension of Bai (2003).

Building upon the asymptotic normality of the loading estimators, we consider multiple

testing (3) for the sequence, H
(i,k)
0 : b0ik = 0 vs. H

(i,k)
1 : b0ik 6= 0 for i = 1, . . . , N and

k = 1, . . . , r, and propose a method to control the FDR, which is inspired by Liu (2013)

and Javanmard and Javadi (2019). We prove that this method asymptotically controls the

FDR below a pre-assigned level while the power tends to unity. Although the theory is

established for the debiased SOFAR estimator, the method works with any asymptotically

normal estimators, such as the PC estimator; whereas the latter can be less efficient as it

cannot effectively utilize the sparseness of the loadings. Indeed, the Monte Carlo experiments

suggest that the finite sample distribution of the debiased SOFAR estimator is approximated

by normal distribution very well while that of the PC estimator is not, as the model becomes

weaker (sparser). It also shows that the proposed method controls the FDR while keeping

the high power satisfactory.

After the global inference, the natural loading matrix estimator is the debiased SOFAR

estimator with its insignificant elements being replaced with zeros. We coin it a re-sparsified

SOFAR estimator. Moreover, we propose a sparsified PC estimator, which is obtained after

the global inference based on the PC loading matrix estimator in a similar manner. We
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also establish their consistency. Since these estimators inherit the asymptotic normality of

the debiased SOFAR and PC estimators, they can be attractive alternatives to the adaptive

SOFAR estimator.

We apply our procedure to the FRED-MD dataset of macroeconomic variables and the

firm-level excess returns consisting of the S&P500 index. The results give very strong sta-

tistical evidence of sparse B0 under the identification restrictions and exhibit statistically

significant associations of factors and categories of the variables. In addition, applying our

method to the residuals of the regressions of the firm-level excess returns on the Fama and

French (2015) five factors uncovers a hidden, very weak but statistically significant factor.

1.6 Notational remarks and organization

For any matrix M = (mti) ∈ R
T×N , we denote by ‖M‖F, ‖M‖2, ‖M‖1, and ‖M‖max the

Frobenius norm, ℓ2-induced (spectral) norm, entrywise ℓ1-norm, and entrywise ℓ∞-norm,

respectively. Specifically, they are defined by ‖M‖F = (
∑

t,im
2
ti)

1/2, ‖M‖2 = λ
1/2
1 (M′M),

‖M‖1 =
∑

t,i |mti|, and ‖M‖max = maxt,i |mti|, where λi(S) refers to the ith largest eigen-

value of any square matrix S. Denote by IN and 0T×N the N×N identity matrix and T ×N

matrix with all the entries being zero, respectively. We use . (&) to represent ≤ (≥) up to a

positive constant factor. For any positive sequences an and bn that converge to some points

or diverge as n → ∞, we write an ≍ bn if an . bn and an & bn. Moreover, denote by an ∼ bn

if an/bn → 1. We also use X ∼ µ to signify that random variable X has distribution µ. For

any positive values a and b, a ∨ b and a ∧ b stand for max(a, b) and min(a, b), respectively.

The indicator function is denoted by 1{·}. For any k ∈ N, write [k] to represent {1, . . . , k}.

The paper is organized as follows. Section 2 formally defines the sWF models. Section

3 proposes the methodology of global inference for the sparse loadings. Section 4 explores

the statistical theory for the FDR control and power guarantee of our method. Section

5 confirms the finite sample validity via Monte Carlo experiments. Section 6 applies our

method to a large macroeconomic data set and firm-level excess returns. Section 7 concludes.

All the proofs of our theoretical results and additional experimental and empirical results

are collected in Supplementary Material.
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2 Sparsity-Induced Weak Factor Models

Consider the factor model in (1) more precisely. Stacking the vectors vertically like X =

(x1, . . . ,xT )
′, F0 = (f01 , . . . , f

0
T )

′, and E = (e1, . . . , eT )
′, we rewrite it as the matrix form

X = F0B0′ +E = C0 +E, (4)

where C0 is called the matrix of common components. By the construction, the model sat-

isfies the restrictions: EF0′F0/T = Ir and B0′B0 is a diagonal matrix. Then the covariance

matrix reduces to

Σx = B0B0′ +Σe.

As discussed in Introduction (Section 1.1), we consider the sWF models. Specifically, we

assume sparse factor loadings B0 such that the sparsity of kth column (i.e., the number of

nonzero elements in b0
k ∈ R

N ) is Nk := ⌊Nαk⌋ for k ∈ [r], where 1 ≥ α1 ≥ · · · ≥ αr > 0 and

exponents αk’s are unknown. Note that Nr must diverge since αr > 0 and N → ∞.

By the sparsity assumption and the diagonality of B0′B0, there exist some positive

constants d1, . . . , dr such that

B0′B0 = diag
(
d21N1, . . . , d

2
rNr

)

and d21N1 ≥ · · · ≥ d2rNr > 0. Then, under the assumption maxN λ1(Σe) < ∞, we have

λk(Σx)





≍ λk(B
0B0′) = λk(B

0′B0) = d2kNk for k ∈ [r],

= O(1) for k ∈ [N ]\[r].

This specification fulfills the requirement of the WF structure, λk(Σx) ≍ Nαk for all k =

1, . . . , N with αr+1 = · · · = αN = 0. Finally define S := supp(B0) ⊂ [N ] × [r] and

s := |S| =
∑r

k=1Nk. Thus |Sc| = Nr − s.
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3 Inferential Methodology

We develop a new inferential framework for the sWF models defined in Sections 1.1 and

2. First we propose a new estimator that can converge weakly to a normal distribution by

debiasing the SOFAR estimator. Using the estimator, we next consider global inference on

the sparsity pattern of B0 based on a multiple testing with the FDR control. The formal

theory of these results is developed in Section 4.

For the sWF models, we first need to estimate the number of factors, r. Uematsu and

Yamagata (2021) show that the method of Onatski (2010) asymptotically works well under

some conditions (see Section 4 for a theoretical summary). Namely, for given δ > 0 and

kmax ∈ N, define

r̂(δ) = max {k = 1, . . . , kmax − 1 : λk − λk+1 ≥ δ} , (5)

where λk is the kth largest eigenvalue of (N ∨T )−1XX′. In practice, δ should appropriately

be predetermined. Onatski (2010) suggests the edge distribution (ED) method based on a

calibration; see the paper for full details.

For such given r̂, the SOFAR estimator proposed by Uematsu et al. (2019) and Uematsu

and Yamagata (2021) is defined as

(F̂, B̂) = argmin
(F,B)∈RT×r̂×RN×r̂

{
1

2

∥∥X− FB′
∥∥2
F
+ η‖B‖1

}
(6)

subject to F′F/T = Ir̂ and B′B diagonal,

where η > 0 is a regularization coefficient. Setting η = 0 eventuates in the PC estimator.

The SOFAR estimator can be more efficient than the PC estimator for the sWF models

because it provides sparse estimates, whereas the PC does not.

Remark 1. The SOFAR problem (6) is nonconvex due to two constraints, but is numerically

stable. In fact, the SOFAR procedure is composed of two steps: first an initial consistent

estimator is obtained by a convex optimization, and then the SOFAR estimator is computed

by the nonconvex optimization in the shrinking neighborhood of the initial estimator. As a

result, it is stable and asymptotically globally optimal. For further information, see Uematsu
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et al. (2019).

3.1 Debiasing the SOFAR estimator

For inference in high-dimensional linear models, Javanmard and Montanari (2014), van de

Geer et al. (2014), and Zhang and Zhang (2014) have proposed a debiased (desparsified)

lasso estimator that can converge weakly to a normal distribution. In the same spirit, we

introduce the debiased SOFAR estimator to recover its asymptotic normality. Regarding

optimization (6), consider the KKT condition:

B̂F̂′F̂−X′F̂+ ηnV(B̂) = 0N×r, (7)

where the (i, k)th element of V(B) ∈ R
N×r for given B = (bik) ∈ R

N×r is defined as

vik(B)





= sgn(bik) for bik 6= 0,

∈ [−1, 1] for bik = 0.

Recall that C0 = F0B0′ and Ĉ = F̂B̂′. From (7) with the restriction F̂′F̂/T = I, we have

T−1ηV(B̂) = T−1(X− Ĉ)′F̂

= −(B̂−B0)− T−1B0F0′(F̂− F0) + T−1E′(F̂− F0) + T−1E′F0

=: −(B̂−B0) + T−1/2R+ T−1/2Z, (8)

where Z := T−1/2E′F0 and R := R(1) +R(2) with R(1) := T−1/2B0F0′(F̂−F0) and R(2) :=

T−1/2E′(F̂−F0). We may expect that each row of Z converges weakly to an r-dimensional

multivariate normal distribution while the bias term R is asymptotically negligible. From

this observation, we define the debiased SOFAR estimator:

B̂d := B̂+ T−1(X− Ĉ)′F̂ = B0 + T−1/2R+ T−1/2Z. (9)

Remark 2. Unlike the debiased lasso for high-dimensional linear models, the debiased SO-

FAR for the sWF models does not require approximation of the inverse covariance matrix.
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This is because the “covariate” f̂t is low-dimensional and satisfies F̂′F̂ = T I. As a result, the

behavior of the estimator is stable.

Bai (2003) established the asymptotic normality of the PC estimator for the SF models

(i.e., αr = 1), but the inferential theory has not been fully investigated for the WF models

with αk < 1 for some k = 1, . . . , r. In Section 4.1, we will derive the asymptotic normality

and consider the theoretical properties through comparison with the debiased SOFAR.

3.2 Asymptotic t-test

Under some conditions, each row of the debiased SOFAR estimator (9) can admit asymptotic

normality:

T 1/2
(
b̂d

i − b0
i

)
d−→ N (0,Γi) , (10)

where Γi = limT→∞ T−1
∑T

s,t=1 E[f
0
s f

0
t
′
esieti]. In order to consider inference based on the

asymptotic normality (10), a consistent estimator of the covariance matrix Γi is needed. As

suggested for the PC estimator in the SF model of Bai (2003), the HAC estimator of Newey

and West (1987) is provided:

Γ̂i = Γ̂0i +

H∑

h=1

(
1− h

H + 1

)
(Γ̂hi + Γ̂′

hi), (11)

where Γ̂hi = T−1
∑T

t=h+1 f̂têtiêt−h,if̂
′
t−h with H diverging at the rate O(T 1/3) (Andrews,

1991), for instance. Once the consistent estimator is obtained, a conventional asymptotic

test can be implemented.

3.3 Global inference for the loadings

From the discussion so far, the debiased SOFAR estimator can be used for significance tests

thanks to the expected asymptotic normality. As mentioned in Introduction, we consider a

multiple testing of a sequence of hypotheses (3), which is rephrased as

H
(i,k)
0 : b0ik = 0 vs. H

(i,k)
1 : b0ik 6= 0 for each (i, k) ∈ [N ]× [r]. (12)

11



For each (i, k), the t-statistic is defined as

Tik :=

√
T b̂dik
σ̂ik

, (13)

where σ̂2
ik is the kth diagonal element of Γ̂i introduced in (11). Repeating the t-test with a

“conventional” critical value, like 1.96, for each hypothesis will apparently fail in controlling

the type I error. Instead, we construct a new critical value t ≥ 0 that leads to the FDR

control of discoveries Ŝ, defined as the rejected indexes, {(i, k) : |Tik| ≥ t}. More precisely,

the following procedure yields a relevant critical value and corresponding active set that

asymptotically controls the FDR to be less than or equal to a predetermined level.

Procedure 1. Denote by R(t) =
∑

(i,k)∈[N ]×[r] 1{|Tik| ≥ t} the total number of rejections

in the multiple testing for (12) with critical value t.

1. For any target FDR level q ∈ [0, 1], define

t0 = inf

{
t ∈ [0, t̄] :

NrG(t)

R(t) ∨ 1
≤ q

}
, (14)

where t̄ ≤
√

2 log(Nr) is some positive value and G(t) = 2(1 − Φ(t)) with Φ the

standard normal distribution function. If (14) does not exist, set t0 =
√
2 log(Nr).

2. For each (i, k) ∈ [N ]× [r], reject H
(i,k)
0 if |Tik| ≥ t0. Finally Ŝ is formed by the whole

rejected indexes, Ŝ = {(i, k) ∈ [N ]× [r] : |Tik| ≥ t0}.

Note that R(t0) = |Ŝ| by the definition. In the next section, we will see that the FDR

of Ŝ is asymptotically controlled to be less than or equal to q. A similar procedure is found

in Liu (2013) and Javanmard and Javadi (2019); they consider FDR control in a Gaussian

graphical model and linear regression, respectively. The result for approximate factor models

is new to the literature.

Finally we propose a new estimator based on “re-sparsification” of the debiased SOFAR

estimator, using Ŝ. That is, the re-sparsified SOFAR estimator is defined as

B̂r = (b̂rik) with b̂rik = b̂dik1{(i, k) ∈ Ŝ}. (15)
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The estimator is attractive in that the sparsity pattern controls the FDR over (i, k) ∈ [N ]×[r]

and that given Ŝ each nonzero component admits the asymptotic normality inherited from

the debiased estimator. The consistency of this estimator is shown in the next section.

Remark 3. Procedure 1 works in principle with any other estimator that is asymptotically

normal, such as the PC estimator, instead of the debiased SOFAR estimator b̂dik in (13). The

associated sparsified estimator will be consistent as well.

4 Theory

We investigate the theoretical properties of the inferential framework proposed in Section

3. First we formally prove that the debiased SOFAR estimator and the PC estimator have

asymptotic linear representations, implying asymptotic normality. Next we prove that Ŝ

obtained by Procedure 1 controls the FDR and exhibits high power.

For the sake of convenience, define n = N ∧ T . Then we have N = N(n) → ∞ and

T = T (n) → ∞ as n → ∞. Throughout this section, set ηn ≍ T 1/2 log1/2(N ∨ T ) in

optimization (6). Furthermore, following Vershynin (2018), we introduce a sub-Gaussian

random variable: a random variable Y ∈ R is said to be sub-Gaussian and denoted as

Y ∼ subG if there exists some constant c > 0 such that P(|Y | ≥ y) ≤ 2 exp(−y2/c) for all

y ≥ 0. Throughout the paper, including all the proofs in Supplementary Material, ν > 0 is

a fixed large constant, and n is sufficiently large.

Assumption 1 (Latent factors). The factor matrix F0 = (f01 , . . . , f
0
T )

′ is specified as the

vector linear process f0t =
∑∞

ℓ=0Ψℓζt−ℓ, where ζt = (ζt1, . . . , ζtr)
′ with {ζtk}t,k are i.i.d.

subG that has E ζ2tk = 1 and
∑∞

ℓ=0ΨℓΨ
′
ℓ = Ir. Moreover, there exist constants Cf > 0 and

ℓf ∈ N such that ‖Ψℓ‖2 ≤ Cf ℓ
−(ν+2) for all ℓ ≥ ℓf .

Assumption 2 (Factor loadings). Each column b0
k of B0 has the sparsity Nk = ⌊Nαk⌋ with

0 < αr ≤ · · · ≤ α1 ≤ 1 and B0′B0 = diag{d21N1, . . . , d
2
rNr} with 0 < drN

1/2
r ≤ · · · ≤ d1N

1/2
1 .

For k such that αk = αk−1, it holds that d
2
k−1 − d2k ≥ κ1/2d2k−1 for some constant κ > 0.

Assumption 3 (Idiosyncratic errors). The error matrix E = (e1, . . . , eT )
′ is independent of

F0 and is specified as the vector linear process et =
∑∞

ℓ=0Φℓεt−ℓ, where εt = (εt1, . . . , εtN )′
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with {εti}t,i are i.i.d. subG and Φ0 is a nonsingular, lower triangular matrix. Moreover, there

exist constants Ce > 0 and ℓe ∈ N such that ‖Φℓ‖2 ≤ Ceℓ
−(ν+2) for all ℓ ≥ ℓe.

Assumptions 1–3 are the same as in Uematsu and Yamagata (2021). Assumptions 1 and 3

specify the stochastic processes {f0t } and {et}, respectively, to be the stationary vector linear

processes satisfying the summability condition
∑∞

ℓ=0(‖Ψℓ‖2 + ‖Φℓ‖2) < ∞. The decaying

rates are at most polynomial, which includes a wide range of multivariate weakly dependent

processes. Under this condition we can achieve the concentration inequalities. Assumption 2

is key to our analysis and provides the sWF models. The sparsity in B0 makes the divergence

rate of λk(B
0′B0) possibly slower than N for each k = 1, . . . , r.

We summarize some preliminary results obtained by Uematsu and Yamagata (2021),

which will be a basis for the inferential theory developed in the following subsections. In

addition to Assumptions, we impose the condition that restricts the class of sWF models:

α1 + (1 ∨ τ)/2 < 3αr/2 + τ/2, (16)

where τ is such that T = ⌊N τ⌋. Roughly, this condition excludes the sWFmodels with α1 and

αr being far away from each other, especially when τ is small. Under Assumptions 1–3 with

condition (16), the rth largest eigenvalue of (N∨T )−1XX′ diverges while the (r+1)th largest

bounded with high probability. This property justifies the asymptotic validity of (5) with

any fixed positive constant δ; we have r̂(δ) = r eventually with high probability. Moreover,

the rates of convergence of the SOFAR estimator (F̂, B̂) and the PC estimator (F̂PC, B̂PC)

are derived for the sWF models under the same assumptions: ‖F̂−F0‖F+ ‖B̂−B0‖F . Rn

and ‖F̂PC − F0‖F + ‖B̂PC −B0‖F . RPC
n with high probability, where

Rn =
N

3/2
1 T 1/2 log1/2(N ∨ T )

Nr(Nr ∧ T )
, RPC

n = Rn(1 + γn), γn =
N1/2(Nr ∧ T )1/2

N
1/2
1 T 1/2

.

4.1 Theory on the asymptotic linear representation

In what follows, suppose r is known. The theorems below show the asymptotic linear repre-

sentation for the debiased SOFAR and PC estimators, respectively.

Theorem 1 (Debiased SOFAR). Suppose F0′F0/T = Ir. If Assumptions 1–3 and (16) hold,

14



then the debiased SOFAR estimator has the asymptotic linear representation

√
T
(
b̂d

i − b0
i

)
=

1√
T

T∑

t=1

etif
0
t + ri, (17)

where ri has the following bound with probability at least 1−O((N ∨ T )−ν):

max
i∈[N ]

‖ri‖max .
N

3/2
1 log(N ∨ T )

Nr(Nr ∧ T )
=: δ1.

Theorem 2 (PC). Suppose F0′F0/T = Ir. If Assumptions 1–3 and (16) hold, then the PC

estimator has an asymptotic linear representation

√
T
(
b̂PC

i − b0
i

)
=

1√
T

T∑

t=1

etif
0
t + rPCi , (18)

where rPCi has the following bound with probability at least 1−O((N ∨ T )−ν):

max
i∈[N ]

‖rPCi ‖max . δ1(1 + γn).

Remark 4. On condition F0′F0/T = Ir a.s. in Theorems above (and below), it has been

supposed only for technical simplicity and clarity of presentation. In fact, this is not necessary

to derive similar results since Assumption 1 guarantees EF0′F0/T = Ir and the law of large

numbers is applied. Without this condition, however, additional restrictions on {α1, αr} will

be required, which would render the results hereafter unnecessarily complicated.

The upper bound of the estimation error ri of the debiased SOFAR can decay faster than

that of the PC estimator. Hence, the finite sample normal approximation of the SOFAR

estimator can be more accurate. This behavior is also confirmed by numerical simulations

in Section 5. A precise discussion requires a lower bound, but this is beyond the scope of

this paper and is left for a future study.

In many cases, T−1/2
∑T

t=1 etif
0
t in (17) and (18) converges weakly to a normal distri-

bution, N(0,Γi), where Γi = limT→∞ T−1
∑T

s,t=1 E[f
0
s f

0
t
′
esieti], as shown in Bai (2003), for

instance. The following subsection deals with such a case with a stronger assumption on

{eti}.
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4.2 Theory on the global inference for the loadings

We establish the theoretical results for the FDR control and power guarantee explored in

Section 3.3. Although we focus on the procedure with the debiased SOFAR estimator here,

we may establish a similar result with the PC estimator, as mentioned in Remark 3. We

begin by strengthening the condition on the error term.

Assumption 4. The error matrix E = (e1, . . . , eT )
′ is specified as i.i.d. vector process {et}

with the elements eti being sub-Gaussian with its variance σ2
i and covariance σij = E[etietj ].

Assumption 5. For the correlation of eti and etj , ρij = σij/(σiσj) for all i 6= j, there exists

a partition {P1, P2} of set {(i, j) ∈ [N ]× [N ] : i 6= j} such that

|ρij | ∈





[
0, c/ logξ N

]
for (i, j) ∈ P1 with |P1| = N2 −N − |P2|,

(
c/ logξ N, ρ̄

]
for (i, j) ∈ P2 with |P2| = O(N2/ logξ N)

for some fixed constants c > 0, ξ > 1, and ρ̄ ∈ (0, 1).

The independence of Assumption 4 is required for technical reasons. Assumptions 1 and

4 make {etiftk} form a martingale difference sequence (MDS) for each (i, k). This enables

us to apply a strong approximation of sum of a vector MDS to a Gaussian random vector.

Furthermore, since Γi = σ2
i Ir in (10) under these assumptions, we can avoid dealing with

a complicated estimation error bound for the HAC estimator. Assumption 5 stipulates the

correlation structure of eti and etj over all i 6= j.

First we have the result of the FDR control of Ŝ.

Theorem 3 (FDR control). Suppose F0′F0/T = Ir and δ1 = O(n−c) for some c > 0. If

Assumptions 1, 2, 4, and 5 with (16) hold, then for any fixed q ∈ [0, 1], the FDR of Ŝ

obtained by Procedure 1 with setting t̄ =
√

2 log(Nr)− a1 log log(Nr) + a2, where a1 > 3

and a2 > 0 are arbitrary constants, is asymptotically controlled to be less than or equal to q.

Next we derive the result of power analysis. For this purpose, it is common to suppose

that the minimum signal does not decay too fast as n rises.
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Assumption 6. For S = supp(B0), the minimum signal is lower bounded as

min
(i,k)∈S

|b0ik| &
√

2 log(Nr)

T
.

Theorem 4 (Power guarantee). Suppose F0′F0/T = Ir and δ1 = O(n−c) for some c > 0.

If Assumptions 1, 2, 4, and 6 with (16) hold, and if s/N = o(1/ logN), then the power of Ŝ

obtained by Procedure 1 tends to unity.

Theorems 3 and 4 have revealed that the factor selection procedure (Procedure 1) pos-

sesses statistically desirable properties. That is, the FDR of Ŝ will be asymptotically con-

trolled less than or equal to pre-specified value q ∈ [0, 1], yet the power tends to unity.

Remark 5. In line with the literature on the adaptive lasso, the asymptotic normality of

the adaptive SOFAR estimator could also be established for the nonzero elements. However,

we do not pursue this direction, given the critique by, e.g. Leeb and Pötscher (2008) and

Pötscher and Leeb (2009), that the property requires a perfect model selection, which is

implied by a “beta-min” condition, and is very sensitive to a violation of the condition (see

Chernozhukov et al., 2015, Ch. 6). The same criticism could apply to the adaptive SOFAR

estimator. Meanwhile, our procedure based on the debiased SOFAR does not include any

model selection step. Note that Assumption 6 is used only for a power guarantee.

These properties are apparently inherited by the re-sparsified SOFAR estimator defined

in (15). The next theorem states additional properties of this estimator.

Theorem 5 (Re-sparsified SOFAR). Suppose all the conditions in Theorems 3 and 4. If

s2/N = o(1/ logN), then the re-sparsified estimator defined in (15) satisfies ‖B̂r−B0‖max →p

0 and
√
T (b̂rik − b0ik) →d N(0, σ2

i ) for any (i, k) ∈ Ŝ.

5 Monte Carlo Experiments

In this section we investigate the finite sample behavior of the debiased SOFAR estimator

and the associated inferential procedure, by comparing it with that of the PC estimator by

means of Monte Carlo experiments. First, we examine the quality of the standard normal

approximation of the distribution of a t-statistic for a factor loading. Next, we investigate
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the quality of the proposed FDR controlled global inferential procedure. Finally, we check

the efficiency of the re-sparsified SOFAR and sparsified PC estimators.

We consider the following Data Generating Process (DGP):

xti =

r∑

k=1

b0ikf
0
tk +

√
θeti, (t, i) ∈ [T ]× [N ].

The factor loadings b0ik and factors f0
tk are formed such that N−1

∑N
i=1 b

0
ikb

0
iℓ = 1{k = ℓ}

and T−1
∑T

t=1 f
0
tkf

0
tℓ = 1{k = ℓ}, by applying Gram–Schmidt orthonormalization to b∗ik and

f∗
tk, respectively, which are constructed as follows. Non-zero factor loadings are computed

as b∗ik = sikwik, where sik is drawn from Rademacher distribution, wik ∼ U(b, b̄), b = 0.103

and b̄ is chosen so that Var(b∗ik) = 1. The first Nk = ⌊Nαk⌋ elements of b∗ik for k = 1, 3, . . .

are non-zero, and the last Nk elements for k = 2, 4, . . . are non-zero. Let

f∗
tk = ρfkf

∗
t−1,k + vtk

for t ∈ [T ] and k ∈ [r] with vkt ∼ i.i.d.N(0, 1 − ρ2fk) and f∗
0k ∼ i.i.d.N(0, 1). b0ik for

(i, k) ∈ [N ]× [r] are fixed over the replications. The idiosyncratic errors eti are generated by

eti = ρeet−1,i + εti,

where εti ∼ i.i.d.N(0, 1− ρ2e).

For all the experiments we set r = 2 and θ = 0.5. We examine the performance of the

proposed methods across different values of exponents {α1, α2}. In particular, we consider

the combinations {0.9, 0.8}, {0.7, 0.6}, and {0.5, 0.4} with T,N ∈ {100, 200, 500}.

We consider three different t-statistics for the inference on each factor loading and for the

proposed FDR controlled multiple testing procedure. First, T0 denotes the t-statistic which

is the ratio of b̂ik and its population standard deviation (dropping the subscripts i and k

for simplicity). The other two are Tiid and TNW , which are the t-statistics based on Γ̂0 and

Γ̂, respectively; see (11). To economize the space in what follows we report the results for

the DGP with serially correlated factors and i.i.d. errors only, unless otherwise stated. The

results for serially correlated errors with TNW are qualitatively similar, and are reported in
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Section C in Supplementary Material.

5.1 Normal approximation of t-statistics

We examine the quality of the normal approximation of the various t-statistics defined above.

To evaluate the theoretical results in the earlier sections, we first inspect the distribution of

T0, which is b̂ik for null (i, k) ∈ Sc, scaled by its true standard deviation, referring to N (0, 1),

so that the assessment is exempted from the quality of the estimation of the variance of b̂ik.

For the same purpose, we employ i.i.d. factors and errors, by setting ρfk = ρe = 0 for all

k ∈ [r].

Figures 1–6 report the Q-Q plots of T0 against N (0, 1). The plots are based on 40,000

replications for the sample size N = T = 100. The left column shows the Q-Q plots of the

debiased SOFAR estimator, and the right column shows the Q-Q plots of the PC estima-

tor. As can be seen, when the factors are relatively strong, with {α1, α2} = {0.9, 0.8}, both

T0 based on the debiased SOFAR and PC estimators are virtually standard normally dis-

tributed. However, the distribution of T0 using the PC estimator deviates from the standard

normal further as the model becomes weaker, while that of the debiased SOFAR estimator

remains standard normally distributed, as weak as {α1, α2} = {0.5, 0.4}. This supports our

earlier theoretical results, established as Theorems 1 and 2. Qualitatively similar results

are obtained with Tiid and TNW and for serially correlated errors, which are summarized in

Section C.1 in Supplementary Material.

5.2 Global inference for the loadings

Having seen the accuracy of the normal approximation of the debiased SOFAR estimator,

we are ready to investigate the finite sample properties of the proposed procedure for global

inference. Recall that our interest is in testing whether each factor loading is zero or not,

by controlling the FDR to be less than or equal to a predetermined level, q ∈ [0, 1], while

achieving high power.

In this set of experiments, q is fixed at 10%. We employ the DGP with serially correlated

factors and i.i.d. errors (ρfk = 1/4 and ρe = 0). To assess the efficacy of the proposed

method to control the FDR, we report the FDR as well as the power, based on Tiid. All
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the combinations of N,T ∈ {100, 200, 500} are considered and the results are based on 1000

replications. Three models with different exponents, {α1, α2} = {0.9, 0.8}, {0.7, 0.6} and

{0.5, 0.4}, are examined.

The FDR and the power of the proposed procedure are represented as surface plots in

Figures 7–12. The left column shows the FDR, and the right column shows the power. The

results of the debiased SOFAR estimator are shown by the pink surface, and those of the

PC estimator are reported by the blue surface. It is apparent that the proposed procedure

based on the debiased SOFAR estimator successfully controls the FDR for all the models

by keeping it less than or equal to q = 0.1 with sufficiently large T , whereas that based on

the PC estimator deviates further from the pre-assigned level as the model becomes weaker.

Their power properties are very similar. Given the model, the power quickly rises towards

unity as T increases. In general, it is less powerful for the models with weaker factors, since

the overall signal-to-noise ratio becomes weaker in our design. Qualitatively similar results

are obtained with T0 and TNW and for serially correlated errors, which are summarized in

Section C.2 in Supplementary Material.

[INSERT Figures 1–6]

[INSERT Figures 7–12]

5.3 Re-sparsified SOFAR and sparsified PC estimators

We have seen that the proposed procedure successfully controls the FDR to be less than or

equal to pre-specified level q, while achieving high power. With this encouraging result, we

also examine the efficacy of the re-sparsified SOFAR estimator, along with other relevant

estimators. In particular we consider the sparsified PC estimator,

B̂r

PC = (b̂rik) with b̂rik = b̂PCik 1{(i, k) ∈ ŜPC},

where ŜPC is obtained by Procedure 1 based on Tiid, which is constructed using the PC

estimator. We employ the same DGP and set-up used in Section 5.2 and compare the

norm loss ‖N−1/2
1

∑r
k=1{abs(b̂k)− abs(b0

k)}‖. Observe that this norm loss is immune to the

consequences of SOFAR and PC estimators being up to rotation (i.e., sign indeterminacy
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and changes to the order of the factor components).

In Table 1, we report the norm loss of the re-sparsified debiased SOFAR estimator (B̂r)

and the sparsified PC estimator (B̂r

PC
), along with the SOFAR (B̂), debiased SOFAR (B̂d),

and the PC estimator (B̂PC). As can be seen, the proposed re-sparsified debiased SOFAR

estimator performs best, followed by the sparsified PC estimator and the SOFAR estimator.

In view of the popularity of the PC estimator, this is a very encouraging result. The debiased

SOFAR estimator dominates the PC estimator in terms of the norm loss. The experimental

results for the DGP with serially correlated errors (ρfk = 1/4 and ρe = 1/4) based on TNW

are qualitatively similar, which are reported in Section C.3 in Supplementary Material.

6 Empirical Applications

In this section we consider the empirical applications of the FDR controlled global inference

on the factor selection, based on the SOFAR estimates. Section 6.1 considers the FRED-MD

macroeconomic and financial variables. In Section 6.2 a large number of excess stock returns

are analyzed. Section 6.3 investigates the residuals of the Fama and French (2015) five-factor

regressions. The associated results based on the PC estimates are provided in Section D in

Supplementary Material.

6.1 Macroeconomic and financial variables

We extract factors by the SOFAR method from a large number of macroeconomic (predic-

tion) variables, in line with the analyses of Ludvigson and Ng (2009) and McCracken and

Ng (2016). The proposed global inferential procedure permits us to statistically analyze the

information content of common factors in each variable.

Specifically, the FRED-MDmacroeconomic and financial data file of May 2019 is obtained

from McCracken’s website and the variables are transformed as instructed by McCracken and

Ng (2016). The data consists of a balanced panel of 128 monthly series spanning the period

from June 1999 to May 2019. All series are standardized before the analysis. Following

McCracken and Ng (2016), the series are categorised into eight groups (note that the group

order is different from McCracken and Ng (2016)): G1. Output and Income; G2. Labour

Market; G3. Consumption, Orders and Inventories; G4. Housing; G5. Interest and Exchange
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Rate; G6. Prices; G7. Money and Credit; G8. Stock Market.

The number of factors is estimated by the ED method of Onatski (2010), which sug-

gests most probably it contains five factors. The re-sparsified SOFAR loading estimate is

computed, following the global inference based on the debiased BIC chosen SOFAR esti-

mate. The t-statistics for the procedure are computed using the serial correlation robust

variance covariance estimator, TNW , and we report the result for q = 10%. The proce-

dure has chosen the value of the FDR controlling threshold, t0 = 2.05 for the upper bound

t̄ =
√
2 log(Nr) = 3.59. For example, the Bonferroni correction, which aims to control the

FWER below 10% gives the threshold value 3.78 for each of the Tik tests. The large difference

in values between t0 and the Bonferroni threshold suggests that the inferential procedure

controlling FDR enjoys substantial power gain compared to the procedure controlling the

FWER.

To investigate the characteristics of five common factors, we report the value of re-

sparsified SOFAR loadings for the 128 series as a bar-chart in Figure 13. The variables are

ordered according to their characteristics of eight groups. Note that the larger the absolute

values of the factor loading, the higher the influence of the associated common factor to the

variable. Just casting a glance at Figure 13 is sufficient to recognize very strong statistical

evidence of sparse factor loadings under the identification restrictions and it exhibits clear

associations of factors (loadings) and groups of macroeconomic variables. The first factor is

significantly associated with five variable groups, G1-G5, and can be seen as a semi-global

factor. Each of the remaining four factors is significantly associated with just one or two

dominating groups. Specifically, we may identify the second to the fifth factor as a price

factor, a housing factor, an output and income factor, and a money, credit and stock market

factor, respectively. [INSERT Figure 13]

6.2 S&P500 firm-level excess returns

We consider firm-level monthly excess returns, which constitute the Standard & Poor’s 500

Stock Index (S&P 500) on April 2018 over the period from May 1998 to April 2018, which

left 376 securities. The monthly excess returns of security i for month t are computed as

re,ti = 100 × (Pti − Pt−1,i)/Pt−1,i +DYti/12 − rft, where Pti is the end-of-the-month price,
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DYti is the percent per annum dividend yield, and rft is the one-month US treasury bill rate

chosen as the risk-free rate. Pti and DYti are obtained from Datastream, and rft is obtained

from Ken French’s data library web page. We standardize the excess returns and denote

them as r∗e,ti.

The model with three factors is estimated by the BIC-SOFAR method, then the loading

estimate is debiased and the re-sparsified SOFAR loading estimate is obtained, following the

proposed procedure for the global inference. The procedure is based on Tiid and q = 10%,

which chooses t0 = 1.85, with the upper bound t̄ = 3.75. Note that the Bonferroni correction

to control the FWER below 10% gives the threshold value 3.92, which suggests the substantial

power gain of our procedure over the methods controlling the FWER.

For a characteristics analysis of the estimated factors, all the firms are assigned to ten in-

dustrial sectors based on Industry Classification Benchmark (ICB): (0) Oil & Gas; (1) Basic

Materials; (2) Industrials; (3) Consumer Goods; (4) Health Care; (5) Consumer Services;

(6) Telecommunications; (7) Utilities; (8) Financials; (9) Technology. We refer to FTSE

Russell for more details about ICB.

As in the previous subsection, to analyze the three common factors, we report the value

of the re-sparsified SOFAR loadings for the 376 excess returns as a bar-chart in Figure 14. It

shows very strong statistical evidence of sparse loadings under the identification restrictions

and exhibits interesting associations of factors and industrial sectors. The first factor is the

market factor, significantly affecting virtually all the firm securities. The second factor is

significant for most securities of industrial sectors 5-9, while it is largely insignificant for the

securities of industrial sectors 0-4. The third factor is highly significant for the securities in

Oil & Gas sector and to lesser extent for those in industrial sectors 5-8. [INSERT Figure

14]

6.3 Residuals of Fama-French five-factor regressions

In this subsection, we examine regression residuals of the celebrated Fama and French (2015)

five-factor model in order to see whether any additional common factors were left out. We

consider firm-level monthly excess returns, which constitute the S&P500 index on April 2018,

with 500 months observations back, leaving 194 securities. The firm-level excess returns
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are obtained and computed as explained in Section 6.2, and the five factors are obtained

from the Kenneth R. French Data Library. See Fama and French (2015) for more details

of the data and the regression. Specifically, we run the time series regression rti − rft =

ai + bi (rmt − rft) + siSMBt + hiHMLt + riRMWt + ciCMAt + eti, where rti is the i-

th security monthly return at the month t, rft is the one-month treasury bill rate, rmt is

the market return, SMBt is the return on a diversified portfolio of small stocks minus the

return on a diversified portfolio of big stocks, HMLt is the difference between the returns

on diversified portfolios of high and low B/M stocks, RMWt is the difference between the

returns on 13 diversified portfolios of stocks with robust and weak profitability, and CMAt

is the difference between the returns on diversified portfolios of the stocks of low and high

investment firms, which is called conservative and aggressive.

We have applied our method to the obtained residual. Onatski’s (2010) ED procedure

suggests that the residuals contain only one factor. As in the previous subsection, we obtain

the BIC-SOFAR estimate then compute the re-sparsified SOFAR loading estimate, using

Tiid and q = 10%. Only two securities are significant (with the same sign), and interestingly

both of which belong to Technology industry.

7 Conclusion

In this paper, we have studied statistical inference for high-dimensional approximate factor

models. We have considered the sparsity-induced weak factor (sWF) structure, in which the

factor loading matrix can be sparse and the signal eigenvalues may diverge more slowly than

the cross-sectional dimension, N . The central theme of this paper is the global inference

for factor selection, specifically whether each element of the factor loadings is zero or not,

which is new in the literature. Initially, extending Uematsu and Yamagata (2021), we have

proposed the debiased SOFAR estimator of the sparse loadings in the sWF models, and

established its asymptotic normality. In addition, we have shown that the PC estimator is

asymptotically normal even for the sWF models. Building upon the asymptotic normality of

the factor loading estimators, we have proposed a procedure in the multiple testing framework

to decide whether each of the factor loadings is significantly zero or not, and have proved

that this controls the false discovery rate (FDR) below a pre-assigned level, while the power
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tends to unity. Although the theory is established for the debiased SOFAR estimator, the

method works with any asymptotically normal estimators, such as the PC estimator; whereas

the latter can be less efficient as it cannot effectively utilize the sparseness of the loadings.

Furthermore, we have proposed a new estimator of the factor loading matrix called the re-

sparsified SOFAR estimator, which is defined as the debiased SOFAR estimator, with its

insignificant elements being replaced with zeros. Similarly, we have proposed a sparsified

PC estimator, which is obtained after the global inference based on the PC estimator in

a similar manner. We have also established its consistency. The finite sample experiment

has revealed that the performance of these estimators can be superior to the SOFAR, the

debiased SOFAR and the PC estimators in terms of the norm loss.

The proposed methods also provide a coherent estimation-inference procedure for high-

dimensional approximate factor models. Since the proposed method can be based upon any

asymptotically normal estimator, such as the PC estimator, its applicability is very wide.

The empirical application has provided firm statistical evidence of sparse factor loadings,

which suggests that our approach can shed light on uncovered features in the factor models

of macroeconomic data, as analyzed by Stock and Watson (2002b), Ludvigson and Ng (2009),

and McCracken and Ng (2016), among many others. In recent finance literature, there has

been increasing interest in selection of factors in high-dimensional environments; see Feng

et al. (2019) and Kozak et al. (2020), for example. The proposed methods are well suited to

addressing such issues.

Supplementary Materials

The Supplementary Material consists of four sections. Section A contains the proofs of the

main results. Sections B contains lemmas and their proofs. Section C contains additional

experimental results. Section D contains additional empirical results.
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Table 1: Norm Loss (×1000) of SOFAR (B̂), debiased-SOFAR (B̂d), PC (B̂PC), re-sparsified
SOFAR (B̂r) and sparsified PC (B̂r

PC
) estimators.

{α1, α2} {0.9, 0.8} {0.7, 0.6} {0.5, 0.4}
Est.\N 100 200 500 100 200 500 100 200 500

T = 100

B̂ 174.9 177.1 180.0 215.0 225.6 236.2 217.3 229.4 247.8

B̂d 155.1 160.5 166.7 258.3 285.9 326.3 408.5 486.8 611.9

B̂PC 164.9 171.7 170.8 277.9 293.5 331.5 449.8 558.6 631.5

B̂r 148.1 146.1 141.5 165.0 163.3 164.9 178.0 182.4 185.9

B̂r

PC
161.1 159.8 148.3 190.0 173.7 172.5 229.2 296.1 209.9

T = 200

B̂ 123.0 127.1 128.9 153.8 159.1 166.0 153.8 161.9 174.9

B̂d 109.9 114.7 118.2 185.0 203.0 229.9 292.5 345.2 433.9

B̂PC 112.5 117.7 119.2 195.1 206.8 232.1 320.7 416.4 445.6

B̂r 103.6 103.6 100.7 119.0 115.1 113.4 132.2 129.9 129.3

B̂r

PC
107.4 107.9 102.9 131.4 119.8 116.0 165.4 237.6 140.7

T = 500

B̂ 76.8 80.9 82.0 94.0 101.6 106.3 96.3 106.2 108.0

B̂d 71.2 74.0 75.0 118.5 129.6 146.3 187.9 220.6 275.7

B̂PC 72.2 75.1 75.3 123.2 131.8 147.5 203.5 267.6 282.8

B̂r 65.7 64.6 61.2 73.9 72.6 70.4 84.5 82.8 81.9

B̂r

PC
67.4 66.1 61.9 79.0 74.9 71.5 101.9 150.9 87.8

Notes: For the re-sparsified estimators, the target FDR level is set q = 0.1.
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Figures 1–6 show the Q-Q plot of the distribution of a t-statistic based on the debiased

SOFAR estimator and the PC estimator against N(0, 1) for the models with {α1, α2} =

{0.9, 0.8}, {0.7, 0.6}, {0.5, 0.4}.

Figure 1: debiased SOFAR, {α1, α2} = {0.9, 0.8} Figure 2: PC, {α1, α2} = {0.9, 0.8}

Figure 3: debiased SOFAR, {α1, α2} = {0.7, 0.6} Figure 4: PC, {α1, α2} = {0.7, 0.6}

Figure 5: debiased SOFAR, {α1, α2} = {0.5, 0.4} Figure 6: PC, {α1, α2} = {0.5, 0.4}
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Figures 7–12 show the FDR and power with q = 0.1 for the models with {α1, α2} = {0.9, 0.8},

{0.7, 0.6}, {0.5, 0.4}.

Figure 7: FDR, {α1, α2} = {0.9, 0.8} Figure 8: Power, {α1, α2} = {0.9, 0.8}

Figure 9: FDR, {α1, α2} = {0.7, 0.6} Figure 10: Power, {α1, α2} = {0.7, 0.6}

Figure 11: FDR, {α1, α2} = {0.5, 0.4}
Figure 12: Power, {α1, α2} = {0.5, 0.4}
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Figure 13: Bar-chart of the resparsified loadings estimates for each of 128 variables with the target FDR level 0.1
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Figure 14: Bar-chart of the resparsified loadings estimates for each of 376 firm security excess returns with the target FDR level 0.1
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A Proofs of the Main Results

We first fix a finite number ν > 0 and use it throughout all the proofs. Since the choice

is arbitrary and ν can always be replaced by a larger one at the first stage, we may write

NaT bO((N ∨ T )−ν) = O((N ∨ T )−ν) with abuse of notation even for positive (but finite)

numbers a and b, unless a precise order is required.

A.1 Proof of Theorem 1

Proof. Define ∆̂ = F̂− F0 and F =
{
∆ ∈ RT×r : ‖∆‖F ≤ CRn

}
, where C is some positive

constant and

Rn =
N

3/2
1 T 1/2 log1/2(N ∨ T )

Nr(Nr ∧ T )
.

Then under the assumed conditions, ∆̂ ∈ F holds with probability at least 1−O((N ∨T )−ν)

by Uematsu and Yamagata (2021). Conditional on ∆̂ ∈ F , we can write ∆̂ = RnU with

‖U‖F ≤ C for some matrix U.

By the definition of the debiased SOFAR estimator in Section 3.1, we have the decom-

position

T 1/2(B̂d −B0) = Z+R(1)(∆̂) +R(2)(∆̂), (A.1)
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where Z = T−1/2E′F0, R(1)(∆̂) = T−1/2B0F0′∆̂, and R(2)(∆̂) = T−1/2E′∆̂. Therefore, to

obtain the asymptotic linear representation, it is enough to show that R(1)(∆̂) and R(2)(∆̂)

are negligible in the max-norm. For any x > 0, we have

P
(
‖R(1)(∆̂)‖max > x

)
≤ P

(
‖T−1/2B0F0′∆̂‖max > x | ∆̂ ∈ F

)
+ P

(
∆̂ 6∈ F

)

≤ P
(
r‖B0‖max‖T−1/2F0′∆̂‖max > x | ∆̂ ∈ F

)
+O((N ∨ T )−ν)

≤ P
(
Rn‖T−1/2F0′U‖max & x | ∆̂ ∈ F

)
+O((N ∨ T )−ν).

Setting x = δ1 := T−1/2Rn log
1/2(N ∨ T ) leads to the upper bound to be O((N ∨ T )−ν) by

Assumption 1 with an application of Lemma 1 in Uematsu and Yamagata (2021). Similarly,

the second term is bounded as

P
(
‖R(2)(∆̂)‖max > x

)
≤ P

(
‖T−1/2E′∆̂‖max > x | ∆̂ ∈ F

)
+ P

(
∆̂ 6∈ F

)

≤ P
(
Rn‖T−1/2E′U‖max > x | ∆̂ ∈ F

)
+O((N ∨ T )−ν)

Setting x = δ1 gives the upper bound to be O((N ∨ T )−ν) by Assumption 3 in the same

manner. Thus the desired upper bound is obtained in view of the triangle inequality. This

completes the proof.

A.2 Proof of Theorem 2

Proof. The proof is basically the same as that of Theorem 1 except for the convergence rate

Rn, which is replaced by RPC
n for the PC estimator. Let ∆̂PC = F̂PC − F0 and define

FPC =
{
∆ ∈ RT×r : ‖∆‖F ≤ CRPC

n

}
, where C is some positive constant and

RPC
n = Rn(1 + γn), γn =

N1/2(N ∧ T )1/2

N
1/2
1 T 1/2

.

Then under the assumed conditions, ∆̂PC ∈ FPC holds with probability at least 1−O((N ∨

T )−ν) by Uematsu and Yamagata (2021). By the definition of the PC estimator, we have

2



the decomposition

T 1/2(B̂PC −B0) = Z+R
(1)
PC(∆̂) +R

(2)
PC(∆̂), (A.2)

where Z = T−1/2E′F0, R
(1)
PC(∆̂PC) = T−1/2B0F0′∆̂PC , and R

(2)
PC(∆̂PC) = T−1/2E′∆̂PC .

The rest of the proof is the same as the proof of Theorem 1 and is omitted.

A.3 Proof of Theorem 3

Proof. Let G(t) = 2(1 − Φ(t)). Consider two cases; Case 1 deals with the case when (14)

does not exist and t0 = (2 logN)1/2, and Case 2 considers the case when t0 is given by (14).

Write Z∗
ik := Zik/σi and e∗ti = eti/σi, where Zik = T−1/2

∑T
t=1 etif

0
tk with σ2

i = E[e2ti].

Case 1. The FDR is defined as

FDR(t0) = EFDP(t0) = E

[∑
(i,k)∈Sc 1{|Tik| ≥ t0}

R(t0) ∨ 1

]
.

Set δ ≍ δ1 log
1/2(N ∨ T ), where δ1 has been defined in Theorem 1. In view of the law of

iterated expectations, FDR(t0) is bounded by the probability that at least one variable is

falsely discovered. Thus, using the notation in the proof of Lemma 5 together with the law

of total probability and union bound, we have

FDR(t0) ≤ P


 ∑

(i,k)∈Sc

1{|Tik| ≥ t0} ≥ 1


 ≤ P


 ∑

(i,k)∈Sc

1{|Z∗
ik|+ |Wik| ≥ t0} ≥ 1




≤ P


 ∑

(i,k)∈Sc

1{|Z∗
ik| ≥ t0 − δ} ≥ 1


+ P

(
max

(i,k)∈Sc

|Wik| > δ

)

≤ Nr max
(i,k)∈Sc

P (|Z∗
ik| ≥ t0 − δ) + |Sc| max

(i,k)∈Sc

P (|Wik| > δ) .

Because δ1 converges to zero polynomially under the assumed conditions, we have δ = o(t0),

where t0 = (2 logNr)1/2. Thus the last two terms tend to zero by Lemma 5. This entails

the asymptotic FDR control for any predetermined level q ∈ [0, 1].
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Case 2. Consider the case when t0 is given by (14). Define

A = sup
t∈[0,t̄]

∣∣∣∣∣

∑
(i,k)∈Sc [1{|Tik| ≥ t} −G(t)]

NrG(t)

∣∣∣∣∣ .

Then the FDP computed with threshold t0 is bounded as

FDP(t0) =

∑
(i,k)∈Sc [1{|Tik| ≥ t0} −G(t0)] + |Sc|G(t0)

R(t0) ∨ 1

≤ NrG(t0)A+NrG(t0)

R(t0) ∨ 1
≤ q(1 +A),

where the last inequality holds by (14). Taking the expectation, we have FDR(t0) ≤ q E[1+

A]. Therefore, it is sufficient to show A = op(1) because this entails E[A] = o(1) by the

reverse Fatou lemma and the result follows.

In order to show A = op(1), we consider discretization of A. That is, we partition [0, t̄]

into small intervals, 0 = t0 < t1 < · · · < tb = t̄ = (2 log(Nr) − a1 log log(Nr) + a2)
1/2 for

a1 > 3 and a2 > 0, such that tm − tm−1 = vN for m ∈ {1, . . . , b − 1} and tb − tb−1 ≤ vN ,

where vN = (log(Nr) log log(Nr))−1/2. Note that b ≍ t̄/vN ≍ log(Nr)(log log(Nr))1/2. Fix

m ∈ {1, . . . , b} arbitrary. For any t ∈ [tm−1, tm], we have

∑
(i,k)∈Sc 1{|Tik| ≥ t}

NrG(t)
≤
∑

(i,k)∈Sc 1{|Tik| ≥ tm−1}
NrG(tm−1)

· G(tm−1)

G(tm)
(A.3)

and

∑
(i,k)∈Sc 1{|Tik| ≥ t}

NrG(t)
≥
∑

(i,k)∈Sc 1{|Tik| ≥ tm}
NrG(tm)

· G(tm)

G(tm−1)
. (A.4)

Because of (A.3), (A.4), and the fact that G(tm−1)/G(tm) = 1 + o(1) uniformly in m ∈

{1, . . . , b} by Javanmard and Javadi (2019), the proof completes if the following is verified:

A∗ := max
m∈{1,...,b}

∣∣∣∣∣

∑
(i,k)∈Sc [1{|Tik| ≥ tm} −G(tm)]

NrG(tm)

∣∣∣∣∣ = op(1). (A.5)
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For arbitrary fixed ε > 0, the union bound and Chebyshev’s inequality yield

P (A∗ > ε) ≤ b max
m∈{1,...,b}

P

(∣∣∣∣∣

∑
(i,k)∈Sc [1{|Tik| ≥ tm} −G(tm)]

NrG(tm)

∣∣∣∣∣ > ε

)

≤ b max
m∈{1,...,b}

E



∣∣∣∣∣

∑
(i,k)∈Sc [1{|Tik| ≥ tm} −G(tm)]

NrG(tm)

∣∣∣∣∣

2

 /ε2.

Expanding the expectation and collecting terms with using Lemma 5, we obtain

E

[∑
(i,k)∈Sc

∑
(j,ℓ)∈Sc [1{|Tik| ≥ tm} −G(tm)] [1{|Tjℓ| ≥ tm} −G(tm)]

N2r2G(tm)2

]

≤ 1

N2r2G(tm)2

∑

(i,k)∈Sc

∑

(j,ℓ)∈Sc

P (|Tik| ≥ tm, |Tjℓ| ≥ tm)

− 2

NrG(tm)

∑

(i,k)∈Sc

P (|Tik| ≥ tm) + 1

≤ G(tm − δ̃)2

N2r2G(tm)2

∑

(i,k)∈Sc

∑

(j,ℓ)∈Sc

P
(
|Z∗

ik| ≥ tm − δ̃, |Z∗
jℓ| ≥ tm − δ̃

)

G(tm − δ̃)2
+

O((N ∨ T )−ν)

G(tm)2

− 2

NrG(tm)

∑

(i,k)∈Sc

P(|Z∗
ik| ≥ tm + δ̃) +

O((N ∨ T )−ν)

G(tm)
+ 1, (A.6)

where (Z∗
ik,Z∗

jℓ) := (Zik/σi,Zjℓ/σj) is the standard bivariate normal vector with the covari-

ance (correlation) ρijkℓ := ρij1{k = ℓ} and δ̃ ≍ δ + O(T−κ). We evaluate each term and

show that the upper bound of (A.6) is o(1/b).

First derive a lower bound of G(tm), and bound the second and fourth terms of (A.6).

It is well-known that a standard normal random variable Z∗ satisfies the bound

(2π)−1/2(z−1 − z−3) exp(−z2/2) ≤ P (Z∗ > z) ≤ (2π)−1/2z−1 exp(−z2/2) (A.7)

for all z > 0; see e.g., Feller (1968). Thus we obtain G(tm) & N−1 log−(1−a1)/2N uniformly

in m ∈ {1, . . . , b} for given a1 > 3. Thus the second and fourth terms of (A.6) are found to

be o(1/b) uniformly in m ∈ {1, . . . , b}.

Next consider the third term of (A.6). Since δ > 0 is polynomially decreasing while tm

5



is a logarithmic function for every m, an application of (A.7) with some algebra yields

− 2

NrG(tm)

∑

(i,k)∈Sc

P(|Z∗
ik| ≥ tm + δ̃) = −2|Sc|G(tm + δ̃)

NrG(tm)

= −2(tm + δ̃)−1{1− (tm + δ̃)−2} exp{−(tm + δ̃)2/2}
t
−1
m exp{−t2m/2}

(1 +O(N−1))

≤ −2(1− δ̃/tm)(1− tmδ̃)(1 +O(N−1)) = −2 + o(1/b).

Finally we show that the first term of (A.6) is 1 + o(1/b). As for the case when i = j we

have

1

N2r2G(tm)2

∑

(i,k)∈Sc

∑

(j,ℓ)∈Sc

P
(
|Z∗

ik| ≥ tm − δ̃, |Z∗
jℓ| ≥ tm − δ̃

)
1{i = j}

=
1

NrG(tm)

G(tm − δ̃)

G(tm)
≤ log(1−a1)/2(Nr)(1 + o(1/b)) = o (1/b) .

Next consider the case of i 6= j. By Lemma 6 with the inequality 1/(1−ρ2)1/2 ≤ 1+ |ρ|/(1−

ρ2)1/2 and the same argument above, the first term of (A.6) is bounded as

G(tm − δ̃)2

N2r2G(tm)2

∑

(i,k)∈Sc

∑

(j,ℓ)∈Sc

P
(
|Z∗

ik| ≥ tm − δ̃, |Z∗
jℓ| ≥ tm − δ̃

)

G(tm − δ̃)2
1{i 6= j}

≤ 1 + o(1/b)

N2r2

∑

(i,k)∈Sc

∑

(j,ℓ)∈Sc

1

(1− ρ2ijkℓ)
1/2

1{i 6= j}

≤ 1 +
1

N2r2

∑

(i,k)∈Sc

∑

(j,ℓ)∈Sc

|ρijkℓ|
(1− ρ2ijkℓ)

1/2
1{i 6= j}+ o(1/b), (A.8)

where ρijkℓ = ρij1{k = ℓ} is characterized in Assumption as

|ρij | ∈





[
0, c/ logξ N

]
for (i, j) ∈ P1 (weak),

(
c/ logξ N, ρ̄

]
for (i, j) ∈ P2 (strong),

for given constants c > 0, ξ > 1, and ρ̄ ∈ (1/2, 1). Note that P1 ∩ P2 = ∅ and P1 ∪ P2 =

{(i, j) ∈ [N ] × [N ] : i 6= j} with |P1| = N2 − N − |P2| and |P2| = O(N2 log−ξ N). From

6



(A.8), we obtain

1

N2r2

∑

(i,k)∈Sc

∑

(j,ℓ)∈Sc

|ρijkℓ|
(1− ρ2ijkℓ)

1/2
1{i 6= j}

≤ |P1|
N2r2

max
(i,j)∈P1

|ρijkℓ|
(1− ρ2ijkℓ)

1/2
+

|P2|
N2r2

max
(i,j)∈P2

|ρijkℓ|
(1− ρ2ijkℓ)

1/2

= O(1)O(log−ξ N) +O(log−ξ N)O(1) = o(1/b). (A.9)

Combining the obtained results reveals that (A.6) is o(1/b). Therefore, (A.5) holds. This

completes the proof.

A.4 Proof of Theorem 4

Proof. Define

t∗ = Φ−1
(
1− qs

2Nr
(1− xN )

)
with xN =

1

logN
. (A.10)

A direct use of Lemma 7 with condition s/N = o(1/ logN) establishes that

P (|Tik| ≤ t∗) ≤ max
(i,k)∈S

P (|Tik| ≤ t∗) = O(s/N) = o(1/ logN).

Furthermore, Lemma 8 gives

P (|Tik| ≥ t0) ≥ P (|Tik| ≥ t0 | t0 ≤ t∗)P (t0 ≤ t∗) ≥ P (|Tik| ≥ t∗) (1 + o(1)).

Using these results yields

Power =
1

s
E


 ∑

(i,k)∈S

1{|Tik| ≥ t0}


 =

1

s

∑

(i,k)∈S

P (|Tik| ≥ t0)

≥ 1

s

∑

(i,k)∈S

P (|Tik| ≥ t∗) (1 + o(1)) = 1− 1

s

∑

(i,k)∈S

P (|Tik| ≤ t∗) + o(1)

≥ 1− max
(i,k)∈S

P (|Tik| ≤ t∗) + o(1) ≥ 1 + o(1).

This completes the proof.
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A.5 Proof of Theorem 5

Proof. By the sparseness of B0, we have b0ik = b0ik1{(i, k) ∈ S} = b0ik1{(i, k) ∈ Ŝ} as long as

S ⊆ Ŝ. Thus for any ε > 0, it holds that

P

(
max
i,k

|b̂dik1{(i, k) ∈ Ŝ} − b0ik| > ε

)

≤ P

(
max
i,k

|b̂dik1{(i, k) ∈ Ŝ} − b0ik1{(i, k) ∈ S}| > ε | S ⊆ Ŝ
)
+ P

(
S ) Ŝ

)

= P

(
max
i,k

|b̂dik − b0ik|1{(i, k) ∈ Ŝ} > ε

)
+ P

(
S ) Ŝ

)

≤ P

(
max
i,k

|b̂dik − b0ik| > ε

)
+ P

(
S ) Ŝ

)
.

Consider the first probability. By Theorem 1, it follows with high probability that

max
i,k

|b̂dik − b0ik| ≤ max
i

∥∥∥∥∥
1

T

T∑

t=1

etif
0
t

∥∥∥∥∥
max

+max
i

∥∥∥∥
1

T 1/2
ri

∥∥∥∥
max

.
log1/2(N ∨ T )

T 1/2
+

N
3/2
1 log(N ∨ T )

T 1/2Nr(Nr ∧ T )
,

where the upper bound converges to zero under the assumed conditions. Next prove that

the second probability goes to zero. For any δ ∈ (0, 1), we have

P
(
S ) Ŝ

)
≤ P

(
|S| > |Ŝ|

)
= P

(
|S| > |Ŝ|+ δ

)

≤ P
(
1− |S ∩ Ŝ|/|S| > δ/|S|

)
≤ |S|

(
1− E |S ∩ Ŝ|/|S|

)
/δ,

where the last inequality holds by the Markov inequality along with the fact that |S∩Ŝ|/|S| ≤

1 a.s. From the proof of Theorem 4 and Lemma 7, one minus the power is bounded as

1− E |S ∩ Ŝ|/|S| ≤ max
(i,k)∈S

P (|Tik| ≤ t∗) = O(s/N),

which converges to zero under the assumed condition. This completes the proof.
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B Lemmas and their Proofs

Lemma 1. If Assumptions 1–3 are satisfied, then for any matrix (vector) norm ‖ · ‖, the

inequalities (i) and (ii) simultaneously hold with probability at least 1−O((N ∨ T )−ν):

(i)

∥∥∥∥∥T
−1

T∑

t=1

(
f0t f

0
t
′ − I

)∥∥∥∥∥ . T−1/2 log1/2(N ∨ T ),

(ii)

∥∥∥∥∥T
−1

T∑

t=1

etif
0
t

∥∥∥∥∥ . T−1/2 log1/2(N ∨ T ).

Moreover, if Assumption 4 is satisfied instead of Assumption 3, then for any matrix norm

‖ · ‖, the inequalities (iii) and (iv) hold with probability at least 1−O((N ∨ T )−ν):

(iii)

∥∥∥∥∥T
−1

T∑

t=1

(
f0t f

0
t
′ − I

) (
e2ti − E e2ti

)
∥∥∥∥∥ . T−1/2 log1/2(N ∨ T ),

(iv)

∣∣∣∣∣T
−1

T∑

t=1

(
e2ti − E e2ti

)
∣∣∣∣∣ . T−1/2 log1/2(N ∨ T ).

Proof. Let Ln = N ∨ T throughout the proof. For (i), we only give a sketch of the proof

since it is essentially the same as that of Lemma 1 in Uematsu and Yamagata (2021). Note

that

∥∥∥∥∥T
−1

T∑

t=1

(
f0t f

0
t
′ − I

)∥∥∥∥∥
max

=

∥∥∥∥∥T
−1

T∑

t=1

∞∑

ℓ=0

∞∑

m=0

Ψℓ

(
ζt−ℓζ

′
t−m −Eζt−ℓζ

′
t−m

)
Ψ′

m

∥∥∥∥∥
max

.

∞∑

ℓ=0

∞∑

m=0

‖Ψℓ‖2‖Ψm‖2

∥∥∥∥∥T
−1

T∑

t=1

(
ζt−ℓζ

′
t−m −Eζt−ℓζ

′
t−m

)
∥∥∥∥∥
max

.

Decompose the double summation as

∞∑

ℓ=0

∞∑

m=0

=

Ln−1∑

ℓ=0

Ln−1∑

m=0

+

∞∑

ℓ=Ln

Ln−1∑

m=0

+

Ln−1∑

ℓ=0

∞∑

m=Ln

+

∞∑

ℓ=Ln

∞∑

m=Ln

9



and evaluate each sum. Under Assumption 1, the first term is bounded as

Ln−1∑

ℓ=0

Ln−1∑

m=0

‖Ψℓ‖2‖Ψm‖2

∥∥∥∥∥T
−1

T∑

t=1

(
ζt−ℓζ

′
t−m −Eζt−ℓζ

′
t−m

)
∥∥∥∥∥
max

≤ max
ℓ=0,...,Ln−1

max
m=0,...,Ln−1

∥∥∥∥∥T
−1

T∑

t=1

(
ζt−ℓζ

′
t−m −Eζt−ℓζ

′
t−m

)
∥∥∥∥∥
max

∞∑

ℓ=0

∞∑

m=0

‖Ψℓ‖2‖Ψm‖2

. T−1/2 log1/2(N ∨ T )

with probability at least 1 − O((N ∨ T )−ν), where we have used the union bound, the

Bernstein inequality for a sum of i.i.d. sub-exponential random variables (Vershynin, 2018,

Theorem 2.8.1), and
∑∞

ℓ=0 ‖Ψℓ‖2 < ∞. To derive the upper bound for the other terms that

holds with high probability, we evaluate its expectation in view of the Markov inequality. By

the sub-exponential property and the summability condition of Assumption 1, the remaining

terms are bounded by O(T−1/2 log1/2(N ∨ T )) with probability at least 1 − O((N ∨ T )−ν).

This gives the proof of (i).

The proof of (ii) is found in Uematsu and Yamagata (2021). The proof of (iv) is also

obtained in the same manner.

Finally Prove (iii). By the same decomposition as above, we obtain

∥∥∥∥∥T
−1

T∑

t=1

(
f0t f

0
t
′ − I

) (
e2ti − E e2ti

)
∥∥∥∥∥
max

.

∞∑

ℓ=0

∞∑

m=0

‖Φℓ‖2‖Φm‖2

∥∥∥∥∥T
−1

T∑

t=1

(
ζt−ℓζ

′
t−m − E ζt−ℓζt−m

) (
e2ti − E e2ti

)
∥∥∥∥∥
max

.

We then decompose the double sum as above and only consider the term of
∑∑Ln−1

ℓ,m=0

because the remaining terms can be bounded via the Markov inequality with the summability

condition. Using Assumptions 1 and 4 along with the argument of Vershynin (2018), we first

note that each component of ζt−ℓζ
′
t−m − E ζt−ℓζt−m, and e2ti − E e2ti are sub-exponential

random variables. Furthermore, by Theorem 2.1 of Vladimirova et al. (2020), the product of

two i.i.d. sub-exponential random variables is semi-exponential (sub-Weibull) with parameter

1/2. Therefore, by the Bernstein type inequality for semi-exponential random variables of

Merlevède et al. (2011) together with the union bound, there exist some constants c1, c2 > 0
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such that

P

(
max

ℓ,m=0,...,L

∥∥∥∥∥T
−1

T∑

t=1

(
ζt−ℓζ

′
t−m − E ζt−ℓζt−m

) (
e2ti − E e2ti

)
∥∥∥∥∥ > u

)

≤ L2r2 exp
(
−c1Tu

2
)
+ L2r2T exp

(
−c2T

1/2u1/2
)
.

Setting u ≍ T−1/2 log1/2(N ∨ T ) leads to the desired upper bound, which holds with proba-

bility at least

1− L2r2 exp (−c1 log(N ∨ T ))− L2r2T exp
(
−c2T

1/4 log1/4(N ∨ T )
)

= 1−O((N ∨ T )−ν).

This completes the proof.

Lemma 2. If all the conditions in Theorem 1 are satisfied, then for any vector norm ‖ · ‖,

the following inequalities simultaneously hold with probability at least 1−O((N ∨ T )−ν):

(i) T−1/2
∥∥∥F̂− F0

∥∥∥
F
.

N
3/2
1 log1/2(N ∨ T )

Nr(Nr ∧ T )
,

(ii) max
i∈[N ]

∥∥∥b̂i − b0
i

∥∥∥ .
log1/2(N ∨ T )

T 1/2
≤ N

3/2
1 log1/2(N ∨ T )

Nr(Nr ∧ T )
.

In particular, the upper bound converges to zero under (16).

Proof. Result (i) follows from Uematsu and Yamagata (2021). Prove (ii). From (8) with

the triangle inequality, we have

max
i∈[N ]

‖b̂i − b0
i ‖max ≤ T−1ηn + T−1/2‖R‖max + T−1/2‖Z‖max,

where Z = T−1/2E′F0 and R = R(1) +R(2) with R(1) = T−1/2B0F0′(F̂ − F0) and R(2) =

T−1/2E′(F̂− F0). From Theorem 1, the definition of ηn, and Lemma 1, we have

T−1/2‖R‖max . T−1/2N
3/2
1 log(N ∨ T )

Nr(Nr ∧ T )
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and

T−1ηn + T−1/2‖Z‖max . T−1/2 log1/2(N ∨ T ),

which hold with probability at least 1−O((N ∨ T )−ν). Thus the first inequality follows by

the equivalence of norms for finite dimensional vectors. The second inequality is true since

N
3/2
1 T 1/2

Nr(Nr ∧ T )
≥ N

1/2
1 T 1/2

Nr ∧ T
=

(N1 ∨ T )1/2

(Nr ∧ T )1/2
≥ 1. (A.11)

Convergence of the bounds is easily verified from (16). This completes the proof.

Lemma 3. If all the conditions in Theorem 1 are satisfied, then the following inequalities

simultaneously hold with probability at least 1−O((N ∨ T )−ν):

(i) max
i∈[N ]

T−1
T∑

t=1

∣∣ê2ti − e2ti
∣∣ . N

3/2
1 log1/2(N ∨ T )

Nr(Nr ∧ T )
,

(ii) max
i∈[N ]

T−1
T∑

t=1

∣∣ê2ti − e2ti
∣∣2 . N

3/2
1 log1/2(N ∨ T )

Nr(Nr ∧ T )
.

Proof. First note that

ê2ti − e2ti = (xti − ĉti)
2 − e2ti

=
(
eti −

(
ĉti − c0ti

))2 − e2ti = −2eti
(
ĉti − c0ti

)
+
(
ĉti − c0ti

)2

and

ĉti − c0ti = (f̂t − f0t )
′b0

i + f̂ ′t(b̂i − b0
i ).

12



Prove (i). We have

max
i∈[N ]

T−1
T∑

t=1

∣∣ê2ti − e2ti
∣∣

. max
i∈[N ]

T−1
T∑

t=1

|eti|
∣∣ĉti − c0ti

∣∣+ max
i∈[N ]

T−1
T∑

t=1

∣∣ĉti − c0ti
∣∣2

. max
i∈[N ]

T−1
T∑

t=1

|eti|
∣∣∣(f̂t − f0t )

′b0
i

∣∣∣+ max
i∈[N ]

T−1
T∑

t=1

|eti|
∣∣∣f̂ ′t(b̂i − b0

i )
∣∣∣

+ max
i∈[N ]

T−1
T∑

t=1

∣∣∣(f̂t − f0t )
′b0

i

∣∣∣
2
+ max

i∈[N ]
T−1

T∑

t=1

∣∣∣f̂ ′t(b̂i − b0
i )
∣∣∣
2

=: A1 +A2 +A3 +A4.

Consider each term. In the following, we use maxi∈[N ] ‖b0
i ‖2 < ∞. First A1 is bounded as

A1 ≤ max
i∈[N ]

‖b0
i ‖2T−1

T∑

t=1

|eti|‖f̂t − f0t ‖2

≤ max
i∈[N ]

‖b0
i ‖2
(
T−1

T∑

t=1

|eti|2
)1/2

T−1/2‖F̂− F0‖F

. T−1/2‖F̂− F0‖F.

Similarly, we obtain

A2 ≤ max
i∈[N ]

‖b̂i − b0
i ‖2T−1

T∑

t=1

|eti|‖f̂t‖2

≤ max
i∈[N ]

‖b̂i − b0
i ‖2
(
T−1

T∑

t=1

|eti|2
)1/2

T−1/2‖F̂‖F

. max
i∈[N ]

‖b̂i − b0
i ‖2.

Next, we see that

A3 = max
i∈[N ]

T−1
T∑

t=1

∣∣∣(f̂t − f0t )
′b0

i

∣∣∣
2

≤ max
i∈[N ]

‖b0
i ‖22T−1‖F̂− F0‖2F . T−1‖F̂− F0‖2F.
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Similarly, we have

A4 = max
i∈[N ]

T−1
T∑

t=1

∣∣∣f̂ ′t(b̂i − b0
i )
∣∣∣
2

≤ max
i∈[N ]

‖b̂i − b0
i ‖22T−1‖F̂‖2F . max

i∈[N ]
‖b̂i − b0

i ‖22.

From the argument so far with Lemma 2, we conclude that

max
i∈[N ]

T−1
T∑

t=1

∣∣ê2ti − e2ti
∣∣

. T−1/2‖F̂− F0‖F + max
i∈[N ]

‖b̂i − b0
i ‖2 + T−1‖F̂− F0‖2F + max

i∈[N ]
‖b̂i − b0

i ‖22

. T−1/2‖F̂− F0‖F .
N

3/2
1 log1/2(N ∨ T )

Nr(Nr ∧ T )
,

which gives the proof of (i).

Prove (ii). We have

max
i∈[N ]

T−1
T∑

t=1

∣∣ê2ti − e2ti
∣∣2

. max
i∈[N ]

T−1
T∑

t=1

|eti|2
∣∣ĉti − c0ti

∣∣2 + max
i∈[N ]

T−1
T∑

t=1

∣∣ĉti − c0ti
∣∣4

. max
i∈[N ]

T−1
T∑

t=1

|eti|2
∣∣∣(f̂t − f0t )

′b0
i

∣∣∣
2
+ max

i∈[N ]
T−1

T∑

t=1

|eti|2
∣∣∣f̂ ′t(b̂i − b0

i )
∣∣∣
2

+ max
i∈[N ]

T−1
T∑

t=1

∣∣∣(f̂t − f0t )
′b0

i

∣∣∣
4
+ max

i∈[N ]
T−1

T∑

t=1

∣∣∣f̂ ′t(b̂i − b0
i )
∣∣∣
4

=: A5 +A6 +A7 +A8.
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Consider each term. In the following, we use maxi∈[N ] ‖b0
i ‖2 < ∞. First A5 is bounded as

A5 ≤ max
i∈[N ]

‖b0
i ‖22T−1

T∑

t=1

|eti|2‖f̂t − f0t ‖22

≤ max
i∈[N ]

‖b0
i ‖22

(
T−1

T∑

t=1

|eti|4
)1/2(

T−1
T∑

t=1

‖f̂t − f0t ‖42

)1/2

≤ max
i∈[N ]

‖b0
i ‖22
(
E |eti|4 + o(1)

)1/2 {
2max

t

(
‖f̂t‖22 + ‖f0t ‖22

)
T−1‖F̂− F0‖2F

}1/2

. T−1/2‖F̂− F0‖F.

Similarly,

A6 ≤ max
i∈[N ]

‖b̂i − b0
i ‖22T−1

T∑

t=1

|eti|2‖f̂t‖22

≤ max
i∈[N ]

‖b̂i − b0
i ‖22max

t
‖f̂t‖22

(
T−1

T∑

t=1

|eti|2
)1/2

≤ max
i∈[N ]

‖b̂i − b0
i ‖22max

t
‖f̂t‖22

(
E |eti|2 + o(1)

)1/2
. max

i∈[N ]
‖b̂i − b0

i ‖22

Next,

A7 ≤ max
i∈[N ]

‖b0
i ‖42T−1

T∑

t=1

∥∥∥f̂t − f0t

∥∥∥
4

2

≤ max
i∈[N ]

‖b0
i ‖42max

t

(
2‖f̂t‖22 + 2‖f0t ‖22

)
T−1‖F̂− F0‖2F . T−1‖F̂− F0‖2F.

Similarly,

A8 ≤ max
i∈[N ]

‖b̂i − b0
i ‖42T−1

T∑

t=1

∥∥∥f̂t
∥∥∥
4

2

≤ max
i∈[N ]

‖b̂i − b0
i ‖42max

t

∥∥∥f̂t
∥∥∥
2

2
T−1‖F̂‖2F . max

i∈[N ]
‖b̂i − b0

i ‖42.

By the same reason as the proof of (i), the result follows. This completes the proof.

Lemma 4. If all the conditions of Theorem 3 are satisfied, then the following inequality
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holds with probability at least 1−O((N ∨ T )−ν):

∥∥∥Γ̂i − σ2
i Ir

∥∥∥
max

.
N

3/2
1 log1/2(N ∨ T )

Nr(Nr ∧ T )
.

Proof. Under Assumptions 4 and 5, we have Γi = E[ftf
′
te

2
ti] = σ2

i Ir and Γ̂i = Γ̂0i. Then it

follows that

∥∥∥Γ̂i − σ2
i Ir

∥∥∥
max

≤
∥∥∥∥∥T

−1
T∑

t=1

(f̂tf̂
′
t − ftf

′
t)ê

2
ti

∥∥∥∥∥
max

+

∥∥∥∥∥T
−1

T∑

t=1

(ftf
′
t − Ir)ê

2
ti

∥∥∥∥∥
max

+ max
i∈[N ]

∣∣∣∣∣T
−1

T∑

t=1

(ê2ti − e2ti)

∣∣∣∣∣+
∣∣∣∣∣T

−1
T∑

t=1

(e2ti − E e2ti)

∣∣∣∣∣

=: A1 +A2 +A3 +A4.

We first see that A3 and A4 are directly bounded from Lemmas 3(i) and 1(ii), respectively.

Next we bound A1. By the triangle inequality and the Cauchy–Schwarz inequality, we have

A1 ≤
(
T−1

T∑

t=1

‖f̂tf̂ ′t − ftf
′
t‖2max

)1/2(
T−1

T∑

t=1

ê4ti

)1/2

.

By Lemma 3, the second parentheses can be bounded as

(
T−1

T∑

t=1

ê4ti

)1/2

≤
(
T−1

T∑

t=1

∣∣ê4ti − e4ti
∣∣
)1/2

+

(
T−1

T∑

t=1

e4ti

)1/2

=

(
T−1

T∑

t=1

∣∣ê2ti − e2ti
∣∣ ∣∣ê2ti − e2ti + 2e2ti

∣∣
)1/2

+
(
E e4ti + o(1)

)1/2

≤
(
T−1

T∑

t=1

∣∣ê2ti − e2ti
∣∣2
)1/2

+

(
2T−1

T∑

t=1

∣∣ê2ti − e2ti
∣∣ ∣∣e2ti

∣∣
)1/2

+
(
E e4ti + o(1)

)1/2

≤
(
T−1

T∑

t=1

∣∣ê2ti − e2ti
∣∣2
)1/2

+

(
2T−1

T∑

t=1

∣∣ê2ti − e2ti
∣∣2
)1/4(

2T−1
T∑

t=1

e4ti

)1/4

+
(
E e4ti + o(1)

)1/2

=

(
T−1

T∑

t=1

∣∣ê2ti − e2ti
∣∣2
)1/2

+

(
2T−1

T∑

t=1

∣∣ê2ti − e2ti
∣∣2
)1/4

(
2E e4ti + o(1)

)1/4
+
(
E e4ti + o(1)

)1/2

. (E e4ti)
1/2 + o(1).

16



Therefore we eventually have

A1 .

(
T−1

T∑

t=1

‖f̂t(f̂t − f0t )
′‖2max + T−1

T∑

t=1

‖(f̂t − f0t )f
0
t
′‖2max

)1/2

.

(
T−1

T∑

t=1

‖f̂t − f0t ‖22 + T−1
T∑

t=1

‖f̂t − f0t ‖22

)1/2

. T−1/2‖F̂− F0‖F .
N

3/2
1 log1/2(N ∨ T )

Nr(Nr ∧ T )
,

where the last inequality follows from Lemma 2(i). Finally bound A2. We further expand

the terms by the triangle inequality:

A2 ≤
∥∥∥∥∥T

−1
T∑

t=1

(f0t f
0
t
′ − Ir)ê

2
ti

∥∥∥∥∥
max

≤
∥∥∥∥∥T

−1
T∑

t=1

(f0t f
0
t
′ − Ir)(ê

2
ti − e2ti)

∥∥∥∥∥
max

+

∥∥∥∥∥T
−1

T∑

t=1

(f0t f
0
t
′ − Ir)(e

2
ti − E e2ti)

∥∥∥∥∥
max

,

where we have used the condition F0′F0/T = I. The second term of this upper bound is

directly evaluated by Lemma 1(iv). By Lemma 3(i), the first term is further bounded as

∥∥∥∥∥T
−1

T∑

t=1

(f0t f
0
t
′ − Ir)(ê

2
ti − e2ti)

∥∥∥∥∥
max

≤ max
t

∥∥∥f0t f0t
′ − Ir

∥∥∥
2
T−1

T∑

t=1

∣∣ê2ti − e2ti
∣∣ ≤ max

t

(
‖f0t ‖22 + 1

)
T−1

T∑

t=1

∣∣ê2ti − e2ti
∣∣

.
N

3/2
1 log1/2(N ∨ T )

Nr(Nr ∧ T )
.

Consequently, we obtain

∥∥∥Γ̂i − σ2
i Ir

∥∥∥
max

.
N

3/2
1 log1/2(N ∨ T )

Nr(Nr ∧ T )
+

log1/2(N ∨ T )

T 1/2
.

N
3/2
1 log1/2(N ∨ T )

Nr(Nr ∧ T )
,

where we have used (A.11) in the last inequality. Note that all the bounds hold with prob-

ability at least 1−O((N ∨ T )−ν). This completes the proof.
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Lemma 5. Define δ ≍ δ1 log
1/2(N ∨ T ), where

δ1 =
N

3/2
1 log(N ∨ T )

Nr(Nr ∧ T )

has been defined in Theorem 1. If all the conditions of Theorem 3 are satisfied, then we have

decomposition Tik = Zik/σi +Wik such that for any t > 0 the following results hold:

(i) max
i,k

P (|Wik| ≥ δ) = O((N ∨ T )−ν),

(ii) P (|Tik| ≥ t) ≥ P

( |Zik|
σi

≥ t+ δ

)
+O((N ∨ T )−ν),

(iii) P (|Tik| ≥ t, |Tjℓ| ≥ t) ≤ P

( |Zik|
σi

≥ t− δ,
|Zjℓ|
σj

≥ t− δ

)
+O((N ∨ T )−ν),

(iv) (Zik, Zjℓ) = (Zik,Zjℓ) +O(T−κ) a.s. for some constant κ > 0,

where


Zik

Zjℓ


 ∼ N




0

0


 ,


 σ2

i σij1{k = ℓ}

σij1{k = ℓ} σ2
j






with σ2
i = Var(eti) and σij = Cov(eti, etj).

Proof. For (i, k) ∈ Sc, the t-statistic is written as

Tik =
T 1/2b̂dik

σ̂i
=

Zik +Rik

σ̂i
=

Zik

σi
+

Rik

σi
+

(
σi
σ̂i

− 1

)(
Zik +Rik

σi

)
=:

Zik

σi
+Wik.

Consider (ii) and (iii) first. For any t > 0 and δ given in the statement, we have

P (|Tik| ≥ t) ≥ P

( |Zik|
σi

− |Wik| ≥ t

)
≥ P

( |Zik|
σi

≥ t+ δ

)
− |Sc|max

i,k
P (|Wik| > δ) ,

and similarly

P (|Tik| ≥ t, |Tjℓ| ≥ t) ≤ P

( |Zik|
σi

+ |Wik| ≥ t,
|Zjℓ|
σj

+ |Wjℓ| ≥ t

)

≤ P

( |Zik|
σi

≥ t− δ,
|Zjℓ|
σj

≥ t− δ

)
+ |Sc|max

i,k
P (|Wik| > δ) .
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Thus the proofs of (ii) and (iii) complete if (i) is true.

Prove (i). We have

P (|Wik| ≥ δ) ≤ P

( |Rik|
σi

+

∣∣∣∣
σi
σ̂i

− 1

∣∣∣∣
( |Zik|

σi
+

|Rik|
σi

)
≥ δ

)

≤ P

( |Zik|
σi

≥ δ − δ1
δ1

− δ1

)
+ P

(∣∣∣∣
σi
σ̂i

− 1

∣∣∣∣ ≥ δ1

)
+ P

( |Rik|
σi

≥ δ1

)
. (A.12)

Then the third term in the upper bound of (A.12) is evaluated by the proof of Theorem 1:

P

( |Rik|
σi

& δ1

)
= O((N ∨ T )−ν).

Consider the second term of (A.12). By Lemma 4 with a simple calculation, we have

P

(∣∣∣∣
σi
σ̂i

− 1

∣∣∣∣ > δ1

)
= P

(∣∣σ̂2
i − σ2

i

∣∣ > δ1 |σ̂i| |σ̂i + σi|
)

. P
(∣∣σ̂2

i − σ2
i

∣∣ & δ1
)
= O((N ∨ T )−ν).

Finally, consider the first term of (A.12). Note that δ1 = o(δ) and δ/δ1 ≍ log1/2(N ∨ T ).

Therefore, we have

P

( |Zik|
σi

>
δ − δ1
δ1

− δ1

)
= P

( |Zik|
σi

>
δ + o(δ)

δ1
+ o(δ)

)
= P

( |Zik|
σi

>
δ

δ1
(1 + o(1))

)

. P

( |Zik|
σi

& log1/2(N ∨ T )

)
= O((N ∨ T )−ν),

where the last equality is due to Lemma 1(iii). Combining the results gives the proof of (i).

Finally prove (iv). Under Assumptions 1 and 4, it is easily seen that (Zik, Zjℓ) =

T−1/2
∑T

t=1(etiftk, etjftℓ) is the sum of square integrable martingale difference sequence with

respect to the filtration Ft = σ{et−s,i, et−s,j , ft−s,k, ft−s,ℓ : s = 0, 1, 2, . . . }. Then Theorem

3.2 of Kifer (2013) establishes the strong approximation that without changing its distribu-

tion the sequence (etiftk, etjftℓ) can be redefined on a richer probability space where there

exists a bivariate standard normal random vector (Zik,Zjℓ) with the covariance(correlation)

ρ such that (Zik, Zjℓ) = (Zik,Zjℓ)+O(T−κ) a.s. holds for some κ > 0, provided that the suf-

ficient conditions (3.4) and (3.5) in the paper are true. Therefore, the proof of (iv) completes
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if these two conditions are verified.

Check condition (3.4) of the theorem. For any (i, k) and (j, ℓ), an application of Lemma

1 yields

∣∣∣∣∣T
−1

T∑

t=1

(E[etietjftkftℓ | Ft−1]− σij1{k = ℓ})
∣∣∣∣∣

= |σik|

∣∣∣∣∣∣
T−1

T∑

t=1

∞∑

a,b=0

ψ
(a)
k·

(
ζt−aζ

′
t−b − Ir

)
ψ

(b)
ℓ·

′

∣∣∣∣∣∣
. T−η

for any constant η ∈ (0, 1/2) with probability at least 1 − O((N ∨ T )−ν). This verifies the

first condition.

Next check condition (3.5) of the theorem. By Assumptions 1 and 3 and equivalence of

norms for finite-dimensional vectors, we observe that

E
[
‖(etiftk, etjftℓ)‖4

]
. E e4ti E f4

tk = O(1).

Therefore for any constant η ∈ (0, 1/2), we have

∞∑

t=1

tη−1 E
[
‖(etiftk, etjftℓ)‖21

{
‖(etiftk, etjftℓ)‖2 ≥ 1/tη−1

}]

≤
∞∑

t=1

t2η−2 E
[
‖(etiftk, etjftℓ)‖4

]
.

∞∑

t=1

t2η−2 < ∞,

which gives the second condition. This completes the proof.

Lemma 6. For any bivariate standard normal random vector (Z1,Z2) with correlation ρ ∈

(−1, 1), it holds that

sup
z∈[0,∞)

P(Z1 ≥ z,Z2 ≥ z)

Q(z)2
≤ 1√

1− ρ2
.

Proof. Let (x, y) 7→ φ(x, y; ρ) denote the density function of the bivariate standard normal
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random vector with correlation ρ ∈ (−1, 1). For any z ≥ 0, we have

P (Z1 ≥ z,Z2 ≥ z) =

∫ ∞

z

∫ ∞

z
φ(x, y; ρ)dxdy

=
1√

1− ρ2

∫ ∞

z

∫ ∞

z
φ(x, y; 0) exp

{
− 2− ρ2

2(1− ρ2)

(
x2 + y2

)
+

2ρ

2(1− ρ2)
xy

}
dxdy

≤ 1√
1− ρ2

∫ ∞

z

∫ ∞

z
φ(x, y; 0)dxdy max

0≤x,y<∞
exp

{
− 2− ρ2

2(1− ρ2)

(
x2 + y2

)
+

2ρ

2(1− ρ2)
xy

}
.

Note that
∫∞
z

∫∞
z φ(x, y; 0)dxdy = Q(z)2 and

max
0≤x,y<∞

{
− 2− ρ2

2(1− ρ2)

(
x2 + y2

)
+

2ρ

2(1− ρ2)
xy

}
≤ max

0≤x,y<∞

−2 + ρ+ ρ2

2(1− ρ2)
(x2 + y2) = 0

uniformly in ρ ∈ (−1, 1). Combining the results gives the desired uniform bound.

Lemma 7. If all the conditions of Theorem 4 are satisfied, then for any (i, k) ∈ S the

following result holds:

max
(i,k)∈S

P (|Tik| ≤ t∗) = O(s/N).

Proof. For any (i, k) ∈ S, the t-statistic is decomposed as

Tik =
T 1/2b̂dik

σ̂i
=

σi
σ̂i

· T
1/2b0ik + Zik +Rik

σi
=:

σi
σ̂i

(
T 1/2b0ik/σi + Z∗

ik +R∗
ik

)
,

where Zik and Rik have been defined in (8). Then for any (i, k) ∈ S, we obtain

P (|Tik| ≤ t∗) = P

(
|T 1/2b0ik/σi + Z∗

ik +R∗
ik| ≤

σ̂i
σi
t∗

)

≤ P

(
|T 1/2b0ik/σi| − |R∗

ik| −
σ̂i
σi
t∗ ≤ |Z∗

ik|
)

≤ P

(
|T 1/2b0ik/σi| − |R∗

ik| −
σ̂i
σi
t∗ ≤ |Z∗

ik|
∣∣∣∣ |T

1/2b0ik/σi| − |R∗
i | −

σ̂i
σi
t∗ > t∗

)

+ P

(
|T 1/2b0ik/σi| − |R∗

ik| −
σ̂i
σi
t∗ ≤ t∗

)

≤ P (t∗ ≤ |Z∗
ik|) + P

(
|T 1/2b0ik/σi| − |R∗

ik| −
σ̂i
σi
t∗ ≤ t∗

)
. (A.13)

Using inequality (A.7) in the proof of Theorem 3, we can approximate the first term of
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(A.13) by G(t∗):

max
(i,k)∈S

P (t∗ ≤ |Z∗
ik|) = G(t∗ −O(T−κ)) = G(t∗)(1 + o(1)).

Recall that t∗ = Φ−1 (1− qs(1− o(1))/(2Nr)). Then we obtain

G(t∗) = 2(1− Φ(t∗)) = 2− 2Φ
(
Φ−1

(
1− qs

2Nr
(1− o(1))

))
=

qs

Nr
(1− o(1)).

Therefore, the first term of (A.13) is evaluated as

max
(i,k)∈S

P (t∗ ≤ |Z∗
ik|) = O(s/N). (A.14)

The second term of (A.13) is bounded as follows. Fix c1 > 1 arbitrary. Then we have

P

(
|T 1/2b0ik/σi| − |R∗

ik| −
σ̂i
σi
t∗ ≤ t∗

)

≤ P

(
|T 1/2b0ik/σi| − |R∗

ik| −
σ̂i
σi
t∗ ≤ t∗

∣∣∣∣
σ̂i
σi

≤ c1

)
+ P

(
σ̂i
σi

> c1

)

≤ P
(
|T 1/2b0ik/σi| − (1 + c1)t∗ ≤ |R∗

ik|
)
+ P

(
|σ̂2

i − σ2
i | > σ2

i (c
2
1 − 1)

)
. (A.15)

Note that t∗ <
√
2 log(Nr) by the construction. Hence by Assumption 6, we obtain

|T 1/2b0ik/σi| − (1 + c1)t∗ > min
(i,k)∈S

|T 1/2b0ik/σi| − (1 + c1)
√
2 log(Nr) &

√
2 log(Nr).

Therefore, in view of the proof of Lemma 5(i), the upper bound of (A.15) is found to be

O((N ∨ T )−ν). That is, we have

max
(i,k)∈S

P

(
|T 1/2b0ik/σi| − |R∗

ik| −
σ̂i
σi
t∗ ≤ t∗

)
= O((N ∨ T )−ν). (A.16)

From (A.14) and (A.16), we bound (A.13) as

max
(i,k)∈S

P (|Tik| ≤ t∗) = O(s/N),

which completes the proof.
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Lemma 8. If all the conditions of Theorem 4 are satisfied, then t0 ≤ t∗ holds with high

probability.

Proof. Recall that t∗ = Φ−1 (1− qs(1− xN )/(2Nr)) with xN = 1/ logN . Prove the state-

ment by contradiction. Suppose t0 > t∗ a.s. By the definition of t0, we have

2Nr(1− Φ(t∗))

R(t∗)
> q (A.17)

with probability one. By the definition of R(t∗), it holds that

R(t∗) = |Ŝ(t∗)| = |S ∪ Ŝ(t∗)| − |S ∩ Ŝ(t∗)c| ≥ s− |S ∩ Ŝ(t∗)c|.

The Markov inequality gives

P
(
|S ∩ Ŝ(t∗)c| > sxN

)
≤ logN

s
E

∣∣∣S ∩ Ŝ(t∗)c
∣∣∣

=
logN

s
E


 ∑

(i,k)∈S

1{|Tik| ≤ t∗}


 ≤ logN max

(i,k)∈S
P (|Tik| ≤ t∗) = o(1), (A.18)

where the last equality holds by Lemma 7. Hence we have R(t∗) ≥ s(1 − xN ) with high

probability. This lower bound with (A.17) entails that

1− Φ(t∗) >
qR(t∗)

2Nr
≥ qs(1− xN )

2Nr
(A.19)

with high probability. On the other hand, by the definition of t∗, we have

1− Φ(t∗) =
qs(1− xN )

2Nr
,

but this equality contradicts (A.19). This completes the proof.
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C Additional Experimental Results

C.1 Empirical size of the t-test

We investigate distribution of the standardized debiased SOFAR and PC estimators for a

loading, b0i,k, Tik (i.e., a t-statistic). In particular, we focus on the tail of the distribution, by

investigating empirical size of the t-test using Tik, referring to a standard normal distribution.

Suppressing the subscript (i, k) for ease of notation, we consider two t-statistics, Tiid and

TNW ; see the last paragraph before Section 5.1 for their definitions. TNW is robust against

error serial correlations but Tiid is not.

We consider two experimental designs. For the first design the factors and errors are

serially independent (ρfk = 0 and ρe = 0 for all k), but for the second design they are

serially correlated (ρfk = 1/4 and ρe = 1/4 for all k). We conduct a two-sided test at the

five per cent significance level, by rejecting the null H0 : b0ik = 0 when the absolute value

of the t-statistic is greater than 1.96. We fix the combination (i, k) so that b0ik = 0. We

investigate all the combinations of N = 100 and T = 100, 200, 500, 1000. The results are

based on 2000 replications.

Table C.3 reports the estimated size of the test. Panel A reports the results for the

case of i.i.d. factors and errors, and Panel B summarizes the size of the tests for serially

correlated errors. Let us look at Panel A. With i.i.d. errors, the size behavior of Tiid is

expected to be more efficient than that of TNW . Even when T = 100, the t-test based on

the debiased SOFAR estimator has satisfactory size across the models, exhibiting only minor

size distortions. In contrast, the size of the t-test based on the PC estimator is distorted,

and the size distortion becomes severer as the model becomes weaker. Furthermore, the size

distortion does not seem to disappear when T rises for the models with weaker factors.

Now let us turn our attention to the serial correlation robust test, TNW . As can be seen

in Panel A, for T = 100, the size of TNW based on the debiased SOFAR estimate exhibits

a moderate size distortion. In contrast, the observed size distortion pattern of Tiid based on

the PC estimate is exaggerated for the serial correlation robust test. Increasing T to 200

does not seem to make the distortion sufficiently reduced.

Let us turn our attention to Panel B. The first thing to note is that the size distortion of
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Tiid does not ease as T rises, which would be expected since the variance estimator used for

Tiid is not consistent. An interesting feature to note is that the size distortion of Tiid based

on the PC estimate is much larger than that based on the debiased SOFAR estimate, and

the distortion of the PC tests becomes sizable as the model becomes weaker. For example,

the averages of the sizes over T = 100, ..., 1000 of Tiid based on the debiased SOFAR estimate

for the exponents {0.9, 0.8}, {0.7, 0.6} and {0.5, 0.4} are 7.4%, 7.6% and 6.8%, while those of

Tiid based on the PC estimate are 7.9%, 8.4% and 10.6%, respectively. For sufficiently large

T (≥ 200), the size of the TNW test based on the debiased SOFAR estimate is satisfactory

close to the nominal level, whilst that based on the PC estimate exhibits serious distortion.

For example, the averages of the sizes over T = 200, 500, 1000 of TNW based on the debiased

SOFAR estimate for the exponents {0.9, 0.8}, {0.7, 0.6} and {0.5, 0.4} are 6.2%, 6.1% and

5.7%, while those of TNW based on the PC estimate are 6.7%, 7.2% and 9.2%, respectively.

To conclude, the t-statistic based on the debiased SOFAR estimate is preferred to that of

the PC estimate, unless the model is almost strong. When the idiosyncratic errors might be

serially correlated, we recommend using the robust t-statistic, TNW based on the debiased

SOFAR estimator. The TNW test based on the PC estimate can suffer from serious size

distortions.

C.2 The global inference for the loadings

In Section 5.2, the FDR and the power, based on Tiid for the DGP with serially correlated

factors and i.i.d. errors (ρfk = 1/4 and ρe = 0) are examined. In this section we report

two sets of additional experimental results: (i) the same DGP considered in Section 5.2 but

based on T0 (t-ratio based on the true variance of b̂ik) and TNW (serial correlation robust

t-ratio), and; (ii) the DGP where both factors and errors are serially correlated (ρfk = 1/4

and ρe = 1/4).

Table C.1 reports the FDR and the power of the proposed procedure based on T0 and

TNW , along with Tiid for the DGP with serially correlated factors and i.i.d. errors. Interest-

ingly, the FDR based on the debiased SOFAR estimate with T0 does not vary for different

values of T , which implies that the normal approximation for each t-ratio is very accurate

with T = 100 for all the models considered, which is not the case for the FDR based on the
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PC estimate. As one might expect, the TNW version controls the FDR less accurately than

the Tiid version. The FDR based on the PC estimate tends to overshoot the level q = 0.1

when the model becomes weaker, whilst the FDR based on the debiased SOFAR estimate

satisfactorily controls the FDR for sufficiently large T . The power properties are very similar

for the T0, Tiid and TNW versions.

The FDR and the power of the proposed procedure for the DGP with serially correlated

factors and idiosyncratic errors are summarized in Table C.2. As one might expect, the TNW

version controls the FDR more accurately than the Tiid version. The FDR based on the PC

estimate grossly overshoots the level q = 0.1 when the model is very weak, whilst the FDR

based on the debiased SOFAR estimate satisfactorily controls the FDR for sufficiently large

T . The power properties are very similar for the Tiid and TNW versions.

C.3 Re-sparsified SOFAR and sparsified PC estimators with serially correlated

errors

Adding to the discussion in Section 5.3, here we report the norm loss of the re-sparsified

SOFAR and sparsified PC estimators, with the same DGP employed in Section 5.3 except

that the idiosyncratic errors are serially correlated. We denote the re-sparsified SOFAR and

sparsified PC estimators based on the serial correlation robust t-ratio B̂r
NW

and B̂r
PC,NW

,

respectively. The results are summarised in Table C.4. It clearly shows that B̂r
NW

(resp.

B̂r
PC,NW

) outperforms B̂r (resp. B̂r
PC

), and B̂r
NW

dominates B̂r
PC,NW

in terms of the norm

loss, as expected.

C.4 Robustness of the t-statistic against non-normal errors and time-series het-

eroskedasticity

On top of the discussion in Section 5.1, here we investigate the finite sample distribution of the

t-statistic, Tiid, for two different serially uncorrelated error processes (ρe = 0): (i) standardise

chi-squared random variable with six degrees of freedom, εti ∼i.i.d.[χ2(6) − 6]/
√
12; (ii)

GARCH(1,1) errors, εti =
√
htiξti, hti = δ0 + δ1ε

2
t−1,i + δ2ht−1,i, ξti ∼i.i.d.N(0, 1) with

δ0 = 1/2, δ1 = 1/4, and δ2 = 1/4 for t = −50, ..., T , setting ξ−49,i = h−49,i = 0 and

discarding the first 50 time-series observations.
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Figures C.1–C.6 report the Q-Q plots of Tiid against N(0, 1) for the model {α1, α2} =

{0.5, 0.4} with N = T = 100. The left column shows the Q-Q plots of the debiased SOFAR

estimator and the right column shows the Q-Q plots of the PC estimator. The first, second,

and the third rows show the results for standard normal, chi-squared with six degrees of

freedom, and GARCH(1,1) errors, respectively. As can be seen, the quality of the normal

approximation of Tiid based on the debiased SOFAR estimator (or the PC estimator) is very

similar with the three different types of errors. Also, the distribution of Tiid based on the

debiased SOFAR estimator is closer to the standard normal distribution than that based

on the PC estimator. When the sample size is increased to N = T = 200, the results with

which are reported in Figures C.7–C.12, the quality of the approximation improves, but

the comparative performance properties are very similar to those for N = T = 100. This

evidence supports the claim that Tiid is robust against non-normal errors and time-series

heteroskedasticity.
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Table C.1: FDR and power with q = 0.1 using T0, Tiid and TNW , for serially correlated factors and i.i.d. errors

{α1, α2} {0.9, 0.8} {0.7, 0.6} {0.5, 0.4}
FDR POWER FDR POWER FDR POWER

T,N 100 200 500 100 200 500 100 200 500 100 200 500 100 200 500 100 200 500

Debiased SOFAR

T0

100 3.1 5.2 5.5 67.6 87.9 87.6 7.4 7.6 8.4 84.1 86.6 87.0 8.8 9.4 9.1 78.5 78.8 83.1
200 3.1 5.2 5.6 70.9 93.0 92.8 7.4 7.8 8.1 89.1 90.7 91.5 8.5 8.9 9.1 83.2 83.6 87.0
500 3.4 5.0 5.5 74.4 98.6 98.6 7.5 7.8 8.3 97.3 97.5 97.7 8.3 8.9 9.2 94.8 94.2 95.5

Tiid

100 4.0 6.6 7.2 68.4 88.3 88.0 11.3 11.6 13.2 84.7 87.2 87.5 14.8 16.6 17.9 79.3 79.6 83.8
200 3.6 5.9 6.5 71.3 93.2 93.0 9.5 10.0 10.5 89.4 91.0 91.7 12.0 12.5 13.1 83.7 84.2 87.4
500 3.7 5.4 5.8 74.6 98.7 98.6 8.5 8.6 9.3 97.4 97.6 97.8 9.9 10.6 10.9 94.8 94.3 95.6

TNW

100 4.5 7.8 8.5 68.8 88.7 88.5 13.8 14.6 16.8 85.2 87.6 88.0 19.6 22.4 25.1 79.8 80.1 84.2
200 3.9 6.4 7.1 71.5 93.3 93.1 10.6 11.3 12.3 89.6 91.2 91.9 14.3 15.0 16.4 84.0 84.5 87.7
500 3.8 5.7 6.1 74.6 98.7 98.6 8.9 9.4 10.1 97.4 97.6 97.8 11.0 11.7 12.4 94.8 94.3 95.6

PC

T0

100 5.5 10.9 8.6 70.6 88.0 87.6 15.5 11.7 11.2 84.5 86.7 87.1 22.1 29.6 15.4 79.2 79.2 83.3
200 4.3 8.2 7.4 72.8 93.1 92.8 14.0 10.5 9.7 89.5 90.8 91.5 20.3 30.7 14.1 84.8 84.5 87.3
500 3.7 6.8 6.3 76.3 98.7 98.6 11.7 9.7 9.4 97.5 97.6 97.8 17.7 28.0 12.9 95.7 95.0 95.9

Tiid

100 6.1 12.0 10.0 71.3 88.5 88.1 19.1 15.8 15.9 85.0 87.3 87.6 29.3 36.5 25.0 80.2 80.1 84.0
200 4.7 8.8 8.0 73.2 93.2 93.0 16.1 12.7 12.1 89.8 91.2 91.7 25.5 34.4 18.9 85.5 85.0 87.7
500 3.9 7.1 6.5 76.5 98.7 98.6 13.0 10.8 10.4 97.6 97.6 97.8 21.1 30.3 15.3 95.8 95.0 95.9

TNW

100 6.5 12.9 11.1 71.6 88.8 88.5 21.3 18.6 19.4 85.4 87.7 88.0 33.5 41.3 31.9 80.7 80.6 84.4
200 5.0 9.2 8.5 73.4 93.4 93.1 17.2 14.1 13.8 90.0 91.4 91.9 27.5 36.2 22.3 85.7 85.4 88.0
500 4.1 7.3 6.8 76.5 98.7 98.6 13.6 11.5 11.2 97.6 97.7 97.9 21.9 31.3 16.9 95.9 95.1 95.9
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Table C.2: FDR and power with q = 0.1 using Tiid and TNW , for serially correlated factors and errors

{α1, α2} {0.9, 0.8} {0.7, 0.6} {0.5, 0.4}
FDR POWER FDR POWER FDR POWER

T ,N 100 200 500 100 200 500 100 200 500 100 200 500 100 200 500 100 200 500

Debiased SOFAR

Tiid

100 4.9 8.5 9.5 69.0 88.6 88.2 15.2 16.4 18.2 85.2 87.4 87.8 22.2 24.2 27.3 79.4 80.0 84.3
200 4.7 7.8 8.6 71.7 93.2 92.9 13.4 14.3 15.6 89.6 90.9 91.9 17.9 19.2 21.7 84.3 84.6 87.7
500 4.7 7.0 7.8 74.9 98.5 98.4 12.0 12.9 13.7 97.2 97.4 97.6 15.6 16.8 17.8 94.6 94.1 95.4

TNW

100 4.8 8.3 9.3 68.8 88.3 87.9 15.0 16.4 18.4 85.0 87.2 87.5 23.2 25.1 28.8 79.3 79.7 84.0
200 4.2 7.0 7.8 71.2 92.7 92.5 12.0 12.9 13.9 89.1 90.5 91.4 16.0 17.1 19.2 83.5 83.9 87.2
500 4.1 6.0 6.6 74.4 98.2 98.1 9.8 10.6 11.1 96.7 97.0 97.2 12.3 13.2 13.7 93.7 93.2 94.6

PC

Tiid

100 7.0 13.4 12.4 71.8 88.6 88.2 23.5 20.4 21.1 85.5 87.4 87.8 37.1 43.4 36.5 80.6 80.7 84.5
200 5.9 10.6 10.0 74.0 93.2 92.9 19.3 17.3 17.6 90.0 91.1 92.0 31.5 39.8 28.9 85.9 85.4 88.1
500 5.0 9.0 8.7 76.8 98.5 98.4 17.5 15.4 15.2 97.3 97.5 97.6 27.5 36.5 23.5 95.7 94.9 95.8

TNW

100 6.8 13.1 12.1 71.4 88.3 87.9 23.1 20.1 21.1 85.3 87.3 87.5 37.0 43.2 36.8 80.3 80.3 84.2
200 5.4 9.7 9.1 73.4 92.8 92.5 17.8 15.7 15.7 89.5 90.6 91.5 29.0 37.8 25.3 85.0 84.7 87.4
500 4.4 7.8 7.4 76.3 98.3 98.1 15.1 12.8 12.5 96.9 97.1 97.3 23.8 32.6 18.5 94.9 94.1 94.9
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Table C.3: Size of the t-test for H0 : b
0
ik = 0

Panel A: i.i.d. factors and errors

{α1, α2} {0.9, 0.8} {0.7, 0.6} {0.5, 0.4}
T , t-statistic Tiid TNW Tiid TNW Tiid TNW

Debiased SOFAR
100 6.6 7.4 5.7 6.7 7.3 7.8
200 6.7 6.7 6.2 6.6 6.1 6.3
500 6.0 6.3 6.2 6.4 5.4 5.9

1000 5.4 5.6 6.0 6.0 4.7 5.1
PC

100 7.5 8.0 6.6 7.3 10.6 11.0
200 6.8 7.0 7.3 7.4 8.6 9.1
500 6.4 6.6 7.0 7.3 7.7 8.6

1000 5.3 5.7 6.7 6.5 7.7 7.6

Panel B: Serially correlated factors and errors

{α1, α2} {0.9, 0.8} {0.7, 0.6} {0.5, 0.4}
T , t-statistic Tiid TNW Tiid TNW Tiid TNW

Debiased SOFAR
100 8.2 8.1 8.2 8.0 7.7 7.6
200 7.1 6.5 7.6 6.5 7.5 6.8
500 7.2 5.8 7.1 6.0 5.9 4.7

1000 7.4 6.4 7.7 6.0 6.4 5.6
PC

100 8.2 8.1 8.5 9.0 11.1 10.1
200 7.5 6.9 8.2 7.6 10.7 9.9
500 7.9 6.7 8.2 6.9 9.9 8.8

1000 8.0 6.5 8.7 7.0 10.9 9.0

Notes: The data is generated as xti =
∑r

k=1
b0ikf

0

tk +
√
θeti, t = 1, .., T, i = 1, .., N . The factor

loadings b0ik and factors f0

tk are formed such that N−1
∑N

i=1
b0ikb

0

iℓ = 1{k = ℓ} and T−1
∑T

t=1
f0

tkf
0

tℓ =

1{k = ℓ}, by applying Gram–Schmidt orthonormalization to b∗ik and f∗

tk, respectively, where b∗ik ∼

i.i.d.N(0, 1) for i = 1, . . . , Nk and b∗ik = 0 for i = Nk + 1, . . . , N with Nk = ⌊Nαk⌋, and f∗

tk =

ρfkf
∗

t−1,k + vtk with vkt ∼ i.i.d.N(0, 1− ρ2fk) and f∗

0k ∼ i.i.d.N(0, 1). The idiosyncratic errors eti are

generated by eti = ρeet−1,i + εti, where εti ∼ i.i.d.N(0, 1 − ρ2e). b0ik are drawn once and fixed over

the replications. We set r = 2, θ = 0.5. For Panel A, we set ρfk = 0 and ρe = 0 and ρfk = 1/4 and

ρe = 1/4 for Panel B. The model is estimated by the debiased SOFAR and the PC methods. Tiid

and TNW are the t-statistics for H0 : b0ik = 0 for a specific (i, k) with b0ik = 0, assuming i.i.d. errors

and serially correlated errors, respectively. The null hypothesis is rejected when the absolute value

of the t-statistic exceeds 1.96. The reported size is based on 2000 replications.
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Table C.4: Norm Loss (×1000) of SOFAR (B̂), debiased-SOFAR (B̂d), PC (B̂PC), re-
sparsified SOFAR (B̂r) and sparsified PC (B̂r

PC
) estimators.

{α1, α2} {0.9, 0.8} {0.7, 0.6} {0.5, 0.4}
Est.\N 100 200 500 100 200 500 100 200 500

T = 100

B̂ 176.4 174.7 181.6 218.8 230.6 244.2 223.0 237.9 261.9

B̂d 162.5 167.3 175.1 272.7 302.7 341.5 432.8 515.8 648.2

B̂PC 172.9 178.7 179.7 294.8 309.5 346.9 476.5 588.9 674.5

B̂r 154.4 150.7 149.2 176.3 176.8 176.4 196.1 201.8 212.7

B̂r
NW

154.3 150.6 149.0 175.4 175.9 175.8 196.3 201.5 213.4

B̂r
PC

167.5 165.3 156.6 205.0 186.5 185.2 255.2 319.4 247.5

B̂r
PC,NW

167.3 165.0 156.2 203.8 185.1 184.4 252.7 316.8 245.4

T = 200

B̂ 128.1 128.3 131.4 156.1 165.5 171.5 158.7 167.4 181.1

B̂d 116.4 118.7 122.7 194.6 216.0 244.0 309.6 366.2 460.2

B̂PC 120.0 121.7 123.7 203.9 219.8 246.5 337.2 440.6 474.7

B̂r 110.4 107.1 104.9 125.9 126.7 124.2 142.7 143.2 147.9

B̂r
NW

110.2 106.9 104.6 124.5 125.0 122.1 140.1 140.0 143.5

B̂r
PC

115.3 111.7 107.1 137.6 131.4 127.7 177.7 255.8 164.3

B̂r
PC,NW

115.1 111.4 106.6 135.9 129.5 125.2 173.4 252.0 157.6

T = 500

B̂ 79.0 80.3 86.2 96.8 105.1 110.4 100.3 109.8 113.0

B̂d 74.2 76.5 78.9 124.9 137.6 154.8 198.8 233.5 292.0

B̂PC 75.4 77.4 79.1 130.6 140.1 156.3 215.0 283.8 299.9

B̂r 69.1 66.4 65.7 78.8 78.8 76.7 92.3 90.6 90.3

B̂r
NW

68.8 66.1 65.3 77.6 77.2 74.7 90.2 87.9 86.7

B̂r
PC

70.9 68.0 66.4 86.1 81.6 78.6 112.0 165.9 98.3

B̂r
PC,NW

70.6 67.6 65.9 84.5 79.7 76.4 108.6 162.1 93.4

Notes: The DGP is the same as that for Table 1 except ρf = 1/4 and ρe = 1/4, i.e., factors
and idiosyncratic errors are serially correlated. For the re-sparsified estimator, the target
FDR level is set q = 0.1. B̂r

NW
and B̂r

PC,NW
are re-sparsified and sparsified estimators based

on the robust t-ratio, TNW .
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Figures C.1–C.6 show the Q-Q plot of the distribution of a t-statistic based on the debiased

SOFAR estimator and the PC estimator against N(0, 1) for the models {α1, α2} = {0.5, 0.4}

with standardized normal, χ2(6), and GARCH(1,1) errors, N = T = 100.
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Figure C.1: debiased SOFAR, N(0, 1) error
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Figure C.2: PC, N(0, 1) error
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Figure C.3: debiased SOFAR, χ2(6) error
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Figure C.4: PC, χ2(6) error
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Figure C.5: debiased SOFAR, GARCH(1,1) error
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Figure C.6: PC, GARCH(1,1) error
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Figures C.7–C.12 show the Q-Q plot of the distribution of a t-statistic based on the debiased

SOFAR estimator and the PC estimator against N(0, 1) for the models {α1, α2} = {0.5, 0.4}

with standardized normal, χ2(6), and GARCH(1,1) errors, N = T = 200.
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Figure C.7: debiased SOFAR, N(0, 1) error
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Figure C.8: PC, N(0, 1) error
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Figure C.9: debiased SOFAR, χ2(6) error
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Figure C.10: PC, χ2(6) error
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Figure C.11: debiased SOFAR, GARCH(1,1) error
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Figure C.12: PC, GARCH(1,1) error
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D Additional Empirical Results

In this section we provide the PC estimation versions of the results discussed in Section 6.

In a nutshell, the global inference based on the SOFAR method provides clearer information

about the characteristics of the estimated factors than that based on the PC method.

D.1 Macroeconomic and financial variables

Figure D.1 below reports the sparsified PC loadings estimates for the FRED-MD data dis-

cussed in Section 6.1, which corresponds to the re-sparsified SOFAR estimates in Figure 13

in Section 6.1. The employed specifications for the global inference based on the PC esti-

mates are very similar to those based on the SOFAR estimates: q = 0.1 and the t-ratio for

b0i,k is the serial-correlation robust version. The procedure has chosen the value of the FDR

controlling threshold, t0 = 1.89. As a whole, the PC result is similar to the SOFAR result,

but the sparsified PC loading is noisier and also has a couple of non-zero clusters, which are

not observed in the re-sparsified SOFAR estimates. For example, in Figure D.1 loadings on

the second factor are significant for industrial groups 1-5, whilst in Figure 13 corresponding

loadings are not significant. Similar comments apply to the loadings for G6 on factor 1, the

loadings for G1 on factor 3, the loadings for G7 on factor 4 and the loadings for G1 on factor

5. These differences might be attributed to the higher efficacy of the SOFAR estimates,

thus, the global inference based on the debiased SOFAR estimates may be preferred for this

application.

D.2 S&P500 firm security excess returns

Figure D.2 below reports the sparsified PC loadings estimates for the S&P500 firm security

excess return data discussed in Section 6.2, which corresponds to the re-sparsified SOFAR

estimates in Figure 14 in Section 6.2. The employed specifications for the global inference

based on the PC estimates are very similar to those based on the SOFAR estimates: q = 0.1

and the t-ratio for b0i,k is the i.i.d. version. The procedure has chosen the value of the

FDR controlling threshold, t0 = 1.82. Comparing these two figures, the PC result is very

similar to the SOFAR result, but the sparsified PC loading is slight noisier. Therefore, the
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global inference based on the debiased SOFAR estimates may be marginally preferred for

this application.

D.3 Residuals of Fama-French five-factor regressions

In this subsection we applied the PC based global inference to the residuals of Fama-French

five-factor regressions. The employed specifications for the global inference based on the PC

estimates are very similar to those based on the SOFAR estimates: q = 0.1 and the t-ratio for

b0i,k is the i.i.d. version. The PC result is very different from the SOFAR result in Section 6.3.

Specifically, based on the debiased SOFAR loading estimates, there are only two significant

loadings (the exponent is 0.13), both of which belong to G9, whilst the PC version has 45

significant loadings (the exponent is 0.72). The numbers of significant loadings for G0-G9

are 1,2,12,5,2,1,0,11,4,7, respectively. We conclude that the SOFAR results in Section 6.3

seem more reliable than the PC result presented in this section, because it is unlikely that

the five factor model is short of a semi-strong factor.
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Figure D.1: Bar-chart of the sparsified PC loadings estimates for each of 128 variables with the target FDR level 0.1
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Figure D.2: Bar-chart of the sparsified PC loadings estimates for each of 376 firm security excess returns with the target FDR level 0.1
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