
This is a repository copy of Heterogeneous Model Query Optimisation.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/179962/

Version: Accepted Version

Proceedings Paper:
Ali, Qurat Ul Ain (Accepted: 2021) Heterogeneous Model Query Optimisation. In: MODELS
2021: Model-Driven Engineering Languages and Systems, proceedings:. MODELS, 10-15 
Oct 2021 IEEE , JPN (In Press) 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Heterogeneous Model Query Optimisation

Qurat ul ain Ali

Department of Computer Science

University of York

York, UK

quratulain.ali@york.ac.uk

Abstract—With the growing size and complexity of software
systems, the underlying models also grow in size proportionally.
These large-scale models pose scalability issues for model-driven
engineering technologies. These models can be persisted in
various backend technologies (such as file systems, document and
relational databases) and can be represented in different formats
such as XMI and Flexmi. Several tailored high-level model
management languages such as OCL and EOL enable developers
to work on different backend technologies in a uniform way
by shielding them from the complexities of different backends.
On the contrary, performance with respect to execution time in
tailored model management languages programs becomes one of
the major scalability bottlenecks. In this work, we propose an
architecture built on top of existing model query languages to
facilitate query optimisation. The proposed approach will benefit
from compile-time static analysis and automatic program rewrit-
ing to optimise queries operating over heterogeneous backend
technologies. Optimisation strategies and performance will vary
depending on the type of queries and the backend modelling
technology. We expect to significantly improve performance
(decrease in one order of magnitude of execution time) for model
management programs, particularly over large-scale models.

Index Terms—model querying, static analysis, model-driven
engineering

I. PROBLEM AND MOTIVATION

Model-driven engineering (MDE) has proven to have several

benefits over traditional software development methodologies

such as quality, maintainability and productivity. To continue

the broader use of MDE in industrial projects, it is crucial

that MDE technologies scale well with larger and complex

applications. A typical MDE workflow includes several tasks,

including model validation, model-to-model transformations,

and model-to-text transformations. All these tasks mentioned

above have a common set of queries/expressions operating

over model elements. As these queries grow complex, they will

significantly impact performance both in terms of execution

time and memory footprint. Moreover, usually in industrial

projects, most MDE tools have poor performance handling

very large models (VLMs) [1]. One example of large scale

models in the automotive industry are the models of the Auto-

motive Open System Architecture (AUTOSAR) [2], containing

millions of model elements. While executing complex and

computationally expensive queries over such large models,

a significant performance cost in terms of execution time is

incurred. Scalability is one of the main challenging factor in

the industry adoption of MDE [3].

A. Motivating Example

The problem is demonstrated with the help of a motivating

example. Consider a small excerpt of Java metamodel as illus-

trated in Fig 1. SingleVariableAccess has a non-containment

reference to VariableDeclaration named as variable. A vali-

Fig. 1. Excerpt of Java metamodel

dation program can be written in Epsilon Validation Language

- a language of Epsilon1 to validate a model conforming to

a metamodel. An example EVL validation to validate models

conforming to Java metamodel is shown in Listing 1.

1 model Java driver EMF {

2 nsuri = "http://www.eclipse.org/MoDisco/

3 Java/0.2.incubation/java"

4 };

5 pre{

6 }

7 context Java!VariableDeclaration {

8 constraint variableIsUsed {

9 check: Java!SingleVariableAccess.all

10 .select(sva|sva.variable=self)

11 .notEmpty()

12 }

13 }

Listing 1. Example EVL constraint before optimisation

In the constraint variableIsUsed, we are checking that every

VariableDeclaration is accessed at least once. If we evaluate

this constraint over a model containing M number of Vari-

ableDeclarations and N number of SingleVariableAccess. The

cost of evaluating the constraint would be O(M*N).

One possible optimisation is to detect such expressions

where all instances of a type are filtered based on a specific

field. We can pre-compute an index based on this and then just

retrieve instances by searching through this pre-computed in-

dex. Such an optimisation would reduce the cost of evaluating

the same contraint toO(M)+O(N), considering the complexity

1https://www.eclipse.org/epsilon/



of computing and populating an index as O(M) and searching

this index as O(1).

1 model Java driver EMF {

2 nsuri = "http://www.eclipse.org/MoDisco/

3 Java/0.2.incubation/java"

4 };

5 pre{

6 Java.createIndex("SingleVariableAccess",

7 "variable");

8 }

9 context Java!VariableDeclaration {

10 constraint variableIsUsed {

11 check: Java.findByIndex(

12 "SingleVariableAccess","variable",

13 self).notEmpty()

14 }

15 }

Listing 2. Example EVL constraint after optimisation

Such an optimisation can be applied behind the scenes to

the program shown in Listing 1, and the optimised program

can be automatically rewritten as shown in Listing 2. In this

case, an index is pre-computed in Line 6 and then searched

through in Line 11. This is just one optimisation pattern, there

can be other efficient ways to execute a program, such as

translating the high-level program to the native language of

the model persistence technology. The aim of this PhD work

is to produce such a solution that can provide optimisation for

model management programs(such as query, validation, trans-

formation) operating over heterogeneous model persistence

technologies. This would enable the developers to write their

code in a technology-agnostic form (such as in EVL, ETL),

while still benefiting from technology specific optimisations.

The optimisation algorithm/strategies would be different de-

pending on the model persistence technology. Such optimisa-

tions enable reusing performance benefits already provided by

the model persistence technologies. Programs operating over

multiple persistance technologies (such as Simulink, EMF)

concurrently can also benefit from the proposed optimisations.

B. Research Objectives

• RO-1: Identify the performance challenges involved in

executing complex queries over large models represented

in heterogeneous formats (EMF, Simulink etc.) and stored

in different back-ends (XMI files, relational databases

etc.)

• RO-2: Identify reusable optimisation primitives and pat-

terns across different formats and back-ends using static

analysis of high-level language code

• RO-3: Propose algorithms for optimisation of queries

operating on low-code system models captured using

different modelling languages and model representation

formats.

• RO-4: Ensure to preserve the semantics of the original

program while rewriting the optimised program

• RO-5: Evaluate the results of the proposed algorithms

in terms of execution time and memory footprint over

various back-end technologies.

II. RELATED WORK

In this section, we will present various state-of-the-art

approaches related to scalable model querying over hetero-

geneous modelling back-ends.

There are two principal categories for querying models

from a language perspective: i) Native querying ii) Back-

end independent querying. Being the most straightforward

approach, the former is very efficient as it is tailored for the

back-end persistence technology. Examples include Cypher

or Gremlin for NoSQL databases and SQL for relational

databases. These query languages are specifically created for

the back-ends they target, often providing efficient querying

(e.g. index backed) methods. While being efficient for their

particular back-ends, they have drawbacks when it comes to

heterogeneous technologies [4] as they often cannot be used

or will not be performant for other technologies. Moreover, if

model persistence is changed, this technology-specific query-

ing approach requires considerable effort to change model

management programs relying on it to function.

On the contrary, back-end independent querying queries

models using high-level languages that abstract over heteroge-

neous back-ends and model representation formats. Examples

of such type of high-level languages include OCL and EOL.

This abstraction is commonly implemented using an interme-

diate layer such as the OCL pivot metamodel [5] or the Epsilon

Model Connectivity (EMC) Layer2.

Queries written in high-level languages can be translated

to their appropriate native query language. Several researches

have proposed ways of such mappings. For example a tool

called Mogwai [6] translates OCL and ATL expressions to

Gremlin scripts - a query language for NoSQL databases.

This shifts the majority of the computation of queries to

the database layer, and it makes use of possible optimisa-

tion strategies for this back-end technology. Similarly, in [7]

authors have presented a tool that generates SQL queries

from OCL expressions. In [8], a runtime translation of SQL

is presented that enables querying relational databases using

EOL. This translation doesn’t take into account any static

analysis and program rewriting to optimise the translated

program.

Another approach, for pre-computing the expensive sub-

expressions to speed up complex queries, is presented in [9].

Users define these as derived attributes which are then cached

to speed up queries utilising such attributes. This approach

does not automatically detect such expensive sub-expressions

and requires specification by the developer both for their

identification and implementation.

Program-aware strategies for optimising queries make use

of compile-time static analysis. A program-aware approach is

presented in [10], which pre-computes and caches allInstances

2https://www.eclipse.org/epsilon/doc/emc/



of a type, if a program makes multiple calls to allInstances.

Another optimisation strategy as proposed in [11] suggests

how combining parallelisation, lazy evaluation and short-

circuiting can significantly increase the performance of queries

over large models.

In [12], an allocation optimisation approach is presented by

a combination of heuristics, to reduce the usage of resources

by minimising remote network traffic and computation cost,

minimising resources needed for evaluation of queries.

A distributed index-based execution of model validation

programs is introduced in [13]. A validation program is de-

composed and distributed among several machines and cores,

to perform parallel execution. This is implemented for EVL

programs and is performant on multiple machines, especially

ones with multiple logical cores.

A compiler is presented in [14] which uses static informa-

tion extracted by ANATLyzer [15]. The compiler generates

efficient code by optimising at the transformation level. This

approach is limited to EMF-based models, and such optimisa-

tion is done at the transformation level for the model to model

transformations only.

III. PROPOSED SOLUTION

Considering the research challenges and objectives, we

propose an approach for optimising queries operating over

heterogeneous low-code system models. The architecture of

the envisioned approach is depicted as a block diagram in

Fig 2. The primary purpose of this framework is to be able

to automatically rewrite expensive queries in an input model

management program written in technology agnostic language

operating over heterogeneous models to a more efficient form.

The rewritten program should be efficient in terms of execution

time. The rewriting process will be taking memory footprint

into consideration to make a trade-off. Program rewriting is

based on information extracted through static analysis. The

rewriting and optimisation will vary based on the specific

backend technology or technologies the query is operating

over. To our knowledge, we have not found the solution to

this problem in the literature. In a low-code platform, the

underlying models can be of different modelling technologies

and stored in different backend formats. After a model man-

agement program is parsed, an Abstract Syntax Tree (AST) is

generated. This AST may not include any type information

attached to its nodes. Before execution, the static analyser

component will analyse the program and populate type-related

information into the AST, also referred to as an Abstract

Syntax Graph. Abstract Syntax Graph would then be used by

the rewriters involved in a program (depending on the type of

models it needs to access), to rewrite this program behind the

scenes into an optimised form.

A. Static Analysis

The static analyser component analyses the program and

the metamodels to which the source/target models conform.

The static analyser consists of a visitor that traverses the

input program sequentially and will populate type information

for every element of this program, to yield a type-resolved

abstract syntax graph. Static analysis is a fundamental block

and can be used for various purposes, such as to facilitate

program editing and error checking. For this purpose, we use

this type information to check type compatibility to produce

the necessary compile-time errors as a helpful by-product.

B. Query Optimisation

A query optimisation block can contain several optimisers,

but which ones will actually be invoked depends on the input

program. If a program involves cross-validation of a Simulink

and an EMF model, their respective rewriters/optimisers would

be invoked. This entire process is done before the execution

of the program. The reason for using several orthogonal

optimisers is twofold:

• Technologies may offer different optimisations specific

to their backend storage, such as index-backed methods

provided by Simulink.

• If there was a single optimiser, then it would have to

know about all the other models accessed by the program

in question to function.

SQL Query Optimiser: In SQL query optimiser, we propose

to translate the queries to the native language of the underlying

persistence technology, i.e. SQL. This is to take benefit of

the optimisations already provided by the underlying tech-

nology. Tailored SQL queries are much faster on relational

databases to execute compared to high-level languages using

only basic query functions (like a blanket select * expression

to return all instances of a type, to be filtered afterwards by

the execution engine). We take in the AST and visit each

node to translate to the constructs of SQL as in [16]. For

instance, Database!Requirements.all.select(r|r.id = 45) would

be translated to Database.runSql(”select * from Requirements

where id =45”)

EMF Query Optimiser: EMF is a widely used modelling

technology in the modelling community. To efficiently query

large-scale EMF models, we use a static analyser to analyse

the program and detect which custom indices can be created.

One possible optimisation is that a given model management

program is visited sequentially to detect expressions which

include filtering all instances based on one or more attributes.

This class of expressions can make use of such in-memory

indices at run-time to execute faster. The program is then au-

tomatically rewritten to search through the created in-memory

custom indices. Creating custom indices also has an overhead,

which is expected to regularly pay off in the case of large-scale

models, when the index is used multiple times in the program.

Call graph analysis is used to decide whether an expression can

potentially be executed multiple times within a single program.

The analysis checks if an expression is inside the body of a

loop or it’s a part of an operation which is called from a

loop. If an optimisable expression is detected to be potentially

executed multiple times, it is considered to be a candidate for

indexing.

Another optimisation for programs operating over EMF-

based models is translating certain expensive Epsilons expres-



Fig. 2. Architecture of the proposed solution

EOL Visitor

Metamodel
Connectivity

Type Inference

Type Resolution 

Static
Analyser

Abstract Syntax Tree Type Resolved 
Abstract Syntax Tree

Model
management

script
Metamodel

Parser

Epsilon Object
Language (EOL)

Epsilon Validation
Language (EVL)

Epsilon
Transformation
Language (ETL)

extends

extends

Fig. 3. Architecture of static analysis

sions into Viatra patterns. This is to leverage the benefit of

the incremental engine of Viatra. The plan is to translate first-

order logical operations to their corresponding Viatra graph

patterns and then execute those translated patterns by invoking

the Viatra Engine. This is expected to potentially reduce the

execution time in the case of large-scale models.

For model to model transformations over EMF models, a

dependency graph would be created between rules so that

when an equivalent rule is called, it should not be searched in

the transformation trace. For transformation chains, the chain

would be statically analysed to see what rules are mandatory

to be executed depending on if they actually take part in

generating the end target model.

Simulink Query Optimiser: In the context of model

management programs executing over Simulink models, the

execution time can be reduced by leveraging the various

built-in MATLAB commands, such as index-backed built-in

methods. We propose to translate expressions which can utilise

such built-in commands to compute results more efficiently.

This translation to MATLAB commands would be performed

at compile-time with the help of information extracted from

static analysis. For Instance, if we have a given EOL ex-

pression: Simulink!Subsystem .allInstances.exists(s|s.name =

self.subsystem) it can be translated to a index backed MAT-

LAB method findBlocks() as : Simulink.findBlocks(’Subsystem’

,’name’, self.subsystem).notEmpty()

IV. PLAN FOR EVALUATION AND VALIDATION

In this section, I will present how the correctness of the

rewritten program will be validated. Also, I will describe the

process to evaluate the proposed solution in comparison with

other state-of-the-art approaches.

A. Validation

As the proposed solution for optimising queries will rewrite

the program behind the scenes, it is important to ensure that

semantics of the original program are preserved. I will use

automated JUnit equivalence tests for validating the correct-

ness of our rewritten program, comparing the results obtained

from the execution of the original program with those of the

rewritten program.

B. Evaluation

The proposed solution will be evaluated on validation con-

straints and transformations operating over large EMF models

available in LinTra 3 conforming to the Java metamodel by

MoDisco [17] - a model-driven reverse engineering project.

LinTra has large models reverse-engineered from the source

code of Eclipse projects ranging from 100K to 4.35M model

elements. I plan to evaluate the proposed approach preferably

on model management programs that access and query, vali-

date or transform different models such as MySQL, Simulink

and EMF concurrently to see if the approach performs effi-

ciently in case of heterogeneous models. I will use publicly

available large Simulink models and model management pro-

grams from GitHub.

V. EXPECTED CONTRIBUTIONS

The concrete contributions of this doctoral research are

listed as follows:

Contribution 1: A framework on-the-top of existing model

management languages for reducing the execution time of

queries operating over heterogeneous modelling technologies.

3http://atenea.lcc.uma.es/projects/LinTra.html



Fig. 4. Gantt Chart of Research Tasks

Contribution 2: A static analyser component to populate

static information such as types (based on input/output meta-

models) for model management programs.

Contribution 3: A query translation faciltiy for automati-

cally translating an appropriate subset of EOL expressions to

their corresponding optimised SQL queries.

Contribution 4: A query rewriting faciltiy for optimising

EOL, EVL and ETL programs over EMF models, by perform-

ing a number of optimisations such as use of custom indices

or translating to Viatra patterns.

Contribution 5: A query translation faciltiy for programs

operating over Simulink models. This facility will automati-

cally translate EOL expressions to their corresponding opti-

mised MATLAB commands (such as leveraging index-backed

operations).

Contribution 6: An equivalence test suite for ensuring the

validity of rewritten programs (such that the semantics of the

original program are preserved).

VI. CURRENT STATUS AND FURTHER WORK

In this section, I will list the results achieved so far, current

status of the research work and further work along with

timeline. The overall progress is depicted in the Fig 4.

A. Milestones Achieved

I started my doctoral program by reviewing a large number

of research papers (See Fig 4 highlighted in black) related

to scalability challenges in MDE then model querying in

particular. I also spent some of the time reviewing literature

related to query optimisation in databases, as this is a well-

studied problem with similar objectives. From a practical per-

spective, I started familiarising myself with MDE frameworks

such as EMF, Epsilon, Viatra. After analysing literature, an

approach that uses compile-time static analysis and several

query optimisers/rewriters is proposed, which is also presented

as a workshop article in [16].

Meanwhile, I started working on adding static analysis

capabilities to Epsilon. As all other Epsilon languages are built

on top of EOL, I started by implementing the static analysis of

the core language of Epsilon i.e. EOL and then extended it for

EVL and ETL to add support for language specific constructs.

Static analysis is open-source and is publicly available at [18]

to be used on top of Epsilon.

After implementing static analysis, I implemented a

compile-time mapping strategy from a subset of EOL expres-

sions to SQL queries. This is to efficiently query relational

databases while still using tailored model management lan-

guages.

For EMF-based models, I implemented optimisation of

type-level queries using static analysis by creating in-memory

indices. We plan to submit this work as a conference paper.

Recently I worked on translating EOL expression to graph

patterns (VQL) [19] for efficiently querying large-scale EMF

models. VQL’s incremental engine considerably reduce the

execution time. We submitted an article at the 2nd Lowcode

workshop at MODELS ’21.

B. Current Status

Currently, I am working on (See Fig 4 highlighted in grey)

optimising ETL transformations for EMF-based models at the

rule level (exploiting dependencies between rules). In the same

direction, I am working on utlitising static type information in

the optimisation of transformation chains. I am also working

on optimising various expressions in EOL and EVL programs

by exploiting static information already extracted.

C. Next Steps

After the above-mentioned steps, I plan (See Fig 4 high-

lighted in white) to devise a strategy for compile-time trans-

lation of EOL expressions to native MATLAB commands for

efficiently querying Simulink models. Finally, I will conclude

the results obtained along with testing and benchmarking and

write the dissertation by Sep 2022.

ACKNOWLEDGMENTS

The work in this paper has been partially supported by

the Lowcomote Training Network [20], which has received

funding from the European Union’s Horizon 2020 Research

and Innovation Programme under the Marie Skłodowska-

Curie grant agreement n° 813884. I would like to thank my su-

pervisors Prof. Dimitris Kolovos and Dr Konstantinos Barmpis

for their continuous guidance throughout this program.

REFERENCES

[1] M. Tisi, S. Martı́nez, and H. Choura, “Parallel execution of atl transfor-
mation rules,” in International Conference on Model Driven Engineering

Languages and Systems. Springer, 2013, pp. 656–672.



[2] S. Fürst, J. Mössinger, S. Bunzel, T. Weber, F. Kirschke-Biller,
P. Heitkämper, G. Kinkelin, K. Nishikawa, and K. Lange, “Autosar–a
worldwide standard is on the road,” in 14th International VDI Congress

Electronic Systems for Vehicles, Baden-Baden, vol. 62, 2009, p. 5.
[3] J. Hutchinson, J. Whittle, and M. Rouncefield, “Model-driven

engineering practices in industry: Social, organizational and managerial
factors that lead to success or failure,” Science of Computer

Programming, vol. 89, pp. 144–161, 2014, special issue on
Success Stories in Model Driven Engineering. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167642313000786

[4] K. Barmpis and D. Kolovos, “Evaluation of contemporary graph
databases for efficient persistence of large-scale models.” The Journal

of Object Technology, vol. 13, p. 3:1, 07 2014.
[5] E. Willink, “Aligning ocl with uml,” ECEASST, vol. 44, 01 2011.
[6] G. Daniel, G. Sunyé, and J. Cabot, “Scalable queries and model

transformations with the mogwai tool,” in International Conference on

Theory and Practice of Model Transformations. Springer, 2018, pp.
175–183.

[7] M. Egea, C. Dania, and M. Clavel, “Mysql4ocl: A stored procedure-
based mysql code generator for ocl,” ECEASST, vol. 36, 01 2010.

[8] D. Kolovos, R. Wei, and K. Barmpis, “An approach for efficient querying
of large relational datasets with ocl-based languages,” vol. 1089, pp. 46–
54, 01 2013.

[9] K. Barmpis and D. S. Kolovos, “Towards scalable querying of large-
scale models,” in European Conference on Modelling Foundations and

Applications. Springer, 2014, pp. 35–50.
[10] R. Wei and D. S. Kolovos, “An efficient computation strategy for

allinstances ().” in BigMDE@ STAF, 2015, pp. 32–41.
[11] S. Madani, D. Kolovos, and R. F. Paige, “Towards optimisation of model

queries: a parallel execution approach,” Journal of Object Technology,
vol. 18, no. 2, 2019.

[12] J. Makai, G. Szárnyas, I. Z. Ráth, D. Varró, and Á. Horváth, “Optimiza-
tion of incremental queries in the cloud,” 2015.

[13] S. Madani, D. Kolovos, and R. Paige, “Distributed model validation with
epsilon,” Software and Systems Modeling, 03 2021.

[14] J. Sánchez Cuadrado, L. Burgueño, M. Wimmer, and A. Vallecillo,
“Efficient execution of atl model transformations using static analysis
and parallelism,” IEEE Transactions on Software Engineering, vol. PP,
pp. 1–1, 07 2020.

[15] J. S. Cuadrado, E. Guerra, and J. de Lara, “Static analysis of model
transformations,” IEEE Transactions on Software Engineering, vol. 43,
no. 9, pp. 868–897, 2017.

[16] Q. Ali, D. Kolovos, and K. Barmpis, “Efficiently querying large-scale
heterogeneous models,” in International Conference on Model Driven

Engineering Languages and Systems. ACM, 2020, pp. 1–5.
[17] H. Brunelière, J. Cabot, G. Dupé, and F. Madiot, “Modisco: A model

driven reverse engineering framework,” Information and Software

Technology, vol. 56, no. 8, pp. 1012–1032, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584914000883

[18] “Static Analysis built on-the-top of Epsilon,”
https://github.com/epsilonlabs/static-analysis.git.

[19] D. Varró, G. Bergmann, Á. Hegedüs, Á. Horváth, I. Ráth, and Z. Ujhelyi,
“Road to a reactive and incremental model transformation platform:
three generations of the VIATRA framework,” Software and Systems

Modeling, vol. 15, no. 3, pp. 609–629, 2016.
[20] M. Tisi, J.-M. Mottu, D. S. Kolovos, J. De Lara, E. M. Guerra,

D. Di Ruscio, A. Pierantonio, and M. Wimmer, “Lowcomote: Training
the Next Generation of Experts in Scalable Low-Code Engineering
Platforms,” in STAF 2019 Co-Located Events Joint Proceedings: 1st

Junior Researcher Community Event, 2nd International Workshop on

Model-Driven Engineering for Design-Runtime Interaction in Complex

Systems, and 1st Research Project Showcase Workshop co-located with

Software Technologies: Applications and Foundations (STAF 2019), Jul.
2019.


