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Quantum classification and hypothesis testing (state and channel discrimination) are two tightly related

subjects, the main difference being that the former is data driven: how to assign to quantum states ρ(x)

the corresponding class c (or hypothesis) is learnt from examples during training, where x can be either

tunable experimental parameters or classical data “embedded” into quantum states. Does the model gen-

eralize? This is the main question in any data-driven strategy, namely the ability to predict the correct

class even of previously unseen states. Here we establish a link between quantum classification and quan-

tum information theory, by showing that the accuracy and generalization capability of quantum classifiers

depend on the (Rényi) mutual information I(C:Q) and I2(X :Q) between the quantum state space Q and

the classical parameter space X or class space C. Based on the above characterization, we then show how

different properties of Q affect classification accuracy and generalization, such as the dimension of the

Hilbert space, the amount of noise, and the amount of neglected information from X via, e.g., pooling lay-

ers. Moreover, we introduce a quantum version of the information bottleneck principle that allows us to

explore the various trade-offs between accuracy and generalization. Finally, in order to check our theoret-

ical predictions, we study the classification of the quantum phases of an Ising spin chain, and we propose

the variational quantum information bottleneck method to optimize quantum embeddings of classical data

to favor generalization.

DOI: 10.1103/PRXQuantum.2.040321

I. INTRODUCTION

Quantum information and machine learning are two

very active areas of research that have become increas-

ingly interconnected [1–4]. In this panorama, many works

have considered and designed learning models that are

built by using quantum states and algorithms [5–19]. Some

of these proposals have focused on learning classical data

by exploiting the capability of quantum machines to eas-

ily perform computations that are in principle unfeasible

using classical computers [5,6]. Other works have instead

focused on “quantum data,” i.e., information embedded in

quantum states or quantum channels.

For the latter case, a fundamental model with particu-

lar relevance is that of quantum channel discrimination.

*leonardo.banchi@unifi.it

Published by the American Physical Society under the terms of

the Creative Commons Attribution 4.0 International license. Fur-

ther distribution of this work must maintain attribution to the

author(s) and the published article’s title, journal citation, and

DOI.

This is known to have nontrivial implications for quan-

tum sensing [20], in tasks such as the detection of targets

[21–23] or the readout of memories [24,25]. Recently,

it has been applied to study the model of channel posi-

tion finding [26], associated with absorption spectroscopy

[27], and more sophisticated problems of barcode decod-

ing and pattern recognition [12]. In the latter, the use of

quantum light sources was shown to drastically reduce the

error affecting the supervised classification of images, even

when the output measurements are not optimized.

The main difference between (supervised) quantum

machine learning (QML) and quantum hypothesis testing

(QHT), such as state and channel discrimination [28], is

the role of prior information. In QHT all possible sets of

states and their prior probabilities are known. This is not

the case in any machine learning approach, where instead

prior information is in the form of samples, that is, a col-

lection of correctly classified states. These samples are not

enough to cover all possible cases and the most important

question in data-driven strategies is to check for general-

ization: after having trained the model using a few known

examples, can the model accurately classify unseen data?

2691-3399/21/2(4)/040321(21) 040321-1 Published by the American Physical Society
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In previous QML literature, the generalization capabilities

were numerically verified by computing the classification

error over a testing set. Some theoretical bounds were stud-

ied in Refs. [10,11,29,30], but only for particular classifiers

or regression models, while intuitive geometrical charac-

terizations were given in Refs. [7,8], yet without a formal

proof.

Here we study generalization in QML classification

tasks using tools from quantum information theory. In Sec.

II we first establish a fruitful link between QML and QHT.

This allows us to bound the QML classification error by

exploiting some QHT results, and to study the role of the

unknown prior in QHT. In Sec. III we introduce the main

technical result of this paper: quantities linked to either

the training or testing errors can be bounded by the quan-

tum mutual information between some suitable quantum

states and classical variables. Based on the study of these

quantities, in Sec. IV we show different implications of

our theoretical bounds: we introduce a quantum version

of the bias-variance trade-off, which defines fundamental

limitations on the testing error for finite amounts of data;

we then show how to use results developed in the quan-

tum communication and cryptography literature to study

how to optimally embed classical information onto quan-

tum states; finally, we show how different properties of

the quantum states affect the classification accuracy and

generalization, such as the dimension of the Hilbert space,

the amount of noise, and the amount of neglected infor-

mation via, e.g., pooling layers. Our results are based on

the study of the linear loss function, yet we show how

similar conclusions can be obtained in a loss-independent

framework, by defining a quantum version of the infor-

mation bottleneck principle [31]. In Sec. V we consider

different applications of our theoretical results. We first

study the quantum phase recognition problem of an exactly

solvable quantum Ising chain and then define the vari-

ational quantum information bottleneck method to train

quantum embeddings of classical data for good generaliza-

tion. Conclusions are drawn in Sec. VI. The mathematical

derivations of our results, as well as the extension to

multiary classification, are presented in the appendices.

II. QUANTUM HYPOTHESIS TESTING VERSUS

SUPERVISED CLASSIFICATION

We study the classification of either quantum states, as

in Fig. 1(a), or classical data, as in Fig. 1(b), using the

framework of QHT. Let us first consider the simpler case

where a quantum device can only be in NC possible states

{ρc}c=1,...,NC
for some integer NC. The possible values of

c are called hypotheses in QHT, or classes in this paper.

An experimentalist (Alice) performs a measurement on

the device with a positive operator-valued measurement

(POVM) {�c}, whose outcome is the predicted value of

c. Via Naimark’s dilation theorem, such a POVM can be

effectively implemented as shown in Fig. 1(c), namely

by using an ancillary system whose Hilbert space dimen-

sion is equal to NC, by first applying a unitary circuit that

couples the state and the ancilla, and then performing a

projective measurement |c〉〈c| on the ancillary system. In

the most general setting, the states ρc are not orthogonal

and Alice cannot discriminate between them with a sin-

gle measurement. When the device can be reinitialized in

the same state, Alice can use N copies ρ⊗N
c and the proba-

bility of wrong discrimination can decrease exponentially

with N [32]. We remark that the common approach of

using N measurement “shots” is just a particular case, pos-

sibly nonoptimal, of the above general framework, with

independent measurements on each copy.

Unlike QHT, in QML classification tasks there are dif-

ferent states that belong to the same class. The number

of classes NC is finite, but the available states ρ(x) are

possibly infinite. In this paper the inputs x model tun-

able classical parameters. For instance, consider a device

that, depending on parameters x, outputs either entangled

(c = 1) or separable (c = 0) states [33], or a many-body

system that may be in different phases c depending on

some external magnetic fields x [9]. We may also be

interested in classifying classical data x (e.g., images)

using a quantum algorithm, to look for algorithmic quan-

tum advantage [11,34] (faster classification), or classifying

quantum channels using quantum probes to look for quan-

tum advantage in accuracy [12] (fewer measurements).

When dealing with classical inputs x, the quantum embed-

ding circuit can be written as in Fig. 1(b) with x-dependent

and x-independent gates Ui(x) and Vj , which may be opti-

mized during training. Finally, a mathematically related,

yet physically different problem consists in classifying

physical objects using quantum sensors [12,21–27], as in

the example shown in Fig. 1(d). There, ρ(x) = Ex[ρin]

describes the state received by a quantum detector, where

ρin is the input probe state of light, possibly entangled, and

Ex describes how the photons are scattered depending on

the objects x living in the physical world.

In all the examples described above, we are inter-

ested in learning the unknown functional relation c = f (x)

between a classical input x and output class c, yet through

measurements on a quantum device. The motivations can

be quite diverse and range from quantum device char-

acterization depending on external parameters to the use

of quantum algorithms to classify classical data. Follow-

ing common practices in theoretical machine learning, we

assume that all possible pairs of data (c, x) follow some

unknown probability distribution P(c, x), so data pairs are

independent samples from P [see Fig. 1(b)]. Formally, our

ignorance can be modeled using mixed states

ρc =
∑

x

P(x|c)ρ(x), (1)
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(a) Quantum state classification
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(b) Classification of classical data
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of unitary UM

(d) Quantum channel discrimination

ρ(x)
x

Detect objects x
from the scattered
state of light ρ(x)

Obstacle
c = yes/no

FIG. 1. (a) Example binary classification of quantum states

that depend on some external parameters x. (b) Classification

of classical data using a quantum embedding circuit with L lay-

ers. The classical data are sampled from an unknown distribution

P(c, x), where x describes, e.g., images of animals and c specifies

the kind of animal, e.g., a cat. The classical input x is embed-

ded into a quantum state ρ(x) via layers of x-dependent and

x-independent gates. A POVM {�c} is performed at the end of

the circuit. The predicted class of x corresponds to the measure-

ment outcome c. (c) Any POVM can be expressed as a unitary

circuit followed by a projective measurement |c〉〈c| on a suitably

large ancillary system. (d) In quantum channel discrimination,

the images x live in the physical world; a quantum probe senses

the outside world and ρ(x) is the scattered state of light col-

lected by the detector, which depends on the outside objects. The

detector then classifies the image with a POVM, as in (c).

where P(x|c) is the unknown conditional probability. For

N copies, such states read ρ(N )
c =

∑

x P(x|c)ρ(x)⊗N . With

a slight abuse of notation, to simplify the mathematical

expressions, we may hide the dependence on N inside

ρ(x), namely as ρ(x) = ρ̃(x)⊗N for some ρ̃(x). The main

difference between QHT and the classification problem

studied in this paper is that we take measurements on

the instances ρ(x) rather than on the discrete states ρc.

Measurements are still described via a POVM {�c}, possi-

bly acting on N copies, constructed such that its outcome

c is the predicted class x. Such a quantum classifier is

probabilistic: given an input x, the predicted class c is

found with probability pQ(c|x) = Tr[�cρ(x)]. Other clas-

sifiers can be built using different techniques of quantum

decision theory [19,28], for instance by repeating the mea-

surement many times and taking the most likely class, or

by defining an observable M =
∑

c mc�c for certain real

numbers mc, and then assigning a certain class depend-

ing on the expectation value Tr[Mρ(x)]. For instance,

for binary classification problems with c = {0, 1}, we may

set m0 = −1, m1 = 1 and then assign the class depend-

ing on the sign of Tr[Mρ(x)] [7]. We remark that exact

expectation values on real hardware can only be obtained

in the limit of infinitely many shots, namely for N → ∞
copies.

Since in QML the probability distribution is unknown, a

(sub)optimal classifier must be built from a finite amount

of training data. Is the trained classifier able to predict

the correct class of previously unseen data? To answer

this question, in the next sections we use tools from

quantum information theory to formally study the two

main errors, namely the approximation and generalization

errors, which rigorously formalize the empirical testing

error (see Fig. 2). We call ρ(x) parametric quantum states

(PQSs) that depend on some tunable classical parameters x

and refer to the mapping x �→ ρ(x) as quantum embedding.

We study how different properties of the embedding affect

accuracy or generalization, as schematically shown in Fig.

3, and then introduce fundamental limitations on the errors

that we may expect for a given data distribution and finite

training samples.

A. Training and testing with linear loss

We first formalize the various sources of error that may

prevent generalization. Readers already familiar with this

topic may skip this section and refer to Fig. 2 for the

notation.

In supervised learning the available data are split

between a training and a testing set. Both these sets are

composed of pairs (ck, xk), namely inputs xk and their true

class ck, but are used differently. We consider a training set

T = {(ck, xk)}k=1,...,T with T pairs, and similarly a testing

set T ′ with T′ pairs. In the training part a model is opti-

mized in order to minimize a suitable distance between the

true class c and the predicted class for all possible pairs

(c, x) ∈ T in the training set. For given PQSs ρ(x) and

POVM {�c}, the quantum model predicts a class c̃ with

probability Tr[�c̃ρ(x)], as in Fig. 1. If c is the true class of

x, the linear loss is defined as the probability of misclassi-

fication, namely the probability that the predicted class c̃ is

040321-3
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RBayes
R(Π∗)

R(ΠT )

A

GT

Average testing error

Classification error
≈ Training error

Parametric quantum state complexity

E
rr

or

FIG. 2. Summary of the error sources for given parametric

quantum states ρ(x) and a finite number of training samples. The

classification error R(�∗) is the average loss with the unknown

optimal measurement �∗. The average testing error R(�T )

replaces �∗ with the POVM �T estimated from the training set

T via empirical risk minimization. The testing error RT ′
(�T )

is a finite sample approximation of R(�T ) over the testing set

T ′. The difference between the average testing error and the

Bayes risk RBayes is split into the approximation error A and the

generalization error GT . The training error typically behaves as

R(�∗).

different from the true class c,

ℓ(c, x) =
∑

c̃ �=c

Tr[�c̃ρ(x)] = 1 − Tr[�cρ(x)], (2)

where the second equality follows from
∑

c �c = 1. The

linear loss allows us to link QML to QHT [19,28].

Training is done via empirical risk minimization, where

the empirical risk is the average loss over all possible pairs

Not
achievable

A
p
p
ro

x
im

at
io

n
 o

r 
tr

ai
n
in

g 
er

ro
r

Generalization error

D
epolarizing

noise

Larger hilbert
space

Pooling

FIG. 3. Summary of some of the main conclusions of this

paper. The approximation and generalization errors are respec-

tively mathematically related to the training and testing errors

over some datasets, and they cannot be simultaneously min-

imized (bias-variance trade-off). We use quantum information

quantities to bound these errors and show how they are affected

by the dimensionality of the quantum Hilbert space, noise, and

“information pooling.”

(ck, xk) in the training set

RT (�) =
1

T

∑

(ck ,xk)∈T
ℓ(ck, xk), (3)

and the minimization is over the parameters of the model,

namely the POVM and, in some applications, also the

embedding. In general, such minimization does not have

an analytic solution, except for a few notable cases.

For binary classification problems, where c = {0, 1} can

only take two distinct values, the optimal T -dependent

POVM, �T = argmin�[RT (�)], is the Helstrom mea-

surement [35], which is extensively used in QHT. The

Helstrom measurement operator �T

0 (�T

1 ) is the projection

onto the eigenspace of positive (negative) eigenvalues of

(T0/T)ρT

0 − (T1/T)ρT

1 , where Tc is the number of inputs

in the training set with class c and ρT
c is a mixture of all

the states ρ(x) with inputs in T and fixed class c. Although

not necessary, to simplify the equations, we always assume

that the training set contains an equal number of inputs

per class, so Tc/T = 1/2. Using the optimal Helstrom

measurement, the minimum empirical risk can be written

analytically in terms of the trace distance between the two

average states ρT

0 and ρT

1 :

RT (�T ) =
1

2

(

1 −
1

2
‖ρT

0 − ρT

1 ‖1

)

. (4)

The above quantity is what defines the training error for a

given PQS ρ(x), namely the average loss over the training

set. From the above equation, zero training error is possible

only when ‖ρT

0 − ρT

1 ‖1 = 2, which happens when ρT

0 and

ρT

1 have orthogonal support. We show in Appendix A that

similar conclusions also hold when the number of classes

is greater than two.

Does the model generalize? Empirically we need to

check how the model performs with inputs not present in

the training set. This is normally done by studying the

testing error RT ′
(�T ), which is similar to Eq. (3), but

where the samples are taken from the testing set T ′ and

the POVM �T is the one minimizing the empirical risk. In

order to define the generalization error more formally, we

need first to define the true average classification error

R(�) = E
(c,x)∼P

ℓ(c, x) = 1 −
∑

c

P(c)Tr[�cρc], (5)

where in the last expression we use the chain rule P(c, x) =
P(x|c)P(c) = P(c|x)P(x), P(x) =

∑

c P(c, x), P(c) =
∑

x

P(c, x) and the definition of Eq. (1). The training error (3)

is an empirical approximation of the classification error (5)

where the formal average over all possible pairs (c, x) is

substituted with a finite average over the training set. The

optimal classification POVM, �∗ = argmin�R(�), is in

general different from the �T that we get from empirical
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risk minimization. Overfitting happens when this differ-

ence is significant, namely when �∗ and �T disagree on

the class of an input not present in the training set. The gen-

eralization error, also called the estimation error, is defined

as R(�T ) − R(�∗), namely as a difference between two

classification errors, where in one case we use the true clas-

sifier and in the other we use the classifier built from the

training set T . Note that the testing error RT ′
(�T ) is an

empirical approximation of R(�T ).

In order to have a low testing error, we need to have

both a low generalization error and a low classification

error R(�∗). The lowest possible classification error is

obtained with the (normally unknown) Bayes classifier,

with corresponding Bayes risk RBayes—see the next section

for a formal definition. The difference between the average

testing error R(�T ) and RBayes can be written as

R(�T ) − RBayes = GT + A, (6)

with

GT = R(�T ) − R(�∗), (7)

A = R(�∗) − RBayes. (8)

In Eq. (6) the difference between the average testing error

and the Bayes risk has been split into two positive terms

(see also Fig. 2): GT is the previously defined general-

ization error while A is called the approximation error.

A standard result of statistical learning theory, dubbed

the bias-variance trade-off [36], shows that it is impos-

sible to minimize both A and G. Simple classifiers may

escape from overfitting but have a bias in the resulting

predictions, while too complex classifiers lead to overfit-

ting and a higher variance in the predictions. We remark

that these complexity analyses cannot explain the success

of deep learning, where models with millions of parame-

ters generalize well in spite of their complexity. There are

some explanations of why deep learning works in partic-

ular models [37,38], but this is still a subject of intensive

research. Moreover, quantum models that can be trained in

near-term quantum hardware are quite far from the regime

where deep learning operates, so in this paper we focus on

models of “moderate complexity.”

III. QUANTUM INFORMATION BOUNDS FOR

SUPERVISED LEARNING

In this section we study bounds on the approximation

and generalization errors using tools from quantum infor-

mation theory, the main theoretical results of this paper. In

Sec. IV we study how different properties of the PQSs ρ(x)

affect these errors, while in Sec. V we study more practical

applications.

A. Generalization error

Employing tools from statistical learning theory [36]

and quantum information, in Appendix A we prove one

of our main results, which loosely states that the gener-

alization error typically goes to zero when the number of

training pairs T is much larger than a quantity linked to

the mutual information between the PQSs and the classical

parameters.

Theorem 1. For a given embedding x �→ ρ(x) and any

δ > 0, with probability at least 1 − δ, the generalization

error is bounded as

GT ≤ 2

√

B

T
+

√

2 log(1/δ)

T
, (9)

where T is the size of the training set,

B =
(

Tr

√

∑

x

P(x)ρ(x)2

)2

= 2I2(X :Q) (10)

depends on the embedding, and P(x) is the (unknown)

prior probability for an input x.

We refer to B as the generalization bound, which con-

strains how large the generalization error can be for a

fixed number T of training pairs. The inequality (9) applies

to binary classification problems, but its general form,

derived in Appendix A, is equivalent to inequality (9) up

to a constant that depends on the number of (equiprobable)

classes—see Theorem 2 in Appendix A. The inequality

(9), with the explicit form of B in Eq. (10), represents one

of the central results of this paper, as it links the generaliza-

tion error to properties of the embedding that are measured

by information theoretic quantities. Indeed, the quantity

found in the second equality of Eq. (10) is the 2-Rényi

mutual information between subsystems X and Q of the

classical-quantum state

ρCXQ =
∑

cx

P(c, x) |cx〉〈cx| ⊗ ρ(x). (11)

For general α and subsystems A and B, the α-Rényi mutual

information [39] is defined as

Iα(A:B) =
α

α − 1
log2 Tr α

√

TrA

(

ρ
(1−α)/2

A ρα
ABρ

(1−α)/2

A

)

.

(12)

For α → 1, one recovers the quantum mutual informa-

tion I1(A:B) ≡ I(A:B) = H(A) + H(B) − H(AB), where

H(A) = S(ρA) and S(ρ) = −Tr[ρ log2 ρ] is the von Neu-

mann entropy. Although Iα(A:B) for α �= 1 does not satisfy

all of the properties of I1(A:B), it does satisfy the data pro-

cessing inequality [39], namely Iα(A:B) ≥ Iα(A′:B′) under
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local quantum channels EA/B→A′/B′
, a central ingredient in

quantum information theory.

In Eq. (11) we have introduced three Hilbert spaces: the

quantum space Q where the PQSs ρ(x) live, the class space

C spanned by {|c〉}c=1,...,NC
, and the input space X spanned

by {|x〉} for all possible values of x, namely where each

input x is mapped onto a different orthogonal state |x〉. For

instance, if the inputs x are made of classical images with

n pixels, each with a 16 bit color, then |x〉 lives in a space

of 4n qubits. For continuous inputs, e.g., when ρ(x) is an

equilibrium state of a many-body system and x some exter-

nal parameters, one must consider a suitably regularized

infinite-dimensional Hilbert space. Here, for simplicity, we

assume that X is discrete and can be represented using NX

classical bits, so ρCXQ lives in an NC2NX +NQ-dimensional

Hilbert space.

Inequalities as in Eq. (9) are common in statistical learn-

ing theory and show that, with high probability, a model

generalizes well whenever T → ∞. The importance of

Eq. (10) is in quantifying when the size T of the train-

ing set is “large.” According to our analysis, a training set

is large whenever T ≫ 2I2(X :Q), namely when log2(T) is

much larger than the number of bits required to describe

the information shared between the input distribution and

the quantum embedding, as measured by I2(X :Q).

B. Approximation error

Fixing the embedding x �→ ρ(x) is like fixing the model

class in classical machine learning, e.g., a neural network

with a given architecture and a certain number of nodes.

The difference between the minimum classification error

with a given architecture and the theoretical minimum

over all possible architectures, namely the Bayes risk, is

the approximation error (8). For a known P(c, x) and a

given x, the Bayes classifier picks the class that maxi-

mizes P(c|x). The corresponding Bayes risk for binary

classification problems with P(c) = 1/2 is then

RBayes = 1 −
1

2

∑

x

max{P(x|0), P(x|1)} =
1 − �

2
,

where

� =
1

2

∑

x

∣

∣P(x|0) − P(x|1)
∣

∣. (13)

Using the definition of the approximation error (8) and the

classification error R(�∗), which is analogous to Eq. (4)

but with the states (1), we find that the approximation error

for quantum binary classification problems can be written

as

A = R(�∗) − RBayes = � −
‖ρ0 − ρ1‖1

2
. (14)

It is simple to show that 0 ≤ A ≤ �. Indeed, the upper

bound is trivial, and can be achieved when ρ0 = ρ1. As

for the lower bound, by defining ρ
XQ
c =

∑

x P(x|c)|x〉〈x| ⊗
ρ(x), we first note by explicit calculation that ‖ρXQ

0 −
ρ

XQ

1 ‖1 = 2�. Then by the contractivity of the trace dis-

tance over quantum channels we find that ‖ρQ

0 − ρ
Q

1 ‖1 ≤
‖ρXQ

0 − ρ
XQ

1 ‖1, where ρ
Q
c = TrX [ρ

QX
c ] ≡ ρc, thus showing

that A ≥ 0. The approximation error A can be interpreted

as a generalization of the probability of error in QHT,

where the difference is due to the measurements over the

instances ρ(x) rather than over the discrete hypothesis

states (1). The two errors coincide up to a multiplicative

factor when X ≡ C.

In the previous section, we have showed how to

bound the generalization error using the mutual informa-

tion between subsystems X and Q in Eq. (11). We can

use entropies to bound the average classification error

R(�∗), and hence A. Indeed, using the quantum Cher-

noff bound [40] and explicit calculations we get R(�∗) ≤
1
2
Tr[

√
ρ0

√
ρ1] = 2−I1/2(C:Q) − 1

2
, which shows that a low

classification error is possible when I1/2(C:Q) is large. A

more general result, valid for any number of classes, can

be found using conditional entropies [41],

R(�∗) = 1 − 2−Hmin(C|Q) ≤ 1 −
2I(C:Q)

NC

, (15)

which is valid for states of the form given in Eq. (11),

where Hmin(C|Q) ≤ H(C|Q) is the min-entropy of C con-

ditioned on Q, which is smaller than von Neumann’s

conditional entropy [42]. The second inequality comes

from H(C|Q) = H(C) − I(C:Q) and H(C) = log2 NC for

a classification problem with NC classes. Since Q and C are

classically correlated, I1(C:Q) ≤ H(C) and a small risk is

possible when the mutual information between Q and C is

large.

To conclude, small G is possible for small I2(X :Q)

while small A is possible for large I(C:Q). In the fol-

lowing section, we build upon these theoretical bounds to

study how different properties of the PQSs ρ(x) affect the

approximation and generalization errors.

IV. BIAS-VARIANCE TRADE-OFF FOR

QUANTUM MACHINE LEARNING

The bias-variance trade-off is a central result in machine

learning, stating that it is impossible to minimize both the

approximation and the generalization errors. Models with

lots of parameters and structure are expected to have low

approximation error, potentially at the cost of poor general-

ization (overfitting). On the other hand, a low-dimensional

model with few parameters would be easier to learn, but it

might not reliably classify the data.

We study the bias-variance trade-off using quantum

information. Remember that the difference between the
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average testing error and the Bayes risk can be written as a

sum of two positive terms [see Eq. (6)]: the generalization

error G and the approximation error A. The latter is the

difference between the average classification error R and

the Bayes risk, while the former can be bounded by the

generalization bound B from Eq. (10), and can be made

arbitrarily small by considering arbitrarily large training

sets with T → ∞. For finite and fixed T, we show that it

is impossible to minimize both A and G, and that differ-

ent properties of PQSs ρ(x) affect the approximation and

generalization errors, as schematically shown in Fig. 3.

Thanks to our framework, many characterizations of

PQSs ρ(x) will be formally derived in the next section

using tools from quantum information. We use, in par-

ticular, the contractivity of the trace distance under quan-

tum channels EQ→Q′
[43], mapping from the space Q to

the space Q′, i.e., ‖EQ→Q′
(ρ − σ)‖1 ≤ ‖ρ − σ‖1, the data

processing inequality [39] I2(X :Q) ≥ I2(X :Q′), and finally

the bounds satisfied by B, studied in Appendices A and B,

1 ≤ B ≤ 2min{H2(X ),NQ}, (16)

where D = 2NQ is the dimension of the embedding Hilbert

space, i.e., NQ is the number of qubits in the PQS,

and Hα[X ] = [α/(α − 1)] log2[
∑

x P(x)1/α] is the Rényi

entropy of the classical input distribution.

A. Properties of quantum embeddings

Here we focus on the mapping x �→ ρ(x) and discuss

some properties and desirable features.

It is impossible to minimize both B and R: the opti-

mal embedding is the one that discards all the irrelevant

information from the input space X that is not necessary

to predict the class C. Indeed, according to Eqs. (10) and

(15), I2(X :Q) must be small while I(C:Q) must be large.

We now show that it is impossible to minimize both B and

R by studying the two extreme cases where the information

about X is either fully discarded or fully maintained.

Constant embeddings provide zero generalization error,

but the largest approximation error: indeed, the general-

ization error (7) is defined as the distance between the risk

obtained by minimizing the empirical loss over the training

data and the true average loss. For constant embeddings,

this difference is zero: if we restrict ourselves to classifiers

that always produce a constant answer then it is trivial to

learn this classifier from data, but the average classifica-

tion error will be as high as 50%. Mathematically, from

the definition (10) and the bounds (16), it is clear that the

minimum B is achieved with the trivial constant embed-

ding, ρ(x) = ρ for all x, but such a trivial embedding

provides both the largest R = 1/2 and the largest train-

ing error RT = 1/2 from Eq. (4). Moreover, using mutual

information, the constant embedding is the only embed-

ding for which the space Q is uncorrelated from both C

and X in Eq. (11) and so I(X :Q) = I(C:Q) = 0.

Basis encoding guarantees zero approximation error,

but the largest generalization error. Basis encoding [2,

44] is defined as ρ(x) = |x〉〈x|, namely different inputs

are mapped onto orthogonal vectors on a suitably large

Hilbert space. No information is lost, or hidden, in

the quantum embedding, so using Eqs. (14) and (16),

we get the lowest possible approximation error A = 0,

meaning that the average loss can achieve the Bayes

risk. However, for the same reason, we also get the

largest B = 2H2(X ), since X = Q. Therefore, basis encod-

ing allows us to reach the theoretical minimum classi-

fication error, but it requires a large embedding space

and many (T ≫ B) training pairs to avoid overfit-

ting.

High-dimensional embeddings may have lower approx-

imation error: in Appendix A (Theorem 3) we show that

if we define an embedding by taking N copies of a sim-

pler one, i.e., if we consider x �→ ρ(x)⊗N , then A → 0 for

N → ∞ as long as F[ρ(x), ρ(y)] �= 0 for x �= y, where

F(ρ, σ) = ‖√ρ
√

σ‖1 is the fidelity between two quan-

tum states. Intuitively, this happens because asymptotically

it is possible to correctly discriminate all the states ρ(x)

via QHT [12,32], effectively achieving a basis encoding

for N → ∞. If ρ(x) is an NQ qubit state then optimized

embeddings using N × NQ qubits can only have a lower

approximation error than ρ(x)⊗N , since the latter is a par-

ticular case. However, high-dimensional embeddings may

suffer from poor generalization, as B may be larger. A

numerical check of this prediction is shown in Fig. 4 for

a binary discrimination problem with Gaussian priors. We

see that, as the number of qubits increases, the classifi-

cation error risk quickly decreases but the generalization

bound increases. This is consistent with our numerical pre-

diction. According to our Theorem 3, for many copies, A

decreases exponentially with N . The asymptotic behavior

of I(X :Q) is still an open question, but we note that, for

local measurements, I(X :Q) can be bounded by the mutual

information between an input random variable and N out-

put observations, which may display two different regimes

O(log N ) or O(N ) [45]. Therefore we conjecture that B

may slowly increase with N (e.g., polynomially) for partic-

ular datasets and embeddings, as we observe numerically

for small N .

Low-entropy datasets and low-dimensional embeddings

can in principle generalize well: this is a trivial conse-

quence of Eq. (16), when the entropy of the dataset is mea-

sured by H2[X ]. The statement about the dimension can be

made a bit more precise by focusing not just on the dimen-

sion of the Hilbert space, but on how much the information

is distributed within the Hilbert space. For instance, let

us assume a pure state embedding ρ(x) = U(x)|0〉〈0|U(x)†

with a unitary embedding circuit U(x). If the embedding

is such that the input information is “fully scrambled” in a

d-dimensional subspace, with d ≪ 2NQ , then we may write
∑

x P(x)ρ(x)2 ≈ 1d/d. Substituting this approximation in
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FIG. 4. (a) Example data distributions for two different classes

c = {0, 1}: Gaussian distributions with different means ±10

and the same standard deviation 7. The corresponding Bayes

risk is RBayes ≃ 7.6%. (b) Average classification error R (5)

versus generalization bound B (10) for the angle encod-

ing ρ(x) = |ψ(x)〉〈ψ(x)|⊗NQ , where |ψ(x)〉 = cos(x/2)|0〉 +
sin(x/2)|1〉 and the x values have been normalized such that

x ∈ [0, 2π ]. The number inside each circle represents the value

of NQ = 1, . . . , 10.

Eq. (10) we get

B ≈ O(d). (17)

Therefore, an embedding is capable of generalization not

just when built using few qubits, but rather when it “scram-

bles” information in a small subspace of the full NQ-qubit

Hilbert space.

Geometric characterization: there is an intuitive geo-

metrical characterization of “good” embeddings (see, e.g.,

Refs. [7,8]). A good embedding is possible when the

fidelity between two embedded states is small if the inputs

are from different classes and high if the inputs are from the

same class, as schematically shown in Fig. 5. This intuitive

picture can be explicitly proved using our results. Indeed,

using the Fuchs–van de Graaf inequality and the strong

concavity of the fidelity, we get

ET RT (�T ) ≤ 1
2
E

T [F(ρT

0 , ρT

1 )] ≤ 1
2
F(ρ0, ρ1), (18)

so, on average, low training errors and low classification

errors are possible when the fidelity between the two aver-

aged states ρ0 and ρ1 is small. Moreover, in Appendix

B we show that B ≤ [
∑

c

√
P(c)Bc]2 and, for pure state

FIG. 5. Geometric visualization of a good embedding, where

each point in the sphere represents a state. Points belonging to

different classes are plotted with different colors. A good embed-

ding should cluster points with the same class and separate points

belonging to different classes.

embeddings,

Bc ≤ 1 +
√

(r2
c − rc)(1 − Tr[ρ2

c ]), (19)

where rc is the rank of ρc. The general case is discussed

in Appendix B. The above inequality shows that low gen-

eralization error is possible when the average embedding

states ρc have low rank and/or high purity. Since ρc is

an ensemble of embeddings for inputs from the same

class, the above requirement is satisfied when ρ(x) effec-

tively maps all the inputs from the same class to the same

state. More precisely, for pure state embeddings ρ(x) =
U(x)|0〉〈0|U(x)†, the purity can be written as

Tr[ρ2
c ] =

∑

x,y

P(x|c)P(y|c)F[ρ(x), ρ(y)]2, (20)

where F[ρ(x), ρ(y)] = |〈0|U(y)†U(x)|0〉| is the fidelity.

Therefore, good generalization is possible whenever

F[ρ(x), ρ(y)] is large for all possible pairs (x, y) of

inputs with the same class, namely when ρ(x) and ρ(y)

are always geometrically close in the embedding Hilbert

space. Combining this with Eq. (18) we see that a desirable

feature to get a good embedding is that the fidelity between

two embedded states is small if the inputs are from differ-

ent classes and high if the inputs are from the same class,

as in Fig. 5.

Noisy operations: we focus on what happens when

ρ(x) = (1 − ǫ)U(x)|0〉〈0|U(x)† + ǫ1/2NQ , namely when

the embedding discussed in the previous example is

degraded by depolarising noise with strength ǫ. Again,

assuming that the average fully scrambles information in

a d-dimensional subspace, then

∑

x

P(x)ρ(x)2 ≈
[

(1 − ǫ)2 +
2(1 − ǫ)ǫ

2NQ

]

1d

d
+

ǫ2

22NQ
1,
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from which

B ≈ [
√

d(1 − ǫ + ǫ/2NQ) + (1 − d/2NQ)ǫ]2 ≃ d(1 − ǫ)2.

From the above equation, we see that the general-

ization error does not increase with noise. It actually

decreases when 1 ≪ d ≪ 2NQ , as for large ǫ the embed-

ding approaches the constant embedding, which has the

lowest generalization error but the highest classification

and approximation errors.

Kernels close to identity are not good for generaliza-

tion: quantum embeddings can be used to define quan-

tum kernels [5–7,11]. These “kernels” are nothing but

the fidelity between two states. Sometimes working with

kernels rather than quantum states can be beneficial. In

Appendix C we show that, for pure state embeddings

ρ(x) = |ψ(x)〉〈ψ(x)|, we can express the generalization

bound quantity as

B = (Tr
√

K)2, (21)

where K is the normalized kernel operator, whose matrix

elements are

Kx,y = p(x)〈ψ(x)|ψ(y)〉. (22)

Accordingly, the generalization bound can be computed

from the eigenvalues ηk of the normalized kernel matrix

as B = (
∑

k

√
ηk)

2. Note that the study of normalized ker-

nel eigenvalues was also recently proposed as a possible

explanation of the generalization capabilities of deep learn-

ing [38]. From the above expression, one readily finds

that worse generalization performances, according to our

bounds (9) and (16), are obtained when 〈ψ(x)|ψ(y)〉 ≃
δx,y , namely when different states have almost orthogonal

support. Indeed, when 〈ψ(x)|ψ(y)〉 = δx,y , Eq. (21) results

in the upper bound of Eq. (16).

Pooling may help: we have seen that a large embed-

ding Hilbert space may favor the classification accuracy,

yet hinder generalization. According to Eq. (16), the gen-

eralization bound may approach its largest value when NQ,

i.e., the number of qubits in the embedding, is as large as

H2(X ). What about the minimum number of qubits? For

binary classification problems, a good embedding can be

obtained even with NQ = 1. Indeed, the simplest embed-

ding that achieves the minimum Bayes risk is ρBayes(x) =
|c̃〉〈c̃|, where c̃ = argmaxcP(x|c) is, for a given x, the class

with largest conditional probability. Clearly, it is impossi-

ble to construct this embedding, as the probabilities P(x|c)
are unknown, but the above example shows that a good

embedding is possible with a single qubit. Although the

state before the measurement must be as low dimensional

as possible, we may start from a large dimensional embed-

ding and then iteratively throw away information, either

via measuring some qubits and then applying a different

unitary on the remaining ones depending on the measure-

ment result or, equivalently, by applying a conditional gate

and then discarding some qubits via a partial trace.

Since the generalization error depends only on the

dimension of the final Hilbert space, one can use pooling

to iteratively reduce the number of qubits, using differ-

ent layers, eventually leaving a single qubit for measure-

ments. Promising forms of pooling have been proposed

as a basis for quantum convolutional neural networks

(QCNNs) [9,46], where the pooling layers are constructed

using a reverse multiscale-entanglement-renormalization-

ansatz circuit, whose depth depends logarithmically on the

total number of qubits. QCNNs have some desirable fea-

tures, such as the ability to distinguish states corresponding

to complex phases of matter [9], and the lack of bar-

ren plateaus in their parameter landscape [47], which aids

training. Our analysis shows that QCNNs, or other embed-

dings built by iteratively pooling information, also have

good generalization capabilities.

B. Quantum information bottleneck

In the previous section we showed that it is impossible

to minimize both the approximation and the generalization

errors, when these are defined starting from the linear loss

(2). We now show how the generalization-approximation

trade-off can also be understood from information the-

oretic principles that are independent of the choice of

loss function. In classical settings, a method designed for

this purpose is the information bottleneck (IB) principle

[31,48], whose aim is to find the “best” compressed rep-

resentation Z of the input X that nonetheless has all the

relevant information required to predict the class C. The

amount of compression can be quantified using the clas-

sical mutual information I(X :Z), while I(C:Z) quantifies

the residual information between C and Z. In order to

have accurate classification, I(C:Z) must be large, while to

have good compression, I(X :Z) must be small. The infor-

mation bottleneck principle finds a compromise between

accuracy and compression by minimizing the Lagrangian

LIB = I(X :Z) − βI(C:Z) for a certain value of β. The

parameter β allows us to explore different regimes and

to favor either accuracy or compression. When β = 0,

the minimization of LIB achieves the best compression,

without caring about correct classification; while for β →
∞, the minimization of LIB achieves optimal classifica-

tion without compression. Quantum generalizations of the

information bottleneck principle were considered for quan-

tum communication problems in Refs. [49,50]. Here we

apply the IB principle to the different problem of finding

the optimal embedding.

We focus on the state (11) where X and C are respec-

tively the classical spaces of inputs and classes, and Q is

the quantum embedding Hilbert space. We then define the
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quantum IB Lagrangian as

LIB = I(X :Q) − βI(C:Q), (23)

where I(A:B) = Iα→1(A:B) in Eq. (12) is the quantum

mutual information. Both I(X :Q) and I(C:Q) can be

expressed using Holevo’s accessible information [51]. In

Eqs. (9), (10), and (15), we have shown that good gener-

alization is possible whenever I2(X :Q) is small, while low

classification error is possible when I(C:Q) is large. These

conclusions were found for the linear loss (5). We may

assume that Iα(X :Q) defines a family of generalization

bounds for different loss functions, so the minimization of

the generalization error is consistent with the minimization

of I(X :Q), according to some metric, while the maximiza-

tion of I(C:Q) is consistent with the accurate prediction of

C from Q. For a particular value of β, the optimal embed-

ding is then obtained as minρ(x) LIB. From the definition,

we find the explicit form of the IB Lagrangian as

LIB = (1 − β)S

[

∑

x

P(x)ρ(x)

]

−
∑

x

P(x)S[ρ(x)]

+ β
∑

c

P(c)S[ρc] +
∑

x

λ̃xTr[ρ(x)] + η, (24)

where S[ρ] is the von Neumann entropy of ρ, the λ̃x

are Lagrange multipliers to force correct normalization,

and η contains all the terms that are independent of the

embedding. The optimal embedding corresponds to a min-

imum of LIB, which satisfies ∂LIB/∂ρ(z) = 0. By explicit

computation we find that the above condition defines a

recursive equation for the optimal embedding

λ̃zρ(z) = e(1−β) log ρ̄+β
∑

c P(c|z) log ρcρ(z), (25)

where ρ̄ =
∑

c P(c)ρc and λz is directly related to λ̃z and is

needed to enforce normalization. Alternatively, by restrict-

ing to pure state embeddings ρ(x) = |ψ(x)〉〈ψ(x)|, we

get

λ̃z|ψ(z)〉 = e(1−β) log ρ̄+β
∑

c P(c|z) log ρc |ψ(z)〉. (26)

From Eqs. (25) and (26) we see that, for β = 0, we get

a constant embedding, while for large β, the optimal

embedding for a given x is iteratively obtained from one

of the eigenvectors of
∑

c P(c|x) log ρc with the largest

eigenvalue, or a mixture of them.

A numerical solution of the IB equations is shown in

Fig. 6, where “pure” and “mixed” refer to either Eq. (26) or

(25), which are solved for two Gaussian distributions and a

single-qubit embedding, using a fixed number of iterations

(1000). The Bayes risk is plotted as a reference, giving the

smallest possible value of R that can be obtained with any

embedding. For a fixed 1 ≤ β ≤ 3, we first compute the
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FIG. 6. (a) Average risk (approximation error) R (5) versus

generalization error B (10) for the optimal embeddings obtained

by solving the IB equations using either pure (26) or mixed (25)

single-qubit states for different values of β ∈ [1, 3]. Some val-

ues of R and B for particular β are also shown with markers.

(b),(c) Bloch sphere visualizations of the quantum embeddings

ρ(x) for different values of x sampled from either P(x|0) (red) or

P(x|1) (yellow), obtained by solving the IB Eq. (26) for single-

qubit encodings, using the two shown values of β. In all three

subfigures, the data distributions are those of Fig. 4(a).

optimal embedding via either Eq. (26) or (25), and then

compute the classification error R from Eq. (5) and the gen-

eralization bound B from Eq. (10). Recall that, for a given

P(c, x), the classification error is equivalent to the approx-

imation error A, up to the constant Bayes risk (8). Figure

6(a) shows the approximation-generalization trade-off for

the different regimes that we have explored by varying β.

For low values of β, we get an almost constant embedding

with a large classification error (up to 50%) and low B,

while for large values of β ≥ 2, we find that R approaches

the theoretical lower bound (Bayes risk), but at the expense

of a larger generalization error, as B gets close to the theo-

retical upper bound (16). We point out though that, for this

particular example, with a single-qubit embedding and two

Gaussian priors, the generalization error is always low due

to the bound (16).

The properties of the optimal embedding are shown in

Figs. 6(b) and 6(c). In particular, in panel (b) we observe

that data belonging to different classes are clustered, but

not well separated from each other. On the other hand, for

larger values of β, points belonging to different classes are

typically very far apart in the Bloch sphere, though there

are still some points in the wrong cluster. This predic-

tion is consistent with the analysis of the fidelity between

two different embeddings discussed in the previous section

and sketched in Fig. 5: a good embedding is such that
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F[ρ(x), ρ(y)] is large whenever x and y belong to the same

class and small otherwise.

V. APPLICATIONS

In this section we study two different applications of our

theoretical results. The first one deals with “quantum data,”

where the parametric quantum states ρ(x) are fixed by the

problem. The second one focuses on the classification of

classical data, where the quantum embedding x �→ ρ(x)

can be optimized. In this latter case, we propose the varia-

tional quantum information bottleneck (VQIB) method for

optimizing embeddings in order to favor generalization.

A. Quantum phase recognition

In quantum phase recognition [9] the task is to rec-

ognize the phases of matter of a quantum many-body

system, by taking measurements on the quantum device

itself, without having access to a classical description of

its state. Here we focus on a paradigmatic exactly solv-

able model of quantum statistical mechanics, namely the

one-dimensional transverse-field Ising model [52]

H = −
L

∑

i=1

(σ x
i σ x

i+1 + hσ z
i ), (27)

where the σ
x,y,z
j are the Pauli matrices acting on site j and

we consider periodic boundary conditions, σ α
L+1 ≡ σ α

1 . For

this model, the classical input is the magnetic field h ≡ x.

In the thermodynamic limit L → ∞, the model displays a

quantum phase transition at the critical value h = 1, sepa-

rating an ordered phase for |h| < 1 with twofold degener-

ate ground states from a disordered phase for |h| > 1 with

unique ground state. The model can be exactly solved via

fermionization [52]. To simplify our analysis for finite L,

here we ignore the subtleties of the different fermion par-

ity sectors by considering a small symmetry-breaking term

that forces the ground state to have even parity. In that case,

for even L, the ground state can be expressed as [53]

|�GS(h)〉 =
L/2
⊗

k=1

[cos(θk,h/2)|00〉k + sin(θk,h/2)|11〉k],

(28)

where |00〉k and |11〉k are respectively the vacuum and

occupied states by two fermion pairs with opposite

momentum k, −k, and

θk,h = arccos

(

ck − h

1 + h2 − 2hck

)

, ck = cos
2πk

L
.

(29)

From the above expression, it is trivial to compute

the overlap f (h, h′) = 〈�GS(h
′)|�GS(h)〉 =

∏L/2

k=1 cos[(θk,h
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FIG. 7. (a) Fidelity between two ground states of the quantum

Ising model with different values of the magnetic field h for L =
100. The model displays a quantum phase transition at the critical

value h = 1, separating ordered (|h| < 1) and disordered (|h| >

1) phases. (b) Testing error in quantum phase recognition as a

function of the magnetic field h. We use the fidelity classifier

with a training set of T random elements per phase. Each fidelity

is estimated via a SWAP test with S shots. For each h, the fidelity

is calculated 1000 times. Solid lines represent the mean fidelity,

while shaded areas are the confidence intervals within a standard

deviation.

−θk,h′)/2]. In the thermodynamic limit the fidelity induced

distance 1 − f (h, h + ǫ) for small ǫ diverges at the criti-

cal point [53]. Therefore, we may expect that the fidelity

between two states from the different phases become very

small. This is indeed shown in Fig. 7(a). Geometrically,

this means that the states belonging to different phases are

clustered in distant areas of the Hilbert space, as in Fig. 5.

However, f (h, h′) decreases exponentially in L for h �= h′,
so for large L, the matrix f (h, h′) is almost diagonal, thus

signaling bad generalization performances according to

our Eq. (21).

A scaling analysis of B as a function of L is beyond

the scope of this work. In what follows we test our the-

oretical predictions for a fixed chain length L = 100. In

this case, we consider a uniform distribution P(h) over

[0, 2] and compute B from Eq. (21)—where x there is the

magnetic field h. More specifically, we have discretized

the interval such that Eq. (21) can be computed from

the numerical eigenvalues, and we have observed that the

result converges to B ≃ 5.9 for 100 discretization points.
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We then train a fidelity classifier [19] to recognize the

phases of the quantum Ising model (27). In general, the

fidelity classifier associates to an unknown state |ψ〉 the

class of the state from the training set with highest fidelity

with |ψ〉. Such fidelity can be estimated via the SWAP test

using S shots, namely S copies of |ψ〉. Since the SWAP

test measurement operator is idempotent, the result of the

SWAP test is a Bernoulli random variable with mean F , the

fidelity, and variance F(1 − F)/S. The fidelity measure-

ment provides a nonoptimal classification POVM, so this

classifier is expected to perform slightly worse then the

optimal strategies discussed theoretically in the previous

sections.

For numerical simulations, we consider a training set

with T random elements with h > 1 and T random ele-

ments with h < 1, and verify the quantum phase recogni-

tion problem by generating new testing states |�GS(h)〉 for

h uniformly distributed in [0, 2]. In Fig. 7(b) we numer-

ically observe that even with T = 1 the testing error is

almost zero, except near the critical point. By increasing

the number of shots, the fidelity is estimated more pre-

cisely, and given that states belonging to different phases

have very low fidelity, as shown in Fig. 7(a), the testing

error decreases. When T ≈ B, the training error is nor-

mally very low, except near the critical point. For T =
10 ≫ B, we always find zero training error, irrespective

of the number of shots. Therefore, this analysis confirms

the predictions of our Theorem 1.

B. Variational quantum information bottleneck

We now focus on using a quantum algorithm to clas-

sify classical data. In this case, the states ρ(x) are not

fixed by the problem, as in the previous section, and can

be optimized together with the measurement POVM. The

embedding x �→ ρ(x) can be optimized by training a quan-

tum circuit as in Fig. 1. More specifically, we consider

one of the simplest yet most general classification circuits

with a single-qubit classifier, dubbed “data reuploading”

[8]: here we use a slightly modified version where the

embedding is obtained as a composition of L layers of

x-dependent single-qubit rotations around the y and z axes

|ψw(x)〉 =
L

∏

ℓ=1

[Rz(wzℓ · x+wzℓ
0 )Ry(wyℓ · x+w

yℓ

0 )]|0〉, (30)

where Rα(θ) = eiθσα
, the σ α are the Pauli matrices, and the

weight tensor wαℓ
k can be optimized during training.

Based on the quantum information bottleneck principle

proposed in Sec. B we study the variational minimization

of the QIB Lagrangian (24) with respect to the parametric

states (30). For single-qubit states, the entropies in Eq. (24)

can be expressed without loss of generality in terms of the

purity as

S(ρ) = −(λ− log2 λ−) − (λ+ log2 λ+) =: s(P), (31)

where

λ±(ρ) =
1 ±

√

2P(ρ) − 1

2
(32)

are the eigenvalues of ρ, which depend only on the purity

P(ρ) = Tr[ρ2]. Since the state (30) is pure, S[ρ(x)] = 0

in Eq. (24). Moreover, in order to train the embedding, we

approximate the averages over the distribution P(c, x) with

empirical averages over the elements of the training set T ,

so from Eq. (24) we get

LT

IB = (1 − β)s(Ptot) + β
∑

c

Tc

T
s(Pc), (33)

where constant terms have been neglected, and by explicit

computation, the purities read

Ptot =
T + 2

∑

T

x<y F[ρ(x), ρ(y)]2

T2
, (34)

Pc =
Tc + 2

∑

Tc
x<y F[ρ(x), ρ(y)]2

T2
c

, (35)

where
∑

T
refers to the double sum over the elements

(cx, x), (cy , y) from the training set, while in
∑

Tc the sum is

restricted over elements with class cx = cy = c. The order-

ing x < y refers to the index of the inputs in the training

set, and is used just to avoid double counting.

As an example for numerical simulations, we consider

a binary classification problem with the 2-moons dataset

shown in Fig. 8(a), where each point is described by two

real coordinates x ≡ (x1, x2). Moon points are organized

in the two different patterns shown with different col-

ors in Fig. 8(a), which represent the two classes. Data

have been generated using a noise parameter 0.3, which

makes the classification less deterministic. We generate

a training set of 100 samples per class and optimize Eq.

(33) using the Nelder-Mead algorithm with starting point

wαℓ
k = 0 (constant embedding). In Figs. 8(b) and 8(c),

we show the fidelity between two trained embeddings

F[ρ(x), ρ(y)], where training is performed using either

β = 30 or β = 1.5. After training, we use the fidelity clas-

sifier [19] to study both the training and testing errors.

Unlike the previous section, here we study an exact evalua-

tion of the fidelity, which would require an infinite amount

of measurement shots. The training error we get with the

optimized embedding is always zero. This is consistent

with our theoretical analysis (see Theorem 3 in Appendix
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FIG. 8. (a) Union of the training and testing sets from a gen-

erated 2-moon dataset. Data (filled circles) with different colors

belong to two different classes. Wrongly classified data in the

testing set after training are marked with a red diagonal cross

(β = 30) or with a blue cross (β = 1.5). (b) Fidelity F between

two embeddings for β = 30, using the data from (a). Data points

are ordered to first have all points from the first class and then all

points from the second class. Dark black points represent F ≃ 0,

while light yellow points represent F ≃ 1. (c) Fidelity F between

two embeddings, as in (b) but for β = 1.5. White points represent

F = 1 while dark red points have infidelity 1 − F ≃ 10−7.

A), as for N → ∞ copies we may formally get zero

approximation error.

As shown in Fig. 8(b), for large β, the trained embed-

ding is able to separate most data points belonging to

different classes into almost orthogonal quantum states.

More precisely, the fidelity is almost zero for most inputs

belonging to different classes, yet being mostly very high

for states belonging to the same class, thus signaling good

generalization. Indeed, by generating a testing set with 100

elements per class [also shown in Fig. 8(a)], we observe a

testing error ≃ 4.5%. With a much larger testing set of 104

points we get a testing error of ≃ 2.6%.

Nonetheless, even better generalization can be obtained

for β = 1.5, although the optimized embedding is almost

constant, as shown in Fig. 8(c), with largest infidelity ≃
10−7. The testing errors over the testing sets of 100 or 104

elements per class described above are respectively 3.5%

and 1.9%, both smaller than those obtained with larger β.

The price to pay is that, due to the small infidelities, many

more measurements are needed to estimate the fidelity with

the due high precision for correct discrimination.

The wrongly classified samples in the smaller testing set

are shown in Fig. 8(a) with a cross. We observe that, for

the small β = 1.5, only the elements near the boundaries

may be wrongly classified, while for the larger β = 30, in

spite of neater class separation shown in Fig. 8(b), there

are wrongly classified samples in the “bulk” of the moons.

Something similar was also observed in the numerical

simulation shown in Fig. 6(c).

Our analysis shows that the variational quantum infor-

mation bottleneck method can be successfully used to

train quantum embeddings with different generalization

properties.

VI. CONCLUSIONS

We have introduced measures of complexity to quan-

tify the generalization and approximation capability QML

classification problems, either with general parametric

quantum states ρ(x) or quantum embeddings x �→ ρ(x)

of classical data x, when optimal measurements are per-

formed on the system. One of the main results of this

paper is the bound on the generalization error via the

Rényi mutual information I2(X :Q) between the embed-

ding space Q and the classical input space X . Thanks to

our bound, overfitting does not occur when the number

of training pairs T is much bigger than 2I2(X :Q). Moreover,

we have shown how to bound the approximation error via

the mutual information between the embedding space and

the class space, and shown that the classification error can

approach it lowest possible value (Bayes risk), in the limit

of many measurement shots or large Hilbert spaces. Our

bounds were obtained for the linear loss function, rou-

tinely employed in QHT, but different losses can be linked

to the linear loss via bounds. We have also introduced an

information bottleneck principle for quantum embeddings,

which is independent of the choice of loss function and

allows us to explore different trade-offs between accuracy

and generalization.

Based on our theoretical results and bounds, we have

studied different applications for both the classification of

quantum and classical data. In particular, we have stud-

ied the classification of the quantum phases of an Ising

spin chain and proposed the variational quantum informa-

tion bottleneck to train quantum embeddings with good

generalization properties.

Our analysis can be applied to models of moderate

complexity, such as those that can be trained with near-

term quantum hardware. It is currently an open question

to understand whether quantum classifiers of very high

complexity can mimic the generalization capabilities of

classical deep learning.
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APPENDIX A: EXTENDED DERIVATION

1. Statistical learning theory

Here we show a brief overview of the tools from sta-

tistical learning theory [36] that we use throughout the

manuscript. As in the previous chapters, we assume that

there exists an abstract probability distribution that mod-

els the inputs and their corresponding classes P(c, x). This

distribution is obviously unknown, but by construction, the

samples in the training set T are drawn independently from

P(c, x). Suppose now that we have built a classifier h ∈ H,

where H is the set of classifiers that we are considering. We

may define the error due to misclassification via the loss

function ℓh(c, x), which is zero if and only if c is the correct

class of x. Training is done by minimizing the empirical

risk, namely the average loss over the training set

RT (h) =
1

T

T
∑

k=1

ℓh(ck, xk), (A1)

while the “true” risk of a classifier h is given by

R(h) = E
(c,x)∼P

[ℓh(c, x)]. (A2)

Supervised learning is practically done via empirical risk

minimization, namely the optimal data-driven classifier is

obtained from

hT = argmin
h∈H

RT (h). (A3)

The generalization error defines how hT performs with

unseen data, i.e., data not present in the training set. For-

mally the generalization error is then defined as R(hT ) −
infh∈H R(h). Setting h∗ = argminh∈HR(h) as the true opti-

mal classifier, we may bound the generalization error G

as

G = R(hT ) − R(h∗)

= R(hT ) − RT (hT ) + RT (hT ) − RT (h∗)

+ RT (h∗) − R(h∗)

≤ R(hT ) − RT (hT ) + RT (h∗) − R(h∗)

≤ 2 sup
h∈H

|R(h) − RT (h)|, (A4)

where in the first inequality we used the fact that hT is

optimal for RT ; therefore, RT (hT ) ≤ RT (h∗). The upper

bound is known as the uniform deviation bound. It repre-

sents the maximum deviation between the true and empir-

ical risks, Eqs. (A1)–(A2), maximized over the possible

classifiers.

The goal of statistical learning theory is to study how

much larger the risk R(hT ) is than the Bayes risk, namely

RBayes = infh R(h), where the infimum is over all possi-

ble hypotheses, not restricted to H. Then by summing and

subtracting R(h∗) we get

R(hT ) − RBayes = G + A, (A5)

where A = R(h∗) − RBayes is the approximation error,

which depends on the hypothesis space H. One of the cen-

tral results of statistical learning theory is the following

[36]: if ℓ has support in [0, 1] then, with probability at least

1 − δ, we have

G ≤ 4CT(H) +
√

2 log(1/δ)

T
, (A6)

where CT(H) is the Rademacher complexity of H, which

is defined as

CT(H) := E
T ∼PT

E
σ

[

sup
h∈H

1

T

T
∑

k=1

σkℓh(ck, xk)

]

, (A7)

where σk is a random variable that can take two possible

values, ±1, with the same probability 1/2, and the notation

T ∼ PT means that the T elements in the training set T

are sampled independently from the distribution P. From

Eq. (A6) we see that if the Rademacher complexity of H

decreases with T then, for sufficiently large T, the model is

able to generalize and correctly predict the class of a new

input, not present in the training set T .

2. Quantum Rademacher complexity

Let us calculate the Rademacher complexity of the

quantum loss function introduced in Eq. (2), for which

it is clear from the definition that 0 ≤ ℓ(ck, xk) ≤ 1, as

requested. For a fixed embedding, defining P as the set of

all possible POVMs, the Rademacher complexity of this

quantum classifier (2) is

CT(P) := E
T ∼PT

E
σ

[

sup
{�c}∈P

1

T

T
∑

k=1

σk

∑

c �=ck

Tr[�cρ(xk)]

]

= E
T ∼PT

E
σ

[

sup
{�c}∈P

1

T

T
∑

k=1

σkTr[�ck
ρ(xk)]

]

, (A8)

where in the second line we used the second equality in

Eq. (2), the fact that the constant term [from substituting
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in Eq. (2)] commutes with the sup and is averaged out by

Eσ , and finally the fact that the minus sign can be removed

by noting that σ and −σ have the same distribution. Let us

define

QT

c,σ =
1

T

T
∑

k=1

δc,ck
σkρ(xk); (A9)

then by linearity we may rewrite Eq. (A8) as

CT(P) := E
T ∼PT

E
σ

[

sup
{�c}∈P

∑

c

Tr[�cQT

c,σ ]

]

. (A10)

In the following sections we show how to bound CT(P)

using quantities that can be easily computed for a given

embedding x �→ ρ(x). The main technical result that

allows such simple expressions is the following

Lemma 1. Let Ai be a set of operators and i a random

variable with probability distribution pi. Then

E
i∼p

(‖Ai‖1) ≤ Tr

√

E
i∼p

(AiA
†
i ), (A11)

where E
i∼p

f (i) :=
∑

i pif (i).

Proof. We define the positive operators Xi :=
√

AiA
†
i .

Thanks to the definition of the trace norm ‖A‖1 = Tr
√

AA†

and the linearity of the trace, it is sufficient to prove that

∑

i

piXi ≤
√

∑

i

piX
2

i , (A12)

where the operator inequality Y ≥ 0 means that Y is a pos-

itive operator. The above inequality is proven as follows.

Since the function f (x) = x2 is operator convex [54], we

may write

(

∑

i

piXi

)2

≤
∑

i

piX
2

i . (A13)

Moreover, since g(x) =
√

x is operator monotone [54],

we may take the square root of both sides of the above

equation and get Eq. (A12). Note that a convex combina-

tion of positive matrices is also positive, so the left-hand

side of Eq. (A12) is a positive operator, and thus is equal to

the square root of its square. This completes the proof. �

We are now ready to write the main result of this section,

namely a bound that allows us to express the Rademacher

complexity of the quantum classifier via the quantity that

was introduced in Eq. (10) and Theorem 1. We focus on

binary classification problems, where there are two pos-

sible classes, which we call 0 and 1, so c ∈ {0, 1} and a

POVM consists of two positive operators, �0 and �1 =
1 − �0. Then, we extend the result to a general multiary

classification problem with NC classes.

Theorem 2. For binary classification problems with fixed

embedding x �→ ρ(x) and POVM P2 = {�,1− �}, we

find that

CT(P2) ≤
1

2
√

T
Tr

√

∑

x

P(x)ρ(x)2 =
1

2

√

B

T
, (A14)

where B was defined in Eq. (10). For multiary classifica-

tion problems with N classes, we get

CT(PNC
) ≤

√

NCB

T
, (A15)

which is slightly larger than Eq. (A14) when NC = 2.

Proof. We first focus on binary classification problems.

Since constant terms are averaged out, we can write Eq.

(A10), for �0 = � and �1 = 1− �, as

CT(P2) = E
T ∼PT

E
σ

[

sup
�

Tr[�(QT

0,σ − QT

1,σ )]
]

, (A16)

where again the constant term is averaged out. The max-

imization over � can be done by adapting the Helstrom

theorem (see Theorem 13.2 of Ref. [55]):

E
σ

[

sup
�

Tr[�(QT

0,σ − QT

1,σ )]
]

≤
1

2
E
σ

sup
�

{|Tr[�0(Q
T

0,σ − QT

1,σ )]|

+ |Tr[�1(Q
T

0,σ − QT

1,σ )]|}

≤
1

2
E
σ

sup
�

{Tr[�0|QT

0,σ − QT

1,σ |]

+ Tr[�1|QT

0,σ − QT

1,σ |]}

≤
1

2
E
σ

Tr[|QT

0,σ − QT

1,σ |]

with |A| =
√

AA† and ‖A‖1 = Tr|A|. In the first inequal-

ity, we are again able to average out the constant term,

despite the fact it is within an absolute difference, because

setting σ → −σ changes its sign whilst not affecting the

other term in the absolute difference. The second inequal-

ity follows from the fact that |Tr[AB]| ≤ Tr[A|B|] for any

operator B and positive operator A. The third inequality
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follows from the linearity of the trace and the fact that the

elements of the POVM sum to the identity. Therefore,

CT(P2) ≤ E
T ∼PT

E
σ

[‖QT

0,σ − QT

1,σ‖1

2

]

= E
T ∼PT

E
σ

∥

∥

∥

∥

1

2T

T
∑

k=1

(δck ,0 − δck ,1)σkρ(xk)

∥

∥

∥

∥

1

.

(A17)

An alternative proof of the above inequality without the

1/2 follows by using the definition [43] of the trace norm

‖A‖1 = maxB:‖B‖∞≤1 Tr[AB], and noting that ‖�‖∞ ≤ 1

for elements of the POVM. We now use Eq. (A11) to get

CT(P2) ≤
1

2
Tr

√

E
T ∼PT

E
σ

(QT

0,σ − QT

1,σ )2, (A18)

and by explicit calculation

(QT

0,σ − QT

1,σ )2 =
1

T2

T
∑

k,j =1

(δck ,0 − δck ,1)(δcj ,0 − δcj ,1)

× σkσj ρ(xk)ρ(xj ). (A19)

Since the σj are independent and have zero mean, we get

E
T ∼PT

E
σ

(QT

0,σ − QT

1,σ )2 = E
T ∼PT

T
∑

k=1

(δck ,0 − δck ,1)
2

T2
ρ(xk)

2

= E
(c,x)∼P

[

1

T
ρ(x)2

]

, (A20)

where we have used the fact that (δck ,0 − δck ,1)
2 = 1 and

that (ck, xk) are independent and identically distributed.

Inserting the above equation into Eq. (A18) and using

P(x) =
∑

c P(c, x) we get Eq. (A14), which completes the

first part of the theorem.

For the multiary classification problem with NC

equiprobable classes, using Hölder’s inequality in Eq.

(A10), and noting that ‖�c‖∞ ≤ 1, we may write

CT(PNC
) ≤ E

T ∼PT
E
σ

∑

c

‖QT

c,σ‖1

≤ NC E
T ∼PT

E
σ

E
c

‖QT

c,σ‖1

≤ NCTr

√

E
T ∼PT

E
σ

E
c
(QT

c,σ )2

≤ NCTr

√

1

NCT

∑

c,x

P(c, x)ρ(x)2

≤
√

NC

T
Tr

√

∑

x

P(x)ρ(x)2, (A21)

where in the second line we have substituted the sum

over c with an average where c is sampled from the uni-

form distribution with pc = 1/NC, in the third line we use

Eq. (A11), in the fourth line we perform the averages as

in Eq. (A20), and in the last line we simply employ the

marginal distribution, as in Eq. (A14). �

3. Bound on the approximation error

In this section we focus on the approximation error (14)

and prove the following important result.

Theorem 3. Given some x-dependent states ρ(x), if we

define an embedding using N copies x �→ ρ(x)⊗N then

A → 0 for N → ∞ as long as F[ρ(x), ρ(y)] �= 0 for x �=
y. Moreover,

lim
N→∞

logA

N
≤ log Fmax (A22)

where Fmax = maxx �=y F[ρ(x), ρ(y)].

Proof. From the definition of the approximation error A =
R(h∗) − RBayes, we write

R =
∑

x

∑

c �=c′
P(c, x)Tr[�∗

c′ρ(x)], (A23)

RBayes =
∑

x

∑

c �=c′
P(c, x)ℓBayes(c′, x), (A24)

where ℓBayes(c, x) = δc,b(x) and b(x) = argmaxcP(c|x).
Note that the second summation is over all c and c′ such

that c �= c′. Therefore,

A =
∑

x

∑

c �=c′
P(x, c){Tr[�∗

c′ρ(x)] − δc′,b(x)}. (A25)

The approximation error is calculated using the optimal

measurement for a given encoding ρ(x); however, we can

upper bound it by replacing this optimal measurement with

a suboptimal measurement. We may find a suboptimal

strategy as follows: we know that there always exists some

POVM �x that obeys [12,32]

q(x)Tr[�yρ(x)] ≤
√

q(x)q(y)F[ρ(x), ρ(y)] (A26)

for any probability distribution q(x). From �x we can then

construct the POVM �c as

�c =
∑

x

δc,b(x)�x, (A27)

namely we first try to learn the value of x and then per-

form the standard Bayesian classification to get the class.
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Now there are many possibilities to find bounds depend-

ing on the choice of q(x) in Eq. (A26). Here we chose to

use q(x) = p(x|c), namely we train the measurements to

recognize all inputs within a certain class, and then check

whether the Bayes classifier predicts a different result. We

may write

A ≤
∑

x

∑

c �=c′
P(c)P(x|c)

[

∑

y

δc′,b(y)Tr[�yρ(x)] − δc′,b(x)

]

=
∑

x

∑

c �=c′
P(c)

[

∑

y

δc′,b(y)F
c
xy − P(x|c)δc′,b(x)

]

=
∑

x �=y

∑

c �=b(y)

P(c)F c
xy , (A28)

where, in the last line, the summation is over all x and y

such that x �= y, and where

Fc
xy =

√

P(x|c)P(y|c)F[ρ(x), ρ(y)]. (A29)

The upper bound (A28) is typically too large to be practi-

cal. However, it can be used to show an important result.

If we define an embedding as x �→ ρ(x)⊗N then Fc
xy =

√

P(x|c)P(y|c)F[ρ(x), ρ(y)]N → 0 for N → ∞ as long as

F[ρ(x), ρ(y)] �= 0. Moreover, since F[ρ(x), ρ(y)] ≤ Fmax,

we get Eq. (A22). �

Thanks to the above theorem, we see that taking copies

of a simple embedding guarantees that A → 0 for N →
∞, as we observe in the numerical simulations shown in

Fig. 4.

APPENDIX B: FURTHER INEQUALITIES

In this section we discuss other inequalities and con-

nections with other entropic quantities. We first recall the

following inequality, which will be extensively used in this

section:

Tr

√

∑

i

Xi ≤
∑

i

Tr
√

Xi. (B1)

This inequality is valid for any set of positive operators Xi

(see Ref. [56] for a proof).

We first discuss the risk (2) and empirical risk (3)

for multiary classification problems with NC classes. In

this case there is no known analytic form of the optimal

POVM, but suboptimal choices can be constructed using

pretty good measurements [12,57]: calling Tc the num-

ber of samples in the training set with class c, we may

write RT (�) = 1 −
∑

c(Tc/T)Tr[�cρ
T
c ] and the error for

an optimal measurement can be bounded as [12,57]

RT (�T ) ≤
∑

c �=c′

√
TcTc′

T
F(ρT

c , ρT

c′ ), (B2)

where F(ρ, σ) = ‖√ρ
√

σ‖1 is the quantum fidelity. Using

the strong concavity of the fidelity,

E
T RT (�T ) ≤

∑

c �=c′

√
TcTc′

T
F(ρc, ρc′), (B3)

which is a multiclass generalization of Eq. (18). Therefore,

even for classification problems with NC > 2, low risk is

possible when the fidelity between the average states with

inputs belonging to different classes is low.

As for the generalization error, we see that the complex-

ity B defined in Eq. (10) does not depend on the classes.

Nonetheless, using Eq. (B1) we also get the inequalities

B ≤
(

∑

c

√

P(c)Bc

)2

, (B4)

Bc =
(

Tr

√

∑

x

P(x|c)ρ(x)2

)2

. (B5)

Setting σc =
∑

x P(x|c)ρ(x)2 =
∑rc

i=1 λi|λi〉〈λi|, where rc

is the rank of σc, we find that

Bc =
(

∑

i

√

λi

)2

=
∑

i

λi +
∑

i �=j

√

λiλj . (B6)

Thanks to Jensen’s inequality, for every set of positive xi of

size n, we can write
∑n

i=1

√
xi ≤

√

n
∑n

i=1 xi. In Eq. (B6),

the number of terms in the second sum is r2
c − rc, so

Bc ≤
∑

i

λi +
√

(r2
c − rc)

∑

i �=j

λiλj

=
∑

i

λi +

√

√

√

√(r2
c − rc)

(

∑

i,j

λiλj −
∑

i

λ2
i

)

= Tr[σc] +
√

(r2
c − rc)(Tr[σc]2 − Tr[σ 2

c ]). (B7)

For pure state embeddings, σc = ρc and we get Eq. (19).

Another interesting bound can be found by applying

the Cauchy-Schwarz inequality Tr[
√

X ]2 ≤ Tr[X ]Tr[1] to

Eq. (10). We find that

B ≤ D
∑

x

P(x)Tr[ρ(x)2] ≤ D, (B8)

where D is the dimension of the embedding Hilbert space.
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We now study the embedding ρ(x) using tools from

quantum information. We define an extended tripartite

mixed ρCXQ state as in Eq. (11), where CX is the data

Hilbert space, C is spanned by the classes |c〉 and X by

the labels |x〉, while Q is the Hilbert space of the quantum

embedding ρ(x). We now introduce the Rényi conditional

mutual information of ρCXQ following Proposition 8 of

Ref. [39],

Iα(X :Q|C) =
α

α − 1
log2 Tr

{[

ρ
(α−1)/2

C

× TrX

(

ρ
(1−α)/2

CX ρα
CXQρ

(1−α)/2

CX

)

ρ
(α−1)/2

C

]1/α}

,

(B9)

where ρCX = TrQ[ρCXQ] =
∑

xc P(c, x)|cx〉〈cx| and ρC =
TrX [ρXC] =

∑

c P(c)|c〉〈c|. When multiplying operators

that span different Hilbert spaces, it is implicit that the

operators take a tensor product with the identity on the

spaces that they do not span [e.g., ρCX ρCXQ = (ρCX ⊗
1Q)ρCXQ]. By explicit computation,

TrX

(

ρ
(1−α)/2

CX ρα
CXQρ

(1−α)/2

CX

)

=
∑

cx

P(c, x)1−αP(c, x)α|c〉〈c| ⊗ ρ(x)α

=
∑

cx

P(c, x)|c〉〈c| ⊗ ρ(x)α , (B10)

ρ
(α−1)/2

C TrX

(

ρ
(1−α)/2

CX ρα
CXQρ

(1−α)/2

CX

)

ρ
(α−1)/2

C

=
∑

cx

P(c, x)P(c)α−1|c〉〈c| ⊗ ρ(x)α

=
∑

cx

P(x|c)P(c)α|c〉〈c| ⊗ ρ(x)α , (B11)

and

Iα(X :Q|C) =
α

α − 1
log2

×
{

∑

c

P(c)Tr

([

∑

x

P(x|c)ρ(x)α
]1/α)}

.

(B12)

We note a similarity between the above expression and the

quantities that are found in the generalization bound (B5).

Indeed, for a uniform distribution over NC classes, P(c) =
1/NC, i.e., when all classes are equally likely, we find from

Eq. (B5) that

B ≤ 2I2(X :Q|C)NC, (B13)

and thus show a direct link between the generalization

bound and the Rényi conditional mutual information of

ρCXQ. Therefore, good generalization is possible when-

ever I2(X :Q|C) is small or, for large training sets, T ≫
2I2(X :Q|C)NC.

We can interpret the space Q in Eq. (11) as compression

of the input into a quantum state. Assuming that the con-

clusions from Ref. [48] (which were originally formulated

for the classical Shannon entropy) can be trivially extended

to Rényi entropies, optimal compression happens when

Iα(X :Q|C) = Iα(X :C|Q) = Iα(C:Q|X ) = 0. (B14)

A zero conditional mutual information means that the three

systems form a Markov chain: conditioning over one of

the three systems makes the other two mutually inde-

pendent. Quantum mechanically I(X :Q|C) = 0 if ρXQC =
ρ

1/2

XC ρ
−1/2

C ρQCρ
−1/2

C ρ
1/2

XC [39], which is not generally satis-

fied by the state (11). According to Ref. [48], we should

both minimize I(X :Q|C) and maximize I(C:Q). The Rényi

generalization of I(C:Q) can be obtained using a similar

expression to Eq. (B9), by applying the expression for con-

ditional mutual information to a state that is independent of

the conditioning system [i.e., by calculating I(C:Q|X ) for

the state ρCQ ⊗ ρX ]. We get the expression

Iα(C:Q) =
α

α − 1
log2 Tr

{[

TrC

(

ρ
(1−α)/2

C ρα
CQρ

(1−α)/2

C

)]1/α}

=
α

α − 1
log2 Tr

([

∑

c

P(c)ρα
c

]1/α)

, (B15)

where ρc was introduced in Eq. (1). Simpler expres-

sions that are directly connected with the fidelity may be

obtained for α = 1/2. For pure state embeddings, ρ(x)α =
ρ(x), and we get

I1/2(X :Q|C) = − log2

∑

c

P(c)Tr

([

∑

x

P(x|c)
√

ρ(x)

]2)

= − log2

∑

c

P(c)F(c), (B16)

where

F(c) =
∑

x,y

P(x|c)P(y|c)F[ρ(x), ρ(y)]2 (B17)

is the average squared fidelity between embeddings of

inputs from the same class c. Therefore, F(c) should

be maximized to minimize I1/2(X :Q|C). In other words,

low conditional mutual information is possible when

F[ρ(x), ρ(y)] ≃ 1 for x and y belonging to the same class.
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Moreover,

−I1/2(C:Q) = log2 Tr

[

∑

c

P(c)
√

ρc

]2

= log2

[

∑

c

P(c)2 +
∑

c �=c′
P(c)P(c′)F(c, c′)

]

,

(B18)

where

F(c, c′) = Tr[
√

ρc

√
ρc′] ≤ F(ρc, ρc′) (B19)

is related to the fidelity between the average states ρc and

ρc′ for different classes. Since the logarithm is monotonic,

the minimization of −I1/2(C:Q) is possible by minimizing

F(ρc, ρc′). Therefore, using Rényi entropies with α = 1/2,

we recover the same conclusions as in the previous section:

a good embedding is one for which the fidelity between two

embedded states is small if the inputs are from different

classes and high if the inputs are from the same class.

APPENDIX C: CONNECTION TO KERNELS

We prove the following theorem that allows us to

express functions on an ensemble of pure states

Lemma 2. If the function f : [0, 1] �→ R admits a series

representation then

Trf

(

∑

x

p(x)|ψ(x)〉〈ψ(x)|
)

= Tr[f (K̃)], (C1)

where the operator K̃ has entries

K̃x,y =
√

p(x)p(y)〈ψ(x)|ψ(y)〉. (C2)

The proof trivially follows from the matrix power

Tr

(

∑

x

p(x)|ψ(x)〉〈ψ(x)|
)n

=
∑

{xj }

n
∏

j =1

p(xj )〈ψ(xn)|ψ(x1)〉 · · · 〈ψ(xn−1)|ψ(xn)〉

=
∑

{xj }
K̃xn,x1

K̃x1,x2
· · · K̃xn−1,xn

= TrK̃n. (C3)

When |z − 1| < 1, the square root function admits the

expansion
√

z =
∑∞

k=0[(−1)k/k!](−1/2)k(z − 1)k, where

(a)k = a(a + 1) · · · (a + k − 1) is the Pochammer symbol.

Since (z − 1)k can be expressed as a sum of zn for n ≤ k,

we can apply the above lemma to show that, for ensemble

of pure states,

B = (Tr
√

K̃)2 = (Tr
√

K)2, (C4)

which is Eq. (21). Note that the matrices K̃ and K are

related by a similarity transformation and, accordingly,

have the same eigenvalues.

For almost diagonal kernel matrices, we may write K̃ =
Kd + Ko, where (Kd)xy = p(x)δxy is the diagonal part and

Ko the off-diagonal part, as in Eq. (C2) with x �= y. If the

off-diagonal elements are much smaller [O(ǫ)] than the

diagonal ones, then we may expand
√

K̃ =
√

Kd + ǫK1 +
ǫ2K2 + O(ǫ3). Taking the square on either side we find

that

(K1)xy =
(Ko)xy

√

p(x) +
√

p(y)
, (C5)

(K2)xy = −
(K2

1 )xy
√

p(x) +
√

p(y)
, (C6)

and

Tr
√

K = 2H2(X )/2 −
1

4

∑

x �=y

√

p(x)p(y)
√

p(x) +
√

p(y)
F2

xy + O(ǫ4),

(C7)

where Fxy = |〈ψ(x)|ψ(y)〉| and 2H2(X ) = Tr[
√

Kd].
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[55] I. Bengtsson and K. Życzkowski, Geometry of Quantum

States: an Introduction to Quantum Entanglement (Cam-

bridge university press, 2017).

[56] K. M. Audenaert and M. Mosonyi, Upper bounds on

the error probabilities and asymptotic error exponents in

quantum multiple state discrimination, J. Math. Phys. 55,

102201 (2014).

[57] H. Barnum and E. Knill, Reversing quantum dynamics with

near-optimal quantum and classical fidelity, J. Math. Phys.

43, 2097 (2002).

040321-21


	I.. INTRODUCTION
	II.. QUANTUM HYPOTHESIS TESTING VERSUS SUPERVISED CLASSIFICATION
	A.. Training and testing with linear loss

	III.. QUANTUM INFORMATION BOUNDS FOR SUPERVISED LEARNING
	A.. Generalization error
	B.. Approximation error

	IV.. BIAS-VARIANCE TRADE-OFF FOR QUANTUM MACHINE LEARNING
	A.. Properties of quantum embeddings
	B.. Quantum information bottleneck

	V.. APPLICATIONS
	A.. Quantum phase recognition
	B.. Variational quantum information bottleneck

	VI.. CONCLUSIONS
	. ACKNOWLEDGMENTS
	. APPENDIX A: EXTENDED DERIVATION
	1.. Statistical learning theory
	2.. Quantum Rademacher complexity
	3.. Bound on the approximation error

	. APPENDIX B: FURTHER INEQUALITIES
	. APPENDIX C: CONNECTION TO KERNELS
	. REFERENCES

