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Chapter 1

Classification of EEG Signals for
Brain-Computer Interfaces using a
Bayesian-Fuzzy Extreme Learning
Machine

Adrian Rubio-Solis, Carlos Beltran-Perez and Hua-Liang Wei.

Abstract In brain-computer interface (BCI) applications, classification of
motor imagery electroencephalogram (EEG) using Extreme Learning Ma-
chine (ELM) theory dates back to 2006. Even though, it is relatively new, ad-
vances in ELM-based classification have demonstrated to be a robust method-
ology with strong generalization properties. In this study, a unified framework
based on Bayesian and Fuzzy ELM theory referred to as Bayesian-Fuzzy Ex-
treme Learning Machine (BFELM) is developed for EEG signals classifica-
tion. The proposed methodology is a hybrid approach for the training of a
class of Fuzzy Inference Systems (FISs) of Takagi-Sugeno-Kang (TSK). On
the one hand, Fuzzy logic theory is applied to handle any bounded non-
constant piecewise continuous membership functions (MFs). On the other
hand, Bayesian ELM theory is used to calculate the consequent parameters
of each fuzzy rule by estimating their likelihood while minimizing training er-
ror and improving associated model generalization. Performance comparison
of BFELM with other existing ELM methods and Support Vector Machine
(SVM) is implemented for the classification of EEG signals using two public
data sets. The experimental results confirm the advantages of using a unified
framework for an improved classification of EEG data associated with motor
imagery (MI) in BCI applications
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1.1 Introduction

A Brain-Interface Computer (BCI) is an emanating technology that allows
a direct communication between a human brain and a computer [1, 2, 3, 4].
BCI has been largely used as a technology to exploit the electrical activity in
the brain for the diagnosis of neurological diseases, in handicapped patients
who have lost their abilities and to understand psycho-physiological processes
[5]. EEG is a non-invasive BCI system, in which brain activities are captured
with a high temporal resolution, usability, portability and low setup cost [1].
In applications that involve handicapped patients, BCI is frequently used as
a system to revive those elementary capabilities by creating an information
pathway between the human brain and processing/computing devices. In
other words, a BCI system utilises the information from the brain activity in
disabled people to assist them while mapping their sensory-motor functions
[1, 2].

For the last two decades, the most adopted EEG patterns for BCI devel-
opment include sensorimotor mu rhythm [7, 8], and beta rhythms (15-30 Hz)
[9, 10], recorded from the scalp over the sensorimotor cortex and widely used
methods in BCI systems. Mu rhythm usually results from a power change
of EEG frequency band between 8-18 Hz. It occurs as a simultaneous neu-
ral response at contralateral sensorimotor area during motor imaginery (MI)
tasks. Over the last decades, BCI systems have been increasingly developed
towards the solution of several problems that involve the control of prosthe-
sis, wheelchair navigation, writing and communication assistance in disabled
people [3]. MI is one of the most popular methods in BCI applications that
involves carrying out a motor task merely by thinking or imagining [1]. It can
be just a simple shifting of hands or legs, and/or closing eyes. Accordingly,
MI-based BCI systems have become a prominent solution to recognise the
desired commands by classifying MI tasks for deprived people of their motor
abilities and for rehabilitation [1, 2]. However, MI signals are highly non-
stationary and inevitably contaminated with noise, meanwhile, they strongly
depend on subjects [11]. Moreover, the classification of EEG is usually a
complex and aperiodic time series, which is the sum of a large number of
neuronal membrane potentials [1]. Therefore, a powerful pattern recognition
model is required for the implementation of a MI-based BCI system with a
high performance [13].

In literature, an extensive number of research efforts have been dedicated
to improving EEG feature extraction and classification of MI tasks [1, 4].
Most of these efforts have suggested a two-step approach, where first a pro-
cess of feature extraction is implemented, and a second step is performed for
the classification of the extracted features. Common Spatial Pattern (CSP)
and Extreme Learning Machines (ELMs) have been successfully applied to
the classification of MI tasks delivering a superior performance over tradi-
tional classification approaches such as Support Vector Machine and Multi-
layer Perceptron neural networks [11]. On the one hand, CSP has been used
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as a robust spatial filter for multichannel optimization of EEG to the maxi-
mization of the variance of projected signal from one class while to minimize
it from another class [12, 13]. On the other hand, ELM has been successfully
applied to the classification of these projected signals [11]. For example in
[13], a probabilistic framework based on Sparse Bayesian Extreme Learning
Machine (SBELM) was suggested to improve the classification of traditional
ELM [14]. SBELM was suggested as an improved ELM method that automat-
ically control model complexity, good generalisation properties and exclude
redundant hidden neurons by exploiting the advantages of ELM theory and
Bayesian learning.

Similarly, other pattern recognition methods that are able to naturally deal
with nonlinear and outlier characteristics of EEG signals have been suggested.
For instance, in [14] a combined method based on wavelet transformation and
Interval Type-2 Fuzzy Logic Systems (IT2-FLSs) called wavelet-IT2FLS was
introduced and called. The proposed wavelet-IT2FLS is a higher order fuzzy
system more capable of uncertainty handling than traditional ELM and SVM,
in which the noisy, nonlinear and outlier-embedded nature of EEG signals can
be modelled proficiently by type-2 fuzzy sets (FSs).

In this paper, a new Bayesian Fuzzy Extreme Learning Machine (BFELM)
for EEG signal classification in BCI systems is presented. The proposed
BFELM is a unified learning approach, in which a probabilistic method based
on Bayesian learning and ELM theory is implemented for the training of
Fuzzy Inference Systems (FISs) of Takagi-Sugeno-Kang (TSK). On the one
hand, Bayesian learning incorporates a priori knowledge in the design of fuzzy
rules while the confidence intervals of each consequent in the FIS are analyt-
ically determined. Within this context, a BFELM is a simultaneous learning
method of antecedent and consequent parts of each fuzzy rule in a FIS, in
which fuzziness and probability can work in a collaborative manner rather
competitively. Moreover, the proposed BFELM inherits the capabilities of
FISs to naturally deal with uncertainty and noisy signals. To validate the
performance of the proposed BFELM for EEG signal classification, two pub-
lic datasets of BCI competitions are used. For feature extraction, CSP is im-
plemented, and the extracted features are feed into the BFELM. To compare
the BFELM with other benchmark techniques, traditional ELM, SVM, Multi
Kernel ELM (MKELM), Fuzzy ELM (FELM) and Bayesian ELM (BELM)
were also implemented.

The rest of this paper is structured as follows. In section 1.2, basic concepts
of Bayesian ELM and Fuzzy Inference Systems (FISs) is reviewed, as well as
the proposed BFELM is described. In section 1.3, experiments and results
are presented, while in section 1.4 the corresponding discussion is provided.
Finally, in section 1.5, conclusions and future work are drawn.
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1.2 Background Material and Proposed Method

1.2.1 Extreme Learning Machine

Extreme Learning Machine (ELM) is a learning paradigm originally devel-
oped to train single-hidden-layer feedforward networks (SLFNs), in which
parameters in the hidden neurons are initialized randomly and the output
weights are optimized using the Moore-Penrose pseudoinverse. Given a num-
ber of ′P ′ distinct samples D = (xp, tp), with each xp being a N dimensional
vector and tp as the target scalar output. Hence the goal of ELM is to find a
relationship between xp and tp. Standard SLFNs with M hidden nodes and
activation h(·) function can be mathematically modelled by:

M
∑

k=1

βkhk(wk;xp) = h(wk;xp)βββ = yp, 1 ≤ p ≤ P (1.1)

in which h(wk;xp) = [h1(w1;x1), . . . , hM (wM ;xM )] is the hidden feature
mapping, wk = [w1, . . . ,wN ]T is the weight vector a randomly generated
parameter of the hidden layer connecting the kth hidden node and the input
nodes. The output weight βp = [βp1, . . . , βpÑ ]T is the weight vector connect-
ing the kth hidden node to the nth output. A SLFN withM hidden nodes and
activation function g(x) can approximate P samples with zero error means
∑M

p=1
‖ yp − tp ‖. Thus, a matrix representation of Eq. (1.1) is:

H =







h(w1;x1) · · · h(wk;xp)
...

...
...

h(wk;xp) · · · h(wk;xp)







P×M

(1.2)

Where H is the hidden matrix of an SLFN with respect to the inputs xp.
The target vector is defined by T = [t1, . . . , tP ]. The minimum norm least-
squares solution of the linear system Hβ = T is unique and can be achieved
by calculating the Moore-Penrose pseudo-inverse H† as follows:

β̂ββ = H†T (1.3)

In which, H† can be calculated using the orthogonal projection method:
H† = (HTH)−1HT when HTH is nonsingular, or H† = H(HHT )−1HT

when HHT is nonsingular. A penalty term can be added to the diagonal
of HTH or HHT for regularization purpose. However, the optimum value
of this penalty is still subjected the minimization of the validation error. In
many real-world applications, the number of hidden nodes is much smaller
than the number of training samples M ≪ P [?]. Hence H is a non-square

matrix, such that one specific value for ŵk, b̂k and β̂k need to be determined.
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1.2.2 Bayesian Extreme Learning Machine

Bayesian Extreme Learning Machine (BELM) was originally introduced to
ELM theory to determine the output weight with Bayesian Inference Method
(BIM). By using BELM, each observed tp is assumed to have an indepen-
dent noise component ǫp which is Gaussian distributed with zero mean and
variance σ2, that is tp = h(w;xp)βββ + ǫp, where, p(ǫp|σ2) = N(0, σ2). The
probabilistic model is then given by:

p(tp|H,βββ, σ2) = N(tp|h(w;xxxp)βββ, σ
2) (1.4)

Using all the training sales, the likelihood function can be computed as:

p(T|H,βββ, σ2) =
P
∏

p=1

p(tp|H, (((β), σ2)

=

P
∏

p=1

1√
2πσ2

exp

[

− (tp − h(w;xp)βββ)
2

2σ2

]

(1.5)

To penalize large weights, a natural distribution is given by:

p(βββ|α) = N(βββ0, α−1I) =

(

α

2π

)P/2

exp
[

− α

2
βββTβββ

]

(1.6)

in which, α is a shared prior, and I is the identity matrix. As the prior and
likelihood functions follow a Gaussian distribution, the posterior is also a
Gaussian distribution defined by:

p(βββ|T,H, α, σ2) = N(βββ|m,S) (1.7)

wherem and S is the mean and covariance respectively, which are be obtained
by:

m = σ−2 · S ·HT ·T (1.8)

S = (αI+ σ−2 ·HT ·H)−1 (1.9)

in which, the posterior distribution of parameters α and σ2 is p(ααα, σ2|T,H) ∝
p(T|H,ααα, σ2). Therefore, the optimal values for the parameters α and σ2

can be determined with type-II maximum likelihood (ML-II). Such process
involves the maximization of the marginal likelihood p(T|H, α, σ2) inferred
from integral:

∫

p(T|H,βββ, σ2)p(βββ|α)dβββ (1.10)
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By differentiating the marginal log-likelihood function log p(T|H,βββ, σ2) with
respect to parameters α and σ2, their optimal values can be computed by:

αnew =
M − α · trace[S]

mTm
(1.11)

σ2,new =

∑P
p=1

(yp − h(w;xp)m)2

P −M + α · trace[S] (1.12)

Thus, by initializing α and σ2, the terms m and S, are updated iteratively
with Eqs. (1.8)− (1.9) and (1.11)− (1.12) until convergence. The new m can
be employed for computing the new output ynew when new input data xnew

is presented following the distributions:

p(ynew|h(w;xnew),m, α, σ2) = N(h(w;xnew)m, σ2(xnew)) (1.13)

where
σ2(xnew) = σ2 + h(w;xnew)

T · S · h(w;xnew)

Since α is a natural consequence of a Gaussian process, compared to ELM,
BELM does not require to include any regularisation term. Hence BELM
provides better generalisation properties than traditional ELM.

1.2.3 Fuzzy Extreme Learning Machine

According to ELM theory, a Fuzzy Inference System (FIS) can be interpreted
as a SLFN if for a given number of distinct training samples D = (xp, tp), a
model of the FIS with M fuzzy rules is given by [20]:

yp(xp) =
M
∑

k=1

βkG(xp, ck, ak) = tp, p = 1, . . . , P (1.14)

An FIS either of Takagi-Sugeno-Kang (TSK) or Mamdani type can be defined
by a number of fuzzy rules Rk of the form [?, ?]

Rk : IF xp1 is A1k AND xp2 is A2k AND . . .

IF xN is ANk THEN (yp is βk) (1.15)

where, Ask(s = 1, . . . , N, k = 1, . . . ,M) are the fuzzy sets that correspond
to the sth input variable xps in the kth rule. When an FIS employs a TSK
inference engine, βk (k = 1, . . . ,M) is defined by a linear combination of
input variables, i.e. βk = qk,0 + qk,0x1 + . . . qk,NxN , otherwise if the FIS is of
Mamdani type, βk is a crisp value. In Fuzzy Logic System theory (FLS), the
degree to which any given input xps satisfies the quantifier Ask is specified by
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its Membership Function (MF) µAks
(cks, ak), where usually a non-constant

piece-wise continuous MF is used [19]. By using the symbol ⊗ for the repre-
sentation of fuzzy logic AND operations, the firing strength of the kth fuzzy
rule can be computed as [28]:

Rk(xp; ck, ak) = µAk1
(xp1, ck1, ak)

⊗ µAk2
(xp2; ck2, ak)⊗ . . .⊗ µAkN

(xpN ; ckN , ak) (1.16)

Each fuzzy rule RK can be normalised as

Gk(xp; cks, ck) =
Rk(xp; ck, ak)

∑M
k=1

Rk(xp; ck, ak)
(1.17)

Gk is called fuzzy basis function, where for the pth input-output, each yp is:

yp =

M
∑

k=1

βkG
k(xp; cks, ck) (1.18)

For an FIS with a TSK, consequent parameters are linear combinations of
input parameters computed as:

βk = xp,eq
T
k , k = 1, . . . ,M (1.19)

For a TSK fuzzy model, xp,e = [1 xp] is the extended version of xp defined
as xp,e = [x0, x1, . . . , xN ] and each coefficient qk = [qk,0, qk,1, . . . , qk,N ]. The
output weight of SLFN is defined by βββ = [β1, . . . , βM ]. For a Mamdani fuzzy
model, xp,e = [0,xp], and βββk is a single crisp value. In this work, a FIS with
a TSK inference is considered. A compact representation for Eq. (1.14) is

HTSKQ = T (1.20)

in which, Q is the matrix of coefficients qkj,s. If a TSK implication is em-
ployed, HTSK = [h1(ck,ak;x1), . . . ,hP (ck,ak;xP )]

T , where the optimal

value for matrix Q̂ is obtained

Q̂ = H†
TSK

T (1.21)

where the vector of firing strengths is hp = (hp1, . . . , hpM ), and hpk is:

hpk = (G1(xp, c1, a1)x0, . . . , G
1(xp, c1, a1)xp, . . . ,

GM (xp, cM , aM )x0, . . . , G
M (xp, cM , aM )xp) (1.22)

Matrix Q̂ = [q̂1, . . . , q̂M ]T . In FELM, the parameters of each MF (ck, ak)
are randomly generated, based on this, the consequent parameters βi are
analytically estimated.
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Fig. 1.1: Illustration of the BFELM for EEG signals classification.

1.2.4 Bayesian-Fuzzy ELM for EEG Classification

Bayesian-Fuzzy Extreme Learning Machine (BFELM) is a unified learn-
ing framework based on Bayesian learning regression, Fuzzy Logic Systems
(FLSs) theory and ELM to the training of Fuzzy Inference Systems (FISs)
of either TSK or Mamdani type. In this study, BFELM is applied to the
learning of the consequent parts of a FIS of Takagi-Sugeno-Kang (TSK)
that can handle any bounded nonconstant piecewise continuous member-
ship function (MF). As illustrated in Fig. 1.1, given a set of training samples
(xp, tp), p = 1, . . . , P , where xp = [xp1, . . . , xpN ]T ∈ RN and the correspond-
ing class labels tp = {−1, 1} denotes the class of MI task. Assume each of
the training samples is a feature vector obtained by using Common Spatial
Pattern (CSP) as detailed in [21]. BFELM aims at finding an optimal hyper-
plane that maximises the separating margin between the two classes. Given
certain MF g and its parameters (ck,ak), and rule number M for EEG signal
classification, BFELM is formulated as an iterative learning algorithm that
is implemented in two steps as described in Algorithm 1.

I) Inference of the posterior distribution of the consequent parameters qk of
the TSK FIS using a Gaussian function with mean mq,t and covariance
Sq,t (Eq. 1.23 and 1.24).

II)With the evidence procedure, estimate the two hyperparameters αt and
σ2
t as described in Equations 1.25 and 1.26.

Thus, from algorithm 1, fuzzy consequent parts qk are optimized iteratively
by means of ML-II [23] or Evidence procedure [24].
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Algorithm 1: Bayesian-Fuzzy ELM for EEG Classification

Result: optimized α, σ2, Sq,mq

1 Initialize: α, σ2, ck, ak, ǫ, M;
2 t = 0 ;
3 while While ||mq,t+1 −mq,t|| > ǫ do

4 t = t+1;
5 Calculate;
6

mq,t = σ−2 · Sq,t ·HT
TSK

·T (1.23)

Sq,t = (αI+ σ−2 ·HT
TSK

·HTSK)
−1 (1.24)

Update;
7

αt =
M − α · trace[Sq,t]

mT
q,tmq,t

(1.25)

σ2
t =

∑P
p=1

(yp − hp(ck,ak;xp)mq,t)

P −M + α · trace[Sq,t]
(1.26)

8 end

The iterative process for the proposed BFELM is stopped when the differ-
ence of the norm mq,t between successive iterations has fallen below a given
value ǫ [22]. Therefore, relevant CSP features are automatically selected for
the subsequent classification [13]. Given a test sample x̂, the prediction dis-
tribution of the consequent parts of an FIS can be defined as:

p(ŷ|α, σ2,h( ˆck, ak;x)) =

∫

(ŷ|q̂k, σ
2,h(ck, ak; x̂))p(ck, ak; q̂k|α, σ2,y))dq̂k

(1.27)
where h(ck, ak; x̂) = [h1(ck, ak; x̂), . . . , hM (ck, ak; x̂)] is again Gaussian with
mean m̂ and variance σ̂2 defined as:

m̂q = h( ˆck, ak;x)mq (1.28)

σ̂2 = σ2 + h( ˆck, ak;x)Sqh( ˆck, ak;x)
T (1.29)

The test sample is then classified using the criterion:

ŷ =

{

−1, m̂ < 0

+1, m̂ > 0
. (1.30)
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Note: compared to other learning approaches for the training of FISs, the
hyperparameter α can be viewed as a regularization parameter in Eq. (1.24)
that naturally results from the Gaussian process.

1.3 Experimental Study

In this section, the performance of the proposed BFELM on two public MI
EEG datasets is evaluated and compared to other existing ELM-based tech-
niques. Description of suggested datasets as well as experimental setup and
evaluation is also provided in this section.

1.3.1 EEG Data Acquisition

In this work, two public data EEG data sets are used to study the proposed
BFELM [6, 17, 18]. The first data set is available from BCI competition
IV data set IIb. The EEG data was collected from nine different individ-
uals using three bipolar channel (C3, Cz and C4) with a sampling rate of
250Hz for the discrimination of two classes (left-hand and right-hand mo-
tor imagery - (MI)). The electrooculogram (EOG) was recorded using three
monopolar electrodes. They were recorded from each subject in five sessions
[18]. For comparison purposes, in this study only the sets that correspond to
B0103T, B0203T, . . . ,B01903T are used for training the proposed BFELM.
Each subject was required to complete 160 trials (half for each class of MI).
For each trial, the subject received visual guidance to perform MI task for a
period of time of 4.5 seconds.

The second data set corresponds to BCI competition III data set IVa. Such
data set was collected at a sampling rate of 100Hz from 188 electrodes from
five different subjects, namely: ”aa”, ”al”, ”av”, ”aw” and ”ay”. Each subject
was required to complete 280 trials for the imagination of two tasks, i.e. right
hand or foot movements. Each subject completed 140 trials for each MI task
for a period of time of 3.5 seconds.

1.3.2 Experimental Setup and Evaluation

For comparison purposes, first data preprocessing was performed on the raw
EEG data. For each trial, data was band-pass filtered between 4-40Hz us-
ing a fifth-order Butterworth filter. Next, the dimension of EEG signals was
reduced using Common Spatial Pattern (CSP), a widely used technique for
feature selection in the classification of MI-based BCIs [21]. Finally, to dis-
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Table 1.1

Classification accuracy (%) obtained by SVM, ELM, MKELM, FELM and BFELM, for
competition IV, data set IIb.

Subject SVM ELM MKELM SBELM FELM BFELM
1
BFELM

2

B0103T 76.1 76.8 77.5 77.6 77.7 77.9 77.6
B0203T 56.9 59.8 65.4 61.8 62.3 63.1 63.2
B0303T 50.9 51.5 54.3 54.1 54.2 54.2 54.3
B0403T 98.7 98.7 99.3 99.0 99.1 99.1 99.0
B0503T 83.2 84.1 84.6 84.3 84.5 84.6 84.7
B0603T 67.6 68.3 69.5 69.2 69.3 69.5 69.3
B0703T 82.9 84.2 86.8 84.7 84.9 85.2 85.0
B0803T 87.0 87.5 89.9 89.0 89.3 89.6 89.3
B0903T 81.3 82.9 83.7 83.5 83.6 83.6 83.4
Average 76.0±15.3 77.0±14.8 79.0±14.0 78.1±14.3 78.3±14.1 78.5±14.1 78.4±14.2

Time (s) 16.4± 0.1 2.12±0.2 6.8±0.6 3.7±0.4 2.8±0.3 3.8±0.1 3.9±0.2

1 BFELM with Gaussian Membership Function
2 BFELM with Cauchy Membership Function

Table 1.2

Classification accuracy (%) obtained by SVM, ELM, MKELM, FELM and BFELM, for
competition III, data set IVa.

Subject SVM ELM MKELM SBELM FELM BFELM
1
BFELM

2

aa 80.6 82.6 83.3 82.9 82.8 83.0 83.1
al 97.7 97.9 98.5 98.2 98.1 98.3 98.3
av 69.3 70.0 71.4 70.6 70.7 70.9 71.1
aw 89.7 90.2 91.3 90.7 90.9 91.0 91.1
ay 91.7 92.4 93.0 92.6 92.5 92.9 92.8
Average 85.8±10.7 86.6±11.3 87.5±10.8 87.0±10.9 87.0±11.1 87.2±10.7 87.3±10.6

Time (s) 26.3± 0.1 3.1±0.1 10.1±0.2 7.1±0.2 3.2±0.1 7.3±0.1 7.2±0.1

1 BFELM with Gaussian Membership Function
2 BFELM with Cauchy Membership Function

criminate the the filtered EEG signals, a number of different techniques were
implemented. To validate the performance of the proposed BFELM, a com-
parison study with other existing techniques was implemented. In this study,
seven algorithms are compared:

1) SVM: Support Vector Machine [5].
2) ELM: Extreme Learning Machine [25].
3) MLKELM: Multilayer Kernel Extreme Learning Machine [17].
4) SBELM: Sparse Bayesian Extreme Learning Machine [13].
5) FELM: Fuzzy Extreme Learning Machine [26, 27, 28].
6) BFELM1: Bayesian-Fuzzy Extreme Learning Machine with Gaussian MFs.
7) BFELM2: Bayesian-Fuzzy Extreme Learning Machine with Cauchy MFs.
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For each algorithm, a 5× 5 cross-validation was implemented. The exper-
imental setup for each model involves the regularization parameter ’C’ for
SVM; number fuzzy rules and hidden neurons for FELM and the proposed
BFELM and ELM respectively. For MKELM Gaussian and polynomial ker-
nels are selected [17]. Table 1.1 and 1.2 summarizes the average classification
performance of ten random experiments obtained by different learning algo-
rithms for BCI competition IV data set IIb and BCI competition III data
set IVa respectively. In both tables, the computational time was also com-
pared among the seven methods under MATLAB R2016a on a laptop with
2.7 GHz CPU (16 GB RAM). As it can be observed from both tables, in gen-
eral ELM-based techniques outperform the performance accuracy of SVM.
In particular, MLKELM yields the highest accuracy for datasets IIb and IVa
on almost all subjects.

For the classification of dataset IIb, the proposed BFELM with Gaussian
MFs not only achieves a similar performance to that produced by a MKELM,
but also improves the model accuracy of traditional SBELM. From Table 1.1,
it can be seen that the implementation of an BFELM represents an accuracy
improvement over ELM, FELM and SBELM on subjects B0103T , B0203T ,
B0703T and B0803T . For subjects B0103T , B0503T , B0603T , the proposed
BFELM improved the performance achieved by an MKELM. In general, from
table 1.1, the proposed BFELM either with Gaussian or Cauchy MSs achieves
an accuracy 78.5% and 78.4% correspondingly, an improvement of 1.02% over
ELM and 1.03% over SVM.

For data IVa, the BFELM with a Gaussian and Cauchy MFs achieved a
mean accuracy of 87.2% and 87.3%, an improvement of 0.1% with respect
to ELM and SVM. As described in table 1.2, BFELM provides the highest
accuracy among BELM-based methods with a similar performance to that
obtained by an MKELM. In terms of the computational load required to
train each model, it can also be observed from table 1.2, the incorporation of
TSK inference engine does not implies a significant increase over traditional
SBELM. Moreover, while the training time for an MKELM is about 10.1s
to produce an accuracy of 87.5%, the training time of a BFELM is 7.3s to
achieve an accuracy of 87.3%. This represents a decrease of 28% for the mean
computational training. As illustrated in table 1.2, the proposed BFELM
approach represents an improvement on each subject over ELM, SBELM,
FELM and SVM.

Finally, in Fig. 1.2, the effect of varying the number of fuzzy rules on
the average accuracy of all subjects using 80% as training for the proposed
BFELM models is presented. As illustrated in Fig. 1.2, an increase in the
number of fuzzy rules does not necessarily implies an increase in the final
accuracy. It can be observed, degraded accuracy of BFELM occurs when
either using a large or small number of fuzzy rules. For data IIb, the optimal
number of fuzzy rules for a BFELM either with Gaussian or Cauchy MFs
is produced by using 30 fuzzy rules. In contrast, for data IVa, the optimal
number of fuzzy rules using a BFELM with Gaussian MFs can be achieved
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using between 40−50 rules, while for a BFELM with Cauchy MFs, the highest
accuracy can be obtained with 30 or more fuzzy rules.

0 10 20 30 40 50

Number of Fuzzy Rules

0

10

20

30

40

50

60

70

80

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

(a)

BFELM with Gaussian MFs

BFELM with Cauchy MFs

0 10 20 30 40 50 60 70 80 90 100

Number of Fuzzy Rules

50

55

60

65

70

75

80

85

90

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

(b)

BFELM with Gaussian MFs

BFELM with Cauchy MFs

Fig. 1.2: Average accuracy of ten experiments for the BFELM using a
different number of fuzzy rules for the classification of (a) competition IV,
data IIb and (b) competition III, dataset IVa.

1.4 Discussion

This section provides a performance analysis as well as its pros and cons for
MI classification between the proposed BFELM, and a number of literature
techniques such as MKELM, SVM, BELM, FELM and ELM. From Table 1.1
and 1.2, it can be observed that the proposed BFELM either with Gaussian
MFs or Cauchy MFs produce comparable results to that obtained by using a
Multi-Kelnel ELM (MK-ELM) and in general it is more efficient than SVM,
BELM, ELM and FELM. Generally speaking, similar to all ELM-based ap-
proaches, the suggested BFELM presents universal approximation properties
for continuous functions [17, 20]. Moreover, the proposed BFELM also in-
herits the ability of ELM learning for tuning-free of the hidden layer weights
(consequent part in the design of FISs) while delivering an improved gener-
alisation performance. The results presented in this study demonstrate the
following:

a) The aforementioned BFELM is a probabilistic method that provides an
effective approach to build the confidence intervals of an FIS of TSK type
while eliminating the need to incorporate a regularisation parameter.

b) Since the hyperparameters α and σ2
t are a consequent of a Gaussian pro-

cess, the training of a FIS using the proposed BFELM does not require
a regularisation term. Therefore, by applying BFELM, the FIS naturally
provides an improved generalisation performance compared to traditional
ELMs.
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Table 1.3

Pros and Cons of SVM, ELM, MKELM, FELM and the proposed BFELM.

Method Pros

SVM • Good generalisation properties

• Can deal with high dimensional data
ELM • Tuning-free for the hidden layer weights

• High efficiency and good generalization performance
BELM • Not need to include a regularisation parameter
MKELM • Not need to determine the number of hidden units

• Can explore nonlinear features
• Can combine multiple kernels

BFELM • Unifies the concept of fuzziness and probability
• Good generalisation performance
• New advances in Fuzzy theory and Bayesian learning may be implemented

• Less number of hidden units than MKELM to provide a similar performance
• Consequent part is a linear combination of each hidden activation.

Method Cons

SVM • Parameter selection is data dependent
ELM • Need to determine the number of hidden units

• Need to determine a regularisation parameter to improve generalisation
BELM • Iterative method
MKELM • Need to specify balance between kernels

• Computationally burden increases as data size increases
• Can combine multiple kernels

BFELM • Iterative method, hence its training may result more expensive than ELM
• Number of fuzzy rules needs to be tuned

c) The proposed BFELM is a probabilistic model for TSK FISs, in which
fuzziness and probability work well for the classification EEG signals in
a collaborative manner. Moreover, new advances in either theory may be
implemented under appropriate conditions.

Finally, the main Pros and cons for the proposed BFELM and other tech-
niques for the classification of the datasets IIb and IVa are described in table
1.3.

1.5 Conclusions

In this paper, a Bayesian probabilistic method based on ELM theory for the
construction of of TSK Fuzzy Inference Systems (FISs), in which fuzziness
and probability can work in a collaborative manner is presented. The pro-
posed method called Bayesian Fuzzy Extreme Learning Machine (BFELM)
is a unified learning algorithm based on Bayesian learning regression and
Fuzzy Inference Systems theory. On the one hand, Bayesian learning allows
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the introduction of a priori knowledge while the confidence intervals of each
consequent in the Fuzzy Inference System are analytically determined. On
the other hand, simultaneous learning of antecedent and consequent part is
achieved, where Fuzziness and Probability can work complementary rather
than competitively for the classification of MI EEG tasks.

To evaluate the performance of the proposed BFELM, two public datasets
about BCI competition IV dataset IIb and BCI competition III, data set
IVa are suggested. To compare the performance of a BFELM, other tech-
niques such as traditional ELM and SVM as well as Fuzzy ELM (FELM),
Bayesian ELM (BELM) and Multi Kernel ELM (MKELM) have been also
implemented. As described in our results, it was demonstrated that the pro-
posed BFELM shows similar performance to that provided by a MKELM
and better than traditional SVM, BFELM, FELM and ELM. It can also be
concluded that the associated computational training time is approximately
28% less expensive than MKELM.

It can also be concluded that the proposed learning framework inherits the
capability of Extreme learning Machines for universal approximation of con-
tinuous functions as well as to randomly select the parameters of antecedent
of each fuzzy rule in the FIS, and analytically determine their consequent. Fu-
ture work includes the incorporation of new advances not only from Bayesian
theory, but also from the design of higher FISs for the classification of MI
EGG signals.
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