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Abstract 

Since the outbreak of COVID-19, an astronomical number of publications on the pandemic dynamics 

appeared in the literature, of which many use the susceptible infected removed (SIR) and susceptible 

exposed infected removed (SEIR) models, or their variants, to simulate and study the spread of the 

coronavirus. SIR and SEIR are continuous-time models which are a class of initial value problems 

(IVPs) of ordinary differential equations (ODEs). Discrete-time models such as regression and machine 

learning have also been applied to analyze COVID-19 pandemic data (e.g. predicting infection cases), 

but most of these methods use simplified models involving a small number of input variables pre-

selected based on a priori knowledge, or use very complicated models (e.g. deep learning), purely 

focusing on certain prediction purposes and paying little attention to the model interpretability. There 

have been relatively fewer studies focusing on the investigations of the inherent time-lagged or time-

delayed relationships e.g. between the reproduction number (R number), infection cases, and deaths, 

analyzing the pandemic spread from a systems thinking and dynamic perspective. The present study, for 

the first time, proposes using systems engineering and system identification approach to build 

transparent, interpretable, parsimonious and simulatable (TIPS) dynamic machine learning models, 

establishing links between the R number, the infection cases and deaths caused by COVID-19. The TIPS 

models are developed based on the well-known NARMAX (Nonlinear AutoRegressive Moving 

Average with eXogenous inputs) model, which can help better understand the COVID-19 pandemic 

dynamics. A case study on the UK COVID-19 data is carried out, and new findings are detailed. The 

proposed method and the associated new findings are useful for better understanding the spread 

dynamics of the COVID-19 pandemic. 

 
Keywords: COVID-19, SIR model, SEIR Model, NARMAX model, Machine Learning 

1. Introduction 

The past 18 months have witnessed the devastating spread of the COVID-19, a disastrous global 

pandemic which has been and still is affecting almost every single person at each corner of the world. 

The attention paid to COVID-19 over the past 18 months categorically surpasses that to anything else. 

For example, when searching with the keyword “COVID-19” and the scope of “abstract” in the database 
of Web of Science, the number of published articles is 94026. With the same keyword and scope, the 

number of published articles in the Elsevier’s abstract and citation database, Scopus, is over 112,000. 

With the same keyword, but only search with the scope of “in the title of the article”, the number of 

articles given by Google Scholar is over 263,000, and if the scope is changed to “anywhere in the 
article”, the number of publications becomes reaches over 4,340,000. Clearly, the numbers of 
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publications on COVID-19 are categorically astronomically larger than those on any other single 

subject. 

 

Presently, there are a huge number of publications on describing the spread dynamics of the pandemic, 

most of which employ the well-known susceptible infected removed (SIR) [1] and susceptible exposed 

infected removed (SEIR) models [2], or their variants [3, 4] to simulate the spread of the coronavirus. 

SIR and SEIR are continuous-time models which are a class of initial value problems (IVPs) of ordinary 

differential equations (ODEs). Regression and machine learning methods have also been applied to 

analyze COVID-19 pandemic data (e.g. predicting infection cases), but most of these methods use 

simplified models involving a small number of input variables pre-selected based on a priori knowledge, 

or use very complex models (e.g. deep learning) [5-7], merely focusing on the prediction purpose (e.g. 

positive case prediction) and paying little attention to the model interpretability. There have been 

relatively fewer studies focusing on the investigations of the inherent time-lagged or time-delayed 

relationships e.g. between the reproduction number (R number), infection cases, and deaths, analyzing 

the pandemic spread from a systems thinking and dynamic perspective. The present study, for the first 

time, proposes using systems thinking and system identification approach to build transparent, 

interpretable, parsimonious and simulatable (TIPS) dynamic machine learning models [8,9], 

establishing links between the R number, the infection cases and deaths caused by COVID-19. The TIPS 

models are developed based on the well-known NARMAX (Nonlinear AutoRegressive Moving 

Average with eXogenous inputs) method, which can help better understand the COVID-19 pandemic 

dynamics. A case study on the COVID-19 data of the UK is carried out, and the findings are as follows: 

1) The number of daily infection cases (DIC) is closely related to the R number but lags R number from 

12 to 42 days, and 2) The number of daily deaths is highly dependent on R and DCIC but lags R from 

14 to 41 days and lags DIC from 13 to 27 days. These new findings make significant contributions to 

better understand the spread dynamics of the pandemic.  

 

The remaining of this chapter is as follows. Section 2 briefly depicted the research problem. Section 3 

provides a brief description of the method used for calculating the R number. Section 4 introduces the 

NARMAX methods. In Section 5, three cases studies based on the UK COVID-19 data are presented. 

Finally, the work is concluded in Section 6. 

2. Problem Representation 

This work aims to build transparent, interpretable, parsimonious and simulatable (TIPS) dynamic 

machine learning models, which are used to achieve two objectives: 1) Reveal the quantitative 

relationships of reproduction number (R number), infection cases and deaths, and 2) make prediction of 

daily infection cases (DIC) and the number of daily deaths (NDD) in advance of at least 12 days.   

 

The objectives and procedure of the TIPS machine learning is graphically depicted in Figure 1. In this 

study, the TIPS model training procedure needs the historical records of the numbers of daily infection 

cases and daily deaths. The reproduction number R will be derived from the number of daily infection 

cases. The predictive models are built using the well-known NARMAX method [10].  The calculation 

of R number and the framework of the NARMAX method are presented in Section 3 and 4, respectively.  

3. Reproduction Number 

As mentioned in Section 2, the models to be built in this work involve three variables: The R number 

and the numbers of daily infection cases and daily deaths. The values of the R number are estimated 

using the method proposed in Zingano et al. [11]. The method is briefly presented as follows. 
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Let S(t), E(t), I(t), R(t) and D(t) (t can be understood in time unit of day) denote the numbers of 

susceptible individuals, exposed (infected but not yet infectious to transmit the disease) individuals, 

infectious or infected actively individuals, those recovered from the disease, and those who have died 

from the disease, respectively. From the mathematical theory of infectious diseases, the spread dynamics 

of COVID-19 can be characterized by the following SEIR model [11]:   
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with initial values S(t0) = S0, E(t0) = E0, I(t0) = I0, R(t0) = R0, and D(t0) = D0, satisfying S0 + E0 + I0 + R0 

+ D0 = N, where N is the full size of the susceptible population initially exposed at the initial time t0. 

The parameters β (average transmission rate) and r (average lethality) change with time t (e.g. day), and 

the other two parameters δ and γ are assumed to be positive constants, which are defined as δ=1/TALP 

and γ =1/TATT, where TAL and TAT represent the average latent period and the average transmission time, 

respectively. Clinical study results show that for COVD-19, TAL is around 5 days on average [12] and 

TAT is around 14 days [13].  

 

Note that the five variables, S(t), E(t), I(t), R(t) and D(t), in the ordinary differential equation model (1) 

obey the following conservation law [11]: S(t)+E(t)+I(t)+R(t)+D(t) = N (for any t ≥ t0).  

 

Based on the SEIR model (1), Zingano et al. [11] developed the formula for calculating the reproduction 

number Rt as follow: 
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Figure 1 A diagram of the TIPS machine learning procedure   
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4. NARMAX Methods 

NARMAX methods were initially developed for solving control systems engineering modelling 

problems, especially complex nonlinear system identification tasks, but gradually have been 

successfully applied to a wide range of multidisciplinary domains including medical [14], neuroscience 

[15], social science [16,17], climate and weather [18], space weather [19], among others [13]. 

 

NARMAX methods employ discrete-time dynamic models [20]. Specifically, assume that a system 

output y is potentially driven by r input variables, designated by u1, u2, …, ur, the general form of the 

NARMAX model is:    

1 1( ) [ ( ), , ( ), ( ), , ( ),...,

              ( ),..., ( ), ( 1), , ( )] ( )

y y u u

r u r u e

y t f y t y t n u t u t n

u t u t n e t e t n e t

 



    

    
                                          (3) 

where y(t), u(t) and e(t) are the measured system output, input and noise sequences respectively at time 

instant t; ny, nu, and ne are the maximum lags for the system output, input and noise; τy and τu are a time 

delay between the input and output, and usually τy = τu =1; f[•] is some non-linear function that needs to 

be estimated from measured or observed input and out data.  Note that the noise e(t) is unmeasurable 

but can be replaced by the model prediction error in system identification procedure. The noise terms 

are included to accommodate the effects of measurement noise, modelling errors, and/or unmeasured 

disturbances. 

 

In practice, NARMAX models can be implemented using different approaches, such as recurrent neural 

networks [21], radial basis function (RBF) networks [22, 23], wavelet neural networks [24, 25], along 

with others [13]. More than often, the polynomial representation, due to its attractive interpretation 

properties, is employed to implement NARMAX models [26-28]. In this study, the power-form 

polynomial basis is considered. 

 

NARMAX model identification usually starts from a specified dictionary or library, consisting of a 

sufficiently large number of candidate model elements (e.g. model terms or regressors), each of which 

is formed by the lagged system input and output variables, such as y(t-1), u1(t-2), u2(t-1), u1(t-1)u2(t-1). 

A model construction algorithm (or a combination or ensemble of a several algorithms) can then be 

performed on the dictionary together with a training dataset, to construct sparse or parsimonious models. 

For example, for a single-input single-output (SISO) system, set ny = 1, nu =1, ne = 0, τy = τu = 1, the 

candidate dictionary with the nonlinear degree 3 is: 

 
2 2

3 2 2 3

( 1),    ( 1),   ( 1),   ( 1) ( 1),   ( 1)

( 1),   ( 1) ( 1),      ( 1) ( 1),  ( 1)

y t u t y t y t u t u t
D

y t y t u t y t u t u t

         
       

                                           (4) 

 

The final identified model may be of the form: 

 

 
2( ) ( 1) ( 1) ( 1) ( 1)y t ay t by t u t cu t                                                                (5) 

 

An efficient and commonly used algorithm for NARMAX model construction is the well-knows forward 

regression with orthogonal least squares (FROLS)  [13, 29] and its variants, e.g., minimization error 

minimization [30], iFROLS (iterative FROLS) [31], uFROLS (ultra-FROLS) [32]. Recently, the 

LASSO algorithm [33] has also been applied to system identification [34] and feature selection for 

classification tasks [35] but it turned out that LASSO did not outperform FROLS, because "the lasso is 

not a very satisfactory variable selection method in the p n case" where n is the number of 

observations and p is the number of predictors [36]. However, p n is a common case in many real 
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applications. It was theoretically proved by Johnson et al. [37] that the “optimal” L1–norm solutions are 

often inferior to L0–norm solutions found using stepwise regression; they also compared algorithms for 

solving these two problems and showed that although L1–norm solutions can be efficient, the "optimal" 

L1–norm solutions are often inferior to L0–norm solutions found using greedy classic stepwise 

regression. 

 

The FROLS algorithm uses a simple but efficient index, called error reduction ratio (ERR) [13, 29], to 

measure the importance or significance of each candidate model term (element) included in the specified 

dictionary or library, and determine which ones should be included in the model in order of their 

importance, e.g., in terms of the contributions the can make to explaining the variation of the target 

signal (system output). The model construction procedure usually leads to transparent, interpretable, 

parsimonious and simple/simulatable (TIPS) models. A rigid model validation approach [38, 39] can 

guarantee the validity of the final identified model to sufficiently represent the input-output relationship 

hidden in the data.   

 

Taking the case study, on the UK Understanding Society (UKUS) data, presented in [17] as an example, 

the identified models using the NARMAX methods show that, on the collective national level of the 

UK, the factors that appear to have significantly positive impact on happiness are: ‘income (living 
comfortably),’ ‘income (doing alright),’ ‘income (just about getting by),’ ‘retired,’ ‘health (excellent),’ 
‘health (every good).’; the combination of the two variables of ‘retirement’ and ‘above 65’ is also an 

important model term, which can be explained that that the retired people who are over 65 years old are 

more likely to be happy. The model also revealed that marriage could enhance the positive relationship 

between good health status and happiness, while smoke could enhance the negative effect of low income 

on happiness.  

 

More detailed descriptions of NARMAX methods can be found in [13]. This work uses a 10 fold-cross 

validation scheme and the FROLS algorithm to build TIPS models. In doing so, the entire dataset is first 

split two parts (for training and testing, respectively), and the training data are then split two parts 

(around 70%:30%) which are used for model structure selection and performance validation. The 

standard version of the FROLS algorithm is described in detail in the Appendix.    

5. Case Studies 

The section provides case studies on the UK COVID-19 data modelling and analysis using the TIPS 

modelling approach based on the NARMAX methods. The two main objectives are: 1) To establish the 

relationships between the R number, the daily infection cases and deaths; 2) To make predictions of the 

daily infection cases and deaths in advance of more than 10 days. 

 

The data were extracted from the Johns Hopkins Coronavirus Resource Center 

(https://coronavirus.jhu.edu/about/how-to-use-our-data). For all the case studies, a total of 529 daily data 

(infection cases and deaths), from 4 March 2020 to 15 August 2021, are considered for the analysis 

purpose here, of which the first 361 data (4 March 2020 – 28 Feb 2021) are used for model training, 

estimation and validation, and the remaining 168 data (1 March 2021 – 15 August 2021) are used for 

model performance testing.    

 

5.1 The Impact of the R Number on Daily Infection Cases 

 

To examine and investigate the impact of the daily R number values on the daily infection cases in later 

days, the daily R number is treated as an input and the daily infection cases as the output (response), and 

https://coronavirus.jhu.edu/about/how-to-use-our-data
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the settings for the NARMAX model (1) are: nu = 42 (maximum time lag in input), ny = 0 (without 

including lagged autoregressive term), ne = 0 (without including noise term), τu = 1 (time delay). The 

identified model is: 

 
4 3 4( ) 3.5551 10 ( 12) 6.2117 10 ( 40) 1.17395 10y t u t u t                                       (6) 

 

where y = ‘daily infection cases’ and u = ‘daily R number’. The model was simulated driven by the 513 

daily data. A comparison between the model predicted values and the real data, over the 361 training 

data points (4 March 2020 – 28 Feb 2021) and 168 test data (1 March 2021 – 15 August 2021), is shown 

in Figure 2.  

 

Model (6) indicates that the R number value of the current day may impact the daily infection cases of 

12 days later, lasting until 40 days. This is also reflected in Figure 2. This important finding has not been 

noticed in any previous study.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2 Predicting Daily Infection Cases Using R Number  

 

Using the information given in by model (6) setting nu = 42 (maximum time lag in input), ny = 42 

(maximum lag in output), ne = 0 (without including noise term), τy = τu = 12 (time delay) and the 

nonlinear degree =2, a best NARMAX model was identified, which is shown in Table 2.  

 

The model was simulated over the whole 513 data (4 March 2020 to 30 July 2021). The values of R-

square (the coefficient of determination) on the 361 training data points (4 March 2020 – 28 Feb 2021) 

and 168 test data points (1 March 2021 – 15 August 2021) are 0.8991 and 0.8544, respectively. A 

comparison between the model predicted values and the corresponding records, over the training and 

test data, is shown in Figure 3. 

 

 

 

 

Figure 2  A comparison between the model predicted values of daily infection cases and R number 

from model (6) and the real data . 
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Table 1  The model for daily infection cases, where y = ‘daily infection cases’ and u = ‘daily R number’.  
   

Index Model Term Parameter ERR (100%) P-value 

1 u(t-12)×y(t-12)    1.1674e+01 81.9265    6.4150e-11 

2 y(t-12)×y(t-18)    8.9681e-06   6.4553    1.5963e-02 

3 u(t-13)×y(t-12)   -1.1246e+01   1.0121    6.3366e-10 

4 u(t-12)×y(t-18)    1.0908e+00   1.8987    5.1187e-09 

5 u(t-27)×y(t-18)   -1.1120e+00   1.1427    9.9920e-15 

6 y(t-14)    1.4192e+00   0.5034             0 

7 y(t-12)×y(t-14)   -2.6652e-05   0.5831    2.5684e-12 

8 u(t-42)×y(t-36)   -1.7229e-01   0.7061    2.1496e-09 

 

 

Both the quantitative results (e.g. the R-square values) and graphical illustration show that the identified 

model show excellent prediction results. More importantly, it can be seen from Table 1 how the values 

of the R number and the infection cases can potential affect the pandemic spread after 12 days lasting 

until 42 days. For example, the combination of the two quantities of R number and infection cases of 

current day can potentially have a very high impact on the infection cases 12 days later, as the cross 

product term of the two variables has a very high ERR value, showing that it can explain nearly 90% of 

the variance of the daily infection cases after 12 days. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3 Predicting Daily Mortality Using Daily Infection Cases and R Number 

 

In this third case, the settings as follows. The R number and daily infection cases are used as two inputs, 

and the number of daily deaths is considered to be the output. The other coefficients of the NARMAX 

(1) are chosen as: nu = 42 (for both inputs), ny = 0 (no autoregressive variable is included in the model), 

ne = 0 (without including noise term), τu =12 (time delay) and the nonlinear degree =2. The identified 

NARMAX model is shown in Table 2.  Note that the model identification algorithm did not find any 

nonlinear models that outperforms the linear model shown in Table 1, this suggests or implies that there 

is no or very weak nonlinear relation along the input and output variables; the relationship is dominated 

by linearity.  

Figure 3  A comparison between 12 days ahead predictions of daily infection cases and the real data. 
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Table 2  The model for daily infection cases, where y = ‘number of daily deaths’, u1 = ‘daily R number’, 
and u2 = ‘daily infection cases’.  
   

Index Model Term Parameter ERR (100%) P-value 

1     u2(t-13)    1.7498e-02    75.9261            0 

2     u1(t-41)    2.4864e+02     7.3788            0 

3     u1(t-12)   -2.3836e+02     4.0250            0 

4     u2(t-21)    1.1513e-02     0.3910    3.6707e-04 

5     u2(t-24)   -1.3255e-02     0.5640    4.6917e-06 

6     u2(t-27)    6.3630e-03     0.2339    1.2048e-02 

 

It can be observed from Table 2 that the values of the R number (input u1) can potential affect the 

mortality after 12 days lasting until 41 days, whereas the daily infection cases (u2) can potential affect 

the mortality after 13 days lasting until 27 days.  

 

From Table it can be noticed that the daily infection cases of current day (with ERR = 75.9%) potentially 

highly affect the number of deaths 13 days later. 

 

The model was simulated over the entire data (4 March 2020 to 15 August 2021). A comparison between 

the model predicted values and the corresponding records, over the training and test data, is shown in 

Figure 3, where it can be seen that the model performs excellent on the training data and most part of 

the test data (e.g. until 21 June 2021), with the value of R-square is close to 0.8). 

 

However, it can be clearly seen that the model fails to predict the number of daily deaths in most recent 

days (e.g. around 21 June 2021 and onward), although the daily infection cases is still very high as 

shown in Figure 3. This is reasonable and may probably be explained that more and more people have 

received a second vaccine which has helped significantly reduce the death rate, and this confirms the 

effectiveness of the UK government’s vaccination policy. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4  A comparison between 12 days ahead predictions of daily deaths and the real data. 
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It is worth mentioning the following two points: 1) Under the settings of nu = 42, ny = 0, ne = 0, =2, the 

best variables that the model training algorithm identified are u2(t-13), u1(t-14), etc. This suggests that 

the inclusion of any other variables cannot enhance the explanation of the variation of the daily death 

cases using the daily infection cases and the daily value of R number, and therefore cannot help improve 

the prediction performance. 2) It is straightforward to detect the periodical change of the daily death 

cases (with a period of 7 days), the correlation between the lagged variable y(t-7) and the original signal 

is as high as 0.93. The main purpose of this section is to reveal the inherent dynamics that project daily 

infection cases and R-number to daily death cases many days later. To avoid the impact of the strong 

autocorrelation on the analysis of the underlying dynamics between the input and output variables, the 

lagged autoregressive variables, such as y(t-1), y(t-2), etc. were deliberately not considered when 

constructing the model in this case study.        

6. Conclusions 

The prediction of the COVID-19 pandemic is important and challenging. However, a complicated black-

box that lacks interpretability (e.g. without explicitly providing information on the inherent dynamics) 

may become less useful or powerful for applications where there is a need to know the relationship of 

the inherent dynamics. The main attention of this work was paid to developing a glass-box modelling 

approach. The main contributions of the work can be summarized as follows: 

 

Firstly, it proposed a TIPS-ML framework based on the NARMAX methods, and applied the proposed 

approach to modelling the spread dynamics based on the UK COVID-19 data. In comparison with other 

complicated machine learning methods, the proposed method has several highly attractive properties, 

such as transparency, interpretability, parsimony, and simplicity/simulatability. These properties are 

very important for investigating and understanding the spread dynamics of the pandemic, which may 

not be able to obtained by using other machine learning methods (e.g. those complicated black-box 

neural network models).  

 

Secondly, some important new findings have been obtained from the identified TIPS models. For 

example, the R number of the current day may significantly impact the daily infection cases 12 days and 

last as long as 42 days; the combinational effect of R number and infection cases of current day can be 

potentially very high on the infection cases 12 days later; the number of daily deaths is highly dependent 

on R and daily infection cases (DIC) but lags R from 14 to 41 days and lags DIC from 13 to 27 days. 

These new findings, which have not been observed before, are useful for better understanding the spread 

dynamics of the pandemic. 

 

The case studies carried out in this work focused on the UK COVID-19 data. In future, more data of 

different countries will be considered and analyzed using the proposed method will be applied, to 

investigate and compare the pandemic spread dynamic patterns, from which to acquired information 

that may be useful for healthcare and infectious disease studies.  
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Appendix: The Forward Regression with Orthogonal Least Squares (FROLS) Algorithm   

 

The TIPS models are built using a 10 fold-cross validation scheme and based on the FROLS algorithm. 

Taking a single-input, single-output as an example, an initial TIPS model can easily be converted into a 

linear-in-the-parameters form: 

1

( ) ( ) ( )
M

m m

m

y t t e t 


                                                          (A1) 

where ( ) ( ( ))m mt t  x  are the model regressors, 1 2( ) [ ( ), ( ), , ( )]T

n
t x t x t x tx is a vector of model 

‘input’ variables , each element ( )ix t is either one of the n lagged variable such as ( 1)y t  , ( 2)y t  , 

…, ( )
y

y t n , ( 1)u t  , ( 2)u t  , …, ( )uu t n (n=ny+nu), or cross-product of these lagged variables 

such as ( 12) ( 12)y t u t  and ( 12) ( 18)y t y t  ; m are the model parameters, and M is the total 

number of candidate regressors.  
 

The initial regression model (A1) often involves a large number of candidate model terms. Experience 

suggests that most of the candidate model terms can be removed from the model, and that only a small 

number of significant model terms are needed to provide a satisfactory representation for most nonlinear 

dynamical systems. The FROLS algorithms (Billings, 2013) can be used to select significant model 

terms. 

 

Consider the term selection problem for the linear-in-the-parameters model (A1). Let 

1{( ( ), ( )) : , }n N

t
t y t y  x x R R  be a given training data set and T

Nyy )](,),1([ y be the vector of 

the output. Let },,2,1{ MI  , and denote by { : }m k I    the dictionary of candidate model terms 

in an initially chosen candidate regression model similar to (9). The dictionary   can be used to form 

a variant vector dictionary { : }m m I φD , where the kth candidate basis vector mφ  is formed by the 

kth candidate model term m  , in the sense that [ ( (1)), , ( ( ))]T

m m m
N φ x x . The model term 

selection problem is equivalent to finding, from I, a subset of indices, { : 1,2, , , }n m mI i m n i I    

where Mn  , so that y can be approximated using a linear combination of 
niii ααα ,,,

21
 . 

 
 

A.1  The forward orthogonal regression procedure 

 

A non-centralised squared correlation coefficient will be used to measure the dependency between two 

associated random vectors. The non-centralised squared correlation coefficient between two vectors x 

and y of size N is defined as 







N

i i

N

i i

N

i ii

TT

TT

yx

yx
C

1
2

1
2
1

22

22

2 )(

))((

)(

||||||||

)(
),(

yyxx

yx

yx

yx
yx                     (A2) 

The squared correlation coefficient is closely related to the error reduction ratio (ERR) criterion (a very 

useful index in respect to the significance of model terms), defined in the standard orthogonal least 

squares (OLS) algorithm for model structure selection (Chen et al., 1989; Billings, 2013). 

 

The model structure selection procedure starts from equation (A1). Let yr 0 , and 

)},({maxarg
1

1 j
Mj

C φy


                                                  (A3) 



Modelling COVID-19 Pandemic Dynamics Using TIPS Machine Learning Models 

 

11 
 

where the function ),( C is the correlation coefficient defined by (A2). The first significant basis can 

thus be selected as 
11 φα  , and the first associated orthogonal basis can be chosen as 

11 φq  . The 

model residual, related to the first step search, is given as 

1

11

1
01 q

qq

qy
rr

T

T

                                                      (A4) 

In general, the kth significant model term can be chosen as follows. Assume that at the (m-1)th step, a 

subset 1kD , consisting of (m-1) significant bases, 1 2 1, , , mα α α , has been determined, and the (m-1) 

selected bases have been transformed into a new group of orthogonal bases 1 2 1, , , mq q q via some 

orthogonal transformation. Let 

 
1

( )

1

Tm
j km

j j kT
k k k





 
φ q

q φ q
q q

                                                    (A5) 

( )

,1 1
arg max { ( , )}

i

k

k j
j i k

C
   

 y q                                            (A6) 

where 1j m φ D D , and 1mr  is the residual vector obtained in the (m-1)th step. The mth significant 

basis can then be chosen as
mm φα   and the mth associated orthogonal basis can be chosen as 

)(m
m m

qq  . The residual vector mr  at the mth step is given by 

m

m
T
m

m
T

mm q
qq

qy
rr  1                                                           (A7) 

Subsequent significant bases can be selected in the same way step by step. From (A7), the vectors mr

and mq  are orthogonal, thus 

 

m
T
m

m
T

mm
qq

qy
rr

2
2

1
2 )(

||||||||                                                   (A8) 

By respectively summing (A7) and (A8) for m from 1 to n, yields 

n

n

m

m

m
T
m

m
T

rq
qq

qy
y 




1

                                                           (A9) 





n

m m
T
m

m
T

n

1

2
22 )(

||||||||
qq

qy
yr                                                (A10) 

In general, the mth significant model term can be chosen as follows. Assume that at the (m-1)th step, a 

subset 1mD , consisting of (m-1) significant bases, 121 ,,, mααα  , has been determined, and the (m-1) 

selected bases have been transformed into a new group of orthogonal bases 121 ,,, mqqq  via some 

orthogonal transformation. Let 

 







1

1

)(
m

k

k

k
T
k

k
T
j

j
m
j q

qq

qφ
φq                                                        (A11) 

)},({maxarg )(

11,

m
j

mkj
m C

k

qy
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


                                            (A12) 
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where 1 mj DDφ , and 1mr  is the residual vector obtained in the (m-1)th step. The mth significant 

basis can then be chosen as
mm φα   and the mth associated orthogonal basis can be chosen as 

)(m
m m

qq  . The residual vector mr  at the mth step is given by 

m

m
T
m

m
T

mm q
qq

qy
rr  1                                                             (A13) 

Subsequent significant bases can be selected in the same way step by step. From (A13), the vectors mr

and mq  are orthogonal, thus 

 

m
T
m

m
T

mm
qq

qy
rr

2
2

1
2 )(

||||||||                                                     (A14) 

By respectively summing (A13) and (A14) for m from 1 to n, yields 

n

n

m

m

m
T
m

m
T

rq
qq

qy
y 




1

                                                            (A15) 





n

m m
T
m

m
T

n

1

2
22 )(

||||||||
qq

qy
yr                                                      (A16) 

The model residual nr  will be used to form a criterion for model selection, and the search procedure 

will be terminated when the norm 2|||| nr satisfies some specified conditions. Note that the quantity 

),(ERR mm C qy  is just equal to the mth error reduction ratio (Chen et al., 1989; Billings, 2013), 

brought by including the mth basis vector 
mm φα  into the model, and that  

n

m mC
1

),( qy  is the 

increment or total percentage that the desired output variance can be explained by nααα ,,, 21  . 

 

Finally, a mean square error (MSE) based algorithm, e.g. Akaine's information criterion (AIC), Bayesian 

information criterion, generalized cross-validation (GCV) and adjustable prediction error sum of squares 

(APRESS) can be used to determine the model size [40]. 

 

A.2   Parameter estimation 

It is easy to verify that the relationship between the selected original bases 1, , nα α , and the associated 

orthogonal bases 1, , nq q , is given by 

 

nnn RQA                                                                                (A17) 

 
where ],,[ 1 nn ααA  , nQ  is an nN  matrix with orthogonal columns nqqq ,,, 21  , and nR  is an 

nn unit upper triangular matrix whose entries )1( njiuij   are calculated during the 

orthogonalization procedure. The unknown parameter vector, denoted by 1[ , , ]T

n n
 θ ,  for the 

model with respect to the original bases, can be calculated from the triangular equation 
nnn gθR  with

T
nn ggg ],,,[ 21 g  , where )/()( k

T
kk

T
kg qqqy  for k=1,2, …, n. 

 

The model parameters reported in Tables 1 and 2 in Section 5 are the estimated values of 1 2[ , , , ]T

n
  

. 
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