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  Abstract—The four-wheel omnidirectional mobile robot 
usually suffers disturbed or unstable lateral motion under 
harsh terrain conditions (such as uneven or oiled ground). 
Generally for such a challenging situation, the lumped 
disturbances and interconnected states render available 
coupling solutions difficult to achieve demand-satisfied 
performance. This paper proposes a novel decoupled 
fractional super-twisting sliding mode control (FST-SMC) 
method by (i) constructing an inverse system-based 
decoupling to form a pseudolinear composition system; (ii) 
presenting an enhanced nominal sliding law for chattering 
mitigation and (iii) designing an unbiased multi-layer fuzzy 
estimator with gain-learning capacity to compensate for 
the lumped disturbances actively. Given that the identified 
disturbances can be directly reflected in the FST-SMC law, 
this method guarantees an accurate and robust control 
without causing gain overestimation. Theoretical analysis 
is offered to verify the asymptotic stability. Under harsh 

terrain conditions, experimental results validate the 
effectiveness of the proposed FST-SMC method.  

 
Index Terms—Mobile robot, super-twisting sliding mode 

control, lumped disturbance, interconnected state 

I. INTRODUCTION 

UE to higher efficiency and strengthened adaptability, 
autonomous mobile robots have become an indispensable 

part of the unmanned industry [1]. Compared with differential 
mobile robots, the four-wheel omnidirectional mobile robot 
(FOMR) actuated by in-wheel or hub motors can achieve better 
maneuverability for practical implementation [2]. Without 
changing the wheels’ directions, a FOMR facilitates the main 
body of wheels and rollers to rotate actively, thus offering 
superior mobility for an efficient move arbitrarily. This brings 
the FOMR notable potential in industrial applications such as 
logistics and warehousing, therefore enabling retrofitting and 
renovatinzg of typical manufacturing plants. However, the 
wheel-terrain interaction of the concerned FOMR usually 
interferes with harsh ground conditions (such as the oiled or 
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bumped cover) [3]. Moreover, unknown disturbances and 
uncertainties inevitably exist (e.g., parametric perturbations or 
unmodeled dynamics) from the adaptive control context. This 
may lead to degraded system performance or even unstable 
dynamics such as wheel slip and lateral sway [4], [5]. Thus, 
how to ensure stable and accurate control of a FOMR must be 
resolved for harsh industrial scenarios. 

Although a FOMR benefits from its independently driven 
and actuation features, capitalizing on the coordinated 
utilization of four distributed actuators to achieve fast and 
accurate torque scheduling for enhancing lateral stability is 
difficult [6]. In practice, the yaw rate and sideslip angle can be 
regarded as the universally applied indicators of system 
stability and dynamic performance, which considerably benefit 
the lateral motion control. Compared with anti-lock braking 
control and traction control, direct yaw moment control 
(DYMC) can compensate for the steering input with yaw 
moment generated by longitudinal tire force [7], [8]. DYMC 
helps specify dynamic capacities in terms of driving torque and 
steering and enhancing reliability and mobility [9], [10]. Apart 
from its merit of easy implementation, DYMC can 
accommodate the longitudinal-lateral motion of the FOMR in 
different scenarios [11]. However, for lateral control, the 
interconnected states (i.e., yaw rate and sideslip angle) imply 
that the concerned FOMR is a complex and strongly coupled 
multi-input multi-output (MIMO) system [12], [13]. The 
coupling or interconnection between the inputs and states of 
such a MIMO FOMR system results in difficulties to reach a 
given objective [14]. This would alleviate the robustness and 
stabilization superiority of DYMC solutions, leading to a 
dilemma for enhancing the accuracy and efficiency of a FOMR 
lateral motion control system concerned here. 

Given that the interconnected states may worsen the lateral 
performances of the FOMR coupled studies, the decoupling 
control of FOMR deserves deep investigation [15]. Generally, 
decoupling allows to design a state independent controller by 
simplifying the system control framework and eliminating the 
interaction and interference of variables [16]. To date, a flotilla 
of explorations exists dedicated to this research area [17], [18].  
An inverse technique is adopted to decouple a system with 
three inputs and three outputs to achieve a robust control [19], 
[20]. A proportional integral-based method is proposed to 
decouple the lateral velocity and yaw rate of a four-wheel 
vehicle [21]. Among existing decoupling works, the differential 
geometry method transforms the control problem into the 
geometric domain, which involves complex coordinate 
transformation. In comparison, the inverse system-based one is 
more intuitive and easier to understand [22]. We can construct 
the inverse system and cascade it with the original system to 
realize decoupling. Thus, the original MIMO systems with 
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interconnected states can be decomposed into several single- 
input single-output subsystems. This brings advantages and 
convenience for the controller design of each subsystem [23], 
[24]. For a system that can be pseudo linearized and decoupled 
using inverse system theory, the accurate analytical model is a 
prerequisite. However, precisely identifying the accurate 
structure and parameters of an industrial system is difficult, 
especially for a complex system, such as the FOMR [25], [26]. 
Hence, achieving the purpose of decoupling control is difficult 
by only utilizing the inverse system idea, and the necessary 
model estimation often renders the decoupling system to 
operate in a nonideal condition given that it may mitigate the 
robustness and convergence [27]. In this sense, the inevitable 
disturbances or structural uncertainties resulted from nonideal 
modeling or linearization should be well handled when 
deriving a decoupled tracking controller. For lateral control of 
the FOMR, a practical method must also address the lumped 
disturbances caused by harsh wheel-terrain interactions (such 
as uneven or oiled ground). Ultimately, the anti-disturbance 
robust control relating to decoupling lateral stabilization of the 
FOMR must be investigated, which motivates this research. 

When it comes to robust control, sliding mode control (SMC) 
has control superiors in disturbance alleviation and dynamic 
tracking [28], [29]. This method can drive the resultant 
trajectory into a bounded switching region and maintaining it 
therein for subsequent periods [30]. To ensure state 
convergence, the control gains of SMC solutions normally must 
satisfy specific conditions relating to the upper boundaries or the 
derivatives of the lumped disturbances. For instance, in [31], a 
super-twisting SMC method was used to handle the unknown 
disturbances. However, the mentioned information may be 
unavailable in the industrial environment. Especially, the 
considered FOMR system often suffers nonideal terrain 
conditions such as oiled, damaged or bumped grounds, 
implying large and time-varying disturbances or uncertainties. 
Another major drawback is that relative high control gains 
should be selected in principle to ensure the system’s 
robustness. Such a passive anti-disturbance manner may lead to 
gain overestimation or even serious chattering phenomena. The 
scheduling of high gain imposes a tradeoff between dynamic 
tracking and disturbance attenuation [32]-[34]. Given this 
context, guaranteeing a sufficiently high- performance control 
for the FOMR system is extremely difficult, which is a 
nonlinear, and strongly coupling system with the time-variance 
of parameters as well as unavoidable disturbances. 

Consequently, to achieve effective asymptotic stabilization 
control, this paper proposes a fuzzy fractional super-twisting 
SMC (FST-SMC) for the interconnected FOMR system. The 
presented method can distinctly handle the decoupled lateral 
motion control and disturbance rejection of the considered 
FOMR system. The contributions are summarized as follows. 

1) An inverse system-based decoupling scheme is presented 
to decompose the original MIMO FOMR system into 
several single-input single-output subsystems. Such a 
pseudo linearization is beneficial for intuitively and 
immensely simplifying the decoupled controller design 
and stability analysis of complex interconnected systems. 

2) A modified FST-SMC is proposed to ensure that each 
subsystem is driven into the constructed sliding manifold. 
Different from the traditional SMC schemes [31], [35], a 
new fractional super-twisting switching law is designed to 
mitigate the undesirable chattering without acquiring the 

upper boundary of the disturbances or related derivatives. 
Therefore, the gain overestimation can be well addressed. 

3) Unlike the traditional decoupling control scheme [23], the 
active anti-disturbances reduction is realized for the 
decoupled FOMR system. Considering the characteristics 
of the pseudo linearized system, a multi-layer fuzzy neural 
network (MFNN) is designed to adaptively predict and 
compensate for the lumped disturbances. This can 
enhance the control robustness given that the estimated 
disturbances are utilized directly in the control law.  

4) By combining Lyapunov theory, sufficient conditions of 
learning parameters and control gains are derived for the 
decoupling of FST-SMC dynamics with guaranteed 
asymptotic convergence and closed-loop stability.  

The remainder of the paper is constructed as follows. Section 
II provides the system modeling and problem statement. 
Section III proposed the designed decoupled FST-SMC 
stabilization framework. Thereafter, Section IV presents the 
experimental validations. Conclusions are offered in Section V. 

Notations: Throughout this paper, n  represents the n  
dimensional Euclidean space. diag{...}  is the block diagonal 
matrix. min ( ) A  and max ( ) A  represent the largest and the 
smallest eigenvalue of matrix A , respectively. The notation 

s
  is used to represent | | ( )s sign s

 with ( )sign s  denoting 
the set-valued function equal to its sign if 0s  . 

II. DYNAMICAL MODELING AND PROBLEM STATEMENT 

A. Lateral Dynamical Modeling 

The lateral dynamic model of the concerned FOMR system 
is a nonlinear MIMO system with interconnected states. In the 
yaw plane, the four-wheel dynamics are denoted as [31] 

2 4

1
1 3

( sin cos ) ( sin cos )x xi i yi i xi i yi i

i i

mv F F F F d     
= =

= + − − − +   (1) 

2 4

2
1 3

( sin cos ) ( sin cos )z f xi i yi i r xi i yi i

i i

I l F F l F F M d    
= =

= + + − + +   (2) 

0.5 ( )cos 0.5 ( )cosfx fy f rx ry rM d F F d F F  = − + −  (3) 

where m  is the total mass, 
zI  is the inertia moment through the 

center of gravity (CG),   and   denote the sideslip angle and 
yaw rate, separately, 

xiF  and 
yi

F  are the longitudinal and lateral 
tire force of ith tire, respectively, 

f
  and 

r  are the virtual front 
and rear wheel angles, separately, 1,2i

d =  are the lumped 
disturbances, M  is the yaw moment of inertia generated by 
the traction moment of four wheels, 

f
l  and 

rl  are the distances 
between the front and rear axles and the CG, separately, ,fi x yF =  
and ,ri x yF =  are the virtual wheel forces shown in Fig. 1, 1,2,3,4i =  
are the steer angles, and xv  denotes the longitude velocity. 

As demonstrated in Fig. 1, the single-track model of FOMR 
can be formulated using the front and rear virtual wheels, i.e., 

1cos cos
x fy f ry r

mv F F d   = + − +  (4) 

2cos cos
z f fy f r ry r

I l F l F M d  = − + +  (5) 

With the slip ratio and stiffness coefficient, the relationship 
between the tie force and steering angles can be approximated 
under a small steering angle (i.e., cos 1

f
 =  and sin

f f
 = )  

1,   ( )max ( , ),  ,
xi i s s x x

F c r r RW v RW v i r f
−= = − =  (6) 

12 ( )
yf f f x f

F c l v  −= − + − , 12 ( )
yr r f x r

F c l v  −= − − +  (7) 

where 
sr  denotes the slip ratio, R denotes the wheel radius, f

c  
and 

rc  are the stiffness coefficients of front and rear wheels,  
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Fig. 1  FOMR System modeling. (a) Four-wheel model; (b) Single-track model. 

respectively, and W  is the angular velocity.  
To simplify the lateral control model, we define the 

proportional relationship between the front and rear wheels as 

r f
k =  with k  being a pre-defined parameter. Then, the 

re-defined state model can be obtained as 
x Ax Bu d= + +  (8) 

where T( , )x  =  is the state vector, T( , )
f

u M=  denotes 
the control input vector, T

1 2[ ]d d d=  denotes the lumped 
disturbance, and the system parametric vectors are expressed by 

2

2 2

T

2( ) ( ) 2( ) ( ) 1
,  

2( ) 2( ) ( )

2( ) ( ) 2( )

0 1

f r x r r f f x

r r f f z r r f f z x

f r x r r f f z

z

c c mv c l c l mv
A

c l c l I c l c l I v

kc c mv kc l c l I
B

I

 − + − −
=  − − −  

− + 
=  

 

 

B. Problem Formulation 

Generally, given that the interconnected yaw rate and 
sideslip angle are more sensitive to the system stability under 
lateral motion framework, these states are considered as the key 
control performance indicators of the FOMR. Then, the 
dynamic control problem of the FOMR concerned here is 
transferred as the DYMC issue to achieve robust stabilization 
control. Consequently, the objective of this paper is to propose 
a decoupled FST-SMC method that will make the DYMC 
output states accurately track the desired trajectories (or a 
constructed reference model [31]). This will be realized by 
designing (i) an inverse-system decoupling scheme to achieve a 
pseudo linear composition system; and (ii) an FST-SMC law to 
address the active anti-disturbance issue of the decoupled 
FOMR system. Through this, the explored method can 
simultaneously enhance the disturbance suppression and 
trajectory tracking capacities of the concerned FOMR system. 

III. MAIN RESULTS 

A. FST-SMC Design 

Given that the lumped disturbances may cause unstable 
oscillations, a novel FST-SMC law is proposed to specify the 
nominal tracking performance of the independent subsystems. 
First, inverse system theory is utilized to decouple the original 
MIMO system as several independent subsystems. The 
existence of the inverse system, i.e., the invertibility, should be 
ensured by the system derivative order. To this end, the FOMR 
system with the states and output signals are expressed as 

1 1 2 2( , ),  ( , ), ,  ( , )n nx f x u x f x u x f x u= = =  (9) 

1 1 2 2( , ),  ( , ),  , ( , )
g g

y h x u y h x u y h x u= = =  (10) 

where T
1 2( , ,..., ) n

n
x x x x=   is the system state vector with 

n  being the dimension, T
1 2( , ,..., ) j

j
u u u u=   is the input 

vector with dimension j, and g is the dimension of y.  
Further, one can simplify the FOMR system as 

0 0( , ),  ( , ),  ( )x f x u y h x u x t x= = =  (11) 

where T
1 2( , , , ) g

g
y y y y=   denotes the output vector, 

T
1 2( , , , )

n
f f f f=   and  T

1 2( , , , )
g

h h h h=   are the parameter 
vectors, 

0t  and 
0x  are the initial time and state, respectively. 

To ensure the reversibility of the FOMR system, the 
- order derivatives of y  must be identified 

1 2
( )( ) ( )T T

1 2/ =[ ( , ), ( , ),..., ( , )]g

g
y y u y x u y x u y x u

  =     (12) 

where T
1 2[ , , , ]

g
   =  denotes the order vector.  

By continuously computing the derivatives of y , a linear 
inverse system (i.e., a decoupled model) is finally achieved, 
implying that y  can be expressed linearly with u . Then, the 
existence of the desired inverse system is judged by evaluating 

1

g

ii
n 

=
=   . Through the above steps, if the explicit 

control input u  can be expressed as  -order derivatives of the 
output y , then an interconnected MIMO system can be 
decoupled as a reformulated inverse system. 

For the concerned FOMR, as a typical MIMO system, the 
first order derivative of y  is obtained 

1

2
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After the calculation of the first-order derivative of y , the 
linear expression of the control variable can be realized. Given 
that the derivative vector   satisfies 1 2[ ] [1 1]  = = , 
the rank of the 1 2[ ]y y y

  =  is  
1 1

2 2
T

2
f

f

My
M rank rank

u

M

 



 



 


 


  
     = = =        

   

 (13) 

Considering that the rank of the T
y u  is equal to  =  

1 2 2 + = , there exists an inverse system that can be applied 
to decouple the lateral model of FOMR. Then, the control 
variable u  can be expressed as the state variable y , thus the 
inverse system equation can be written as u =  ( , )x y

  with 
  being the inverse system expression of formula. Under 
system uncertainties G , the decoupled system is determined by 

1 1

2 2

(2( )) 0

0
x f r

z
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u

u I y
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1
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0
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A
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



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 (15) 

Then, the output state and control values of the derived 
FOMR inverse system can be transferred as T

1 2[ , ]u u= =X  
T[ , ]

f z
M and T T

1 2[ , ] [ , ]y y  = =U , respectively. Through 
this, one can achieve a pseudo linearized mapping relation for 
the original lateral motion FOMR system, i.e., 

0 0,  ( )t= + + =X AX BU G X X  (16) 

where 0X  is the initial state, A  and B  are the related vectors. 
Thus, the following sliding mode surface is provided 

1 2 1+s e e D e
    −= +  (17) 

where T 2
1 2[ , ]s s s=   is the designed sliding variable, 1  and 



 

2  are positive odd numbers satisfying 1 21 2   , ,     
2 2  are positive matrixes, 1 2 1 2 1 2 T

1 2[ , ]e e e
     =  with 

1e  and 

2e  being the state errors, D denotes the fractional operator [36], 
and  is a pre-defined fractional order.  

To achieve a superior nominal tracking controller for the 
interconnected FOMR, we provide: 
Theorem 1:  For the decoupled FOMR system, with the 
equivalent control law 

eq
U  and super-twisting switching law  

swU , if the following fractional SMC law 
FSMCU  are employed 

FSMC eq sw
= +U U U  (18) 

1 2 11 1 1
1 2[ (1 ) ]

eq r
e D e

   −− − −= − + − +U B AX X  (19) 

1 2 11 1
1 2 1 1 2 2( ) ( )
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e

    −− −= + −  − U B B  (20) 
0.5

1 1 2( )s s s
  = +  (21) 

2 1 1

2 2 1 0.5 2
1 1 2 2

( ) ( ) ( )

(0.5 ) 0.5 ( )

s s s

s s sign s
      − −

 =  

= + + +
 (22) 

where 1,2i
 =  are positive constants, 

rX  is the reference state, 
(0,1)   is the fractional order, and +

1,2i
 =   are the 

adaptive gains, then, there exists a range of values for 1,  2 ,  
such that the designed sliding manifold can be forced to zero 
within finite time and remains on it for the subsequent periods.  

Proof: The time derivative of s  is  
1 2 11

1 2s e e e D e
    −−= + + , re = −X X  (23) 

A straightforward calculation leads to 
1 2 11

1 2(1 ) ( )rs e D e
    −−



= + + − +AX BU X  
(24) 

Assuming that the unknown disturbances G  can be replaced 
by an unbiased estimator Ĝ  (as demonstrated in Section III.B), 
the integration of (18)-(22) and (24) yields 

1 1 2 2( ( ) )
eq sw r

s D e
  =  + + − + = −  − AX B U U X  (25) 

Define a state vector 
1 2

T[ , ] =M M M  with 
1 1 = M  and 

2 2 2 = M . A Lyapunov function candidate is chosen as 

T
1V P= M M , 

2

1
P

 + −
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P Q Q
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where 0P  and 0Q  are arbitrary time-invariant constants.  

Note that 2 1 1 =   , one achieves 
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Thus, the derivative of the Lyapunov function is obtained 
T T T T T

1 1 1+ ( )V P P P P Q= =  + = −M M M M M J J M M M  (28) 
2 2

1 2 2 1

2
2 1

2 ( ) 2

2
Q

   
 

 + − − − −
=  − − − 

P Q Q P Q Q

P Q Q Q
 (29) 

Choosing 2
2 1 = + +P Q Q  leads to 

2
1 22 ( ) 2 0

{ , }
0

Q diag
  + − −

− =  
 

P Q Q Q
Q Q

Q
 (30) 

With the aid of Algebraic Riccati Inequality [37] and a small 
positive constant ò , one can select  

1 3
1 (2 ) (2 2 ) − + + +ò P QP Q Q  (31) 

that ensures { , }Q diag− Q Q  being positive defined and 

T 1
1 1 0.51

2

| | 2
T

V
s

Q
s



 
−

 
= −  −  + 

 
M M Q M M    (32) 

Given that 2 2
min 2 max 2{ }|| || { } || ||T

P P P  M M M M , 1−  

(0,1)   and 
1 2

2 2 2 0.52
2 1 1

2
2|| || | | 2 | |s s

 
    += + = +M M M  

2
2

2
2

2
2s  + + , we get  

 
1 0.5 0.5 0.5 0.5

2 1 min 1 max2 2
{ },  { }s V P V P

  − − −  M M  (33) 

Substituting (33) into (32) results in 

  
0.5

2 0.51 2 1 2 min
1 11 0.5 2

max

( 0.5 ) { }

| | 2 { }

P
V V

s s P


    
−

 



++  −  −


Q
Q M  (34) 

Note that (34) reveals that 1 0V  , thus ensuring the 
closed-loop stability. With 0.5

1 2 1 2 min( ) ( 0.5 ) { }P     +, Q  
1

max{ }P− , the solution of 1 2( )v  = − ,  0.5 ,v  0(0) 0v v=    is 
determined by 0.5 2

0( ) ( 0.5 )v t v t= −  . When 0 0( )V s v , we 
have 1V v . Specifically, the finite convergence time is  

1 0.5
1 2 02 ( , ) ( )T V s −=   (35) 

Thus, with suitable 1  and 2 ,  the constructed s  and s  are 
driven to zero within a finite time. Here completes the proof. ■                    

The decoupled FST-SMC framework is depicted in Fig. 2. 
For the concerned FOMR system, the following composite 
control law, which comprises the fractional super-twisting 
SMC 

FSMCU  and the anti-disturbance MFNN-based estimated 
law 

MFNNU , are constructed as 

 
FSMC MFNN= +U U U , 1 ˆ

MFNN

−= −U B G  (36) 

As the lump disturbances G  cannot be measured or monitored 
directly in practice, we provide an MFNN solution to estimate 
Ĝ , thus implementing the proposed FST-SMC law.  

B. Unbiased Fuzzy Disturbance Estimator 

By adjusting the learning parameters, an unbiased fuzzy 
disturbance estimator is designed as 

T
1 2 3 4 5

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , , , , , )w r e     =G  (37) 

where ŵ  is the weight, r̂  denotes the output of the fuzzy rules, 

1,...,5
ˆ

i
 =  denote the adaptive parameters adjusted online in the 
MFNN framework with being the base width 1̂ , 2̂  being the 
center vector, 3̂  and 4̂  being the inner feedback gains, and 

5̂  being the outer feedback gain, e  is the control error vector, 
serving as the input of the disturbance estimator. 

We construct Tˆ ,w r  = +G  where   is the mapping error, 
and 1 2 3 4 5( , , , , , )r r e           =  and specially w

  and 

1,...,5i
 

=  are the related optimal parameters. Thus, one can obtain 
the estimation error as 

T T T T

T T T T T
0

ˆ ˆ ˆ ˆ ˆ ˆ( )

ˆ ˆ ˆ
w r w r w r r w r

w r w r w r w r w r

 

 

  − = + − = + + −

= + + + = + +

G G
 (38) 

where 0
ˆ T
w r = +  denotes the approximation error,  =  

T Tˆ  −  and T Tˆ .r r r
= −  

The gradient direction of 
kr  should be obtained to acquire 

the transformation law of the adaptive parameters. Considering  
that, r  is expressed using the Taylor expansion 

5 5

ˆ1 1
ˆ( )

ii i
i i h i hi i

i

r
r dr      




== =


= − + = +

   (39) 

where 
h  denotes the higher order term, and 

1,...,5i
dr =

 are the 
coefficient matrices of the gradient vector, i.e., 

TTT T
1 2 |, ,...,

i i i

k

i i i

rr r
dr     =

  
=     

 (40) 

The combination of (38) and (39) yields 
5T T

1
ˆ ˆ ˆ

i i mi
w r w r  

=
− = +   +G G  (41) 

where T
0

ˆ
m h

w  = +  denotes the sum of the approximation 
error, and assume that the differential of 

m  is limited by a  
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Fig. 2   Control framework of the proposed method 

positive constant 
d , i.e., 

m d
  . 

As shown in Fig. 3, the constructed MLNN contains the 
input, hidden, and output layers. The fuzzification and rule 
formulation are implemented in the hidden layer, and two 
internal and one external feedback loops exist to enhance the 
system estimation accuracy and convergence concurrently. The 
three-layers approximation is elaborated as follows: 

1) Input layer. This layer is applied to monitor the input 
approximation error and obtains the feedback information from 
the output layer. The weight 5  of the neural network is used 
to combine the input layer with the output layer. By using the 
input vector e  (i.e., 1e  and 2e ), the outputs of this layer are  

5 , 1,2l l ly e l = + =  (42) 

2) Hidden layer. By integrating the multiplication of the 
input signal, we obtain the output of this layer ( )kr N  

2( ) (1 ( ))exp ( ) 2 ( ( )) ( ) ( 1)k k j j j k kr N N N N N r N    = − −  + −  (43) 
where ( ) (0,1)k N   is the weight, 

j
  and 

j
  are defined by  

1 2

1 1

( ) 2 2

2 ( ) 2( 1) ( ) 3
n j j

j n j n j

n

n

n n

 
  − −

 =
 = =
  − −  

 (44) 

1 2( ) ( ) ( )
j i j

N N N  =   (45) 

where 1i  and 2 ,
j

  1,..,5,i = 1,...,5j =  are the outputs of the 
fuzzification process, which can be determined by 

2 2 1
1 1 1 3 1 1 1( ) exp ( ( 1) ) | |
i i i i i i

N c N a b    − = − + − −   (46) 

2 2 1
2 2 2 4 2 2 2( ) exp ( ( 1) ) | |

j j j j j j
N c N a b    − = − + − −   (47) 

where 3i  and 4 j
  denote the internal feedback weight gains, 

T
1 11 15 21 25[ ,..., , ,..., ]a a a a =  denotes the center offset matrix, 

T
2 11 15 21 25[ ,..., , ,..., ]b b b b =  denotes the base width matrix, and 

1ic  and 2 j
c  are positive weight constants.  

3) Output layer. This layer calculates the output of the neural 
network under different system inputs. Then, the output can be 
fed back to the input layer through external loop. The weight 

kw  is used to link the output layer neurons and each neuron in 
the hidden layer. Specifically, the output ( )y N  is specified as 

25

1 11
( )  ( ) ( ) ( ) ( ) ( ) ( )k k k kk

y N w N r N w N r N w N r N
=

= = ++   (48) 

where N  is the iteration number, 
kw  is the weight between the  

hidden and output layers. With feedback gain 5 , the output 
and input layers are connected, and the feedback signal can be 
fed back to the neurons of the input layer.  

C.Stability Analysis 

Theorem 2: If the proposed FST-SMC law determined by (36) 
is employed, then, the asymptotic stability of the decoupled 
FOMR system can be guaranteed. 

Proof: We choose a Lyapunov function candidate as 

2 1 * 2 1
1 1

5 1 T

1

0.5 ( ) ( )+
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i i i wi

T

i i ii

V V tr w w

tr s s
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
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        (49) 

where 1,2i
 =  , *

i
 , 

w
  and 1,...,5i

 =  are positive constants. 

By using 
2 1 2

1 1
0.5 ( )

i i ii
V   − 

=
= + −T , we have 

5 1 T 1 T T

1
( )+ ( )

i i i wi
V tr tr w w s s   − −

=
= + +T  (50) 

With 
i i i

   = −  and positive constants 1,2i= , we obtain 
20.5 1

1 1

2 2 20.5 1
1 1 1 12 2

i i ii

i i

i i i i ii i i

i i

V

V

  

    
 

−
=

−
= = =

 − +

 
 − + − +



  

T

 (51) 

Define 0 1 2min( , , ) =    , it can be concluded that 
20.5 0.5

1 01
(2 )

i i ii
V  −

=
− −   − T  (52) 

Further, one can achieve 
2 21 0.5

0 1 1
(2 )

i i i i i ii i
    − −

= =



 − + +  T T  
(53) 

Since there exists 0
i

    satisfying 0i  , rewrite (53) as  
2 1 0.5

0 1
( (2 ) )

i i i i ii
   − −

=
 − − − T T  (54) 

Thus, there exist the constants 
i  and 

i  guaranteeing T  

0 − T  (e.g., 1 0.5(2 )
i i i i

  − −=  ). This results in 
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  (55) 

By updating the learning parameters with T ˆ
ww s r= −  , 

T T , 1,...,5
ii i

s w dr i = −  = , we can obtain 
T T 1 T

5 5T T 1 T

1 1

ˆ ( ) 0

( ) 0
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Then, one can reformulate (55) as 
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(57) 

Given that 1 0    and m  is bounded, we have 
2

2 22
d

   , leading to the following inequality 

( )0.5T T
1 1 2 0V s s s s

   −   +    (58) 

Note that (58) presents that 0V   guarantees the asymptotic 
stability of the resultant FOMR system. Then, on the basis of 
the Barbalat Lemma [37], one can conclude that s  will 
converge to zero as t →   and lim ( ) 0.

t
e t

→
=  Combining 

Theorem 1, it is noted that the initial error and disturbances will 
affect the reaching time of the desired sliding manifold, but the  
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Fig. 3   Three-layer structure of the constructed MFNN 

global convergence and stability can be maintained. Under the 
decoupling FST-SMC scheme, the FOMR system is stabilized 
under any initial conditions. This completes the proof.          ■                                                               

IV. COMPARISON AND PARAMETER SPECIFICATIONS 

A. Comparison with Existing Methods 

1) The characteristics of the considered terrain conditions that 
typically occur in industrial applications include: (1) The 
uneven ground will disarrange the driving or actuating 
forces of the FOMR, thus resulting in insufficient accuracy 
or even leading to unstable behaviors; and (2) Oiled terrain 
may cause wheel slip and lateral sway, failing to generate 
sufficient yaw moment. Given that the harsh terrain 
conditions will harm the system tracking performance or 
even results in unstable dynamics, this paper especially 
attempts to achieve a stable and accurate decoupled control 
of the FOMR, which ensures strong robustness against 
harsh terrain conditions in two ways: (1) With fractional 
super-twisting switching law, an enhanced FST-SMC is 
designed to ensure the nominal tracking performance 
without to gain overestimation or undesirable chattering 
(cf., [31], [35]); and (2) An MFNN-based unbiased fuzzy 
estimator is designed to actively compensate for the 
lumped disturbances, which differs from the traditional 
decoupling methods [23]. Given this context, the inevitable 
disturbances or uncertainties caused by nonideal modeling 
or linearization can be well addressed comprehensively. 

2) For conventional SMC solutions, the discontinuous term 
sign(*) is applied to construct the reaching law, thus 
forcing the controlled system states to the designed sliding 
mode manifold. The high frequency switching intrinsic 
property may lead to undesired oscillations. To alleviate 
the system tremor caused by the control method itself, the 
reaching law can be enhanced by (i) modifying sign with 
boundary layer methods, such as sat function or tanh 
function to smoothen the discontinuity occurring in the 
reaching law; (ii) or some integration of proportional and 
power rate terms [38], [39]. 

3) The following significant features of the derived multi- 
layer MFNN are worth noting: (1) Multiple loops (i.e., 
two inner and one external feedback loops) are 
considered, which can store more information to obtain 
improved approximation performance of the unknown 
disturbances; (2) Compared with the traditional neural 

network that has a fixed base width and center vector 
(such as [40]), these parameters can be scheduled in an 
online manner to achieve optimal values; (3) It can jointly 
prevent the system from oscillation caused by sudden 
changes of estimated disturbances to reach steady states. 
Thus, the FOMR system can track the desired trajectories 
to achieve superior control accuracy and robustness.  

B. Parameter Determination  

1) For practical application, the control parameter 1  should 
be selected on the basis of Theorem 1. This scheme does 
not consider the adaptive gain regulation or it may derive 
overestimated constant gains, leading to mitigated 
performance (in principle, one should adopt large control 
gains, however, this may subtract some unstable control 
responses). To accommodate this issue, we will adaptively 
schedule the control gains with the following rule: 

1 min 1 1if  or s    , 1 1 = , else 1 1 = − , where 

1  and 1  are positive constants, and min  denotes the 
minimum of respective gains. To increase the anti- 
disturbance ability of the control system, one can make a 
trade-off between disturbances mitigation and dynamic 
tracking. If the tracking error increases, the control gains 
will increase to enhance the profile following capacity; 
however, if the tracking error is relatively smaller, we 
prefer smaller gains to maintain the system control 
stability. Through the adaptive adjustment of gain, the 
ability of anti-disturbance is increased, and the system 
instability caused by excessive gain is avoided.  

2) The integral sliding surfaces can be achieved by 
specifying , (0,1)    [41], [42]. A distinguishing 
feature is that the finite reaching time of the desired 
sliding manifold can be regulated flexibly on the basis of 
(34) and (35). In practice, real-time regulation of  and 
  may improve the lateral tracking performance, but the 
increased calculation burden cannot be ignored. 
Meanwhile, the fractional calculus can be approximated 
by fractional order differences and n-iteration-steps-sums 
in microprocessor computations, which is suitable for a 
practical FSMR application [14]. The fractional orders are 
pre-tuned, and the order n is specified as 5 to make the 
tradeoff of computation burden and control efficiency.  

3) A singularity issue may occur for the term 1 2/ 1
e e

  −  in 
traditional terminal SMC designs [43], [44]. This implies 
that a bounded control effect cannot be guaranteed if 0e   
when 0e = . For the derived control law, 1  and 2  are 
ensured to be positive odd numbers here satisfying 

1 21 2   . Therefore, the singularity problem of the 
traditional terminal SMC can be overcome completely. 

V. EXPERIMENTAL VERIFICATIONS 

A. Experimental setup 

For practical implementation, Fig. 4 shows the FOMR 
platform and experimental scenario in a real manufacturing 
factory. The experiment environment is interfaced with 
unsatisfactory ground conditions, such as road damage, 
oil/water mixing ground, and other complex external 
disturbances. This process is normal in a typical manufacturing 
factory, which may lead to wheel slip and lateral sway due to 
the reduced friction and tire deformation. It provides a real-life  



 

 
Fig. 4  Developed platform and experimental scenario 
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Fig. 5  Hardware information of FOMR system 

TABLE 1. SPECIFICATIONS OF THE DEVELOPED SYSTEM 

Parameters Values Parameters Values 
Length 0.96 m Yaw moment of inertia 130 kgm2 
Width 0.53 m Robot width 0.56 m 

Main frequency of PC 2.59 GHz Total 1000 kg 
RAM of PC 8 G Duration time 8 h 

Encoder 2500 ppr Max speed 1.5 m/s 
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Fig. 6  Implementation procedure of the proposed scheme 

scenario to verify the anti-disturbance ability of our method 
under harsh terrain conditions. The specific hardware structure 
is shown in Error! Reference source not found., which 
comprises: (i) Perception layer: The layer uses various installed 
sensors to obtain the detected data, and realizes environment 
detection, map construction, and state feedback; (ii) Decision 
layer: This module uses the collected data and information to 
help FOMR make the best response to ensure the safe, efficient 
and high-precision operation of the system; (iii) Actuation 
layer: By receiving the data of the decision layer, the operation 
mode is configured efficiently, and the control law issued by 
the decision layer is completed to realize the smooth operation 
of FOMR.  

The specific experimental process is shown in Fig. 6, which 
mainly includes parameter initialization, model decoupling, 
disturbance estimation, control law calculation, and gain 
regulation. The system specifications are determined by 
TABLE 1. In correspondence with the analyses on Section 
IV(B), the control parameters are selected as 1 5 = , 2 3 = , 
 =  0.9 = , 1 2 1 = = , {2,1}diag = ,  T

min 0.18,0.3 = , 
T

1 [0.0017,0.002] = , T[1,1] = , T
1 [0.01,0.01] = , 

w =  
53 10 , 4

=1,...,5 1 10
i

 =  , {0.1176,0.1176}w diag= . It should 
be mentioned that these related parameters can be tuned by 
some adaptive methods [44]. 

B. Inverse System Decoupling Results 

In this subsection, the decoupling features of the proposed 
asymptotic stabilization scheme are identified. To this end, a 
pulse signal is used to excite the constituted decoupled system. 
As shown in Fig. 7, a sudden change of one reference input 
minimally influences the other output. That is, when 

1u  is 
activated,   changes correspondingly, but   has a slight 
vibration. Meanwhile, when 2u  is excited,   will change, 
whereas   has no obvious change. Although the form of the 
inverse system can be close to the actual mathematical model of 
the FOMR system, there inevitably exist modeling errors and 
unmodeled dynamics. This leads to subtle fluctuations among 
variables and decoupling oscillations, as can be seen from the 
enlarged   in Fig. 7(a) and the enlarged   in Fig. 7(b). This 
will be further accommodated by the designed disturbance 
estimator. Thus, the proposed method realizes the decoupling 
of yaw rate   and sideslip angle  , and ensures the 
independent control of the lateral motion states, i.e.,   and  . 

C.Lateral Tracking Results 

In this section, two cases are used to verify the lateral 
tracking performance and robustness of the proposed control 
strategy. The traditional terminal SMC (TSMC) and 
decoupling TMSC (DTSMC) methods without fuzzy 
disturbances estimator are selected to compare to our FST- 
SMC method. A fair comparison can be ensured given that (i) 
All the comparison controllers are pre-tuned optimally under 
the chattering-free design scheme with the same initial state and 
control parameters of the FOMR, and (ii) The experiments are 
performed under the same operating conditions.  
Case 1): The widely employed Ackerman mode is applied here. 
The yaw rate tracking results and related following errors are 
shown in Fig. 8(a) and Fig. 8(b), respectively. Fig. 8 exhibits 
that the traditional methods and our proposed FST-SMC 
schemes can achieve stable lateral tracing control. Fig. 8(b) 
presents that the following errors of the TSMC control scheme 
will lead to larger vibrations due to the lumped disturbances and 
uncertainties. In comparison, the presented decoupling FST- 
SMC obtains enhanced precision and smoother states. For 
example, there exist overshoots with magnitudes of 0.01774 
rad/s and 0.01288 rad/s under the comparative TSMC and 
DTSMC methods, respectively. The proposed decoupling 
FST-SMC scheme can mitigate these undesired overshoots, 
yielding a satisfactory yaw rate tracking control during the 
whole control process. As shown in Fig. 9, the similarity results 
can be found in the sideslip angle tracking responses. Subjecting 
to unsatisfactory terrain conditions, one can observe numerous 
vibration changes with tremendous peaks in the traditional 
TSMC control systems. Compared with our presented method, 
the conventional TSMC and the DTSMC schemes will lead to 
non-ignorable overshoots. Our presented anti-disturbance 
FST-SMC scheme provides more dynamical robustness to make 
resultant trajectories being closed to the reference ones. 
Specifically, a steady decrease exists in the error peaks from 
over 0.007412 rad (under TSMC method) or 0.004357 rad 
(under DTSMC method) to around 0.002945 rad (under our 
proposed method).  

Fig. 10 shows the relating signals, including yaw moment and 
steering angle, while Fig. 11 shows the control gain and  
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Fig. 7     System response under the decoupling control 

  
Fig. 8  Yaw rate responses in case 1 

  
Fig. 9  Sideslip angle responses in case 2 

  
Fig. 10  Steering angle and yaw moment in case 1 

  

Fig. 11  Gain of 1  and the estimated disturbances in case 1 

estimated disturbances. The adaptive variable gains are 
beneficial for restraining the lumped disturbances efficaciously. 
Thus, it can be applied to automatically and adaptively regulate 
the controller to various operating conditions. For a clearer 
quantitative illustration, the performance criteria in terms of 
max, average, and integral standard deviation (ISD) of the 
corresponding lateral tracking errors are specifically provided in 
TABLE 2. Overall, owing to our presented FST-SMC law, one 
can achieve optimal features concerning smoother response and 
smaller dynamic errors, thus enhancing the lateral motion 
stabilization performance of the considered FOMR system. 

Further, to evaluate the time-delay effect for MLNN-based 
disturbance estimation, the time assumed is compared by  
TABLE 2. CRITERIA UNDER THE COMPARISON CONTROLLERS IN CASE 1 

States Methods 
Criteria (10-4) 

Max Average ISD 

Yaw rate 
TSMC 177.74 40.67 28.69 

DTSMC 128.82 28.32 20.54 
proposed 53.13 10.36 7.78 

Sideslip 
angle 

TSMC 74.12 12.00 11.75 
DTSMC 43.57 9.22 7.19 
proposed 29.45 5.33 3.83 

TABLE 3. CONSUMING TIME OF THE COMPARISON METHODS IN CASE 1 

Methods Max (ms) Average (ms) STD 

DTSMC 43 21.1961 2.8509 

TSMC 41 21.1070 2.8311 

Proposed 44 23.1379 3.0750 

  
Fig. 12  Yaw rate response in case 2 

  
Fig. 13  Sideslip angle response in case 2 

  
Fig. 14   Steering angle and yaw moment in case 2 

  
Fig. 15   Gain of 1   and the estimated disturbances in case 2 

TABLE 4. CRITERIA UNDER THE COMPARISON CONTROLLERS IN CASE 2 

States Methods 
Criteria (10-4) 

Max Average ISD 

Yaw rate 
TSMC 560.27 63.01 95.83 

DTSMC 350.69 45.27 46.66 
proposed 157.58 15.32 23.01 

Sideslip 
angle 

TSMC 56.05 6.37 9.64 
DTSMC 35.10 4.52 4.72 
proposed 15.85 1.50 2.36 

performing 100 times experiments. The results are shown in 
TABLE 3. To eliminate the accidental error, the maximum, 
average, and standard deviation (STD) values are selected for 
analysis. Taking the average value as an example, the proposed 
method consumes roughly 2 ms more time than DTSMC and 
TSMC, which can be ignored for an industrial practical 
implementation. Therefore, the time-delay effect caused by an 
unbiased fuzzy disturbance estimator will not affect the 
real-time implementation of the proposed FST-SMC method. 

Case 2): In this case, with the continuous sinusoidal desired 
signal, the lateral tracking performance of the comparison 
method is tested under unsatisfactory ground conditions. Fig. 
12 and Fig. 13 demonstrate the dynamic tracking responses of 
yaw rate and sideslip angle, respectively. These figures present 
that the comparison methods can achieve stable resultant 
responses. Compared with traditional methods, the proposed 
decoupling FST-SMC method has the smallest overshoot at the 
smooth corner and less jitter during tracking control. Take the 
yaw rate for example. As shown in Fig. 13, the overshoot under 
the TSMC method has an amplitude of 0.005602 rad and the 



 

integrated method can achieve a smaller overshoot with a 
maximum error of 0.001575 rad. The overshoot is reduced up 
to 80.2191 %. This signifies that the decoupled FOMR system 
keeps the tracking responses close to the required responses and 
strengthens the system’s robustness. 

For the proposed decoupling FST-SMC method, the 
steering angle and yaw moment are shown in Fig. 14, and the 
vibration tendency of 1  and the estimated disturbances are 

shown in Fig. 15. These results show that our method can offer 
smoother responses and improved stability for the FOMR 
system as a benefit of its adaptively regulated control law. 
Further, the quantified criteria in terms of max, average and 
ISD of the absolute tracking errors are provided in TABLE 4, 
which shows improved robustness of our presented method.  

Among the comparison methods, the proposed one can 
converge to a steady-state with the lowest tracking errors. This 
provides evidence that the presented decoupling FST-SMC 
method can ensure the optimal lateral stabilization control 
performance for the concerned FOMR system when applying 
to a harsh environment with uneven and oiled terrain. 

VI. CONCLUSION 

In this paper, a decoupled FST-SMC method was proposed 
to stabilize the interconnected FOMR system under harsh 
terrain conditions. An inverse system-based decoupling method 
was integrated into the FST-SMC framework to transfer the 
original interconnected system into an integral pseudo linear 
composition system. A novel FST-SMC nominal regulation 
law was proposed to drive the closed-loop states into a bounded 
region. The adaption of the MFNN gains leads to a system that 
is insensitive to unknown disturbances. Theoretical analyses 
were conducted to ensure the asymptotic convergence, the 
anti-disturbance feature, and the closed-loop stability of the 
achieved decoupled system. Comparative experiment results 
verified the practicability and superiorities of the asymptotic 
decoupling stabilization control in two operating conditions. 

In this paper, the time delay issue is not the main concern 
given that this paper focused on the anti-disturbance 
decoupling control of interconnected FOMR systems. 
However, in a highly disturbed environment, the hybrid 
time-varying delays or packet dropouts exist in the 
sampler-to-control station and the control station-to-actuator 
communication network channels. This might lead to system 
instability under a networked control scheme if not well 
handled. Given this context, the robust control of time-delayed 
FOMR systems will be explored in our future work to enhance 
the trajectory-tracking performance. 
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