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Abstract: The classification of land use and land cover (LULC) is a well-studied task within the
domain of remote sensing and geographic information science. It traditionally relies on remotely
sensed imagery and therefore models land cover classes with respect to their electromagnetic re-
flectances, aggregated in pixels. This paper introduces a methodology which enables the inclusion of
geographical object semantics (from vector data) into the LULC classification procedure. As such,
information on the types of geographic objects (e.g., Shop, Church, Peak, etc.) can improve LULC
classification accuracy. In this paper, we demonstrate how semantics can be fused with imagery to
classify LULC. Three experiments were performed to explore and highlight the impact and potential
of semantics for this task. In each experiment CORINE LULC data was used as a ground truth and
predicted using imagery from Sentinel-2 and semantics from LinkedGeoData using deep learning.
Our results reveal that LULC can be classified from semantics only and that fusing semantics with
imagery—Semantic Boosting—improved the classification with significantly higher LULC accuracies.
The results show that some LULC classes are better predicted using only semantics, others with just
imagery, and importantly much of the improvement was due to the ability to separate similar land
use classes. A number of key considerations are discussed.

Keywords: land use and land cover classification; deep learning; geospatial semantics; data fusion

1. Introduction

Land cover classes or types can be defined and determined in multiple ways. This can
lead to ambiguous understandings of their characteristics and consequently their spatial
distribution. Such ambiguity can arise from different mapping project objectives and
the fact that different entities may view a given type of land cover differently in terms
of its physical properties as well as different conceptualisations of land cover classes [1].
In addition, land cover can be modelled and determined from different data sources,
the most prominent of which is remotely sensed imagery. This is commonly used to
determine the presence of different land covers with respect to their electromagnetic
signatures. The characteristics of this data influence how land cover is captured as a
function of both the pixel [2] and pixel size [3]. Thus, any knowledge (including data)
about the spatial distribution of land cover is inherently linked to how land cover classes
are defined and recorded, with clear implications for applications that depend on land
cover data. Uncertainty in this knowledge can have profound effects on the results of
land use and land cover (LULC, as the terms are frequently used interchangably) data
analyses, for example, as drivers of climate [4,5], the environment [6], on the allocation of
land and resources [4,5,7], and on understanding biodiversity [8], with implications for
decision making. Remotely sensed imagery allows LULC to be classified with high accuracy
but only with respect to the aggregated electromagnetic reflectance as recorded in a pixel.
This can exclude relevant information, such as how land is used, which is not captured
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by remotely sensing imagery. The aim of this work is to compensate for such limitations,
by including geospatial semantics [9] into the LULC classification process. The semantics
describe the types of geo-objects (e.g., House, Bench, Peak, etc.) and therefore relate to social
and economic activity describing how the land is used. This paper demonstrates how
geospatial semantics (which describes the land use) can be combined with imagery (which
describes the land cover) in order to improve LULC classification. The contribution of this
work is threefold:

1. The development and application of a Semantic Boosting approach, for fusing re-
motely sensed imagery with geospatial semantics (obtained from vector data) for
LULC classification based on deep learning;

2. A quantitative analysis investigating the potential of geospatial semantics for LULC
classification in depth;

3. A qualitative analysis focusing on understanding and explaining when and why
Semantic Boosting can be beneficial for LULC classification.

Similar to other work [10–13], CORINE is used here as ground truth data on LULC.
The deep learning model seeks to predict the CORINE LULC class for a large area and
a fusion of semantics (vector data) and imagery (raster data) is used to enhance this
classification. This was compared with the results of classification from two deep learning
models, one using imagery only and the other using semantics only in order to generate
important insights on the characteristics of Semantic Boosting. This research utilises the
following datasets covering the area of Austria, serving as a case study:

• Geospatial semantic data from the LinkedGeoData platform [14].
• CORINE LULC (Level 2) data (https://land.copernicus.eu/pan-european/corine-

land-cover/clc2018 accessed on 23 January 2021).
• Remotely sensed imagery from Sentinel-2 (https://apps.sentinel-hub.com/mosaic-

hub/#/ accessed on 23 January 2021).

The novelty of this work is that it demonstrates the utility of including local semantic
information in classifying land cover and how geospatial semantics can improve the
accuracy of land cover classification in a meaningful way. Section 2 reviews related
research using local ancillary information for land cover classification and some of the
assumptions associated with classifying remotely sensed imagery into land cover and
land use. Section 3 describes the data and methodology for fusing semantics and remotely
sensed imagery for LULC classification. It also describes the experiments which were
carried out in order to assess the potential of this data fusion. The results are described
in Section 4, with a discussion of the findings and methods in Section 5. Finally, some
conclusions are drawn in Section 6.

2. Related Work
2.1. Land Use and Land Cover Semantics

Data on land use and land cover (LULC)—the two concepts are rolled together in most
classifications including CORINE as discussed below—are important. They are used to
understand environmental dynamics at global [4,5], regional [7,8,16], and local [17] scales
for natural resource management, climate change, disease spread, air quality, and other
ecosystem services. Different land covers and uses are associated with specific processes.
For example, urban areas (land use) with lots of artificial surfaces (land cover) can result in
heat islands and increase the ozone levels [4]. Agricultural expansion (land use) can de-
crease the water quality and the amount of carbon dioxide stored in the landscape [4,5,7,16].
The distribution of LULC has a significant impact on the global average surface temper-
ature and variability of the climate system [5]. Reliable land use and land cover data is
important for many activities related to planning sustainable global development [18–20].
Furthermore, LULC change influences biodiversity [8], ecosystem services [21], carbon
emissions [22], and land surface temperature [23,24]. It is modeled using LULC classifica-
tion products, typically (although erroneously—see [25]) through some post classification
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procedures (as reviewed in [26,27]). Many LULC change models therefore depend on the
quality of the initial LULC classifications.

Regional LULC products have been created, such as CORINE (LULC classification
for Europe), NALCD (LULC for North America), and AFRICOVER (LULC for Africa) [28].
These products were created using different methods and different types of remotely sensed
imagery. The choice, definition, and number of LULC classes will impact how the features
on the ground are represented as well as influence the classification accuracy [29,30]. Ac-
curacy is influenced by the sensor type [29], the spatial resolution of the image data [31],
and the number of LULC classes (negatively correlated with overall accuracy [32]). A final
observation is that different LULC products have differing levels of accuracy with global,
continental, and national products having accuracies ranging from 66.9% to 98.0% [28].
Reference [28] compared different LULC products and found GeoWiki (https://www.
geo-wiki.org/ accessed on 30 January 2021) to have the highest accuracy of global LULC
products with 10 LULC classes and a spatial resolution of 300 m × 300 m, a South Amer-
ican 30 m × 30 m product with 5 classes to have overall accuracy of 89.0 and a Russian
1 km × 1 km resolution dataset with 8 classes to have the highest accuracy (98.0%) amongst
national products.

LULC classification is traditionally performed based on remotely sensed imagery
under two inherit assumptions. (1) that LULC processes are captured by electromagnetic
reflectances and can be differentiated [33] and (2) that the world can be described as
a regular tessellation, i.e., a raster [2]. Reference [33] point out that LULC classes are
delineated by subspaces within a feature space defined by numerical values retrieved by the
electromagnetic reflectances captured remotely. However, they note that electromagnetic
signatures are not consistent for different scenes, sensors, landscape contexts, and spatial
scales and that in contrast to land cover, land use cannot be defined by electromagnetic
signatures in a coherent and consistent manner. This is because land cover refers to the
physical material at the surface of the earth, whereas land use is characterised by how
people utilise the corresponding land, and as a result land use and land cover cannot
be directly inferred from each other: a single land cover can have different land uses,
and a single land use may be composed of different land covers. Thus, although land
cover and land use are highly intertwined concepts, they can only be partly be identified
from their electromagnetic reflectance values in remotely sensed imagery. The second
assumption is introduced by modelling the real world using a raster representation. In a
short letter, ref. [2] unpicks the ubiquitous use of the tessellated pixel as the default mode
for representing real world objects that are not pixel shaped and landscape processes
that do not exhibit this regular characteristic. Additionally, Reference [34] notes that the
pixel introduces a topological bias, which differs from the vector model, such that pixel
representations do not correctly capture topological relationships. These assumptions can
lead to inconsistencies which ultimately propagate error and can confuse the modelling of
environmental processes [2].

Thus, the semantics, meaning, and concepts (and accuracy) of any LULC dataset
are deeply linked to the methods used to generate the data—its epistemology [35]. This
includes decisions over imagery (type, scale), how features are represented, choice of
training data, and classification algorithm.

2.2. New Forms and Sources of LULC-Related Information

Next to remotely sensed data, other data sources have been used to detect LULC such
as cell phone data [36], social media data [37], or, volunteered geographic information (VGI),
such as OpenStreetMap (OSM), with some limitations [38–41]. Reference [38] developed a
LULC product for the city of Heidelberg, Germany, by using OSM data and remotely sensed
imagery (Landsat) and harmonising OSM tags with Level 2 CORINE labels. Thus, a LULC
class from CORINE was defined by a set of OSM tags and empty OSM areas were filled
with classified satellite imagery using a classifier trained on OSM. The resulting LULC data
had an overall accuracy of 81% with significant variation in per class accuracies. In [41],

https://www.geo-wiki.org/
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Remote Sens. 2021, 13, 3197 4 of 24

imagery was combined with POI data and a raster data from a Chinese internet provider
(usage per grid cell) to classify LULC. They transform the imagery into visual continuous
bags of words and combine it with labels of the other two datasets (also continuous bags
of words) to finally apply a latent Dirichlet allocation (LDA) and random forest classifier
to determine six different LULC classes within Shenzhen, China. The overall accuracy
was 85.1% with a kappa coefficient of 0.812. However, both [38,41] restrict their work to
one specific ROI, as a result failing to show how their approach generalises in areas with
different image signatures and contexts such as rural areas, mountainous areas, industrial
areas, or high-density built-up areas. We overcome this issue by choosing a ROI of the
size of an entire country, i.e., Austria. In contrast to both works, we provide one single
feature space for semantics and imagery. In addition, we employ labels from geospatial
semantics which have an explicit subclass and superclass relationship to each other, using
a Web Ontology Language (OWL) ontology (e.g., a Pet shop is also a Shop), while [38,41]
use only thematic information on (POI) labels, which do not have an explicit relationship
to each other. Reference [38] assigns OSM labels to LULC classes in a static way and [41]
assigns POI labels by applying a series of steps. In contrast, we employ deep learning to
determine the relationship between LULC classes and OWL classes. Reference [41] uses
a continuous bag of word approach which considers the concepts in a grid cell; however,
it ignores the geographical distribution within a grid cell. Our approach, in contrast,
cherishes geographical distributions. Reference [41] predicts only six and [38] 10 LULC
classes, while this work predicts 12 LULC classes.

Reference [40] illustrates how geospatial semantics from VGI can be used to predict
urban growth with promising results. For this purpose they introduce a matrix which
quantifies the geospatial semantics with respect to local geospatial configurations of geo-
graphical objects into a feature space. They denote this matrix as Geospatial Configuration
Matrix (GSCM). Finally, they use the GSCM to predict urban growth for Europe, by means
of deep learning. Their final urban growth prediction scores an overall accuracy of 88.6%
for a time period of 3 years. We include the GSCM in our proposed method in an ex-
tended manner. The relationship between VGI and LULC data has been further explored
by [42]. They used the OSM derived LinkedGeoData to examine the associations between
LinkedGeodata objects and CORINE areas. The results showed that LULC classes have
significant associations with specific classes of LinkedGeodata objects and that certain
classes (e.g., restaurant, tree, street) are more likely to appear in areas of specific CORINE
classes. This research is a precursor to and informs the current study.

2.3. Summary

There are two inherent and important assumptions made in most LULC classifications
of remotely sensed imagery: (1) that the LULC classes of interest can be derived from
electromagnetic reflectance and (2) that LULC can be reliably represented in a tessellated
manner using pixels. These assumptions have impacts on the final LULC model and the
way that “reality” is represented. The vector model enables modelling reality beyond the
limitation of the regular and tessellated pixel model. Additionally, its geo-object attributes,
such as semantics, enable gaining information on how land is used rather than only how
it looks (electromagnetic reflectance of a remotely sensed image). Preliminary work by
others found that thematic information from VGI can be used for LULC classification
but with limitations. In this work, we overcome these limitations and illustrate how a
deep learning model can learn dynamic relationships between geospatial semantics and
LULC classes within an entire country and furthermore how semantics boost image based
LULC classifications.

3. Methodology

In this work we explore the benefit of incorporating geospatial semantics into the
LULC classification by comparing three LULC classification experiments:
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• Geospatial semantics synthesised with remotely sensed imagery (experiment 1);
• Geospatial semantics only (Experiment 2);
• Remotely sensed imagery only (Experiment 3).

All three experiments were applied to the Austrian case using data from CORINE as
ground truth, LinkedGeoData (semantics) as input for Experiment 1 and 2, and Sentinel-2
imagery input for Experiments 1 and 3. The workflow of the method is illustrated in
Figure 1. In all experiments CORINE data (level 2) is used as ground truth and results of
the experiments are compared with this in order to determine the classification accuracies.
A final comparison uses both quantitative and qualitative assessments. The quantitative is
based on an accuracy assessment. The qualitative assessment visually examines selected
samples and the spatial distribution of the classification errors. Both assessments are then
used to inform the conclusions about the potential of Semantic Boosting.

Input Data:

Ground truth (labels):
CORINE LULC (Level 2),
Raster data

Semantics:
LinkedGeoData, Vector data

Imagery: 
Sentinel 2 imagery, Raster data

Feature engineering 
with GSCM

Model selection Accuracy assessment

Experiment 1

Feature engineering 
with GSCM

Model selection Accuracy assessment

Experiment 2

Feature engineering 
with GSCM

Model selection Accuracy assessment

Experiment 3

Quantitative analyses:
Based on accuracy assessments

Qualitative analyses:
Based on classified samples

Experiments:

Comparison of 
experiments:

Figure 1. A visualisation of the workflow of the methodology. Input data is passed to the three experiments. CORINE is
used in each experiment as ground truth for evaluating the predicted class labels arising from each experiment. Experiment
1 uses imagery and semantics, Experiment 2 uses semantics only, and Experiment 3 uses imagery only. For each experiment,
a GSCM is created and an optimal deep learning model is identified before an accuracy assessment is made and the results
of the three experiments are compared.

3.1. Data

Three datasets were used in the analysis: (1) CORINE land cover (Level 2) data from
2018 for training and validating the models, (2) Sentinel-2 remotely sensed imagery, and
(3) vector data obtained from LinkedGeoData, which contains geospatial semantics for its
geo-objects. All three datasets cover the study area, Austria.

3.1.1. CORINE Land Cover

Sampled CORINE land cover data was used as ground truth. Specifically, it was used
to allocate the LULC class label to each of the 156,000 samples (randomly selected). These
were used to train and validate the performance of the deep learning classification models
using a 10-fold cross-validation. CORINE was used as ground truth, as it is a well-studied
data source and 13 out of the 15 available CORINE LULC classes are present in Austria
(see Table 1). CORINE has a 100 m × 100 m resolution.
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Table 1. The 13 CORINE classes present in Austria. Please note, classes Sea water and Coastal wetland
are not present, as Austria is landlocked. For each LULC class 12,000 samples were extracted.

Code CLC Level 2 LULC Class

I Urban fabric

II Industrial, commercial, and transport units

III Mine, dump, and construction sites

IV Artificial, non-agricultural vegetated areas

V Arable land

VI Permanent crops

VII Pastures

VIII Heterogeneous agricultural areas

IX Forest

X Scrub and/or herbaceous vegetation associations

XI Open spaces with little or no vegetation

XII Inland wetlands

XIII Inland waters

3.1.2. Sentinel-2 Imagery

A Sentinel-2 image was obtained from the S2 Global Mosaic Hub for the entire area of
Austria. This platform provides Sentinel-2 images with cloud removal, based on the sen2cor
toolbox (https://usermanual.readthedocs.io/en/stable/pages/MosaickingAlgorithms.html
accessed on 24 January 2021). This allows a single image mosaic for the entire scenery to be
created using multiple single images from different dates, allowing clouds etc. to be removed.
In this case images were selected for a three month period (the months July, August, and
September, 2018) in order to generate a single mosaic image over Austria. This period was
chosen in order to capture the vegetation during its active phase in the phenological cycle
during summer. The final mosaic contains 11 out of the 13 available channels: Channels 10
(short wave infrared, cirrus) and 9 (water vapour) were excluded from the S2 Global Mosaic
Hub. The spatial resolution of the image mosaic is 10 m × 10 m with any channels with a
lower resolution resampled to 10 m × 10 m using a nearest neighbour approach.

3.1.3. LinkedGeoData

LinkedGeoData is a framework which provides OSM data in a linked data format [14].
Here, data from OSM are augmented by linking them to other data via ontology matching
supported by standardised onotology schemas. The ontology is defined by LinkedGeoData
and not by us. A linked data endpoint is supported by linking specific SPARQL queries
(DuCharme [43]), converting OSM data into linked data with semantic descriptions of each
geo-object (e.g., streets, buildings, etc.), using classes defined in OWL. Consequently, each
geo-object can be described by multiple classes; for example, Chinese restaurant is a subclass
of Restaurant and furthermore of class Amenity. Thus, the geo-object is an instance of all
three classes. There are 1300 (OWL) classes within the given ontology. Within this work
LinkedGeoData was set up on a local computer, storing all OSM data over Austria for
December 2018 in a linked data format.

3.2. Data Preparation and Preprocessing
3.2.1. GSCM Construction

In order to train a deep learning model, input data has to be formatted as numerical
values in vectors. Therefore, nominal descriptions provided by the semantics are trans-
formed to a new feature space using a GSCM [40], where the records are the samples

https://usermanual.readthedocs.io/en/stable/pages/MosaickingAlgorithms.html


Remote Sens. 2021, 13, 3197 7 of 24

and the fields are the feature space. Once this matrix is computed, it can be linked to the
remotely sensed imagery, extending the GSCM with information on the optical reflectances.

Consider a single grid cell provided by the CORINE LULC dataset. It has a geospatial
extent of 100 m × 100 m and a label describing its LULC class. Additional to the grid cell,
vector data from LinkedGeoData is present within and outside the grid cell. This vector
data contains geo-objects with two attributes, its location (point geometry), and its OWL
class. A feature vector for this grid cell is computed, containing descriptive statistics for
each OWL class which is present within the grid cell as well as in a defined proximity
dmax around the grid cell centre (see Figure 2, left side): all geo-objects within a distance
dmax to the cell centre are described. Based on this subset of geo-objects, seven descriptive
statistics are computed for each OWL class: (1) the minimum distance from the cell centre
to a geo-object of this class, (2) the maximum distance to a geo-object of this class from the
cell centre, (3) the standard deviation of all distances from the cell centre to geo-objects
of this class, (4) the minimum azimuth from the cell centre to a geo-object of this class,
(5) the maximum azimuth from the cell centre to a geo-object of this class, (6) the standard
deviation of all azimuths from the cell centre to a geo-object of this class, and, (7) the
number of geo-objects of this class. As the OWL classes are structured in an ontology, each
geo-object can be part of multiple classes. A geo-object of class Pet shop, for example, is
also of class Shop. A geo-object is included in all calculations of the descriptive statistical
values for each OWL class it is part of. Thus, a geo-object of class Pet shop is not only
included in calculating the descriptive values for class Pet shop but all of its parent classes
(e.g., Shop and Amenity). The final feature vector contains these seven descriptive values
for each class within the proximity of dmax to the grid cell centre. In cases where there is
no geo-object within the proximity dmax, the corresponding grid cell is excluded from the
procedure, as there is no data available around it. In cases where a specific OWL class is
not present in the subset of geo-objects which are around the cell centre, its corresponding
descriptive values are set by default values of dmax for descriptive values (1), (2), and 0 for
the other descriptive values. A matrix is formed when the procedure for creating a single
vector based on semantics is undertaken for multiple grid cells (observations). This is the
Geospatial Configuration Matrix (GSCM) [40].

a1

a3

a2

d1

d2d3

dmax

Figure 2. A visualisation of the construction of a sample in the GSCM. The left side illustrates how
geo-objects (dark red points) are used to calculate features for each OWL class, based on the azimuths
(denoted as a) and distances (denoted as d) to them. On the right side of the figure, the scheme for
the vectorization (dark blue arrow) of the imagery within the grid cell (red square) can be seen.

Each row of the GSCM is a sample. It contains the descriptive values as well as the
LULC class label which has to be classified correctly. The parameter dmax defines the
maximum distance in which geo-objects and their OWL classes are considered around a
grid cell. Thus, dmax parameterises the first law of Geography [44]. The GSCM can have up
to 9100 columns (7 descriptive statistical values for 1300 OWL classes). One critical part
of the experiments was to determine an optimal value for dmax. We used the thresholds
suggested by [40]: 20 m, 50 m, 500 m, 1 km, 5 km, 10 km, and 30 km. For every dmax value
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a separate GSCM was computed. These were used in Experiments 1 and 2 to assess the
impact of different maximum distances used to extract geo-objects.

3.2.2. Linking Semantic and Image Information

The Sentinel-2 image information within a CORINE grid cell was clipped and attached
to the corresponding GSCM (see Figure 2, right side). As the dimension of each CORINE
grid cell is 100 m × 100 m and the imagery has a resolution of 10 m × 10 m, the clipped
image is sized 10 pixel × 10 pixel. These clipped images were then vectorized and the
average and standard deviation of each channel were appended to an ordered sequence of
then having 1122 elements ((width × height +2) × 11 channels).

Each vector was then appended to the corresponding GSCM row, resulting in a GSCM
of 10,222 fields (9100 + 1122), composed of 2 sub matrices: one of the semantic information,
denoted as S and another containing the image information, denoted as I. This GSCM
therefore had the form GSCM = [S|I]. In Experiment 1, both sub matrices were used for
the classification, thus, GSCM = [S|I]. For Experiment 2 only S, the geospatial semantics
was used to classify the LULC, with I omitted resulting in GSCM = [S]. Experiment 3 used
only the image information, thus GSCM = [I]. For each LULC class, 12,000 samples were
used for training and testing (156,000 samples in total). As seven different dmax thresholds
were used, seven different matrices were evaluated for Experiment 1 and Experiment 2
to assess the impact of each distance on the semantic information incorporated into the
analyses. Experiment 3 used one matrix of the image information for all selected grid cells.

3.2.3. Model Selection and Evaluation

After the GSCMs were constructed, deep learning was performed for LULC classifica-
tion. However, first, a suitable deep learning model had to be found for each experiment.
A multilayer perceptron (MLP) was applied to each experiment, as this was the optimal
network type reported by [40]. Next, optimal hyperparameters were determined for the
MLP model of each experiment in two steps: (1) finding optimal MLP models for each
distance threshold dmax by combining manual as well as random searches of the hyperpa-
rameters. As a result, a MLP architecture was obtained as well as a dmax value for which
the LULC classification worked best in the experiments; (2) given the optimal dmax value,
a second more precise hyperparameter search for the MLP was performed to ensure that
the final MLP model was the most suitable, using a nested cross-validation. These steps
are explained in detail in the next sections.

Step 1: The activation functions, number of neurons, and the optimiser function were
searched for using a combination of manual and random search. Random search was used
rather than systematic search, as literature suggests its superiority [45]. The performance
of every potential model was internally evaluated through a 10-fold cross-validation to
avoid overfitting in the final model. Afterwards, the best model for each experiment was
chosen, based on the overall accuracy and the kappa coefficient. For Experiments 1 and 2,
this was done for each maximum distance threshold dmax. As Experiment 3 used remotely
sensed imagery only, it did not depend on the threshold dmax. Therefore, the 10-fold cross-
validation was done for each potential model in Experiment 3 but not for multiple dmax
threshold values. After this validation procedure, a dmax value was obtained which yielded
the highest classification accuracy as well as its optimal MLP model for each experiment.

Step 2: A final 5-fold nested cross validation was computed for each experiment,
in order to gain confidence that the corresponding MLP models were optimal. In contrast
to a normal cross-validation, the nested cross-validation computes an optimal classification
model within every fold, by applying a hyperparameter search. We applied a randomised
search with an increased hyperparameter search space compared to Step 1. As a nested
cross-validation can yield long runtimes due to its computational complexity, we em-
ployed it only for the optimal dmax values for each experiment. Thus, a 5-fold nested
cross-validation was undertaken for Experiments 1, 2, and 3, in which three different
hyperparameters could be chosen from: (1) the number of layers {1, 2, 3, 4, 5}; (2) the
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number of neurons a layer has {1400, 1300, 1200, 1100, 1000, 900}, and (3) the dropout
rate {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. In this case, the 5-fold nested cross-validations did not
identify classification models with higher overall accuracies or kappa coefficients than
were already found. Future research will focus on hyperparameter searching to an even
greater degree than undertaken here as the focus of this work is to illustrate the potential
of semantics and its fusion with remotely sensed imagery for LULC classification, rather
than hyperparameter searching.

3.2.4. Analyses

For each experiment, an accuracy assessment was made using overall accuracy, kappa,
producer’s accuracy (recall), and user’s accuracy (precision). This allowed the different
experiments to be compared quantitatively. These metrics are defined as follows:
Overall accuracy:

overall accuracy =
number of all correct predictions
number of all wrong predictions

(1)

Kappa [46]:

κ =
p0 − pc
1− pc

(2)

where p0 is defined as the proportion of correct predictions and pc as the expected propor-
tion of predictions due to chance [46].

User’s and producer’s accuracy (precision and recall, respectively):

recall =
tp

tp + fn
precision =

tp

tp + fp
(3)

where tp refers to true positive, fp to false positive and fn to false negative.
For the classification model with the highest overall accuracy and kappa coefficient for

each experiment, a qualitative assessment was performed. Two major aspects were considered:

(1) The geographical distribution of the classification error. Here, a grid covering the
study area was used and the ratio of correctly versus incorrectly samples was com-
puted for each grid cell. The grid cell size was set by the dmax value which yielded
the highest classification scores;

(2) Selected samples and their surrounding were then visually explored. For this purpose,
the Sentinel-2 image was extracted around the corresponding grid cells. This enabled
insights to be gained on the characteristics of the input data used. For example, some
samples were classified correctly with using semantics only but not using imagery only.
This might be due to the surrounding geo-objects as well as the imagery. The aim
here was to examine classified samples and to determine potential characteristics
in common. Four types of samples were defined: (1) samples correctly classified
in Experiment 2 (semantics only) but not in Experiment 3 (imagery only) to examine
the potential advantages of using semantics only over using imagery only. (2) samples
classified correctly in Experiment 3 but not in Experiment 2. These samples illustrate
cases where the imagery only approach provides higher classification accuracy than
using semantics only. (3) samples which were correctly classified in both Experiment 2
and Experiment 3. (4) samples classified correctly in Experiment 1 but not in Experi-
ments 2 and 3. These samples highlight situations when semantics as well as imagery
only were not sufficient alone to classify correctly but were once fused.
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The potential of using geospatial semantics for LULC classification as well as its
synergies with remotely sensed imagery for this purpose were identified through these
quantitative and qualitative assessments.

4. Results and Analysis

The accuracy assessments of the three experiments are summarised in Table 2. Using
the data fusion, the highest accuracies were generated (OA of 82.18% and a kappa coefficient
of 0.8069). A dmax of 1 km provided the highest accuracies for Experiment 1 and 2. The MLP
model architectures can be seen in Figure 3. Experiments 1 and 2 had the same optimal
MLP model architecture. The corresponding hyperparameters can be seen in Table 3.

Table 2. Overall accuracies (OA) and Kappa coefficients κ for different dmax values, with the best
results highlighted in bold.

Overall Accuracy (OA)

1-7 Semantics and Imagery (Experiment 1)

dmax 20 [m] 50 [m] 500 [m] 1 [km] 5 [km] 10 [km] 30 [km]

OA [%] 56.22 54.44 78.78 82.18 82.06 81.17 79.38

+/− 1.52 0.57 0.38 0.29 0.31 0.21 0.24

Semantics only (Experiment 2)

OA [%] 46.12 42.46 70.30 76.11 74.60 73.18 70.57

+/− 1.01 0.93 0.51 0.25 0.5 0.3 0.44

Images only (Experiment 3)

OA [%] 65.52

+/− 0.44

KAPPA (κ)

Semantics and imagery (Experiment 1)

20 [m] 50 [m] 500 [m] 1 [km] 5 [km] 10 [km] 30 [km]

κ 0.4412 0.4764 0.7699 0.8069 0.8056 0.7960 0.7766

+/− 0.0149 0.0066 0.0041 0.0032 0.0031 0.0023 0.0026

Semantics only (Experiment 2)

κ 0.2868 0.3312 0.6780 0.7412 0.7248 0.7095 0.6810

+/− 0.0140 0.0103 0.0056 0.0027 0.0054 0.0032 0.0047

Images only (Experiment 3)

κ 0.6264

+/− 0.0047
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Figure 3. The architecture of the optimal MLP model for Experiment 1 and 2 (upper figure) and Experiment 3 (lower figure).

Table 3. Training Parameters for all experiments. Experiment 1 and 2 share the same values.
Experiment 3 has different values for the learning rate decay and the batch size.

Parameter Experiment 1 and 2 Experiment 3

Optimizer Adamax Adamax

Learning rate (optimizer) 0.001 0.001

Learning rate decay (optimizer) 8 × 10−7 5 × 10−7

ε (optimizer) 1 × 10−9 1 × 10−9

β1 (optimizer) 0.999 0.999

β2 (optimizer) 0.999 0.999

Number of epochs 1200 1200

Batch size 2000 1000
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Between using semantics only and imagery only, semantics only provided a more accurate
classification, with an overall accuracy of 76.11 % and a kappa coefficient of 0.7412. Using
remotely sensed imagery only, an overall accuracy of 65.52 % and a kappa coefficient of 0.6264
was scored. Observing the effect of the dmax threshold in Table 2, it can be seen that the
accuracies first increase (indicated by both overall accuracy and kappa coefficient); however,
they decrease once dmax increases above 1 km, for Experiments 1 and 2.

Tables 4 and 5 show producer’s and user’s accuracy. They show that increasing dmax
increases the classification accuracy for single LULC classes. In addition, it can be observed
that the user’s accuracy is more homogenously distributed than the producer’s accuracy,
for Experiment 1 and 2. However, there is one exception, namely LULC class I, i.e., urban
fabric. Using semantics only, Experiment 2 (see Table 5), it can be seen that producer’s
accuracy is the highest when dmax is set to 20 meters and decreases with an increasing dmax
value. This stands in contrast to the user’s accuracy of urban fabric for this experiment which
increases with increasing dmax. Observing the remaining LULC classes in Tables 4 and 5 for
Experiment 1 and 2 it can be seen that LULC IX (Forest) has the lowest producer’s accuracies
for most dmax thresholds using semantics only. This changes too, when the classification
is based on fused semantics and imagery, and, in Forest, the majority of its producer’s
accuracy values are not the lowest. In Experiment 3 (see Table 5, right side) LULC classes
which have a higher producer’s as well as user’s accuracy seem to benefit the most from
the data fusion.

Table 4. User’s and producer’s accuracy for Experiment 1 for each LULC class.

Producer’s Accuracy (Recall) Users’s Accuracy (Precision)
CLASS 20 [m] 50 [m] 500 [m] 1 [km] 5 [km] 10 [km]30 [km] 20 [m] 50 [m] 500 [m] 1 [km] 5 [km] 10 [km]30 [km]

I 0.76 0.68 0.75 0.71 0.60 0.60 0.59 0.61 0.57 0.714 0.74 0.75 0.71 0.65

II 0.63 0.66 0.92 0.93 0.90 0.88 0.83 0.70 0.69 0.879 0.89 0.88 0.87 0.86

III 0.26 0.39 0.95 0.99 0.99 0.99 0.97 0.43 0.56 0.923 0.95 0.93 0.93 0.92

IV 0.44 0.53 0.90 0.96 0.96 0.95 0.92 0.55 0.61 0.858 0.87 0.86 0.86 0.84

V 0.19 0.35 0.61 0.66 0.69 0.69 0.66 0.30 0.38 0.722 0.74 0.71 0.69 0.68

VI 0.67 0.74 0.94 0.97 0.98 0.98 0.97 0.53 0.63 0.824 0.86 0.87 0.87 0.85

VII 0.25 0.43 0.63 0.66 0.69 0.65 0.64 0.42 0.42 0.638 0.70 0.70 0.70 0.67

VIII 0.24 0.31 0.50 0.58 0.61 0.58 0.55 0.27 0.31 0.528 0.58 0.61 0.60 0.57

IX 0.26 0.46 0.69 0.67 0.64 0.65 0.64 0.29 0.45 0.744 0.78 0.78 0.77 0.76

X 0.22 0.35 0.73 0.76 0.80 0.79 0.78 0.25 0.33 0.726 0.77 0.75 0.75 0.74

XI 0.48 0.60 0.88 0.90 0.90 0.89 0.88 0.53 0.61 0.883 0.89 0.89 0.89 0.90

XII 0.18 0.34 0.90 0.98 0.99 0.98 0.98 0.23 0.42 0.902 0.94 0.93 0.92 0.91

XIII 0.51 0.65 0.92 0.95 0.95 0.95 0.95 0.54 0.63 0.943 0.95 0.96 0.96 0.95
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Table 5. Producer’s accuracy (Recall) and user’s accuracy (Precision) for Experiment 2 (left side) as well as Experiment 3 (right side).
For Experiment 2, the corresponding values for the different distance thresholds are shown. As Experiment 3 does not depend on this
value, a single producer’s accuracy (left column denoted with P.A.) as well as user’s accuracy (right column denoted with U.A.) exists
for each LULC class.

Producer’s Accuracy (Recall) User’s Accuracy (Precision) P.A. U.A.

CLASS 20 [m] 50 [m] 500 [m] 1 [km] 5 [km] 10 [km]30 [km] 20 [m] 50 [m] 500 [m] 1 [km] 5 [km] 10 [km]30 [km] CLASS

I 0.79 0.70 0.69 0.58 0.29 0.24 0.21 0.51 0.49 0.72 0.76 0.75 0.72 0.60 I 0.57 0.57

II 0.47 0.55 0.93 0.93 0.93 0.92 0.88 0.53 0.55 0.85 0.86 0.81 0.79 0.75 II 0.61 0.65

III 0.15 0.25 0.97 1.00 1.00 1.00 1.00 0.31 0.36 0.88 0.92 0.90 0.89 0.86 III 0.56 0.69

IV 0.36 0.45 0.91 0.96 0.96 0.96 0.95 0.34 0.48 0.85 0.86 0.83 0.82 0.78 IV 0.43 0.52

V 0.09 0.15 0.43 0.59 0.60 0.58 0.54 0.26 0.26 0.55 0.63 0.59 0.58 0.54 V 0.64 0.65

VI 0.48 0.57 0.90 0.96 0.98 0.97 0.95 0.36 0.41 0.79 0.85 0.84 0.83 0.81 VI 0.85 0.73

VII 0.53 0.30 0.56 0.63 0.60 0.58 0.57 0.23 0.22 0.55 0.62 0.59 0.56 0.54 VII 0.63 0.51

VIII 0.03 0.13 0.49 0.54 0.53 0.53 0.49 0.13 0.24 0.49 0.56 0.58 0.55 0.51 VIII 0.37 0.42

IX 0.00 0.05 0.42 0.44 0.41 0.37 0.28 0.06 0.17 0.51 0.62 0.53 0.53 0.53 IX 0.73 0.63

X 0.04 0.12 0.45 0.61 0.62 0.59 0.60 0.20 0.21 0.58 0.66 0.69 0.68 0.65 X 0.61 0.60

XI 0.20 0.41 0.78 0.82 0.90 0.89 0.84 0.33 0.40 0.70 0.77 0.75 0.72 0.74 XI 0.88 0.82

XII 0.10 0.14 0.87 0.97 0.98 0.98 0.97 0.28 0.35 0.76 0.86 0.90 0.88 0.84 XII 0.76 0.88

XIII 0.13 0.19 0.78 0.88 0.91 0.91 0.89 0.45 0.39 0.78 0.82 0.81 0.79 0.77 XIII 0.94 0.87

The confusion matrices can be seen in Figures 4 and 5. They reveal that single
data source generates higher classification accuracies for specific LULC classes, while the
data fusion seems to combine these benefits. In particular, for Experiment 2 (Figure 4b),
i.e., using semantics only, over 90% of the samples of LULC classes II, III, IV, VI, and XII
were classified correctly. They correspond to Industrial, commercial, and transport units, Mine,
dump, and construction sites, Artificial, non-agricultural vegetated areas, Permanent crops, and
Inland wetlands, respectively. Only LULC Forest is below 50% accuracy for Experiment 2,
which was mostly confused with Arable land, Pastures, and Scrub and/or herbaceous vegetation
associations. Urban fabric (LULC class I) was classified with an accuracy of 58% and was
mostly confused with Pastures for Experiment 2. These values changed once the data fusion
was used (Experiment 1, see Figure 4a), where LULC class Urban fabric was classified with
an accuracy of 71%.

The confusion matrix for Experiment 3, which was based on imagery only, can be
seen in Figure 5. Here, the highest classification accuracy was obtained for class Inland
waters and classes Open spaces with little or no vegetation as well as Permanent crops. In this
experiment, the highest confusions can be observed for Scrub and/or herbaceous vegetation
associations and Artificial, non-agricultural vegetated areas, Heterogeneous agricultural areas and
Arable land, and Pastures and Heterogeneous agricultural areas.

The geographical distribution of classification errors can be seen in Figure 6. Subfig-
ures a–c show the geographical distributions of the classification accuracy of Experiment 1,
Experiment 2, and Experiment 3, respectively.
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(a) (b)

Figure 4. Confusion matrices for Experiment 1 and 2. (a) Confusion matrix of LULC classification of Experiment 1, using
the fusion of semantics and imagery (dmax = 1 km). (b) Confusion matrix of LULC classification of Experiment 2, using
semantics only (dmax = 1 km).
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Figure 5. Confusion matrix for using imagery only (Experiment 3).
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Figure 6. Three maps illustrating the geographic distribution of the errors of the three experiments:
(a) for Experiment 1, (b) for Experiment 2 and (c) for Experiment 3. Each map shows grid cells of
1 km × 1 km which visualise the ratio of correctly classified samples within it. A ratio of 1.0 indicates
that 100% of the samples within that cell were classified correctly. Two locations are marked in
map (c). Location I corresponds to Lake Neusiedl; Location II corresponds to the region around
mountain Grossglockner.

Figure 6a–c show colored 1 km × 1 km grids cells over Austria, each illustrating the
ratio of the overall accuracies. A ratio of 1 states that 100% of the samples within a grid
cell were classified correctly, whereas 0.60 suggest that 60% of the samples within a grid
cell were classified correctly. Grid cells with the highest ratio are colored dark blue and
as the ratio decreases, it shifts to beige. A grid size of 1 km × 1 km was chosen for the
visualisation here, as this corresponds to the optimal dmax value we computed. Observing
Figure 6, several differences in the geographical distributions of the classification errors
can be observed. For Experiment 1, most grid cells are coloured dark blue and distributed
homogeneously over the ROI, illustrating that most of the samples were classified correctly.
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Overall, in subfigure b, fewer grid cells are coloured dark blue than in subfigure a but more
than in subfigure c, matching the observations of the accuracy assessment. Considering the
geographical distributions of dark blue grid cells, Figure 6b,c exhibit differences: subfigure
c shows clusters of dark blue grid cells, one in the east of Austria at a lake (location I). This
confirms the high classification accuracy for inland waters using imagery only.

The second cluster lays within the Alps (location II), confirming the high classification
accuracy for LULC class Open spaces with little or no vegetation (such as mountains) when
using imagery only. In contrast, Figure 6b does not seem to exhibit such strong clusters.
A series of areas are beige in both Figure 6b,c; however, the corresponding areas in subfigure
a are dark blue. This indicates that both data sources complement each other efficiently
once fused.

Figures 7–10 show examples of correct and incorrect classifications. In each picture,
the Sentinel-2 imagery and a red square, indicating the 100 m × 100 m CORINE LULC
grid cell, are shown. Each picture extend is 1 km × 1 km, corresponding to dmax under
which the most accurate classifications were found. Figure 7a–h depict examples of cases
where classifications based on semantics only (Experiment 2) were correct but classifications
based on imagery only (Experiment 3) only were incorrect. Figure 8a–h illustrate cases
where the classification based on imagery alone was correct, but where the classification
based on semantics failed to classify correctly. Figure 9a–h show cases where both classi-
fications worked correctly. Additionally, Figure 10a–h show examples of cases in which
the classification using the fusion of both semantics and imagery worked (Experiment 1)
but using semantics and imagery alone (Experiments 2 and 3) failed. Please note that the
32 examples were manually selected from a random selection of the 1200 samples in each
class. The 32 samples were selected to be representative and to highlight the advantages
and disadvantages of each classification approach.

Considering Figure 7, a series of insights can be obtained. Although the Sentinel-2
imagery used was subject to cloud removal, some clouds remained (Figure 7b). Its LULC
class is Artificial, non-agricultural vegetated areas which was classified correctly when using
semantics only but classified wrongly when using imagery only. Another aspect which
can be seen in the remaining images of Figure 7 is that the LULC to be classified are
related to man-made structures. For example, Figure 7 might appear as a forest at first
glance; however, it is part of a ski slope in the mountains, making it a LULC of Artificial,
non-agricultural vegetated areas. The remaining six subfigures show areas with man-made
structures, such as Industrial, commercial, and transport units, Mine, dump, and sites, Urban
fabric, or Permanent crops.

This behaviour changes in scenes of Figure 8. This shows cases where when using
imagery only, the classification worked correctly but when using semantics only, the classifi-
cation failed. Some grid cells (red squares) here are associated with LULC classes of natural
green spaces but have a few man-made structures within their proximity (Figure 8b,c,e,g).
For example, in Figure 8b, the grid cell to be classified is within a forest; however, it
is surrounded by man-made structures such as streets and houses. Other grid cells are
within a 1 km × 1 km area, which contains a mixture of different man-made structures
(Figure 8d,f,h). Finally, Figure 8a shows a grid cell which is in a homogenous industrial area
with a river in its proximity. In this case, the classification using semantics only yielded Inland
waters whereas the classification using imagery only predicted correctly that the grid cell is
an instance of the LULC class Industrial, commercial, and transport units. The discriminative
power of using semantics only seems to suffer from such mixed cases.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Eight images showing cases, when a classification, based on semantics only (Experiment 2) worked correctly but
not with imagery only (Experiment 3). (a) True class: Industrial, commercial, and transport units. Predicted class (imagery only):
Mine, dump, and construction sites. (b) True class: Artificial, non-agricultural vegetated areas. Predicted class (imagery only):
Mine, dump, and construction sites. (c) True class: Mine, dump, and construction sites. Predicted class (imagery only): Industrial,
commercial, and transport units. (d) True class: Industrial, commercial, and transport units. Predicted class (imagery only): Mine,
dump, and construction sites. (e) True class: Industrial, commercial, and transport units. Predicted class (imagery only): Mine,
dump, and construction sites. (f) True class: Urban fabric. Predicted class (imagery only): Mine, dump, and construction sites.
(g) True class: Artificial, non-agricultural vegetated areas. Predicted class (imagery only): Scrub and/or herbaceous vegetation
associations. (h) True class: Permanent crops. Predicted class (imagery only): Urban fabric.

In Figure 9a–h, eight scenes are shown in which both approaches, using semantics only
and imagery only, yield correct classification results. Here, most images show a homogenous
surface (see Figure 9a–e). For example, Figure 9b shows forest only and Figure 9d shows
mountainous area only. Furthermore, Figure 9g,h show scenes in which the imagery is
consistent within the red square and its immediate surrounding and the semantic sources
are evenly spread around the red square. In Figure 9g forest is present in almost every
direction around the red square while in Figure 9h, an industrial compound is present
within as well as around the red square.

Figure 10a–h show cases where the fusion of semantics and imagery (Experiment 1)
classified correctly, but classifications based on semantics only and imagery only yielded
incorrect results. In Figure 10a–h, two aspects can be observed: (1) within the red squares
the imagery is mixed. For example, in Figure 10a,c,d,f,g, the imagery within the red square
is mixed with forest-like texture as well as grassland-like texture. (2) Figure 10c–g contain
no semantic information (building, streets, etc.) within the red square but only outside of it.
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Figure 8. Eight images showing cases when a classification, based on imagery only (Experiment 3), worked correctly but
not with semantics only (Experiment 2). (a) True class: Industrial, commercial, and transport units. Predicted class (semantics
only): Inland waters. (b) True class: Forests. Predicted class (semantics only): Scrub and/or herbaceous vegetation associations.
(c) True class: Forests. Predicted class (semantics only): Arable land. (d) True class: Industrial, commercial, and transport units.
Predicted class (semantics only): Urban fabric. (e) True class: Pastures. Predicted class (semantics only): Urban fabric. (f) True
class: Industrial, commercial, and transport units. Predicted class (semantics only): Urban fabric. (g) True class: Forests. Predicted
class (semantics only): Urban fabric. (h) True class: Urban fabric. Predicted class (semantics only): Arable land.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Eight images showing cases, when a classification, based on semantics only (Experiment 2) as well as imagery only
(Experiment 3), worked correctly. (a) True class: Forests. (b) True class: Forests. (c) True class: Industrial, commercial and
transport units. (d) True class: Open spaces with little or no vegetation. (e) True class: Mine, dump, and construction sites. (f) True
class: Urban fabric. (g) True class: Scrub and/or herbaceous vegetation associations. (h) True class: Industrial, commercial, and
transport units.
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(e) (f) (g) (h)

Figure 10. Eight images showing cases, when a classification, based on a fusion (Experiment 1) worked correctly but not on
imagery as well as semantics alone (Experiment 2 and 3, respectively). (a) True class: Forests. Predicted class (imagery only):
Artificial, non-agricultural vegetated areas. Predicted class (semantics only): Artificial, non-agricultural vegetated areas. (b) True
class: Arable land. Predicted class (imagery only): Permanent crops. Predicted class (semantics only): Permanent crops. (c) True
class: Pastures. Predicted class (imagery only): Heterogeneous agricultural areas. Predicted class (semantics only): Heterogeneous
agricultural areas. (d) True class: Scrub and/or herbaceous vegetation associations. Predicted class (imagery only): Artificial,
non-agricultural vegetated areas. Predicted class (semantics only): Artificial, non-agricultural vegetated areas. (e) True class:
Urban fabric. Predicted class (imagery only): Pastures. Predicted class (semantics only): Pastures. (f) True class: Heterogeneous
agricultural areas. Predicted class (imagery only): Forests. Predicted class (semantics only): Pastures. (g) True class: Urban fabric.
Predicted class (imagery only): Heterogeneous agricultural areas. Predicted class (semantics only): Arable land. (h) True class:
Arable land. Predicted class (imagery only): Heterogeneous agricultural areas. Predicted class (semantics only): Heterogeneous
agricultural areas.

5. Discussion

There are two major findings from this work. First, LULC can be classified using
semantics only. In our experiments we found that the semantics of geo-objects provide mean-
ingful information and enable the corresponding LULC class to be determined. Second,
fusing semantics with imagery enhanced the classification results. Their combination com-
plemented and increased the accuracy of the LULC classification, compared to using the
two single data sources alone. Additionally, some LULC classes were predicted better than
others using semantics only instead of using imagery only, which is reflected in the accuracy
assessments and the qualitative analyses. This performance is discussed below from two
perpectives: the first examines the overall performance of the LULC classifications and the
second discusses the per class accuracies. The qualitative analysis are also discussed and
highlight how semantics can be used as an information source in LULC classification.

5.1. Overall Classification Results

The overall accuracies as well as kappa coefficients suggest not only that LULC can be
classified based on semantics but also that the fusion with imagery yields improved results.
The impact of dmax is important, and it was found to have an optimal value in Experiments 1
and 2, decreasing accuracy if it was higher or lower than this value. A potential explanation
for this is that dmax controls the area from which OWL class information is obtained from
geo-objects around a sample. Thus, a low dmax value results in too little local information
about the types of nearby geo-objects. In contrast, a higher dmax value results in the loss of
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valuable local information, as the computation of the feature vector relies on aggregation
functions, such as the standard deviation and the maximum. However, despite the impact
of dmax, the fusion of imagery and semantics was always found to be superior to the
classification using semantics only, for any dmax value. This suggests that semantics, when
used as auxiliary information to imagery, complement it in a meaningful way, independent
of the dmax value.

5.2. Classifications of Single Classes

The results showed that geospatial semantics predict certain LULC classes better than
others and that the fusion of both semantics and remotely sensed imagery created a synergy,
which yielded superior per class accuracies. For example, LULC class I (Urban fabric) was
classified with a similar accuracy from single data sources (see Figures 4b and 5), but the
fusion resulted in a superior classification accuracy (see Figure 4a). The same was true
for class V (Arable land), VIII (Heterogeneous agricultural areas), X (Scrub and/or herbaceous
vegetation associations), XI (Open spaces with little or no vegetation), XII (Inland wetlands), and
XIII (Inland waters). The biggest classification improvements using the fused data were
found for LULC classes Urban fabric. A potential explanation for this is that semantics
complement the imagery well for this class. The semantics allow areas with a similar
spectral signature but different underlying LULC class to be differentiated and vice versa.
In general, the LULC classes were classified more accurately when the data fusion were
used, overcoming the confusion within and between LULC classes when semantics only and
imagery only were used. For example, while Urban fabric was mostly confused with class II
(Industrial, commercial, and transport units) using imagery only, it was mostly confused with
class VII (Pastures) using semantics only. Consequently, using the fused, the classification
model is able to better distinguish between Urban fabric and Industrial, commercial, and
transport units when semantics are included and can differentiate better between Urban fabric
and (Pastures) using information from imagery. For LULC classes Industrial, commercial, and
transport units (class II), Mine, dump, and construction sites (class III), Artificial, non-agricultural
vegetated areas (class IV), and, Inland wetlands (class XII), semantics only was sufficient to
achieve classification accuracies of over 90%. In order to provide a potential explanation for
this, it has to be remembered that the used semantics is based on LinkedGeoData, which
itself is based on OSM data. Thus, some regions might have greater coverage (and thus
more mapped objects), providing more semantics. As such, classes II–IV could potentially
benefit from this fact, as they are related to man-made structures, increasing the likelihood
that relevant local data is captured by OSM volunteers. Furthermore, specific OWL classes
could improve the detection of these LULC classes. For example, residential houses and an
industrial complex might look similar on satellite imagery, while OWL classes can describe
them with meaningful concepts such as residential house and factory, allowing a distinction
of areas based on their functions and usage. In contrast to that, two LULC classes were
classified more accurately with imagery only, than with semantics only, namely, classes V
(Arable land) and IX (Forest). A potential reason for semantics to score a lower classification
accuracy for these two classes could be that OWL classes from LinkedGeoData exhibit less
significant associations to non-urban areas than to urban areas [42]. Thus, semantics in
these areas might be too sparse to improve the classification.

5.3. Semantics for LULC Classification

Geospatial semantics exhibit different characteristics to conventional sensor data like
optical imagery, when classifying LULC. For example, semantics rely on nominal values
while optical imagery relies on ratios obtained from electromagnetic reflectance. As such,
geospatial semantics reflect the meaning of geo-objects, such as Building or Bench and
not their physical characteristics. In the case of LinkedGeoData, this is derived from
OSM, which is created by volunteers. They capture and annotate the vector data, making
themselves the sensors. This consequently enables the inclusion of a variety of different
geo-object meanings into the LULC classification, as captured by the crowd of volunteers.
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As such they provide potentially specific and meaningful class descriptions. For example,
OWL class Peak is typically recorded on mountains and can therefore help to find the
corresponding LULC class Open spaces with little or no vegetation (see Figure 9d). Another
example for such a characteristic OWL class is Chair-lift which often occurs close to skiing
areas/slopes. Here, the OWL class can help to identify slopes which are of LULC class
Artificial, non-agricultural vegetated areas (see Figure 7). However, the advantage of having
specific and meaningful OWL classes can become a disadvantage too: an industrial area
can have OWL class River in the proximity, rendering the final LULC classification to
Inland waters instead of Industrial, commercial, and transport units (see Figure 8a). In general,
an even geographic distribution of characteristic geo-objects within the proximity of dmax
was found to foster a correct LULC classification when using semantics only. For example,
Figure 9c,e,f, show such situations. Here, the entire 1 km × 1 km scene is covered with
geo-objects. By contrast, in some cases, geo-objects are present within the proximity of dmax,
but the sample grid cell belongs to a LULC atypical for them. An example of such cases
can be seen in Figure 8c,g: here, geo-objects such as houses might have led the classifier
to compute that the samples are of LULC class Urban fabric, although they are of LULC
class Pastures and Forest, respectively. This is likely to be due to the information around
these grid cells (the red squares) being dissimilar to their surroundings. If the grid cell
of the LULC is similar to geo-objects within the dmax proximity, the classifications tend
to be often correct. Examples for such cases can be seen in Figure 7a,c–e,h as well as
Figure 9h. However, an important aspect of semantics as a data source becomes apparent
when looking at Figure 7: any image effects such as clouds do not affect the semantics.
In general, geospatial semantics rely on observations made by volunteers on the ground
which, unlike spaceborne or airborne observations, do not need atmospheric corrections.

5.4. Future Work

This work makes a first step towards a new research domain which aims at under-
standing the relationship between semantics and LULC classification. It has deepened
our understanding of the potential use of semantics for this task. This could be extended
further by examining the impact of the ontology, which is the structure of OWL classes,
as in the LinkedGeodata. However, perhaps an ontology with a deeper or wider structure,
providing more specific or more classes overall, respectively, could improve the accuracy
even further. Thus, this research direction would focus on the ontology as a classification
parameter. Semantics allow space to be described in terms of meaning, which could be
used for novel analysis methods, through, for example, the use of explainable artificial
intelligence (XAI) to determine which types of geo-objects (OWL classes) are relevant for
specific LULC classes. This would enable one to relate LULC classes to meaningful and
human understandable concepts (OWL classes) and therefore help one to understand
LULC in a novel way. Next to the investigation of the role of geospatial semantics for LULC
classification, advanced deep learning architectures could be explored in future research
in order to improve the classification accuracy even further. Particularly, networks with
residual connections, convolutional neural networks [47] (for the images—as a separate
input branch of the ANN), or attention mechanisms [48] could be employed to score even
higher classification accuracies. Furthermore, other types of machine learning algorithms,
such as support vector machines, could be explored too. Here, semantics were fused with a
single image (mosaic) in feature space; future work can research how to combine semantics
with multi-temporal imagery in an effective manner. Additionally, other types of remotely
sensed imagery could be used, such as hyperspectral [49] or synthetic aperture radar [50]
imagery. CORINE is associated with a certain classification accuracy itself, as such, our
results come with the corresponding caveat as we rely on it as being the ground truth. Other
sources on LULC ground truth could therefore be used in future work. Furthermore, not
only a single source for ground truth could be used but a combination of different sources,
increasing the overall reliability. In this work geospatial semantics were obtained from
LinkedGeoData (http://linkedgeodata.org/ accessed on 5 January 2021) for the region

http://linkedgeodata.org/
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of Austria. Data outside of Austria can be obtained from them as well, being the base for
future work, which studies how Semantic Boosting works in other ROIs. Additionally, we
plan on releasing the processed GSCM data for Austria as well as outside of Austria (for
future studies).

6. Conclusions

The focus of this research was to investigate the inclusion of geospatial semantics
within a LULC classification of remotely sensed imagery. For this purpose a GSCM
was used and extended in order to combine the image information and semantics at a
feature level. The results show that when geospatial semantics are fused with remotely
sensed imagery, LULC classification accuracies are increased. In particular, LULC classes
which relate to man-made structures, such as Urban fabric, are classified with higher
accuracy, once the combination is used. Furthermore, geospatial semantics alone were
shown to support the classification of LULC classes with promising accuracy, especially
for LULC classes, which relate to specific land use, such as mines or industrial areas.
The qualitative analysis showed, that in a series of cases, semantics enabled one to classify
areas correctly, which would have otherwise been confused with other LULC classes, which
have similar spectral signatures (e.g., Artificial, non-agricultural vegetated areas and Scrub
and/or herbaceous vegetation associations). Next to the accuracy assessment and the qualitative
analysis, the geographical distribution of the classification accuracy was analysed. Here, it
was found that the combination of both information sources (imagery and semantics) yield
correct LULC classifications, which are homogeneously spread in the study area, while the
single sources yield LULC classifications which are more clustered in some regions. Overall,
the results show that geospatial semantics are a fruitful source for LULC classification,
especially once it is combined with imagery.
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