UNIVERSITY OF LEEDS

This is a repository copy of Real-time agent-based crowd simulation with the Reversible
Jump Unscented Kalman Filter.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/179696/

Version: Accepted Version

Article:

Clay, R, Ward, JA orcid.org/0000-0002-2469-7768, Ternes, P et al. (2 more authors) (2021)
Real-time agent-based crowd simulation with the Reversible Jump Unscented Kalman
Filter. Simulation Modelling Practice and Theory, 113. 102386. ISSN 1569-190X

https://doi.org/10.1016/}.simpat.2021.102386

© 2021, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0
license http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’'t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Real-Time Agent-Based Crowd Simulation with the
Reversible Jump Unscented Kalman Filter*

Robert Clay®*, Jonathan A. Ward?®, Patricia Ternes®, Le-Minh KieuP, Nick
Malleson®

@ University of Leeds, Leeds, LS2 9JT, UK
bUniversity of Auckland, Auckland 1010, New Zealand

Abstract

Commonly-used data assimilation methods are being adapted for use with agent-
based models with the aim of allowing optimisation in response to new data in
real-time. However, existing methods face difficulties working with categorical
parameters, which are common in agent-based models. This paper presents a
new method, the RJUKF, that combines the Unscented Kalman Filter (UKF)
data assimilation algorithm with elements of the Reversible Jump (RJ) Markov
chain Monte Carlo method. The proposed method is able to conduct data as-
similation on both continuous and categorical parameters simultaneously. Com-
pared to similar techniques for mixed state estimation, the RJUKF has the ad-
vantage of being efficient enough for online (i.e. real-time) application. The
new method is demonstrated on the simulation of a crowd of people traversing
a train station and is able to estimate both their current position (a continuous,
Gaussian variable) and their chosen destination (a categorical parameter). This
method makes a valuable contribution towards the use of agent-based models
as tools for the management of crowds in busy places such as public transport
hubs, shopping centres, or high streets.

Keywords: agent-based modelling, data assimilation, unscented Kalman filter,
crowd simulation, MCMC

*This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agreement
No. 757455), through a UK Economic and Social Research Council (ESRC) Future Research
Leaders grant (ES/L009900/1), and through an internship funded by the UK Leeds Insti-
tute for Data Analytics (LIDA). Computation was undertaken on ARC4, part of the High
Performance Computing facilities at the University of Leeds, UK.

*Corresponding author

Preprint submitted to Elsevier

1. Introduction

Agent based models (ABMs) have become a popular method for simulating
the dynamics of crowds [1, 2] due to their ability to readily simulate individuals
and their behaviour. In general, such models are calibrated to historical data
and then used to make predictions. However, ABMs rarely incorporate any real-
time data [3], so cannot reflect changes within the target system that occur in
real time. This prohibits their use as real-time management tools, limiting them
to conducting offline experiments based on historical data. If ABMs were able to
update their current state based on up-to-date information from the real-world,
as is common in fields such as meteorology [4], then they could become valuable
tools for the management of crowds in busy places such as public transport
hubs, shopping centres, or high streets.

To address this limitation, data assimilation techniques have been proposed
as a way to incorporate new data into predictive ABMs. The Unscented Kalman
Filter (UKF), in particular, is a method that could operate effectively without
requiring a large number of model replicas to be run simultaneously (an ‘en-
semble’) which is important as ABMs are typically extremely computationally
expensive [5]. However, the vanilla implementation of the UKF has a number
of limitations. In particular, the UKF is designed only for assimilating states
with a Gaussian distribution—such as an agent’s location in real space—mnot
categorical or discrete variables. Most ABMs have mixed states of both cate-
gorical and continuous variables with comparable importance [6, 7]. In models
of crowds, for example, agents may have categorical variables to represent their
gender [8], beliefs [9], destination [10], etc. These variables can define a totally
different set of behaviours for each class of agent, so should not be disregarded
as part of a data assimilation framework.

There is very limited research that deals data assimilation for ABMs, and
even less that attempts to tackle the problem of combining continuous and
categorical variables. This partly stems from the fact that advances in data
assimilation have traditionally emerged from fields such as meteorology and
hydrology, where models rarely incorporate categorical variables [4]. In short,
there are two main problems that limit the veracity of current techniques. First,
the model selection method, which is commonly used to deal with categori-
cal variables, will struggle with the ‘curse of dimensionality’ that comes with
catagorical variables. For example, given an ABM with 10 agents each hav-
ing a single categorical variable with 5 possible values, there are 519 (nearly
10 million) different combinations of categories. Second, typical data assimi-
lation frameworks require each individual model realisation to have the same
parameter dimensions. Because each agent has its own local parameter values,
adding or removing agents from a model has the effect of changing the number
of model parameters. This complicates the implementation of data assimilation
with ABMs, as it is common for the number of agents to vary between model
runs.

This paper extends the state-of-the-art by proposing a method that allows
an Unscented Kalman Filter (UKF) to conduct data assimilation on an agent-

based model that consists of a mixed state of categorical and Gaussian variables.
The method, which we call Reversible Jump UKF (RJUKF) is inspired by
Reversible Jump Markov Chain Monte Carlo (RJMCMC) [11]. Compared to
similar techniques for mixed state estimation, the RJUKF has the advantage
of being efficient enough for online (i.e. real-time) application. This method is
also able to handle variable dimension models making it suitable for application
to ABMs.

The approach is demonstrated in the context of estimating the behaviour
of a crowd of people as they traverse a train station—specifically Grand Cen-
tral Terminal in New York City—using an agent-based model, StationSim. The
model of the crowd will inevitably diverge from the ‘true’ behaviour of the crowd
for two reasons: (i) the trajectories of the pedestrians vary stochastically as they
interact with each other; and (ii) although we assume an individual’s time and
location of entry into the station are known (people are often recorded as they
pass through barriers to enter a station), we cannot assume their destination is
known, so this must be inferred from their evolving trajectories. The incorpora-
tion of up-to-date observations from the real world using an Unscented Kalman
Filter can help to estimate the true locations of the pedestrians, but it cannot
estimate the true destinations because these are categorical rather than con-
tinuous variables. For this, the RJUKF is needed. Experiments are presented
to show that the RJUKF is able to estimate both location and destination,
creating a much more robust real-time simulation of the station.

This paper is structured as follows: Section 2 reviews the relevant literature;
Section 3 outlines the methods used, including a description of the agent-based
model and the RJUKF; Section 4 outlines the experiments and results; and
Section 5 draws conclusions and outlines potential future work.

2. Related Work

The aim of Data Assimilation (DA) is to use current, real-world observations
to update the internal state of a model. In this manner, “all the available
information” [12] is used to create a combined representation of a system that
is closer to its true state than either the observations or the model in isolation.
Recent efforts have been made to develop methods that will allow ABMs to react
to real-world events as they happen. Whilst promising, they exhibit a number
of limitations such as: the need for manual calibration [13] (which is infeasible
in most cases); implementations that contain only a few agents and/or limited
interactions [14, 15]; the use of agent-based models that are simple enough to
be approximated by an aggregate mathematical model [16, 3]; parameters that
can be dynamically optimised but a model state that is not updated [17]; or
the use of DA methods that do not scale to large model size [10, 15]. Also,
importantly, none of the previous approaches have attempted to assimilate data
for categorical variables.

Of the DA methods commonly used in fields such as meteorology and hydrol-
ogy, Kalman Filtering is probably the most widely known and has seen a broad
application to discrete-time state-space estimation with the aim of stabilising

noisy measurements into more consistent, smooth paths [4]. While the tradi-
tional filter is limited to linear models there are many extensions proposed to ac-
commodate nonlinearity that typically fall into two categories: non-parametric
techniques such as the Particle Filter (PF) [18]; and Ensemble Kalman Filters
[19] that estimate model states through Monte Carlo techniques. The particle
filter has seen the largest number of applications to ABMs [14, 20, 21, 10, 15] but
requires potentially thousands of ensemble members (‘particles’) which can be
prohibitively computationally expensive. Parametric techniques such as the Un-
scented Kalman Filter (UKF) and Extended Kalman Filter [5] instead estimate
model states explicitly through the Kalman Gain equations [22]. The UKF,
which is the technique adopted here, aims to use the bare minimum number of
particles, dubbed ‘sigma points’, to greatly increase efficiency at the expense of
a minimal loss in prediction accuracy. If the model state of n agents is assumed
to be Gaussian, it can been shown that only 4n + 1 sigma points [23] are needed
to estimate the mean and covariance of agent positions.

Previous research has shown potential for the application of the Unscented
Kalman Filter (UKF) to ABMs [24], particularly in dealing with problems such
as partially observed data. The problem with the UKF is its assumption of
Gaussian innovations [5]. The filter on its own is limited to a very specific
set of agent attributes and requires further augmentation to apply real data to
ABMs. Research is being done into the application of the Kalman Filtering to
continuous non-Gaussian data [25] and discrete variables [26, 27, 28] but little
is being done [29] on estimating a mixed state of both categorical and Gaussian
variables with the UKF. This has been attempted for use in agent-based models
using particle filters [e.g. 14, 10] in a brute force fashion, but the incorporation
of discrete values into the UKF state space can quickly cause numeric instabil-
ity [30]. Furthermore, the sigma points of the UKF are interdependent, so every
sigma point is required to have the same values for its categorical parameters to
provide a sufficient sample for estimating the model state. If any of these sigma
points have a different combination of categorical parameters then immediate
sample degeneracy occurs and the model estimate quickly diverges; see Figure 1.

To estimate categorical states, model selection techniques [31] are typically
used, whereby each model (e.g. a UKF in this case) represents a different
combination of categorical parameters. Choosing the optimum set of categorical
parameters is achieved by selecting the best fitting model. Traditionally, this
is done with respect to some criterion based on model likelihood [31, 32] and
has been extended to data assimilation via multiple model inference [33, 34, 35].
However these techniques struggle with respect to in their applications to ABMs
due to the need for high- and constant-dimension parameters (as discussed in
Section 1).

Markov Chain Monte Carlo (MCMC) techniques [36, 37, 38] have been ap-
plied to this problem with success being seen in Reversible Jump MCMC (RJM-
CMC) [11]. RIMCMC performs well in sampling both the choice of model and
its associated parameters of different dimensions simultaneously using a modi-
fied Bayes factor. Current implementations of this approach are executed offline
due to the requirement of multiple iterations over the entire ABM. Incorporating

Particle Filter Unscented Kalman Filter

Initial estimates
of the true agent
position (black): |
particles (cyan),

sigma points @

(orange)

Some particles / ..
sigma points
estimate the exit o=
gate incorrectly
(red)

UKF has too

few sigma
1 @ points to) @
estimate the
covariance

Figure 1: Demonstrating why the UKF cannot be used to infer exit gates using a single agent’s
2D coordinates. (1) A sample of particle filter particles (cyan) and UKF sigma points (orange)
are generated about the agent position (black). (2) Each member of these ensembles is assigned
randomly to an exit gate and processed through the ABM stepping mechanism. Any that
choose the incorrect top gate (red) are discarded. (3) The remaining sigma points/particles
are then used to calculate estimates for the new agent position mean and covariance. It is
clear that the particle filter keeps a sufficient sample of particles to accurately estimate the
model state. The UKF does not have a sufficient number of sigma points and cannot correctly
estimate the covariance.

any new information requires re-calibrating for all previous data. Attempts at
sequential applications of RIMCMC have been made [38] but these techniques
are not efficient enough for real time application due to the high dimensionalily
of ABMs. This paper proposes to combine RIMCMC with the UKF to produce
an efficient algorithm that can apply multiple model inference to ABMs in real
time.

3. Methods

3.1. Reversible Jump Unscented Kalman Filter (RJUKF)

The main innovation offered by this paper is the introduction of the Re-
versible Jump Unscented Kalman Filter (RJUKF). We propose a combination
of Reversible Jump Markov Chain Monte Carlo (RIMCMC) [11] with the Un-
scented Kalman Filter (UKF) as a means of conducting data assimilation utilis-
ing an efficient algorithm, the UKF, to estimate both categorical and Gaussian
agent attributes in real time.

For example, in the StationSim agent-based model that simulates agents
crossing a train station (discussed in detail in Section 3.3), each agent’s destina-
tion that it moves towards is stored as a categorical parameter and its current
spatial location in the environment is a 2 — d Gaussian variable. The UKF alone

cannot search for the correct categorical parameter combination (i.e. the correct
destinations for the individual agents), so the natural extension to this is to use
multiple UKF filters at once, each assimilating the Gaussian positions of agents
but with different combinations of categorical parameters (destinations).

In the current implementation, two UKFs are used. In theory more filters
allows for better scanning of the categorical parameter space but there are two
major issues with this. The RJUKF is designed to be as efficient as possible
for real time application and using many filters can impact performance. To
the authors knowledge there are no guidelines available for determining the
optimum number of UKF's that give the best efficiency to efficacy ratio. There
are also issues of robustness when comparing more than 2 filters. Selection is
typically based on information criteria [39], although these may struggle to find
the ‘best fitting’ filter [32]. Techniques such as Bayesian model averaging may
be applicable here [40].

Figure 2 illustrates the process of running a RJUKF with an agent-based
model. Consistent with typical data assimilation approaches, the method con-
sists of forecast and update steps. The forecast step involves running a simula-
tion forward (an agent-based model in this case) up to the point that some new
observational data become available. In effect this creates a prior estimate of
the next system state. The update step updates the forecast using new observa-
tions. The innovation here is to add a new ‘Reversible Jump’ step. Rather than
using a single filter to conduct data assimilation, two filters are compared. The
current filter contains model instances with previously established categorical
parameter combinations from either initial conditions or a previous time step.
The candidate filter contains model instances with Gaussian agent states that
are identical to those in the current filter, but with a new set of categorical
parameters (discussed in Section 3.1.1). These two filters are fitted to data and
compared by some acceptance probability (discussed in Section 3.1.2), discard-
ing the filter with the lower likelihood. In short, a standard data assimilation
filter (the Unscented Kalman Filter in this case) is used to assimilate data for the
model’s Gaussian parameters and the RJ step provides a means of assimilating
on the categorical parameters.

To summarise, the algorithm is outlined as follows:

(i) In the initialisation step, a ‘current’ UKF is generated using some prior
estimate of the unknown categorical parameters. These estimates typi-
cally come from either initial conditions or some previous RJUKF step. A
candidate filter is also generated using some new randomly drawn categor-
ical parameters. Both filters contain the same ensemble of ‘sigma points’
which are individual instances of Gaussian parameters for the underlying
agent-based model.

(ii) In the forecast step, the filters are iterated (their sigma points are stepped
forwards in time) to gain two forecasts of the Gaussian agent states given
their categorical parameter combinations.

(iii) In the update step (data assimilation step), when the filters are confronted

Forecast Step l Update Step Reversible Jump Step

l ' :
| [Select the best | |
ABM Initial Update i]
@—' Conditions 4’.—" S|gma Pomis : Current UKF } : g UKF a:KcFurrent ;
: :

Candidate : step | ‘.—»I ate
e ‘ﬁ Sigma Points ||| 17> Gantotete UKE
I - ' '

Define new
Candidate UKF

= =

Figure 2: Flowchart of data assimilation process using a Reversible Jump Unscented Kalman
Filter.

with observations, both of these forecasts are assimilated to get final esti-
mates of the agents’ Gaussian states.

(iv) In the reversible jump (RJ) step, these estimates are then compared by
generating some acceptance probability ¥. With this probability the best
filter (candidate or current) is accepted as the new current filter and the
forecast step starts again. Note that the RJ step does not necessarily need
to take place after every update step (as discussed below).

We use the ‘identical twin’ experimental framework [14], which has been
used regularly in similar ABM data assimilation work [14, 3, 15, 10]. It involves
first running a single instance of the agent-based model to generate pseudo-
real crowd behaviour data, storing the locations of the agents as the model
evolves, and then using these data to create ‘real world’ observations. As the
simulation is stochastic and the initial parameters are not known, the task for
data assimilation is to infer the current model state and parameters from the
‘real world’ observations.

Following this broad overview of the method, the following sections will
discuss the approach in detail: the remainder of this section outlines the specific
details of the RJUKF implementation; Section 3.2 provides an overview of the
Unscented Kalman Filter; and Section 3.3 outlines the agent-based model used
(StationSim) to test the proposed method.

8.1.1. Drawing new categorical parameters

When initialising a new candidate filter in the Reversible Jump (RJ) step
(see Figure 2), the categorical parameters for each agent in each of the filter’s
agent-based model instances (‘sigma points’) need to be estimated. This choice
could be completely random, but the number of possible categorical parameters
combinations is usually huge. For example, if the model has n agents and one

categorical parameter with G values, the number of possible combinations is n&,

that is, the probability of selecting the correct combination of parameters is usu-
ally very low. Therefore, to improve the RJUKF efficiency a matrix of transition
probabilities P = pj, is defined at each time step for each unknown categorical
parameter, where p;, is the probability the jth agent will draw the parameter
value g. The point is to reduce the number of potential parameter combinations
by estimating agent behaviour and removing poor choices of parameters. We
explain how this is implemented for the StationSim model specifically below.

Drawing new combinations of parameters in the RJ step does not need to
take place after every update step. If the parameters are relatively easy to
estimate then it may be more efficient to perform multiple data assimilation
updates before performing the reversible jump step and recalculating categorical
parameters. However, the size of the reversible jump window, R, should be a
multiple of the data assimilation window, f, to ensure that the reversible jump is
made using assimilated estimates of the model state rather than pure prediction.
For example, if f = 5 then the data assimilation update occurs after every 5
model iterations so R must be some multiple of 5 (e.g. if R = 15 then it occurs
once in every 3 data assimilation updates, or once every 15 model iterations).

An additional restriction is that new categorical parameters combinations
are drawn stepwise. Only some subset s < n of the agents draw new categorical
parameter combinations. Trying to redraw all parameters at once in larger
models can result in poor candidate filters that are never accepted. Conversely
if too few parameters are redrawn then the algorithm will struggle to find every
correct value in time. This method of drawing new parameter combinations
provides a good stopgap solution but broader scanning techniques [41, 42] may
be necessary for larger ABMs.

Each matrix of transition probabilities should be produced based on the
characteristics of the underlying model. Here, the challenge in the StationSim
model is to correctly determine where an agent will leave the environment; its
‘destination’ or ‘exit gate’. There are 11 possible gates and each agent can
choose any gate as its desired destination. To produce the matrix of transition
probabilities P = p;, for the exit gate parameter, we use each agent’s direction
of movement, assigning a larger probability to gates that are within some cone of
vision—defined by an an arc segment some 6 radians wide—in front of the agent.
The lengths of each gate contained within this segment are then normalised to
sum to 1 giving an empirical distribution of each of the agent’s likely gates.
For more complex (non-linear) paths, this prediction of an agent’s exit gate can
easily be extended to more elaborate methods.

8.1.2. Acceptance Probability

In the Reversible Jump step, an acceptance probability is required to deter-
mine whether to keep the current filter or replace it with the new candidate.
Traditionally, model selection techniques based on likelihood would be used such
as Deviance Information Criterion [31] but this is known to be problematic for
high/variable dimension cases [39]. Instead, a metric that is based on Bayes fac-
tors [11], is used to determine whether to keep the current or candidate model:

= min {1, SR S T} &

"p(Clze) T oa(mme) T or(ug)

There are four terms in Equation (1) to calculate. The first term uses the
posterior densities p(¢;,|zx) and p((x|zk) where (i are the current model param-
eters, i.e. the mean and covariance of agent Gaussian positions, and similarly ¢},
are the candidate model parameters. The joint posterior distributions for these
parameters can be hard to find in general but the UKF has the advantage that
it is calculated in its update step. Assuming we calculate Gaussian posterior
distributions for each filter with parameters pi,x, Xqp and p!,, 3, respectively,
the ratio of densities can be written as

p(Cklzr) D] 2 " exp(—3 (2 — ph) " S0k (21 — pihy)) 2)
p(Celoe) |27 exp(—3(zk — pak) TS (2 — k)

We also require the transition densities g(my|m},) and g(m}|ms), i.e. the
probabilities of moving from the current model to the candidate and back respec-
tively. These quantities determine the likelihood for the current and candidate
filters choices of categorical parameters given observation data. The categorical
model parameters are captured in the vector my. In StationSim, this is the
vector of n exit gate choices defined as g = (¢1,...,9,). Using the transition
probability matrix P, then these densities are

n

Q(mk|m;c) _ H Pj,g;] (3)

q(mi|mu) Pig,

j=1

Multiplying small probabilities will often lead to numeric stability issues in high
dimensional cases. These densities can however be useful in the easy rejection
of more unlikely candidate models. Using stepwise selection makes this sig-
nificantly more stable as a large number of terms in this product will cancel
out.

The final two terms in Equation 1 are the proposal densities r(u},) and r(uy)
and Jacobian J given auxiliary variables w that allow for changes in model
dimensions. Here we assume that all possible UKF filters have model parameters
with the same dimensions. In this case, both of these terms are trivial and
simplify to 1. This is a special case of RIMCMC known as the Random Scan
Hastings [43] algorithm. For the case where agents do leave StationSim these
quantities are defined in appendix B.

With v, calculated, a Bernoulli random variable r = Bern(vy) is drawn. If
r = 1 the candidate filter is chosen over the current model and if » = 0 the
current filter is kept.

3.2. Data Assimilation with an Unscented Kalman Filter (UKF)

The previous section presented the RJUKF method as a means of maintain-
ing multiple filters to better estimate categorical variables. This section outlines

the UKF method itself, which is used to estimate the Gaussian agent param-
eters (in this case their spatial location in a train station) by combining ‘real
world’ observations with predictions from the agent-based model. The UKF
is a well-known method, but one that has rarely been applied to agent-based
modelling, likely due to the inability to handle non-Gaussian variables.

In this paper, the UKF implemented by [24] is used. A simplified explanation
of the method is included here and for full details see [44, 45, 5] and Appendix A.
Consider that our model state can be fully described at time & with the state
vector, x, and that it can be updated with a stepping function f:

Tt = fzn). (4)

In effect, f iterates the model forward by one time step; such step functions
are common in agent-based model implementations. Now consider that some
observation data become available at time k + n (i.e. some interval n after the
last time we updated the model state) and we want to update to better reflect
the information contained in these observations of the real system. As discussed
in Section 3.1, data assimilation proceeds via two steps, which are repeated each
time new data become available [46, 5]:

Forecast An ensemble of sigma points are computed from the mean and co-
variance of the posterior distribution for the current model state z;. They
are evolved using f to give a sample of forecasted states at time k + n.
The sigma points are then used to estimate the true mean and covariance
by applying the Unscented Transform [23]; see Figure 3.

Update Following the arrival of observations at time tx4,, standard Kalman
filter practice [22] is used to update the model state xj,, and its mean
and covariance. This is taken as the new posterior distribution of the
current model state, i.e. our best guess of the current state of the under-
lying system. This posterior estimate is fed back into the forecast step to
calculate new sigma points.

In addition to deciding on the types of sigma points used and their weightings
(as detailed in Appendix A), the identical twin experimental approach requires
two additional parameters. The data assimilation window f determines how
often data assimilation is performed on StationSim. For every time step, the
StationSim model evolves forwards producing some observation data. The UKF
will also evolve forwards predicting agent positions but not incorporating these
observations. On every fth time step the UKF does incorporate observation
data in order to produce assimilated position estimates. The window size can
be varied such that a larger window induces larger error in the prediction of
the UKF. The longer it goes without assimilating real data the more prediction
will diverge from the truth. Observation noise is also required as, without
noise, observations would exactly match the pseudo-true state which is infeasible
in reality. Uncertainty is induced into these observations by adding Gaussian
distributed noise with mean 0 and variance o2. Larger values of ¢2 imply

10

{a)

==
O m o’

o S -
(b)
o ‘a{ S
[State Covariance {C}
| CIZ53 Estimated State Covariance e
@ Sigma Paoints ’.’"_Fd_._ 3
L i e

* State Mean
x Estimated State Mean

Figure 3: An example of the UKF forecast step for a single agent position. Sigma points are
generated about the current model state (a), then processed forwards in time (b) and used to
estimate the new model state (c). Note that in the full application the UKF will be estimating
the 2D positions of all pedestrians in the system, not just one.

noisier observations and worse ‘sensors’ that are more difficult for the UKF to
assimilate. Values of these parameters must be calculated separately for each
model used. These values must be chosen such that the UKF is able to assimilate
position data with better accuracy than pure prediction or observation alone.
Calibrated values for the StationSim model are derived later (see Section 4.1)
as 5 and 0.52 for the assimilation window and observation noise respectively.
Other parameter values are listed in Table 1.

Table 1: Main parameters used in the experiments

Parameter ‘ Symbol Value
Number of agents n [10, 20, 30]
Number of gates G 11
Number of repeat experiments N 50
Observation noise. o? 0.52

Data assimilation ‘window’ (time steps) f 5

Tuning parameters a, B,k [0.3,2,0]
Reversible Jump window (time steps) R [5, 10, 20]
New stepwise candidate gates (number of agents) s 5

Agent vision angle (rads) 0 /3

3.3. StationSim

Grand Central Station Simulation (hereafter ‘StationSim') is an agent-based
model that replicates simple pedestrian movement through the central atrium
of the Grand Central Terminal (GCT), New York City. A raw data set inferred

11

from a video sequence recorded at GCT is available online', and the StationSim
environment is designed to match the GCT camera’s field of view. The model
environment is a rectangular subsection of the atrium’s lower floor, with 53 m
width and 50 m height, 11 entrance/exit gates around its perimeter and a large
circular obstacle in its centre; see Figure 4. This section will briefly outline the
main components of the model; full model details are included in Appendix C.

60
1 2
50
3_|
40
£ 4
= 30 f
E\ Obstacle
IQE) 20
0 - 5
10
6
0
10 I 9 I 8 I 7

-10 0 10 20 30 40 50 60
Width (m)

Figure 4: An outline of model environment over the Grand Central Station atrium in New
York, including the central information kiosk obstacle. The solid lines represent trajectories of
seven real pedestrians inferred from a video recorded at GCT. The circles mark the beginning
of each pedestrian trajectory.

Upon initialisation, n agents are created. We assume that their entrance
gate and time of entry are known from the pseudo-truth data—people are often
recorded entering a station as they pass through ticket barriers—but as we
cannot know a person’s destination the agents are randomly assigned an exit
gate. Each agent has a desired speed which is also chosen randomly from a
truncated Gaussian distribution. In each iteration, agents try to move linearly
towards their desired exit gate. However, if the way ahead is blocked, either
by another agent or by the environment, the agent will not be able to proceed
towards the destination. When such ‘collisions’ occur, the agent makes a random
binary choice to overtake the obstacle by trying to move left or right. If the
drawn position is available, the agent moves sideways, otherwise, the agent
stands still until the next iteration. This random choice causes crowding to
emerge at different times and locations each time the model is executed. The
simulation ends when all agents have reached their desired exit gate.

The model is a relatively simple description of pedestrian movement that

LGCT data are available at http://www.ee.cuhk.edu.hk/~xgwang/grandcentral .html

12

does not attempt to reflect the realism present in state-of-the-art approaches [1,
9, 2, 8, 47]. However, it is able to represent the main behaviors observed through
the GCT data. Figure 4 illustrates some real pedestrian trajectories. According
to the available data, approximately 70% of pedestrians have similar behavior
to that shown in Figure 4; pedestrians enter through one of the gates and
walk towards the exit gate avoiding obstacles when necessary. The remaining
pedestrians have more complex trajectories with destinations that appear to
change throughout the journey. With the RJUKF method we hope to correctly
assign the exit gate in each reversible jump step and correctly predict even the
more complex trajectories.

In addition to outlining the model environment and agent behavior, GCT
data are also used to calibrate the simulation parameters. The raw trajectories
were highly fragmented with portions of missing observations [9], so a laborious
process was performed to manually designate a unique trajectory to capture
the full movement of an individual across the concourse. Following this, the
average pedestrian speed was found to follow a Gaussian distribution with mean
of 1.6 m/s and standard deviation of 0.6 m/s. The minimum observed speed
was 0.05 m/s. Although it is difficult to extract patterns for the entrance/exit
gates, considering that 121 combinations are possible, two characteristics were
observed in the processed data: (i) no pedestrian leaves the station through
the same gate that they enter; and (ii) only about 1% of pedestrians leave the
station through gates that are on the same side as the gate through which they
entered. Therefore, the initial choice for an agent’s exit gate is drawn uniformly
from the set of gates that are on different sides of the agent’s the entrance
gate. These estimates are then updated in the RJ step based on the agent’s
subsequent movements, as discussed in Section 3.1.1. Each simulation step is
equivalent to one video frame, i.e. 0.04 seconds.

3.4. Error Metrics

Two error metrics are required: one used when estimating exit gates and
another for comparing agent positions. To calculate the exit gate error—i.e.
whether a filters’ StationSim instances have correct exit gate choices—we define
an indicator function, -y;, that assigns 0 if an agent’s current choice of gate is
its correct gate and 1 if it is not. Given current exit gates M and true gates M
for the jth agent at time k this is defined as:

1 if Mjp = Mg
Yk = e (5)
0 if Mjk#/\/tﬂc

Taking the sum of these values at each time point gives an indication of how
the RJUKF converges towards the true gates. This value is bounded between 0
where all exit gates are correct and n where all gates are wrong.

N
=D Vik- (6)
j=1

13

With respect to the positional error, consider that we repeat an experiment
N times where the ¢th experiment has n; agents and ¢; time steps. For some
agent j € 1,...,n; at time k € 1,...,¢; we analyse the efficacy of the UKF using
the Euclidean distance between each agents’ ‘true’ (zx,y;%) position—i.e. the
position of their corresponding pedestrian in the pseudo-truth data—and UKF
predicted (&, §;%) position. This provides an n; x ¢; matrix of distances:

ik = \/(xjk = k)% + (Yjr — Jjx)?, (7)

with each row j representing the spread of agent errors at a single time point and
each column k representing an agent’s error over time. For the ith experiment,

we calculate the error vector &' = (&, Z},..., &), where
~i . i
75 = median(d; 8
J kel,...,ti(Jk) (8)

i.e. the jth element of Z* is the median error for the jth agent. We use medians
here to avoid bias caused by taking the means of heavily right skewed agent
error distributions.

For multiple runs we calculate the grand median error vector T = (71, To, ...,
Zn) where the ith element represents the median of median agent errors for the
tth model run:

#; = median (z°). (9)
JEL,....)n;
We then use this as a sample to gain a measure of the UKF’s general efficacy
given certain parameters. We use both the raw sample and the sample mean
for boxplots and choropleths respectively.

4. Experiments

Two experiments are conducted to illustrate the efficacy of the proposed
method. The first establishes the feasibility of applying the UKF to an ABM.
The final experiment demonstrates the application of the UKF with categorical
variables; i.e. using the RJUKF method. In the first experiment we assume
that the agents’ destinations are known, so the filter only needs to correct for
the noise introduced as agents collide and deviate from their otherwise straight
paths. In the second experiment we relax this assumption and use the RJUKF
method to estimate the agents’ exit gates as well. All other parameters were
calibrated as per Section 3.3.

4.1. Experiment 1 — Filtering, Observation and Prediction

Before testing the full RJUKF method, this experiment determines the im-
provement that the Unscented Kalman Filter (UKF) offers by correcting de-
viations in the agents’ (x,y) locations, assuming that the agents’ destinations
are known. It will contrast the filtering approach to an entirely data-driven
approach (i.e. relying purely on noisy observations with no underlying model)

14

and an entirely model-based approach (i.e. relying on StationSim predictions
with no assimilation). It also explores the impacts of different data assimilation
window sizes, f, i.e. the number of model iterations between data assimilation
updates. Using these values, we establish a suitable benchmark under which
the UKF performs well in estimating Gaussian parameters, before moving on
to test the RJUKF as a means of estimating categorical parameters as well in
Experiment 2.

For each model run we calculate the grand median distance between each
‘true’ agent position and its estimate and take a further scalar median of 30
model repetitions? (see Section 3.4). Figure 5 presents these scalars over varying
noises and assimilation rates. We assume that the noise added to the pseudo-real
observations (sensor noise) and the uncertainty associated with the individuals
in StationSim (the process noise) are treated equally, so the UKF relies on both
predictions and observations performing similarly well3.

Figure 5a compares the error of the three approaches (pure observation,
pure model, or UKF) for each noise/data assimilation window pair. Similarly,
Figure 5b shows the error of just the best performing metric. It is evident that
when there is no observation noise then the observations in isolation give the
best estimate of the pseudo-true system evolution (the yellow area in the left of
Figure 5b). Conversely, when observation noise is very high then the StationSim
prediction provides the best (albeit relatively poor) estimate because it is not
confounded by noisy observations (the red area to the right of Figure 5b). The
UKF gives a more accurate prediction than the model or the observations in
isolation when the observation noise is not extreme (the blue area in the middle
of Figure 5b). For the remaining experiments we set the data assimilation
window size and measurement noise to be 5 and 0.5 respectively. These values
provide a reasonable compromise for future experiments under more uncertain
conditions.

4.2. Experiment 2 - RJUKF

In the previous experiment, the UKF was tasked with estimating the true
pedestrian positions. This will be important when collisions or other factors
cause pedestrians to deviate from an approximately straight trajectory. How-
ever, the filter does not attempt to estimate the desired locations of the agents.
These were hard-coded in Experiment 1 so all agents were moving towards the
‘correct’ destination; i.e. the same gate as the pedestrian that they are simulat-
ing. Relaxing this assumption would pose a substantial problem for the filter
because there is little value in slightly adjusting the position of an agent if the
agent is moving towards a different exit than that of the pedestrian it is sim-
ulating. Therefore in this experiment the assumption is relaxed so an agent’s

2N = 30 model repetitions is sufficient to capture the variability in the results within a
reasonable computation time

3In practice, noise assumptions can be adjusted to improve performance, but under high
dimensional scenarios such as this it can prove difficult to optimise. This provides a strong
motivation for further adaptions to the UKF particularly adaptive filtering [48].

15

== Observed
== StationSim
== UKF Assimilations

(53usby 0F) J0113 Z1 UBIPAIW PUBID (T+(T+x)607)601

(a) The error associated with all three approaches (observation, prediction,

or UKF).
100] 00 0.2 0.46 o
e
S
s 50| 00 0.2 0.42 =
8 |
B &
s o B
E 30/ 00 0.21 0.43 =
3 &
= £
i E
8 0] 00 0.2 0.4 £
=
a"‘O‘\&
10| 00 0.21 0.43
0.0 0.5 1.0 5.0 10.0

Observation Noise Standard Deviation

(b) The error of the best performing approach.

Figure 5: Errors of estimated agent positions against ‘true’ positions comparing: (1) obser-
vations in isolation; (2) StationSim predictions in isolation; and (3) UKF predictions (assim-

ilation of StationSim predictions and observations) with different data assimilation window
sizes and levels of observation noise.

16

destination is not known and the RJUKF method is used to estimate the agents’
destination as well as their position.

Results are presented in two parts. First, diagnostics for a single run of the
RJUKF are taken. This examines the general results from the algorithm as well
as individual error metrics. Second, multiple run diagnostics are presented for
an overall view on how well the RJUKF estimates exit gates on StationSim.

4.2.1. Single Run Diagnostics

A single model run for StationSim is performed with n = 10 agents, f = 5
data assimilation window and R = 5 jump window. Hence a update step takes
place after every 5 iterations, and a reversible jump takes place after this (as
per Figure 2). This small number of agents limits the number of interactions
between agents that occur so uncertainty in the model arises less from the
collisions between agents and more from uncertainty about the agents’ correct
destination gates. A subset of 3 example trajectories in Figure 6 shows how
the predicted exit gate choice varies over time for each agent. Note that as the
agent starts their journey there is no information to inform the gate prediction
so the prediction defaults to gate 0, but this is quickly revised as the agent
moves towards their destination. Estimates of agent positions typically fall into
three categories depending on how quickly an agent’s correct gate is found:

Gate 10
Gate 91
Gate 81
Gate 7 1
Gate 61
Gate 51
Gate 4
Gate 3
Gate 21
Gate 11
Gate O 1 1 1 .

Q 000 Q 0@0 Q ’LQQQ

Time

Gate Choice

Figure 6: The choice of exit gate for each agent over time.

(i) Some agents find their correct gate quickly giving minimal error dependent
on model noise (blue).

(ii) Some agents take longer to find their gate and the prediction shifts from
one gate to another (orange). This is usually due to either a contention
between numerous gates (e.g. when two adjacent gates have similar prob-
abilities of being the correct one) or failure to draw the correct gate by
chance.

17

(iii) Some paths take a long time to converge to the correct gate (green) and
often snap quickly towards the correct exit gate when discovered. This
usually happens with agents that move quickly through the model, giving
limited chances to scan for the correct gate. Even when each agent draws
a new gate (s = 10) at every jump window, candidate models with a good
gate for one given agent can be rejected due to some poor choice of gate
for another agent, skewing the acceptance probability. It is rare to see
these poor choices of exit gate in this model. Due to the low levels on
non-linear behaviour it generally becomes quickly obvious where an agent
is going.

4.2.2. Multiple Run Results

We now describe the results of N = 50 StationSim runs. In this experiment
the agent population, n, and reversible jump window, R, are varied. The larger
population sizes in the experiments, where n € {10,20,30}, means that colli-
sions are likely so the UKF must estimate the destination gate as well as the
precise agent position. To estimate the rate of convergence, we use the gate
distance metric (Equation 6). The mean of the gate distance metric and 95%
confidence interval over the 50 model runs for each population and jump window
combination are then plotted in Figure 7. Note that the gate distance metric
does not normalise by the number of agents, so increasing the number of agents
in the simulation will naturally increase the apparent error. More important
than the absolute error per size of agent population is the difference in error by
jump window.

Population = 10 Population = 20 Population = 30

RJ Window (R)
— 5
10
20

25

- N
o o

-
15

Error (number of gates)

0 500 1000 1500 2000 O 1000 2000 3000 0 1000 2000 3000
Time time_points time_points

Figure 7: Convergence to correct exit gates over varying populations and jump windows. For
each population there are three lines for 5 (solid blue), 10 (dashed yellow), and 20 (dotted
green) jump windows respectively.

The results show that the RJUKF works well for 10 agents at all jump

windows. It is rare the RJUKF will predict every single gate correctly (0 error)
as agents may often have multiple gates in their cone of vision. However, as the

18

population increases it quickly becomes clear that the RJUKF finds fewer correct
exit gates. This stems from a relatively low number of agents drawing new exit
gates (s = b) at each reversible jump step. Not enough agents are choosing
new gates resulting in slower convergence. For large populations (n = [20,30])
increasing the number of agents who draw new gates (s > 10) can resolve
this. However for very large populations n >> 100 often no step size is large
enough and better methods of drawing new gates are required. Too many agents
drawing new gates results in the candidate filter being unlikely to draw a ‘good’
combination of gates and never being accepted.

To observe the error in agent position, the grand median error metric (9) is
calculated across all 50 model runs for each population and jump window pair;
see Figure 8. For jump window R = 5 there is near constant error over the
populations. The RJUKF quickly finds the correct gates, tracking agents with
error proportional to the observation noise. These errors align with those seen
in other work [24]. For R = 10 the position error increases with population.
The RJUKF scans more slowly and takes more time to find the correct gate
combinations for a larger number of agents. If an agent’s correct gate is not
found quickly, it diverges from the truth giving a large error in position.

For the highest jump window R = 20 the RJUKF performs the least well for
all populations, although still better than would be the case were there no gate
estimation. Regularly agents do not converge to their gate or do so very late
giving large errors in position. It is clear from Figure 8(b) that there are strong
outliers for all populations but the lowest population n = 10 is worst affected.
There are a number of potential reasons for this. First, a lower population model
is more sparse. Agents move through the model quickly without colliding and
a wrong choice of gate leads to a larger error. This is compounded by the
fact the RJUKF has less time to look for each agent’s correct gate. For higher
populations with regular collisions and crowding, agents move more slowly and
find their correct exit gates before moving too far. Second, smaller populations
are less robust to outliers. Using medians alleviates this problem somewhat,
but only a small number of agents need to perform poorly to inflate the overall
error.

As an aside, it should be noted that the results of this experiment cannot
compared directly to those of experiment 1. This is because in experiment 1
the exit gates of the agents were known, whereas here they need to be inferred.
However, the size of the errors at the beginning of the simulation illustrated in
Figure 7 provide an illustration of how poorly the UKF would perform if agents’
exit gates were chosen randomly. The error reduces substantially as the UKF
is able to correctly estimate the exit gates; this reduction would not take place
without the gate inference.

5. Conclusions

This paper has demonstrated how the combination of an Unscented Kalman
Filter (UKF) and elements of the Reversible Jump MCMC algorithm can be

19

IS

w

i
~N
-

j=
c
T

<
=
T

c

I

c
(G}

o
[N}

Reversible Jump Window

o
-

20
Numbers of Agents

(a) Choropleth

agents = 10.0 agents = 20.0 agents = 30.0

.

o

|
[y
o

.
.

|
N
o

‘.
) .))) .

5.0 10.0 20.0 5.0 10.0 20.0 5.0 10.0 20.0
jump_rate jump_rate jump_rate

Log Grand Median L2s (log(metres

(b) Boxplot

Figure 8: Error in the agent positions for varying populations and jump windows. Overall
the error increases with higher populations and jump windows

combined to create an efficient algorithm that can scan a set of filters (parame-
terised by categorical variables) and filter over continuous variables simultane-
ously. This offers an advantage over previous attempts to conduct data assimila-
tion on agent-based models that have largely used particle filters [14, 20, 10, 15]
as the UKF can perform well with a considerably smaller ensemble size. Some
previous work has demonstrated the successful of application of the UKF to
crowd dynamics [49] but there is very little research using the UKF to estimate
categorical variables due to the requirement of Gaussian innovations. Hence the
work here presents a useful and novel contribution to the literature.

The RJUKF method was demonstrated on a simulation of a crowd of pedes-
trians, StationSim. The model was designed as a relatively simple descrip-
tion of pedestrian movement, and it is likely that more developed pedestrian
models—such as [1, 9, 2, 8, 47]—will more faithfully represent the true under-
lying pedestrian dynamics. Although the behaviour of the agents in the model

20

was relatively simple, the model environment was nevertheless designed to re-
flect Grand Central Terminal in New York City. The real pedestrian data were
not used in the data assimilation experiments directly, but the underlying agent-
based model was calibrated using real data. The results demonstrate that the
RJUKEF is able to successfully estimate the exit gate categorical agent parame-
ter and, as such, more accurately estimate the true behaviour of the underlying
system. Having demonstrated the utility of the RJUKF approach, immediate
future work will begin to experiment with the method’s applicability to a wider
range of applications, including more advanced pedestrian models as well as
entirely different systems for which the combination of agent-based modelling
and data assimilation offers the most appropriate simulation approach.

There are, of course, some drawbacks. The bottleneck of this method is
currently the stepwise fashion in which new exit gate combinations are drawn.
This technique can struggle to find the global optimum in higher dimensional
cases. As such, scanning techniques such as simulated annealing and Hamilto-
nian Monte Carlo [42, 41, 50] are required. Other data assimilation techniques
such as the particle filter [21] provide faster convergence but struggle with effi-
ciency in real-time due to the large number of particles necessary. There may
be a compromise with hybrid techniques such as the unscented particle filter
[51] that need fewer particles due to “smarter” choices of exit gate.

Furthermore, the calculation of agent gate distributions using a cone of vision
can be naive. A generalised method for drawing new gates is needed particu-
larly for non-linear paths and more complex topographies. There are a number
of potential alternatives including time series and machine learning techniques
[52, 53]. It would also be desirable to obtain theoretical results relating to ob-
servability, i.e. whether or not the agents’ positions are sufficient to infer their
exit gates. However, ABMs are typically formulated as computer programs,
rather than time dependent systems of equations, which present a significant
challenge for the standard control theory paradigm [54]. With respect to the
input data, in the current implementation it is assumed that pedestrians can
be tracked as they move through the environment. Such data are relatively
rare for real environments and they have numerous potential ethical and pri-
vacy implications. It would be better to use aggregate data (such as estimates
of crowd density, or anonymous counts of people entering or leaving different
parts of the environment) and as such methods to map from these simple data
domains to more complex model domains [e.g. 20], could be integrated. This
will be essential as the methods mature and applications move towards real,
‘live’ simulations [55].

Despite these problems, this approach shows promise in overcoming some of
the limitations in the application of DA and ABMs. Future work will: (1) aim
to validate UKF/RJUKF results by applying the algorithm to real data (i.e.
moving beyond the identical-twin experiment). This will require augmenting
the UKF to estimate further attributes including agent speed and observation
association and possibly improvements to the StationSim model, or the adoption
of a more comprehensive crowd simulation, to reduce model discrepancy. (2)
Implement extensions to the RJUKF methodology, such as an improvement to

21

its model scanning ability—e.g. through the use of more than 2 UKF filters
or more broadly through scanning MCMC techniques—or a generalisation to
more complex discrete data with more complex distributions including count
and aggregate data. (3) Implement further efficiency improvements including
a variable dimension RJUKF that could be useful in scaling to larger ABMs.
(4) Conduct a comparison of the RIUKF with other similar real-time scanning
techniques particularly their efficiency to accuracy ratio.

Appendices
A. UKF Definition

To define the UKF, the dynamic state space model is used. Let x; € R
denote the true a-dimensional model state at the discrete observation time
ty,k € 0,1,2,.... This is the state of agent attributes which we are interested
in knowing but may not directly observe. We assume that the model state is
updated according to the difference equation,

Try1 = f(@, @), (10)

where the process noise gj, is a random variable with known probability distri-
bution that captures the stochasticity of the model. The transition function
f represents the agent-based model’s stepping mechanism, which for Station-
Sim moves each agent towards its desired exit whilst avoiding collisions with
other agents. The b-dimensional observation vector y;, € R?, which can be fully
observed, is determined from the true state-vector via

Yr+1 = h(Try1,7k), (11)

where 7, captures the sensor noise. Recall that in this application only the po-
sitions of the agents are observed. The measurement function A simply extracts
agent positions from the single run of StationSim that was used to generate the
pseudo-truth data.

Under the assumption that the true and observed model states are multivari-
ate Gaussian distributed with means jiz, and piyr, and covariances ¥, and Xy
respectively, i.e. o ~ Ng(tbzk, Xar) and yi ~ Np(tyk, Lyr), data assimilation
proceeds via two steps [5, 46]:

(i) In the forecast step, an ensemble of sigma points X are computed deter-
ministically from the mean and covariance of the posterior distribution for
the current true model state xi. The sigma points are then evolved inde-
pendently forward in time via Equation (10) to give a sample of forecasted
states Xgt1 = f(Xk, ¢x). The sigma points are used to compute a forecast
of the mean and covariance of the true state at time ¢ by applying the
Unscented Transform function [23]. Forecasts for the observation vector
Yr+1 are also computed in a similar way using (11) on the forecasted sigma
points and again computing the unscented mean and covariance.

22

(ii) The update step, following the observations at time tx1, standard Kalman
filter practice [22] is used to calculate a final assimilated estimate of the
model state zi11 and its parameters fi;(x41), Za(k+1)- Lhis is taken as
the new posterior distribution of the current model state and fed back into
the forecast step to calculate new sigma points.

These steps are then iterated until the final observation.

The UKF requires user choices for both the type of sigma points used and
their weightings. For simplicity, we use the standard choice of Merwe’s Scaled
Sigma Points and weights [5]. This set of sigma points is constructed using the
current model state mean and covariance and three tuning parameters «, 3, and
k. The concept is similar to that of an n-dimensional confidence interval, using
a central mean sigma point as well as 4n outer sigma points centred about the
mean some distance away depending on the covariance structure. Given our
high-dimensional state-space, we adopt the recommended [5] tuning parameter
values (a, 8, %) = (0.3,2,0). Values for the process and sensor noise are chosen
as additive Gaussian noise with 0 mean and a/b-dimensional covariances I, and
I, respectively.

B. Variable Dimension RJUKF

This work above assumes the StationSim model instances have fixed dimen-
sions. No agents leave or enter the model so this assumption is reasonable.
However future application to variable dimensional states is desired. To do this
it is then required to calculate the proposal densities and Jacobian matrix for
equation 1.

To calculate the desired quantities the agents in both filters are split into 3
parts. First, common agents X that occur in both filters. These are agents in
both sets and can be still be compared directly. For these agents the process
is the same as in the invariable dimension case. Second, are agents that only
exist in one filter. These could be agents that have entered or left one filter
but not the other. Agents in the first and second filter only are denoted by sets
A and B respectively. These agents cannot be compared directly. To compare
these agents two sets of auxiliary variables U and V must be added. In essence,
these auxiliary variables act as fake agents to be added to both filters to allow
for direct comparison. Variables U correspond to agents B missing from the
first filter. Likewise, V correspond to the A agents missing from the second
filter. This results in two augmented states each with |X + A + B| agents to be
compared as follows.

X X
Al = |V
U B

The question is then how to calculate the proposal densities for these U and
V auxiliary agents. It is simple to use the actual densities of the agents A and B

23

they correspond to. For example, the set of agents U represent a set fake agents
that correspond 1 to 1 with B. It is natural then to use the posterior distribution
of these B agents calculated in the candidate UKF as the proposal density of
U. This will be a multivariate Gaussian distribution whose parameters (up, Xp)
are easy to calculate. Similarly, the proposal density of set V' is given as the
Gaussian distribution of A. Hence the final proposal densities are just a ratio of
two multivariate Gaussian distributions for the positions of the A and B agents
respectively. U and V are then multivariate Gaussian with means pp, pa and
variances Y. 4, %p respectively. Per equation 1 the density for the candidate
auxiliary variates V' are in the numerator and U in the denominator.

r(uy) _ (V)

r(uk) — r(u)
_BalE | exp(=3(z —) 0 (o — 1))
2517 exp(—3(2k — nB) "S5 (2 — 1p))

To calculate the Jacobian is also simple, since both augmented states are
the same size with a 1 to 1 correspondence the Jacobian is simply the identity
matrix as seen in the RSH case. This also has an easy to calculate determinant
of 1.

For example, given the 2n dimensional state vector of positions for the cur-
rent g = (T1,Y1, s Tn,Yn) and candidate p' = (x1 91 ...,z yn') filters re-
spectively. The correspondence is as follows:

/
r1 =T
o
Y1 =Y
/

Ty =T,
.
Yn = Yp

The Jacobian and its determinant are calculated as follows given the Kro-
necker delta d; ; for matrix row ¢ and column j.

1, ifi=j,

8 i = 12
7 {Q if i # j. (12)

24

= |5

OYn OYn
oz " Oyl

1 ... 0

0o ... 1
= 8441

:|12n‘

=1

Hence the proposal densities and Jacobian are calculated as desired.

C. StationSim Implementation

StationSim is an agent-based model where each agent has the objective of
crossing a rectangular environment. To fulfill this objective, agents must follow
three simple rules:

1. Try to follow an ideal path (linear) towards their chosen exit point.

2. If the ideal path is blocked (e.g. by an agent or other obstacle), try to
move sideways to avoid the obstruction.

3. If both the ideal path and the lateral positions are blocked, stay still until
one of them becomes vacant.

Mathematically these rules were implemented as follows. Consider that
agent 7 is in the position 7+ at time ¢. The ideal path towards the exit point
during a time 7 is given by the linear equation:

Ti (t47) = Tie + Vidi 4T, (13)

where for the ith agent v; is the desired speed and czi,t is a unit vector that
indicates the destination (exit gate position). To verify if it is possible perform
this movement, the collision time between agent ¢ with all other agents and all
edges of the station is computed. The time that agents ¢ and j will take to
collide is determined by

—AT- A7 —d
At = S St 14
bij AG-AT (14)

25

where A7 and Av are the differences between the vector positions and velocities
of two agents ¢ and j in time ¢, and ¢ = 1 m is the sum of agents ¢ and j’s radii.
If At;; > 7 for all j # 4, then no collision between agents was detected in the
time interval ¢ — ¢ 4+ 7. The collision time between an agent ¢ and a vertical
wall is n
Aty = L2 =TT T (15)
Vi
where w, is the z-position of the vertical wall, o; = 0.5 m is the agent ¢ radius,
and x; and v,; are the horizontal position and velocity of the agent i. If v,; < 0,
then the wall is on the left of the agent and the positive sign in (15) is used.
Similarly, if v,; > 0 then the wall is on the right of the agent and the negative
sign in (15) is used. If v,; = 0 then the agent is either stationary or moving
vertically and so does not collide with the wall. The time until collision between
the agent ¢ and a horizontal wall can be obtained through an analogous equation.
Again, if At; > 7 for all walls, then no collision between the agent i and a wall
was detected in the time interval t — ¢ + 7.

Therefore, if At;; and At; are greater than 7 there is no block in the ideal
path in the time interval ¢ and ¢ + 7, and the agent ¢ will follow rule number 1.
Otherwise the agent will try to move laterally (rule number 2). In this scenario,
the agent ¢ will try to move from position 7 ; to position

P (tar) = it + N (04,07), (16)

where cht is a unit vector obtained from a 90° rotation (randomly clockwise or

counter-clockwise) of the vector c?,” The random size of the step is controlled by
the N(o;,0?) term and ensures that the lateral step is consistent with the size of
the agent . Finally, if the position 75 ;1) is available, then the agent i can fulfill
the rule number 2, otherwise, the agent will follow rule number 3. Putting it all
together, the model state at time t is defined as S; = {s1,4,52,¢,53,¢,- -, 50t}
where n is the number of agents and s;; = {7 ., aAli,t, v; } is the agent i state at
time ¢.

Despite the agents following 3 simple rules, the possible outcomes are diverse
and include the possibility of crowd formation. This is due to the outcome
dependence with interactions between agents and consequent random decisions.
Since interactions are so important for this model, we chose to follow a classic
approach to identify collisions such that Equations (14) and (15) were defined
using hard disc model standard formulae described in [56].

For the case of using the StationSim model with the Grand Central Terminal
data, the addition of a circular obstacle in the environment was necessary. The
obstacle was implemented as a static hard disc with a 4 m radius and the
collision time between the agent ¢ and the obstacle was determined through the
Equation (14).

The StationSim was implemented in Python and the full code is open source
and publicly available. The source code to run the StationSim model as well as
the scripts and instructions to run the RJUKF experiments can be found in the

26

‘Data Assimilation for Agent-Based Modelling’ (DUST) project GitHub repos-
itory: https://github.com/urban-analytics/dust. The UKF and RJUKF
algorithms are executed using a high memory node from Leeds’ ARC4 HPC sys-
tem*. Run times vary depending on the number of agents. There are currently
no detailed run time statistics due to further efficiency improvements that are
being made. The major run-time bottleneck is currently the repeated running
of the python based StationSim model.

References

[1]

2]

D. Helbing, Agent-based modeling, in: Social self-organization, Springer,
2012, pp. 25-70.

M.-L. Xu, H. Jiang, X.-G. Jin, Z. Deng, Crowd Simulation and Its Appli-
cations: Recent Advances, Journal of Computer Science and Technology
29 (2014) 799-811. d0i:10.1007/s11390-014-1469-y.

J. A. Ward, A. J. Evans, N. S. Malleson, Dynamic calibration of agent-
based models using data assimilation, Royal Society Open Science 3 (2016).
doi:10.1098/rsos . 150703.

E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability,
Cambridge University Press, 2003.

E. A. Wan, R. Van Der Merwe, The unscented kalman filter for nonlin-
ear estimation, in: Proceedings of the IEEE 2000 Adaptive Systems for
Signal Processing, Communications, and Control Symposium (Cat. No.
00EX373), Ieee, 2000, pp. 153-158.

R. J. Rockett, A. Arnott, C. Lam, R. Sadsad, V. Timms, K.-A. Gray, J.-S.
Eden, S. Chang, M. Gall, J. Draper, et al., Revealing covid-19 transmission
in australia by sars-cov-2 genome sequencing and agent-based modeling,
Nature medicine (2020) 1-7.

S. Swarup, A. Marathe, M. V. Marathe, C. L. Barrett, 26. simulation
analytics for social and behavioral modeling, Social-Behavioral Modeling
for Complex Systems (2019).

C. N. van der Wal, D. Formolo, M. A. Robinson, M. Minkov, T. Bosse, Sim-
ulating Crowd Evacuation with Socio-Cultural, Cognitive, and Emotional
Elements, in: J. Mercik (Ed.), Transactions on Computational Collec-
tive Intelligence XXVII, volume 10480, Springer International Publishing,
Cham, 2017, pp. 139-177. doi:10.1007/978-3-319-70647-4_11.

4nttps://arcdocs.leeds.ac.uk/systems/arc4.html

27

[9]

[10]

[11]

[12]

[17]

B. Zhou, X. Wang, X. Tang, Understanding collective crowd behaviors:
Learning a Mixture model of Dynamic pedestrian-Agents, in: 2012 IEEE
Conference on Computer Vision and Pattern Recognition, IEEE, Provi-
dence, RI, 2012, pp. 2871-2878. doi:10.1109/CVPR.2012.6248013.

N. Malleson, K. Minors, L.-M. Kieu, J. A. Ward, A. West, A. Heppenstall,
Simulating crowds in real time with agent-based modelling and a particle
filter, Journal of Artificial Societies and Social Simulation 23 (2020) 3.
doi:10.18564/ jasss.4266.

P. J. Green, Reversible jump markov chain monte carlo computation and
bayesian model determination, Biometrika 82 (1995) 711-732.

O. Talagrand, The Use of Adjoint Equations in Numerical Modelling of the
Atmospheric Circulation, in: A. Griewank, G. F. Corliss (Eds.), Automatic
Differentiation of Algorithms: Theory, Implementation, and Application,
SIAM, Philadelphia, PA, 1991, pp. 169-180.

N. B. Othman, E. F. Legara, V. Selvam, C. Monterola, A data-driven agent-
based model of congestion and scaling dynamics of rapid transit systems,
Journal of Computational Science 10 (2015) 338-350. doi:10.1016/j. jocs.
2015.03.006.

M. Wang, X. Hu, Data assimilation in agent based simulation of smart envi-
ronments using particle filters, Simulation Modelling Practice and Theory
56 (2015) 36-54. doi:10.1016/j.simpat.2015.05.001.

L.-M. Kieu, N. Malleson, A. Heppenstall, Dealing with uncertainty in
agent-based models for short-term predictions, Royal Society Open Science
7 (2020) 191074. doi:10.1098/rsos.191074.

D. J. B. Lloyd, N. Santitissadeekorn, M. B. Short, Exploring data
assimilation and forecasting issues for an urban crime model, Euro-
pean Journal of Applied Mathematics 27 (2016) 451-478. doi:10.1017/
S0956792515000625.

F. Oloo, K. Safi, J. Aryal, Predicting Migratory Corridors of White Storks,
Ciconia ciconia, to Enhance Sustainable Wind Energy Planning: A Data-
Driven Agent-Based Model, Sustainability 10 (2018) 1470. doi:10.3390/
sul10051470.

P. Del Moral, Nonlinear filtering: Interacting particle resolution, Comptes
Rendus de ’Académie des Sciences-Series I-Mathematics 325 (1997) 653
658.

G. Evensen, The ensemble kalman filter: Theoretical formulation and prac-
tical implementation, Ocean dynamics 53 (2003) 343-367.

28

[20]

[31]

[32]

J. Lueck, J. H. Rife, S. Swarup, N. Uddin, Who Goes There? Using an
Agent-based Simulation for Tracking Population Movement, in: Winter
Simulation Conference, Dec 8 - 11, 2019., National Harbor, MD, USA,
2019.

P. Ternes, J. A. Ward, A. J. Heppenstall, V. Kumar, L.-M. Kieu, N. Malle-
son, Using data assimilation to reduce uncertainty in an agent-based pedes-
trian simulations in real time, Philosophical Transactions A (2020). (in
review).

R. E. Kalman, A new approach to linear filtering and prediction problems,
Journal of Basic Engineering (1960).

J. K. Uhlmann, Dynamic map building and localization: New theoretical
foundations, Ph.D. thesis, University of Oxford Oxford, 1995.

R. Clay, L.-M. Kieu, J. A. Ward, A. Heppenstall, N. Malleson, Towards
real-time crowd simulation under uncertainty using an agent-based model
and an unscented kalman filter, in: International Conference on Practical
Applications of Agents and Multi-Agent Systems, Springer, 2020, pp. 68—
79.

L. Yin, Z. Deng, B. Huo, Y. Xia, C. Li, Robust derivative unscented kalman
filter under non-gaussian noise, IEEE Access 6 (2018) 33129-33136.

M. Raitoharju, S. Ali-Loytty, R. Piché, Binomial gaussian mixture filter,
EURASIP Journal on Advances in Signal Processing 2015 (2015) 36.

H. Tanizaki, Kalman filter model with qualitative dependent variables, The
Review of Economics and Statistics (1993) 747-752.

P. X.-K. Song, Monte carlo kalman filter and smoothing for multivariate
discrete state space models, Canadian Journal of Statistics 28 (2000) 641
652.

C. Andrieu, M. Davy, A. Doucet, Efficient particle filtering for jump markov
systems. application to time-varying autoregressions, IEEE Transactions
on signal processing 51 (2003) 1762-1770.

F. Deng, J. Chen, C. Chen, Adaptive unscented kalman filter for parameter
and state estimation of nonlinear high-speed objects, Journal of Systems
Engineering and Electronics 24 (2013) 655-665.

A. Van Der Linde, Dic in variable selection, Statistica Neerlandica 59
(2005) 45-56.

C. M. Pooley, G. Marion, Bayesian model evidence as a practical alternative
to deviance information criterion, Royal Society open science 5 (2018)
171519.

29

[33]

[34]

[38]

[39]

[42]

[43]

[44]

[45]

K. Xiong, T. Liang, L. Yongjun, Multiple model kalman filter for attitude
determination of precision pointing spacecraft, Acta Astronautica 68 (2011)
843-852.

J. Schulz, C. Hubmann, J. Lochner, D. Burschka, Multiple Model Un-
scented Kalman Filtering in Dynamic Bayesian Networks for Intention Es-
timation and Trajectory Prediction, in: 2018 21st International Confer-
ence on Intelligent Transportation Systems (ITSC), 2018, pp. 1467-1474.
doi:10.1109/ITSC.2018.8569932, iSSN: 2153-0017.

M. Edali, G. Yiicel, Exploring the behavior space of agent-based simu-
lation models using random forest metamodels and sequential sampling,
Simulation Modelling Practice and Theory 92 (2019) 62-81.

R. J. Barker, W. A. Link, Bayesian multimodel inference by rjmcmec: A
gibbs sampling approach, The American Statistician 67 (2013) 150-156.

P. Craciun, M. Ortner, J. Zerubia, Integrating rjmcmc and kalman filters
for multiple object tracking, in: GRETSI-Traitement du Signal et des
Images, 2015.

Z. Huibo, P. Quan, Pf-ukf-rjmcmec approaches for radar target-tracking, in:
2009 International Conference on Information Technology and Computer
Science, volume 2, IEEE, 2009, pp. 373-376.

D. J. Spiegelhalter, N. G. Best, B. P. Carlin, A. Van der Linde, The
deviance information criterion: 12 years on, Journal of the Royal Statistical
Society: Series B: Statistical Methodology (2014) 485-493.

A. Theorell, K. N6h, Reversible jump mcmec for multi-model inference in
metabolic flux analysis, Bioinformatics 36 (2020) 232-240.

R. Astroza, L. T. Nguyen, T. Nestorovi¢, Finite element model updating
using simulated annealing hybridized with unscented kalman filter, Com-
puters & Structures 177 (2016) 176-191.

M. Betancourt, M. Girolami, Hamiltonian monte carlo for hierarchical
models, Current trends in Bayesian methodology with applications 79
(2015) 2-4.

R. A. Levine, A note on markov chain monte carlo sweep strategies, Journal
of Statistical Computation and Simulation 75 (2005) 253-262.

S. J. Julier, J. K. Uhlmann, Unscented filtering and nonlinear estimation,
Proceedings of the IEEE 92 (2004) 401-422.

R. Van Der Merwe, et al., Sigma-point Kalman filters for probabilistic in-
ference in dynamic state-space models, Ph.D. thesis, OGI School of Science
& Engineering at OHSU, 2004.

30

[46]

[55]

[56]

R. Van Der Merwe, E. A. Wan, The square-root unscented kalman filter
for state and parameter-estimation, in: 2001 IEEE international confer-
ence on acoustics, speech, and signal processing. Proceedings (Cat. No.
01CH37221), volume 6, IEEE, 2001, pp. 3461-3464.

B. Liu, H. Liu, H. Zhang, X. Qin, A social force evacuation model driven by
video data, Simulation Modelling Practice and Theory 84 (2018) 190—-203.
doi:10.1016/j .simpat.2018.02.007.

T. Berry, T. Sauer, Adaptive ensemble kalman filtering of non-linear sys-
tems, Tellus A: Dynamic Meteorology and Oceanography 65 (2013) 20331.

G. Chen, X. Meng, Y. Wang, Y. Zhang, P. Tian, H. Yang, Integrated
wifi/pdr/smartphone using an unscented kalman filter algorithm for 3d
indoor localization, Sensors 15 (2015) 24595-24614.

W. M. Farr, I. Mandel, D. Stevens, An efficient interpolation technique for
jump proposals in reversible-jump markov chain monte carlo calculations,
Royal Society open science 2 (2015) 150030.

R. Van Der Merwe, A. Doucet, N. De Freitas, E. A. Wan, The unscented
particle filter (2000).

A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, S. Savarese,
Social Istm: Human trajectory prediction in crowded spaces, in: Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 961-971.

Z. Yan, Traj-arima: a spatial-time series model for network-constrained
trajectory, in: Proceedings of the Third International Workshop on Com-
putational Transportation Science, 2010, pp. 11-16.

B. Herd, S. Miles, P. McBurney, M. Luck, Compositional transient reacha-
bility analysis for agent-based simulations., Stud. Inform. Univ. 10 (2012)
87-118.

S. Swarup, H. S. Mortveit, Live simulations, in: Proceedings of the 19th
International Conference on Autonomous Agents and MultiAgent Systems,
2020, pp. 1721-1725.

J. M. Haile, Molecular Dynamics Simulation: Elementary Methods, Mono-
graphs in Physical Chemistry Series, Wiley, 1992.

31

	Introduction
	Related Work
	Methods
	Reversible Jump Unscented Kalman Filter (RJUKF)
	Drawing new categorical parameters
	Acceptance Probability

	Data Assimilation with an Unscented Kalman Filter (UKF)
	StationSim
	Error Metrics

	Experiments
	Experiment 1 – Filtering, Observation and Prediction
	Experiment 2 – RJUKF
	Single Run Diagnostics
	Multiple Run Results

	Conclusions
	UKF Definition
	Variable Dimension RJUKF
	StationSim Implementation

