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SUMMARY

Cleavage and polyadenylation factor (CPF/CPSF) is

a multi-protein complex essential for formation of

eukaryotic mRNA 3ʹ ends. CPF cleaves pre-mRNAs

at a specific site and adds a poly(A) tail. The cleav-

age reaction defines the 3ʹ end of the mature

mRNA, and thus the activity of the endonuclease

is highly regulated. Here, we show that reconstitu-

tion of specific pre-mRNA cleavage with recombi-

nant yeast proteins requires incorporation of the

Ysh1 endonuclease into an eight-subunit ‘‘CPFcore’’

complex. Cleavage also requires the accessory

cleavage factors IA and IB, which bind substrate

pre-mRNAs and CPF, likely facilitating assembly

of an active complex. Using X-ray crystallography,

electron microscopy, and mass spectrometry, we

determine the structure of Ysh1 bound to Mpe1

and the arrangement of subunits within CPFcore.

Together, our data suggest that the active

mRNA 3ʹ end processing machinery is a dynamic

assembly that is licensed to cleave only when all

protein factors come together at the polyadenyla-

tion site.

INTRODUCTION

Eukaryotic protein-coding genes are transcribed by RNA poly-

merase II (Pol II) in the nucleus. The nascent pre-mRNA is cap-

ped at the 5ʹ end, spliced, and cleaved and polyadenylated at

the 3ʹ end before being exported to the cytoplasm as a mature

mRNA for translation. The cleavage and polyadenylation factor

(CPF in yeast and CPSF in metazoans) is a large �1-MDa

multifunctional complex with 14 different protein subunits in

Saccharomyces cerevisiae (Casañal et al., 2017). CPF/CPSF is

frequently dysregulated in viral infections and cancer (Mandel

et al., 2008; Shi and Manley, 2015; Xiang et al., 2014).

To initiate pre-mRNA 3ʹ end processing and transcription

termination, the nuclease enzyme Ysh1 must be correctly posi-

tioned on the pre-mRNA 3ʹ UTR and activated for cleavage.

Once the cleavage reaction has occurred, the poly(A) polymer-

ase enzyme Pap1 can access the newly generated 3ʹ-OH group

to add a poly(A) tail of �80 nt in length (Butler and Platt, 1988).

Recruitment of the Rat1 5ʹ/3ʹ exonuclease to the newly gener-

ated downstream fragment leads to Pol II termination (Kim et al.,

2004). CPF also dephosphorylates serine 5 and tyrosine 1 in the

C-terminal domain of Pol II to regulate transcription (Rosado-

Lugo and Hampsey, 2014; Schreieck et al., 2014).

In addition to CPF, two cleavage factors (CFs) are required for

efficient 3ʹ end processing: CF IA, a complex of Rna14, Rna15,

Pcf11, and Clp1; and CF IB (Hrp1) (Gordon et al., 2011; Gross

and Moore, 2001; Kessler et al., 1997). These essential factors

bind the pre-mRNA substrate via RNA-recognition motif (RRM)

domains in Rna15 and Hrp1 (Leeper et al., 2010; Pancevac

et al., 2010) and zinc fingers in Pcf11 (Guéguéniat et al., 2017;

Yang et al., 2017).

The RNA sequence requirements for cleavage are poorly un-

derstood. In higher eukaryotes, several cis-acting sequences

have been identified, most notably the AAUAAA motif, located

�10–30 nt upstream of the cleavage site (Fitzgerald and Shenk,

1981; Manley et al., 1985). The cleavage site itself is usually Y(A)n
(where Y is a pyrimidine) and is flanked by U-rich elements

(Proudfoot, 2011). In yeast, an upstream UAUAUA ‘‘efficiency

element’’ further enhances CPF nuclease activity (Guo and Sher-

man, 1996; Irniger and Braus, 1994). However, sequences di-

recting yeast 3ʹ end formation are highly degenerate, and the

above motifs are absent from many pre-mRNAs (Tian and

Graber, 2012).

Mechanistic analysis of RNA recognition and nuclease activity

have been historically challenging due to low purity and yield of

purified CPF and the lethality of most mutants. This has been

further confounded by the poor solubility of many CPF subunits

in isolation and the lack of a suitable recombinant system to
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dissect the roles of CPF components. In vivo studies and recon-

stitution assays using extracts found that many of the CPF sub-

units were required for nuclease activity (Zhao et al., 1999)

and that Ysh1/CPSF73 is the enzymatic component (Chanfreau

et al., 1996; Dominski, 2010; Jenny et al., 1996; Ryan

et al., 2004).

Ysh1 is highly conserved (53% sequence identity between the

yeast and human nuclease domains). A crystal structure of the

nuclease domain of human CPSF73 showed that it is comprised

of ametallo-b-lactamase domain and a b-CASPdomain, with the

zinc-coordinated active site residing at their interface (Mandel

et al., 2006). In the structure, CPSF73 is in a closed conformation

with no clear path for substrate RNA to the active site.

We recently determined the overall architecture of CPF,

demonstrating that the CPF subunits are organized into three

functional modules based around the enzymatic activities of

the complex: nuclease, polymerase, and phosphatase (Casañal

et al., 2017). We used electron cryomicroscopy (cryo-EM) to

study the polymerase module and found that the Cft1/

CPSF160, Pfs2/WDR33, and Yth1/CPSF30 subunits are inti-

mately associated, forming a scaffold for assembly of an active

polyadenylation complex (Casañal et al., 2017). Studies of the

human complex confirm that this assembly is highly conserved

and recognizes the mammalian ‘‘AAUAAA’’ motif (Clerici et al.,

2017, 2018; Sun et al., 2018).

In contrast, there is little mechanistic information available on

the nuclease module, which is composed of the endonuclease

Ysh1/CPSF73, the pseudo-nuclease Cft2/CPSF100, and the

multi-domain protein Mpe1/RBBP6 (Casañal et al., 2017). We

also previously identified an alternative heterotrimeric complex

of Ysh1, Mpe1, and Yjr141w/Ipa1, a protein of unknown func-

tion that is essential for yeast viability and has been implicated

in polyadenylation (Casañal et al., 2017; Costanzo et al., 2016).

Here, we define the interaction interfaces among Ysh1, Mpe1,

and Yjr141w and show that the nuclease module alone is cata-

lytically inactive. We demonstrate that Ysh1 is only primed for

activation upon incorporation into ‘‘CPFcore,’’ an eight-subunit

complex. We propose a model for assembly of the CPFcore
complex, providing insight into the mechanisms of pre-mRNA

cleavage.

RESULTS

The Catalytic Domain of Ysh1 Interacts Directly with the

Mpe1 Ubiquitin-like Domain

To understand the assembly and structure of the CPF nuclease

module, we attempted to express and purify a Ysh1-Mpe1-Cft2

complex. Although these subunits have direct contacts within

native CPF (Casañal et al., 2017), the recombinant nuclease

module was not stable in solution; Cft2 dissociated during anion

exchange or size exclusion chromatography, leaving a dimeric

Ysh1-Mpe1 complex. To characterize the Ysh1-Mpe1 interac-

tion, we made a series of Ysh1 and Mpe1 domain truncations

(Figure 1A) and co-expressed these in insect cells, along with

Cft2. A StrepII-tag on Mpe1 was used to pull down interacting

components from cell lysates. Full-length Mpe1 co-purified

with Ysh1, but after removal of residues 1–78 (Mpe1-4) or

1–161 (Mpe1-5), this interaction could no longer be detected

(Figure 1B). This N-terminal region of Mpe1 that is required for

Ysh1 interaction contains a ubiquitin-like (UBL) domain.

In the pull-down assays, Mpe1 interacted with full-length Ysh1

and the catalytic N-terminal domain (Ysh1-N), but not with the

C-terminal domain (Ysh1-C) (Figure 1B). Removal of the Ysh1

C-terminal domain and parts of Mpe1 both reduced the interac-

tion with Cft2. Together, these data suggest that the N-terminal

catalytic domain of Ysh1 interacts with the Mpe1 UBL domain.

To further assess the stability of these interactions, complexes

identified by pull-down were subjected to anion exchange chro-

matography. The interactions between Ysh1 and Mpe1 con-

structs were stable, whereas Cft2 dissociated during purification

(Figure 1C), consistent with Cft2 dissociation in earlier attempts

to purify the Ysh1-Mpe1-Cft2 complex.

Structure of Ysh1 Catalytic Domain Bound to Mpe1 UBL

To investigate the molecular details of the Ysh1-Mpe1 interac-

tion, we determined the X-ray crystal structure of a complex be-

tween the catalytic domain of Ysh1 (residues 1–473) and the UBL

domain of Mpe1 (residues 1–120). The structure was refined to

2.3 Å resolution (Table 1). Ysh1 adopts a globular fold comprised

of a metallo-b-lactamase and b-CASP domain (Figure 1D),

similar to the human 3ʹ endonuclease CPSF73 and yeast Cft2

(Figure S1A) (Mandel et al., 2006). Density was visible for a

b-CASP a helix (residues 290–310) that was disordered in the

CPSF-73 structure (Figures S1A and S1B). A loop between res-

idues 114 and 126 was disordered in both structures and could

not be modeled.

Residues H68, H70, D72, H73, H163, D184, and H430

comprise the active site, coordinating two Zn2+ ions with octahe-

dral geometry (Figure 1E). A water molecule occupies the posi-

tion for the activated hydroxyl nucleophile between the two

metal ions (Mandel et al., 2006). The catalytic core is located in

a large internal solvent-filled cavity at the boundary between

the metallo-b-lactamase and b-CASP domains, with a narrow

tunnel leading to the surface of the enzyme (Figure 1D).

The UBL domain of Mpe1 consists of a central a helix flanked

by a curved 4-stranded b sheet and capped by an additional pair

of short anti-parallel b strands, in the same configuration as the

UBL domain of the human ortholog RBBP6 (root mean square

deviation [RMSD] = 1.36 Å over 452 atoms; (Pugh et al., 2006)).

Beyond that, residues 81–98 and 108–120 are disordered, and

C-terminal residues 99–107 form a short helical turn that packs

against the central a helix.

The interface between Mpe1 and Ysh1 buries an area

of �900 Å2 and involves hydrophobic, polar, and electrostatic

contacts between Mpe1 residues in loops and b strands and

Ysh1 residues on the top surface of the metallo-b-lactamase

domain (Figures 1F and S1C). Docking experiments suggest

that this interface may be conserved in human CPSF73 and

RBBP6 (Figures S1D and S1E).

Mpe1 binds to the Ysh1 metallo-b-lactamase domain next to

the active site tunnel opening. A large basic patch is formed by

contiguous surfaces of both Ysh1 and Mpe1, suggesting a

possible role in RNA binding (Figure 1D). However, in the struc-

ture, Ysh1 remains in a ‘‘closed’’ conformation that is unlikely to

be catalytically active because the active site tunnel is too nar-

row to accommodate the entire RNA substrate. Atomic B factors

1218 Molecular Cell 73, 1217–1231, March 21, 2019



indicate that the metallo-b-lactamase domain is more ordered

than the b-CASP domain, implying that movement within the

latter may activate the enzyme by further opening the tunnel to

the active site (Figure S1B). Compared to the CPSF73 structure,

two helices in the metallo-b-lactamase domain are shifted to-

ward the Mpe1 binding site (Figure S1A), consequently widening
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Figure 1. The Mpe1 UBL Domain Binds to the Ysh1 Catalytic Domain Next to the Active Site Tunnel

(A) Domain diagram of Ysh1 and Mpe1 proteins, with truncations indicated by black lines. ZnK, zinc knuckle.

(B) SDS-PAGE analysis of pull-down experiments following baculovirus-driven co-expression of pairs of Ysh1 and Mpe1 constructs shown in (A), with full-length

Cft2. The tagged Mpe1 constructs (asterisks) were captured by Strep-Tactin resin, and co-purification of Ysh1 and Cft2 was analyzed.

(C) SDS-PAGE analysis of complexes identified in (B) after anion exchange chromatography. The Ysh1-Mpe1 proteins remain associated, but Cft2 dissociates.

(D) X-ray crystal structure of the Ysh1N-terminal catalytic domain (yellow) bound to theMpe1N-terminal UBL domain (orange). N andC termini of bothmodels are

indicated, zinc-coordinating residues are shown in sticks, and zinc ions are spheres. A slice through the complex (right) reveals a narrow tunnel leading to a large

solvent-filled cavity adjacent to the active site. Inset: electrostatic surface potential at pH 7.4. A large basic patch comprising residues from both proteins lies

adjacent to the active site tunnel.

(E) Details of metal ion coordination in the Ysh1 active site.

(F) Details of the interface between Ysh1 and Mpe1. Hydrogen bonds and electrostatic interactions are indicated by green dashed lines. Two orthogonal views

are shown.

See also Figure S1.
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the cleft between the two Ysh1 domains. Such a movement

could be a precursor to full Ysh1 activation.

Mpe1 and Yjr141w Bind Independently to Ysh1 at

Distinct Sites

In addition to the Ysh1-Mpe1 complex, both the Ysh1-Yjr141w

dimer and the trimeric Ysh1-Mpe1-Yjr141w complex could be

purified and were stable in solution. To map the Mpe1 and

Yjr141w binding sites on Ysh1 in more detail, these complexes

were chemically crosslinked then analyzed by mass spectrom-

etry (XL-MS). Many of the observed crosslinks were between

Mpe1 N-terminal residues 1–120 and the N-terminal catalytic

domain of Ysh1 (1–462), consistent with the crystal structure,

but crosslinks were present throughout the Ysh1 sequence

(Table S1; Figure 2A). In contrast, Yjr141w was predominantly

crosslinked to Ysh1 residues 680–779 in the C-terminal domain

(Table S1; Figure 2A). Very few crosslinks between Yjr141w and

Mpe1 were observed, suggesting that these proteins do not

directly interact.

We also analyzed these complexes by hydrogen-deuterium

exchange mass spectrometry (HDX-MS; Figure S2A). By

comparing the rate of deuterium incorporation into Ysh1 pep-

tides in the presence and absence of binding partners, it is

possible to identify Ysh1 regions that become protected or

exposed upon Mpe1 or Yjr141w binding (Figures S2B and

S2C). These analyses indicate that Mpe1 interacts with the

N-terminal catalytic domain of Ysh1 at several sites, primarily

at residues 37–55 and 207–469 (Figure 2B), while Yjr141w inter-

acts with the Ysh1 C-terminal domain at residues 468–495 and

662–698 (Figure 2C). These observations are consistent with

the crosslinking experiments (Figure 2A).

The relative fractional uptake of deuterium also provides an

indication of the disorder of any given peptide. This showed

that in the absence of other CPF subunits, the only well-ordered

regions of the three proteins analyzed were the N-terminal cata-

lytic domain of Ysh1 and the N-terminal UBL and C-terminal

RING domains of Mpe1 (Figures S2B–S2E). Together, HDX and

XL-MS data validated the interactions that we observed in the

crystal structure and also highlighted regions of Ysh1 that may

bind to other parts of Mpe1 (Figures S2F and S2G).

Cryo-EM of a Ysh1-Mpe1-Yjr141w Complex Reveals

Extensive Flexibility

To further investigate the Ysh1-Mpe1 interaction and to deter-

mine how Yjr141w associates with Ysh1, we studied the

177-kDa Ysh1-Mpe1-Yjr141w complex by cryo-EM (Table 2;

Figure 2D). The 2D class averages resembled the crystal struc-

ture (Figure 2E) but a strongly preferred orientation limited the

overall resolution of our 3D reconstruction (Figures 2F and

S2H–S2J). Still, when filtered to 6.0 Å, alpha helices were clearly

identified allowing us to reliably place our crystal structure into

the cryo-EMmap. Interestingly, the only component of the trimer

that aligned well and contributed to the 3D structure was the

57-kDa complex between the Ysh1 catalytic domain and the

Mpe1 UBL domain that we had crystallized. In our cryo-EM

maps, none of the additional Ysh1 regions identified by HDX

as potential Mpe1 binding surfaces were observed to make sta-

ble structural contacts with Mpe1, and Yjr141w was not visible.

Taken together, our crystallography, cryo-EM, and mass

spectrometry data show that the UBL domain of Mpe1 binds

to the N-terminal catalytic domain of Ysh1. The remainder of

Mpe1 appears to be flexible in the absence of other binding part-

ners. The C-terminal domain of Ysh1 interacts with Yjr141w and

Cft2 but is also flexible or disordered in the Ysh1-Mpe1-Yjr141w

trimeric complex (Figure 2F).

Ysh1 Is Primed for Activation by Assembly into an Eight-

Subunit CPFcore Complex

When we tested the activity of the dimeric and trimeric Ysh1-

containing complexes, we found that they were not active in

cleavage assays (see below), consistent with the closed confor-

mation observed in the Ysh1-Mpe1 crystal structure (Figure 1D).

Other CPF subunits may be required for Ysh1 activity and its sta-

ble incorporation into larger complexes. Thus, to determine the

requirements for Ysh1 activation, we created a series of baculo-

virus constructs to produce different subcomplexes of CPF

(Figures 3A and 3B). We were able to purify a stable, Ysh1-con-

taining complex comprising all subunits from the nuclease (Ysh1,

Cft2, and Mpe1) and polymerase (Cft1, Pfs2, Yth1, Fip1, and

Pap1) modules; we refer to this eight-protein assembly as

CPFcore. We also purified cleavage factors CF IA and CF IB

and their subcomplexes (Figures 3A and 3B).

Table 1. Crystallographic Data Collection, Processing, and

Refinement

Data collection

Space group P21

a, b, c (Å) 43.38, 124.27, 63.45

a, b, g (�) 90.0, 103.21, 90.0

Number of reflections 99,955 (4,970)

Resolution range (Å) 62.13–2.28 (2.32–2.28)

Completeness (%) 99.08 (99.38)

Redundancy 3.39 (3.45)

hI/s(I)ia 12.3 (1.3)

CC1/2 0.999 (0.578)

Rmerge 0.065 (1.13)

Refinement

Resolution range (Å) 62.13–2.28

Number of reflections in working set 27,979 (2510)

Number of reflections in free set 1,487 (144)

Rwork/Rfree 0.1726/0.2219

Number of atoms 4,565

Average B-factors (Å2) 72.2

Ramachandran

Favored (%) 95.91

Outliers (%) 0.37

RMSDs

Bonds (Å) 0.003

Angles (�) 0.56

Values for the outer shell are given in parentheses.
aMean I/s(I) is >2.0 at resolutions >2.5 Å. The CC1/2 values (above) were

used to decide resolution cutoff (Karplus and Diederichs, 2012).
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Ysh1-Yjr141w heterodimers. Lines are color-coded as indicated.

(B) Hydrogen-deuterium exchange mass spectrometry difference plot (Ysh1-Mpe1-Yjr141w versus Ysh1-Yjr141w) showing peptides of Ysh1 that are protected

(negative) and exposed (positive) by Mpe1.

(C) Hydrogen-deuterium exchange mass-spectrometry difference plot (Ysh1-Mpe1-Yjr141w versus Ysh1-Mpe1) showing peptides of Ysh1 that are protected

(negative) and exposed (positive) by Yjr141w.

In (B) and (C), triplicate data from four independent color-coded time-points are shown. The significance threshold is indicated by a dotted line. Gray shading

indicates the SD of all charge states and replicates per peptide.

(D) Cryo-EM analysis of the Ysh1-Mpe1-Yjr141w heterotrimer. A representative micrograph at original magnification 3 105,000 and �0.5 mm defocus.

(legend continued on next page)
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First, we tested the ability of CPFcore to perform coupled cleav-

age and polyadenylation.We used the 259-nt 3ʹUTRof theCYC1

transcript as a model pre-mRNA substrate (Butler and Platt,

1988). In the presence of CF IA and CF IB, CPFcore specifically

cleaved CYC1 RNA into two products of the expected size and

added a poly(A) tail to the upstream fragment (Figure 3C). To

determine which subunits were required for cleavage activity,

we tested each of the smaller Ysh1-containing complexes, but

none of them were active (Figure 3D). The requirement for

Ysh1 assembly in an �0.5-MDa complex explains why specific

CPF endonuclease activity had not previously been demon-

strated with recombinant components.

CF IA and CF IB were required for efficient RNA cleavage by

CPFcore (Figure 3D), consistent with their essential roles in 30

end formation; CPFcore had very weak but specific nuclease ac-

tivity without CF IA and CF IB (Figure S3A). CF IA alone (but not

CF IA subcomplexes) activated CPFcore to cleave at the correct

site, but it also promoted cleavage at a secondary site within the

upstream 50 cleavage product (Figure S3B). In contrast, CF IB

alone activated cleavage weakly but at the correct site. Thus,

CF IA activates cleavage while CF IB enforces specificity and

prevents secondary cleavage events.

CPFcore is produced by co-expression of its constituent sub-

units from one multi-gene baculovirus construct. We also at-

tempted to reconstitute an active nuclease complex by mixing

together equimolar amounts of CPFcore subunits or subcom-

plexes that had been expressed and purified separately. We

incubated these with the CYC1 substrate and found that

none of these in vitro reconstituted complexes were active

(Figure S3C). Addition of purified Yjr141w to CPFcore also had

no substantial effect on pre-mRNA cleavage in vitro (Figure S3D).

This suggests that an in vivo assembly pathway for CPFcore is

critical for nuclease activation.

CPFcore contains 8 of the 14 CPF subunits. To determine

whether the missing phosphatase module subunits (Pta1,

Glc7, Ref2, Swd2, Pti1, and Ssu72) contribute to cleavage, we

compared the activity of recombinant CPFcore to endogenous

CPF purified from yeast. The nuclease activity and specificity

of endogenous CPF were very similar to that of CPFcore (Fig-

ure S3E), suggesting that the phosphatase module does not

substantially contribute to RNA recognition or nuclease activa-

tion in vitro.

Cleavage by CPFcore Requires a 36-nt Sequence within

the CYC1 3ʹ UTR

To determine which regions of the 259-nt CYC1 3ʹ UTR are

necessary for endonucleolytic cleavage by CPFcore, we

designed a series of 5ʹ and 3ʹ truncations around the known

cleavage site (Figure 4A). These short RNA substrates were syn-

thesized with different fluorescent labels on each end, allowing

visualization of both 5ʹ and 3ʹ cleavage products with single-

nucleotide resolution following denaturing gel electrophoresis

(Figure S4A).

Substrates CYC1a, CYC1b, CYC1c, and CYC1dwere cleaved

efficiently by CPFcore (Figure 4B). Further removal of UUUUU

from the 3ʹ end or AAGAA from the 5ʹ end reduced (CYC1e)

or abolished (CYC1f, CYC1g, and CYC1h) RNA cleavage

by CPFcore.

(E) Selected 2D class averages of aligned particles.

(F) The crystal structure from Figure 1D was docked into the EM map filtered to 6 Å resolution. No density was observed for the Ysh1 CTD or the Yjr141w or

Mpe1 CTDs.

See also Figure S2 and Table S1.

Table 2. EM Data Collection and Processing

Ysh1-Mpe1-Yjr141w CPFcore CPFpol + Cft2

Cryo-EM Cryo-EM Negative-Stain EM Negative-Stain EM

Data collection

Microscope Titan Krios FEI Tecnai Polara FEI Tecnai Spirit FEI Tecnai Spirit

Detector K2 Falcon III Ultrascan 1000 Ultrascan 1000

Magnification 105,000 3 59,000 3 26,000 3 26,000 3

Pixel size (Å) 1.09 1.78 3.98 3.98

Voltage (keV) 300 300 120 120

Electron dose (e-/Å2) �45 �60 �40–60 �40–60

Defocus range (mm) �0.5 to �0.7 �2.5 to �4.5 �0.6 �0.6

Phase shift range (�)a 20–140 N/A N/A N/A

Number of particles 43,308 120,773 23,969 38,142

Processing

Resolution 4.8 N/Ab 20 N/Ab

Efficiency (Eod)
c 0.29 N/Ab 0.79 N/Ab

N/A, not available.
aVolta phase plate used during data collection.
b3D reconstruction not performed.
cNaydenova and Russo (2017).

1222 Molecular Cell 73, 1217–1231, March 21, 2019



Despite the different lengths, every RNA substrate was cut at

three positions within the same CAAA motif (Figure S4A), and

there was no evidence of exonuclease activity. Interestingly,

the cleavage event is specific but equally likely to occur at any

of the positions within this motif. This 3-nt window was extended

A

B C

D

Figure 3. Ysh1 Is Primed for Activation by

Assembly into an Eight-Subunit CPFcore

Complex

(A) Schematic diagrams showing the expression

and purification workflow, composition of recombi-

nant complexes, and details of the in vitro activity

assay. Proteins are represented by circles, with a

yellow star to highlight an enzymatic subunit. S,

StrepII tag; H, His6 tag; CPFpol, polymerase module.

(B) SDS-PAGE analysis of recombinant protein

complexes after affinity, anion exchange, and size

exclusion chromatography. Asterisks indicate

contaminant proteins.

(C) The CYC1 model pre-mRNA is specifically

cleaved by CPFcore with CF IA and CF IB, and the

5ʹ-cleavage product is polyadenylated in the pres-

ence of ATP, as shown by denaturing gel electro-

phoresis of RNA. The negative control reaction (�)

contained CF IA and CF IB, but not CPFcore.

(D) Denaturing RNA gel electrophoresis of cleavage

assay time courses performed using the protein

complexes shown in (B). The negative control lanes

(�) show no RNA cleavage when incubated with CF

IA and CF IB (left) or buffer (right) for 90 min.

See also Figure S3.

to 5 nt if cleavage was slowed by intro-

ducing C-A-A-A- phosphothioate bonds

(Figures S4B and S4C). Mutation of the

CAAA to GAAA, UAAA, or AAAA within

the 36-nt CYC1d RNA did not abolish

cleavage (Figure S4C). Thus, we made

even more drastic mutations of the CAAA

cleavage site to CCCC, GGGG, or UUUU.

CPFcore cleaved the CYC1d-CCCC sub-

strate but had very weak activity

on CYC1d-GGGG (Figure S4D). CYC1d-

UUUU RNA was cleaved with reduced

activity, and the cleavage window was

expanded even further to 6 nt, possibly

because the resultant U12 is a slippery

sequence. Together, this suggests that en-

donucleolytic cleavage is not limited to a

specific nucleotide identity, and once

Ysh1 is activated, it cleaves the bound

RNA within a positional window.

RNA Recognition Requires

Complementary Binding Properties

of CPFcore and Cleavage Factors

To determine which subunits of CPF and

cleavage factor are involved in recognition

of the minimal pre-mRNA substrate that is

efficiently processed in vitro, we con-

ducted a series of electrophoretic mobility shift assays (EMSAs).

Each of the proteins and subcomplexes that could be stably pu-

rified (Figure 3A) were tested for binding to A15, U15, C15, G15,

CYC1d (cleaved by CPFcore), andCYC1f (not cleaved byCPFcore)

RNAs (Figures 4C and S5; Table 3). CF IA bound to RNA with the
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highest affinity, showing preference for the short CYC1 sub-

strates as well as U15 and G15 sequences. CF IB bound every

sequence with moderate affinity except C15.

CPFcore bound to CYC1d with slightly higher affinity than to

CYC1f (Figure 4C). Interestingly, the polymerasemodule exhibited

a similar bindingpattern.BothCPFcoreand thepolymerasemodule

also bound to A15 and G15. Cft2 bound to both CYC1 RNAs and

G15. In contrast, RNA binding by Pap1, Ysh1, and Yjr141w was

not detectable, while Mpe1 bound to onlyG15 (Figure S5; Table 3).

Assembly of the active 30 end processing machinery likely

involves formation of multiple protein-RNA and protein-protein

interactions. Pull-down experiments confirmed that CF IA and

Rna14–15 bound tightly to complexes containing the polymer-

ase module (with and without Pap1) (Casañal et al., 2017). How-

ever, these did not reveal any additional interactions between

CPFcore and the cleavage factors (Figure S6).

No components of the CPFcore bound to U15, and none of

the complexes or proteins tested bound strongly to C15. This

allowed us to exclude the machinery from binding to specific re-

gions of ourminimalCYC1d substrate by replacing the sequence

of interest with poly(C). Mutating the 5ʹ AAGAA to CCCCC

completely blocked cleavage by CPFcore, similar to the effect

of truncating it in CYC1f (Figures 4B and S4D). Changing the

3ʹ UUUUUU to CCCCCC reduced cleavage activity but had a

somewhat milder effect than truncating it in CYC1e. However,

nuclease activity was inhibited by replacing the entire sequence

downstream of the canonical cleavage site with a C16 stretch

(Figure S4E). Taken together, these data suggest a model in

which the 5ʹ AAGAA of the CYC1 model RNA is bound by the

polymerase module within CPFcore, while CF IA and CF IB bind

to U-rich sequences.

Ysh1, Cft2, and Pap1 Are Peripheral to the Scaffold of

the Polymerase Module

To gain insight into how Ysh1 is activated on incorporation into

the eight-subunit assembly, we used EM to study the structure

A C

B

Figure 4. CPFcore Binds and Cleaves a 36-nt Minimal RNA Substrate

(A) Sequences of RNA substrates derived from the CYC1 3ʹ UTR. Each substrate carries both 5ʹ-FAM and 3ʹ-A647 labels (red and blue stars, respectively).

The canonical cleavage site is highlighted in bold, and the minimal sequence required for efficient cleavage is represented by the gray box.

(B) Denaturing gel electrophoresis of the short RNA substrates after incubation with CPFcore, CF IA, and CF IB. The negative control reaction (�) contained CF IA

and CF IB, but not CPFcore.

(C) Electrophoretic mobility shift assays (EMSAs) performed with CYC1d (cleaved by CPFcore) and CYC1f (not cleaved by CPFcore) RNAs.

See also Figures S4–S6 and Table S2.
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of CPFcore. This complex was stable and mono-disperse after

size-exclusion chromatography (Figure 5A). Analysis of a chem-

ically cross-linked complex by negative-stain EM showed well-

separated particles (Figure 5B). 2D class averages revealed a

distinctive �21-nm particle with the Cft1-Pfs2-Yth1 scaffold of

the polymerase module at one end and three globular densities

extending from it (Figure 5C).

2D class averages from cryo-EMmicrographs revealed similar

structures with one, two, or three globular densities next to the

scaffold, with the same dimensions and spatial arrangement as

the negative-stain particles (Figures 5D and 5E, Table 2); how-

ever, these classes originated from only �0.5% of particles.

Instead, the cryo-EM dataset was dominated by smaller parti-

cles representing the Cft1-Pfs2-Yth1 scaffold. This suggests

that the other globular densities corresponding to Cft2 and

Pap1 are either highly flexible or dissociate during specimen

preparation, despite chemical crosslinking.

Using the negative-stain dataset, we obtained a 3D recon-

struction of CPFcore at �20 Å resolution. We built a model for

CPFcore by docking known X-ray crystal structures and cryo-EM

structures into the map (Figure 5F). In our model, the Cft1-Pfs2-

Yth1 scaffold with its four characteristic b propellers is located at

one end of the complex with Pap1 in close proximity. Pap1 is

known to be tethered to the complex through Fip1, which in

turn binds zinc fingers 4 and 5 of Yth1 (disordered in the docked

cryo-EM structure) (Barabino et al., 2000; Helmling et al., 2001;

Meinke et al., 2008; Tacahashi et al., 2003).

We modeled the largest globular density proximal to the scaf-

fold as the metallo-b-lactamase/b-CASP domain of the pseudo-

nuclease Cft2. A disordered loop of 204 amino acids, absent

from the crystal structure of Cft2, could act as a flexible tether.

Ysh1 is distal to the scaffold of the polymerase module in our

model and is oriented by both Cft2 and Mpe1, as validated by

analysis of CPFcore lacking Ysh1 and Mpe1 (Figure S7A). We

juxtaposed the disordered C termini of Cft2 and Ysh1 in our

model based on our pull-down data and evidence that the C-ter-

minal domains of human orthologs (CPSF100 and CPSF73)

interact (Dominski et al., 2005). These domains may be located

within the density extending between Mpe1 and Pap1. Alterna-

tively, this may be the Mpe1 zinc knuckle or RING domains.

DISCUSSION

Pre-mRNA cleavage is the decisive event in mRNA 3ʹ end forma-

tion and transcription termination; a poly(A) tail cannot be added

until the 3ʹ-OH of the upstream product is released, and the

downstream cleavage product is required for the Rat1 5ʹ/3ʹ

exonuclease to trigger Pol II termination (Kim et al., 2004).

Here, using a fully recombinant approach, we show that an

eight-subunit CPFcore complex, CF IA, and CF IB represent the

minimal machinery for 3ʹ end formation in vitro. Strikingly, it ap-

pears that the phosphatase module of CPF (Casañal et al.,

2017; Nedea et al., 2003) is dispensable in this fully reconstituted

in vitro system with purified proteins. This suggests that within

CPF, Pol II regulatory functions that are essential in vivo (or in

cell-extract systems) are separable from pre-mRNA substrate

processing, reinforcing the functional distinction between CPF

enzymatic modules (Casañal et al., 2017).

Priming of the Ysh1 Endonuclease

For the cleavage event to occur, amechanismmust exist to open

the Ysh1 active site channel, widening the cleft between themet-

allo-b-lactamase and b-CASP domains to allow substrate RNA

to access the catalytic center. This is likely highly regulated to

prevent spurious, nonspecific cleavage of cellular RNAs before

Ysh1 is incorporated into CPF. The need for such regulation is

emphasized by our observation that once activated, Ysh1 itself

displays little sequence specificity. Off-target nuclease activity

is minimized, because the Ysh1-Mpe1 complex exists in an inac-

tive, autoinhibited state. In addition, Ysh1 has a relatively low

binding affinity for RNA (Table 3), and the Ysh1-Mpe1 complex

does not strongly interact with cleavage factors (Figure S6).

We propose that the correct assembly of Ysh1 into CPFcore is

essential to ‘‘prime’’ the nuclease for activation. In this primed

state, Ysh1 within CPFcore displays specific activity, but at very

low levels (Figure S3A).

Since mixing separately purified subunits together does not

result in an active complex, it is likely that the assembly of

CPFcore is also a regulated process. For example, activation

may require a co-translational assemblymechanism inwhich un-

structured regions fold together. Alternatively, post-translational

modification, chaperone activity, or cofactor binding may be

required. Yjr141w is a candidate assembly factor, as it binds to

the Ysh1 C-terminal domain and prevents aggregation, but it is

not a component of CPFcore and does not appear to directly

affect nuclease activity. Yjr141w bears homology to human

Ube3D, which has been reported to interact with CPSF73 (Huttlin

et al., 2017), suggesting that its function may be conserved.

Cft2 and Mpe1 likely have complementary roles in securing

Ysh1 to the polymerase module, while Ysh1 and Mpe1 stabilize

the orientation of Cft2 and Pap1 (Figure S7). The interaction of

Ysh1 with Mpe1 is of critical importance, as highlighted by the

lethality of a DUBL mutant and the deleterious effects of

the Mpe1 F9S mutation (Lee and Moore, 2014). F9 lies within

Table 3. Summary of EMSA Experiments (Figure S5) Testing All

Stable Components and Subcomplexes for RNA Binding Activity

Protein or complex

RNA

A15 U15 C15 G15 CYC1d CYC1f

CF IB + ++ � +++ ++++ ++++

CF IA � +++++ � +++++ +++++ +++++

Pcf11-Clp1 � � � � +++ ++

Rna14-Rna15 � +++ � +++ +++ ++

Cft2 � � � +++ +++ ++

Pap1 � � � � � �

Ysh1-Mpe1-Yjr141w � � � +++ + +

Ysh1-Mpe1 � � � +++ + +

Ysh1-Yjr141w � � � � � �

CPFpol (no Pap1) ++ � � ++++ +++ +

CPFpol ++ � � ++++ +++ +

CPFpol + Cft2 ++ � � +++++ ++++ ++

CPFcore ++ � � +++++ ++++ ++

CYC1d, CYC1f, and 15-mers of A, U, C, and G were used.
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the UBL domain at the interface with Ysh1 (Figure 1F). The Mpe1

zinc knuckle and RING domains could be located within unas-

signed density in our map, possibly mediating interactions with

Ysh1 or other CPF subunits (e.g., Pap1, Pta1, and Cft1) (Lee

and Moore, 2014).

Cleavage Factors Are Essential for Full Ysh1 Activation

Once Ysh1 is primed by assembly into CPFcore, further stimulation

by cleavage factors is required to achieve full nuclease activity. CF

IA is a potent activator of cleavage (Figure S3B). The RRM do-

mains of Rna15 are known to bind U- and G-rich sequences,
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Figure 5. The Enzymatic Subunits of CPFcore Assemble around a Central Scaffold

(A) Size-exclusion chromatography of CPFcore and SDS-PAGE analysis of fractions across the peak. Asterisks indicate contaminant proteins.

(B) Representative negative-stain micrograph of CPFcore.

(C) Negative-stain 2D class averages show a distinctive 21-nm particle with the polymerase module at one end.

(D) Representative cryo-EM micrograph of CPFcore.

(E) Selected 2D class averages from cryo-EM analysis of CPFcore. Approximately 80% of the particles are present in classes that comprise the 13-nm scaffold of

the polymerase module only. Up to three additional subunits are visible in �0.5% of the particles.

(F) A model for the structure of CPFcore obtained from a 3D reconstruction of the negative-stain data. Three orthogonal views filtered to 25 Å are shown as insets.

The cryo-EM structure of Cft1-Pfs2-Yth1 (Casañal et al., 2017) and X-ray crystal structures of Cft2 (Mandel et al., 2006), Pap1-Fip1 (Meinke et al., 2008), and

Ysh1-Mpe1 (this work; Figure 1) are docked into the negative-stain map. Known disordered or flexible regions are indicated with colored lines. The weak

interaction between Ysh1 and Cft2 CTDs is indicated with dashed lines.

Also see Figure S7.
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with highest affinity for UGUUGU and UUUUUU hexamers

(Pancevac et al., 2010). Consistent with photoactivable ribonucle-

oside-enhanced crosslinking and immunoprecipitation (PAR-

CLIP) data (Baejen et al., 2014), our results suggest that CF IA

binds U-rich elements downstream of the cleavage site and that

removal or replacement of these downstream U-rich sequences

with Cs progressively inhibits cleavage. However, we previously

demonstrated that Rna14-Rna15 increases the rate of polyadeny-

lation by the polymerasemodule on pre-cleavedCYC1 substrates

lacking any downstream sequences (Casañal et al., 2017). Thus,

CF IA must also be able to bind upstream of the cleavage site.

This is consistent with previous studies highlighting the essential

role of both upstream and downstream U-rich elements for accu-

rate 3ʹ end processing in vivo (Dichtl and Keller, 2001).

In contrast, CF IB alone is a poor activator of cleavage, and it

enforces specificity on long substrates by suppressing aberrant

secondary cleavage events in the upstream fragment (Fig-

ure S3B) (Dichtl and Keller, 2001; Minvielle-Sebastia et al.,

1998). CF IB is known to bind UA repeats that comprise the effi-

ciency element upstream of the cleavage site (Kessler et al.,

1997; Pérez-Cañadillas, 2006; Valentini et al., 1999). In our as-

says with short substrates, only the longest (CYC1a) includes

this element (UUUAUA; Figure 4A). CF IB can still bind to shorter

RNAs (Figure 4C), which contain a UAUAUU motif proximal to

the cleavage site, but it is unable to stimulate cleavage of

CYC1d. Instead, onCYC1d, CF IA is sufficient, and no secondary

cleavage events are observed (Figure S4E). Our short substrates

lack the extensive upstream sequences that provide alternative

binding sites for CF IA. This could artificially produce the

observed ‘‘specificity’’ in the absence of CF IB.

The pre-mRNA substrate used in our assays is U rich. Both

cleavage factors IA and IB bind U15 RNA, but CPF proteins

and complexes do not (Table 3; Figure S5). Our data suggest

that the polymerase module of CPFcore likely binds the A-rich

upstream sequence (AAGAA), analogous to the AAUAAA recog-

nition mechanism observed in recent structures of the human

machinery (Clerici et al., 2017; Sun et al., 2018). This interaction

would involve a surface comprising residues from Pfs2 and Yth1

(Casañal et al., 2017). CPFcore interaction with RNA is likely to

have a fast off-rate (Figure 4C), so CF IA may be required to

secure it onto the RNA.

Despite binding to both U-rich elements on the RNA and the

polymerase module of CPFcore, Rna14-Rna15 alone is unable

to activate cleavage (Figure S3B). Furthermore, the Pcf11-Clp1

component of CF IA binds to CYC1 RNA (Table 3) but does not

strongly interact with CPF (Figure S6D) and cannot stimulate

cleavage alone (Figure S3B). Thus, the activation mechanism

cannot be explained by amodel in which cleavage factors simply

tether CPF to the RNA. Our results suggest that CPF and the

cleavage factors do not bind in a straightforward linear manner

along the RNA substrate. Instead, they may structure the RNA,

binding in an intertwined, more complicated manner, explaining

why the sequences that specify mRNA 3ʹ ends are degenerate.

Furthermore, previous nuclear magnetic resonance (NMR)

studies suggested that the Rna15 RRMs slide along RNA

(Leeper et al., 2010), and this could facilitate ‘‘scanning’’ or repo-

sitioning of CF IA. Thus, it is conceivable that the 3ʹ end machin-

ery is remodeled as the complex progresses from cleavage to

polyadenylation and that these different states have different

RNA binding modes.

Assembly and Activation of the 30 End Processing

Machinery

We propose that the CPF nuclease is only fully ‘‘licensed’’ to cut

when the eight-subunit CPFcore complex and the seven proteins

of CF IA and CF IB cooperatively bind multiple sequence ele-

ments on the pre-mRNA substrate in an avidity-driven mecha-

nism (Figure 6). Once bound to the correct site on RNA, Ysh1

could be positioned close to the CAAA motif and allosterically

activated by CF IA, possibly via a direct interaction between

Clp1 and Ysh1 (Holbein et al., 2011). The configuration of the

complex on RNAcould also generate strain in the RNAbackbone

close to the cleavage site, facilitating cleavage at the correct po-

sition, without a requirement for strict sequence specificity.

In vivo, RNA recognition and assembly of the 3ʹ end processing

complex could also activate the Glc7 phosphatase to dephos-

phorylate Tyr1 of the Pol II C-terminal domain (CTD) (Schreieck

et al., 2014), providing direct coupling between pre-mRNA cleav-

age and transcription termination.

Assemblyof the3ʹendprocessingmachinerymaybeanalogous

to the assembly of an active spliceosome; the active splicing com-

plex is assembled de novo, on each intron, every round of splicing

(FicaandNagai, 2017). In thespliceosome,anactivesite isnotpre-

formed, but dynamics permit extensive remodeling of the spliceo-

somesubunits on theRNAsubstrate, generatinganactive site and

resulting in highly controlled pre-mRNA processing. Similarly, our

structural model of CPFcore suggests that the RNA binding, cleav-

age, and polyadenylation activities are all adjacent to each other,

but not in intimate contact. Coupling between the different en-

zymes of CPF may be much more dynamic than previously

thought, such that RNA binding activates a series of conforma-

tional changes to open the active site of Ysh1, allowing cleavage

only at the correct position (Figure 6). Both the spliceosome and

the 3ʹ endprocessingmachinerymustbehighly regulated tomain-

tain the fidelity of RNA processing.

Almost all CPF subunits are conserved in humans and can be

pulled down using a pre-mRNA substrate (Shi et al., 2009). The

core CPSF complex appears to be composed of six subunits,

CPSF160, CPSF100, CPSF73, CPSF30, hFip1, and WDR33

(Schönemann et al., 2014), which are orthologs of Cft1, Cft2,

Ysh1, Yth1, Fip1, and Pfs2. The poly(A) polymerase PAP does

not incorporate stably into human CPSF. It is not clear whether

RBBP6, the ortholog of yeast Mpe1, is a stable component,

but our docking experiments suggest that the Ysh1-Mpe1 inter-

face is conserved in the human CPSF73 and RBBP6 proteins.

This agrees with a reported role for RBBP6 in 3ʹ end processing

(Di Giammartino et al., 2014). Pta1 and its human ortholog, Sym-

plekin, are thought to play important roles in coupling 3ʹ end pro-

cessing to transcription. We show that yeast Pta1 is not required

for the cleavage and polyadenylation reactions themselves in our

fully reconstituted system. However, Pta1mutation disrupts CPF

function in yeast extract (Zhao et al., 1999), and Symplekin is

thought to be required for the cleavage activity of human CPSF

(but not for polyadenylation) (Schönemann et al., 2014) and is

required for histone 3ʹ end cleavage, along with CPSF73 and

CPSF100 (Kolev and Steitz, 2005).
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Thus, our data suggest that yeast CPFcore is the functional

equivalent of the human CPSF-PAP complex. It is not yet clear

whether the accessory cleavage factors function in the same

manner in yeast and humans. Further experiments will be

required to determine whether a human phosphatase module

also exists and whether it assembles into an active 3ʹ end pro-

cessing complex on substrate RNA.
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Pérez-Cañadillas, J.M. (2006). Grabbing the message: structural basis of

mRNA 3’UTR recognition by Hrp1. EMBO J. 25, 3167–3178.

Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M.,

Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera—a visualization system

for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612.

Proudfoot, N.J. (2011). Ending the message: poly(A) signals then and now.

Genes Dev. 25, 1770–1782.

Pugh, D.J., Ab, E., Faro, A., Lutya, P.T., Hoffmann, E., and Rees, D.J. (2006).

DWNN, a novel ubiquitin-like domain, implicates RBBP6 in mRNA processing

and ubiquitin-like pathways. BMC Struct. Biol. 6, 1.

Qu, X., Perez-Canadillas, J.M., Agrawal, S., De Baecke, J., Cheng, H., Varani,

G., and Moore, C. (2007). The C-terminal domains of vertebrate CstF-64 and

1230 Molecular Cell 73, 1217–1231, March 21, 2019



its yeast orthologue Rna15 form a new structure critical for mRNA 30-end pro-

cessing. J. Biol. Chem. 282, 2101–2115.

Rao, T.S., Nampalli, S., Sekher, P., and Kumar, S. (2002). TFA-NHS as bifunc-

tional protecting agent: simultaneous protection and activation of amino car-

boxylic acids. Tetrahedron Lett. 43, 7793–7795.

Rosado-Lugo, J.D., and Hampsey, M. (2014). The Ssu72 phosphatase medi-

ates the RNA polymerase II initiation-elongation transition. J. Biol. Chem.

289, 33916–33926.

Russo, C.J., and Passmore, L.A. (2014). Electron microscopy: ultrastable gold

substrates for electron cryomicroscopy. Science 346, 1377–1380.

Ryan, K., Calvo, O., and Manley, J.L. (2004). Evidence that polyadenylation

factor CPSF-73 is the mRNA 30 processing endonuclease. RNA 10, 565–573.

Scheres, S.H. (2012). RELION: implementation of a Bayesian approach to

cryo-EM structure determination. J. Struct. Biol. 180, 519–530.

Schönemann, L., K€uhn, U., Martin, G., Sch€afer, P., Gruber, A.R., Keller, W.,

Zavolan, M., and Wahle, E. (2014). Reconstitution of CPSF active in polyade-

nylation: recognition of the polyadenylation signal by WDR33. Genes Dev. 28,

2381–2393.

Schreieck, A., Easter, A.D., Etzold, S., Wiederhold, K., Lidschreiber, M.,

Cramer, P., and Passmore, L.A. (2014). RNA polymerase II termination involves

C-terminal-domain tyrosine dephosphorylation by CPF subunit Glc7. Nat.

Struct. Mol. Biol. 21, 175–179.

Shi, Y., andManley, J.L. (2015). The end of the message: multiple protein-RNA

interactions define the mRNA polyadenylation site. Genes Dev. 29, 889–897.

Shi, Y., Di Giammartino, D.C., Taylor, D., Sarkeshik, A., Rice, W.J., Yates, J.R.,

3rd, Frank, J., and Manley, J.L. (2009). Molecular architecture of the human

pre-mRNA 30 processing complex. Mol. Cell 33, 365–376.

Silva, J.C., Denny, R., Dorschel, C.A., Gorenstein, M., Kass, I.J., Li, G.Z.,

McKenna, T., Nold, M.J., Richardson, K., Young, P., and Geromanos, S.

(2005). Quantitative proteomic analysis by accurate mass retention time pairs.

Anal. Chem. 77, 2187–2200.

Sun, Y., Zhang, Y., Hamilton, K., Manley, J.L., Shi, Y., Walz, T., and Tong, L.

(2018). Molecular basis for the recognition of the human AAUAAA polyadeny-

lation signal. Proc. Natl. Acad. Sci. USA 115, E1419–E1428.

Tacahashi, Y., Helmling, S., and Moore, C.L. (2003). Functional dissection of

the zinc finger and flanking domains of the Yth1 cleavage/polyadenylation fac-

tor. Nucleic Acids Res. 31, 1744–1752.

Tang, G., Peng, L., Baldwin, P.R., Mann, D.S., Jiang, W., Rees, I., and Ludtke,

S.J. (2007). EMAN2: an extensible image processing suite for electron micro-

scopy. J. Struct. Biol. 157, 38–46.

Terwilliger, T.C., Grosse-Kunstleve, R.W., Afonine, P.V., Moriarty, N.W., Zwart,

P.H., Hung, L.W., Read, R.J., and Adams, P.D. (2008). Iterativemodel building,

structure refinement and density modification with the PHENIX AutoBuild

wizard. Acta Crystallogr. D Biol. Crystallogr. 64, 61–69.

Tian, B., andGraber, J.H. (2012). Signals for pre-mRNA cleavage and polyade-

nylation. Wiley Interdiscip. Rev. RNA 3, 385–396.

Valentini, S.R., Weiss, V.H., and Silver, P.A. (1999). Arginine methylation and

binding of Hrp1p to the efficiency element for mRNA 30-end formation. RNA

5, 272–280.

van Zundert, G.C.P., Rodrigues, J.P.G.L.M., Trellet, M., Schmitz, C., Kastritis,

P.L., Karaca, E., Melquiond, A.S.J., van Dijk, M., de Vries, S.J., and Bonvin,

A.M.J.J. (2016). The HADDOCK2.2 web server: user-friendly integrative

modeling of biomolecular complexes. J. Mol. Biol. 428, 720–725.

Wassenaar, T.A., van Dijk, M., Loureiro-Ferreira, N., van der Schot, G., de

Vries, S.J., Schmitz, C., van der Zwan, J., Boelens, R., Giachetti, A., Ferella,

L., et al. (2012). WeNMR: structural biology on the grid. J. Grid Comput. 10,

743–767.

Weissmann, F., Petzold, G., VanderLinden, R., Huis In ’t Veld, P.J., Brown,

N.G., Lampert, F., Westermann, S., Stark, H., Schulman, B.A., and Peters,

J.M. (2016). biGBac enables rapid gene assembly for the expression of

large multisubunit protein complexes. Proc. Natl. Acad. Sci. USA 113,

E2564–E2569.

Winter, G. (2009). xia2: an expert system for macromolecular crystallography

data reduction. J. Appl. Cryst. 43, 186–190.

Xiang, K., Tong, L., andManley, J.L. (2014). Delineating the structural blueprint

of the pre-mRNA 30-end processing machinery. Mol. Cell. Biol. 34, 1894–1910.

Yang, F., Hsu, P., Lee, S.D., Yang, W., Hoskinson, D., Xu, W., Moore, C., and

Varani, G. (2017). The C terminus of Pcf11 forms a novel zinc-finger structure

that plays an essential role in mRNA 30-end processing. RNA 23, 98–107.

Zhang, K. (2016). Gctf: Real-time CTF determination and correction. J. Struct.

Biol. 193, 1–12.

Zhao, J., Kessler, M., Helmling, S., O’Connor, J.P., andMoore, C. (1999). Pta1,

a component of yeast CF II, is required for both cleavage and poly(A) addition

of mRNA precursor. Mol. Cell. Biol. 19, 7733–7740.

Zhao, X., Chang, Y.L., Fowler, F.W., and Lauher, J.W. (2002). An approach to

the design of molecular solids: the ureylene dicarboxylic acids. J. Am. Chem.

Soc. 112, 6627–6634.

Zheng, S.Q., Palovcak, E., Armache, J.P., Verba, K.A., Cheng, Y., and Agard,

D.A. (2017). MotionCor2: anisotropic correction of beam-induced motion for

improved cryo-electron microscopy. Nat. Methods 14, 331–332.

Molecular Cell 73, 1217–1231, March 21, 2019 1231



STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

E. coli DH5a Thermo Fisher Scientific 18258012

E. coli DH10 EMBacY Geneva Biotech

E. coli BL21 star pLysS Thermo Fisher Scientific C602003

E. coli TOP10 Thermo Fisher Scientific C404010

E. coli PIR1 Thermo Fisher Scientific C101010

Chemicals, Peptides, and Recombinant Proteins

Insect-XPRESS protein-free insect cell medium

with L-glutamine

Lonza 12-730Q

Protease Inhibitor Cocktail Sigma-Aldrich 11836170001

Desthiobiotin IBA 2-1000-001

Imidazole Sigma-Aldrich I5513

Formamide Sigma-Aldrich 11814320001

TEMED Sigma-Aldrich T9281

Ammonium persulfate (APS) Sigma-Aldrich A3678

Accugel 19:1 acrylamide:bis-acrylamide 40% w/v mix National Diagnostics EC-850

Urea VWR chemicals 28877.260

KOD Hot Start DNA Polymerase Merck 71086

SYBR Safe DNA Gel Stain Thermo Fisher Scientific S33102

SYBR Green II RNA Gel Stain Thermo Fisher Scientific S7586

Ni-NTA Agarose QIAGEN 30210

StrepTactin Sepharose high performance GE Healthcare 28-9356-00

Deuterium oxide 99.9% Millipore 1133660009

DiSuccinimidylSuberate (DSS) Creative Molecules 001S

DiSuccinimidyl Dibutyric Urea (DSBU) This work

Recombinant protein: S. cerevisiae Cft2-SII This work N/A

Recombinant protein: S. cerevisiae Pap1-SII This work N/A

Recombinant protein: S. cerevisiae SII-3C-Yjr141w This work N/A

Recombinant protein complex: S. cerevisiae This work N/A

Ysh1(1-462)-Mpe1(1-161)-3C-SII

Recombinant protein complex: S. cerevisiae This work N/A

Ysh1-Mpe1-3C-SII

Recombinant protein complex: S. cerevisiae This work N/A

Ysh1-Mpe1-3C-SII -Yjr141w

Recombinant protein complex: S. cerevisiae This work N/A

Ysh1- SII-3C-Yjr141w

Recombinant protein complex: S. cerevisiae This work, based on Casañal

et al., 2017

N/A

Cft1-Pfs2-3C-SII -Yth1-3C-8H -Fip1

Recombinant protein complex: S. cerevisiae This work, based on Casañal

et al., 2017

N/A

‘‘CPFpol’’ Cft1-Pfs2-3C-SII -Yth1-3C-8H -Fip1-Pap1

Recombinant protein complex: S. cerevisiae ‘‘CPFpol+

Cft2’’ Cft1-Pfs2-3C-SII -Yth1-Fip1-Pap1-Cft2

This work N/A

Recombinant protein complex: S. cerevisiae ‘‘CPFcore’’

Cft1-Pfs2-3C-SII -Yth1-3C-8H -Fip1-Pap1-Cft2-Ysh1-Mpe1

This work N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Endogenous protein complex: S. cerevisiae

‘‘CPF’’ Cft1-Pfs2-Yth1-Fip1-Pap1-Cft2-Ysh1-

Mpe1-Pta1-Pti1-Ref2-Glc7-Ssu72

This work, based on Casañal

et al., 2017

N/A

Recombinant protein: S. cerevisiae ‘‘CF IB’’ Hrp1 This work, based on Kessler

et al., 1997

N/A

Recombinant protein complex: S. cerevisiae Rna14-Rna15 This work, based on Gordon

et al., 2011

N/A

Recombinant protein complex: S. cerevisiae Pcf11-Clp1 This work, based on Gordon

et al., 2011

N/A

Recombinant protein complex: S. cerevisiae ‘‘CF IA’’

Rna14-Rna15-Pcf11-Clp1

This work, based on Gordon

et al., 2011

N/A

Critical Commercial Assays

N/A

Deposited Data

Mendeley raw data (e.g., uncropped gels, MS peptides) This work https://doi.org/10.17632/rnsb352sx3.1

Ysh1-Mpe1 crystal structure This work PDB: 6I1D

Ysh1-Mpe1 cryo-EM map This work EMD: 0325

CPFcore negative stain EM map This work EMD: 0324

NMR structure of Rna14-Rna15 monkeytail-hinge

(used for Figure 6

Moreno-Morcillo et al., 2011 PDB: 2L9B

Crystal structure of Rna14-Rna15 complex

(used for Figure 6)

Paulson and Tong, 2012 PDB: 4EBA

NMR structure of C-terminal domain pf CstF-64

(used for Figure 6)

Qu et al., 2007 PDB: 2J8P

NMR structure of Hrp1-Rna15 RRMs (used for Figure 6) Leeper et al., 2010 PDB: 2KM8

Crystal structure of Rna15 RRM with bound GU

(used for Figure 6)

Pancevac et al., 2010 PDB: 2X1F

Crystal structure of Pcf11-Clp1 complex (used for Figure 6) Dupin and Fribourg, 2014 PDB: 4C0B

Crystal structure of Pcf11-Clp1 complex (used for Figure 6) Noble et al., 2007 PDB: 2NPI

Crystal structure of Pcf11-RNA pol II CTD complex

(used for Figure 6)

Meinhart and Cramer, 2004 PDB: 1SZA

Cryo-EM structure of Cft1-Pfs2-Yth1 (used for

Figures 5 and 6)

Casañal et al., 2017 PDB: 6E0J

Crystal structure of Cft2 (used for Figures 5 and 6) Mandel et al., 2006 PDB: 2I7X

Crystal structure of Pap1-Fip1 complex (used for

Figures 5 and 6)

Meinke et al., 2008 PDB: 3C66

Crystal structure of CPSF-73 (used as molecular

replacement search model)

Mandel et al., 2006 PDB: 2I7T

NMR structure of Rbbp6 (used as molecular

replacement search model)

Pugh et al., 2006 PDB: 2C7H

Experimental Models: Cell Lines

Sf9 Oxford Expression

Technologies Ltd.

600100-SF9 cells

Experimental Models: Organisms/Strains

S. cerevisiae Ref2-TAPS (for purification of

endogenous CPF):

Casañal et al., 2017 kanMX6 MATalpha pra1-1 prb1-1

prc1-1 cps1-3 ura3delta5 leu2-3

his- Parent strain JWY104

Oligonucleotides

RNA and DNA sequences, with details of end-labeling This work See Table S2

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Recombinant DNA

(modified) pBig1A This work, based on Weissmann

et al., 2016

P24-63

(modified) pBig1B This work, based on Weissmann

et al., 2016

P24-64

(modified) pBig1C This work, based on Weissmann

et al., 2016

P25-1

(modified) pBig1D This work, based on Weissmann

et al., 2016

P25-2

(modified) pBig1E This work, based on Weissmann

et al., 2016

P25-6

(modified) pBig2AB This work, based on Weissmann

et al., 2016

P25-3

Pap1-SII pACEBac1 (expression). Used to make protein: This work P25-8

Pap1-SII

Cft2-SII pACEBac1 (expression) This work P25-7

Used to make protein:

Cft2-SII

SII-3C-Yjr141w pIDS (assembly intermediate) This work P18-62

SII-3C-Yjr141w pIDS/pACEBac1 (baculovirus expression) This work P19-1

Used to make protein:

SII-3C-Yjr141w

Pta1_Cft2_Ysh1_Mpe1 pIDS (CPFcore assembly

intermediate)

This work P19-10

Cft1_Pfs2-3C-SII_Yth1-3C-8H_Pap1_Fip1 pIDC/

pACEBac1 (CPFcore assembly intermediate and

baculovirus expression) Used to make two complexes:

Casañal et al., 2017 P15-18

Cft1-Pfs2-3C-SII-Yth1-3C-8H-Fip1

‘‘CPFpol’’ (Cft1-Pfs2-3C-SII-Yth1-3C-8H-Fip1-Pap1)

Cft2_Ysh1_Mpe1_Pta1_Cft1_Pfs2-3C-SII_Yth1-3C-8H_

Pap1_Fip1 pIDC/pIDS/pACEBac1 (baculovirus

expression). Used to make:

This work P19-11

‘‘CPFcore’’ (Cft1-Pfs2-3C-SII -Yth1-3C-8H -Fip1-Pap1-

Cft2-Ysh1-Mpe1)

8H-Cft2_Ysh1_Mpe1-3C-SII pIDS (assembly intermediate) This work P15-13

8H-Cft2_Ysh1_Mpe1-3C-SII_Yjr141w pIDS (assembly

intermediate)

This work P18-59

SII-3C-Yjr141w_Ysh1 pIDS (assembly intermediate) This work P25-9

8H-Cft2_Ysh1_Mpe1-3C-SII pIDS/pACEBac1

(baculovirus expression) Used to make:

This work P15-20

Ysh1-Mpe1-3C-SII

8H-Cft2_Ysh1_Mpe1-3C-SII_Yjr141w pIDS/pACEBac1

(baculovirus expression) Used to make:

This work P18-63

Ysh1-Mpe1-3C-SII -Yjr141w

SII-3C-Yjr141w_Ysh1 pIDS/pACEBac1 (baculovirus

expression) Used to make:

This work

Ysh1- SII-3C-Yjr141w

Cft1_Pfs2-3C-SII_Yth1_Pap1_Fip1 pBig1A (assembly

intermediate)

This work P20-3

Cft2 pBig1B (assembly intermediate) This work P20-5

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Cft2_Cft1_Pfs2-3C-SII_Yth1_Pap1_Fip1 pBig2AB

(baculovirus expression) Used to make:

This work P20-15

‘‘CPFpol+Cft2’’ (Cft2-Cft1-Pfs2-3C-SII-Yth1-Fip1-Pap1)

Cft2_Ysh1_Mpe1-3C-SII pBig1B (baculovirus expression) This work P20-8

Cft2_Ysh1_Mpe1-1(1-369)-3C-SII pBig1B (baculovirus

expression)

This work P20-29

Cft2_Ysh1_Mpe1-2(1-270)-3C-SII pBig1B (baculovirus

expression)

This work P20-30

Cft2_Ysh1_Mpe1-3(1-160)-3C-SII pBig1B (baculovirus

expression)

This work P20-31

Cft2_Ysh1_Mpe1-4(81-441)-3C-SII pBig1B (baculovirus

expression)

This work P20-32

Cft2_Ysh1_Mpe1-5(161-441)-3C-SII pBig1B (baculovirus

expression)

This work P20-33

Cft2_Ysh1-N(1-474)_Mpe1-3C-SII pBig1B (baculovirus

expression)

This work P20-34

Cft2_Ysh1-N(1-474)_Mpe1-1(1-369)-3C-SII pBig1B

(baculovirus expression)

This work P20-35

Cft2_Ysh1-N(1-474)_Mpe1-2(1-270)-3C-SII pBig1B

(baculovirus expression)

This work P20-36

Cft2_Ysh1-N(1-474)_Mpe1-3(1-160)-3C-SII pBig1B

(baculovirus expression)

This work P20-37

Cft2_Ysh1-N(1-474)_Mpe1-4(81-441)-3C-SII pBig1B

(baculovirus expression)

This work P20-38

Cft2_Ysh1-N(1-474)_Mpe1-5(161-441)-3C-SII pBig1B

(baculovirus expression)

This work P20-39

Cft2_Ysh1-C(475-779)_Mpe1-3C-SII pBig1B

(baculovirus expression)

This work P20-40

6H-Hrp1 pOPINB (bacterial expression) Used to make: Kessler et al., 1997 P2-43

‘‘CF IB’’ (6H-Hrp1)

6H-Rna14_Rna15 pETduet (bacterial expression)

Used to make:

Gordon et al., 2011 P11-44

‘‘CF IA’’ (6H-Rna14-Rna15- 6H-Pcf11-Clp1)

6H-Rna14-Rna15

6H-Pcf11_Clp1 pSRFduet (bacterial expression)

Used to make:

Gordon et al., 2011 P11-45

‘‘CF IA’’ (6H-Rna14-Rna15- 6H-Pcf11-Clp1)

6H-Pcf11-Clp1

Software and Algorithms

DynamX 3.0 Waters

ProteinLynx Global Server Waters

Stavrox Götze et al., 2012

msConvert ProteoWizard

XIA2 Winter, 2009 N/A

XDS Kabsch, 2010 N/A

AIMLESS Evans and Murshudov, 2013 N/A

Phaser McCoy et al., 2007 N/A

phenix.autobuild Terwilliger et al., 2008 N/A

COOT Emsley et al., 2010 N/A

phenix.refine Adams et al., 2010 N/A

MolProbity Chen et al., 2010 N/A

(Continued on next page)
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Lori Passmore

(passmore@mrc-lmb.cam.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All gene cloning, manipulation and plasmid propagation steps involving pACEBac1, pBIG1 or pBIG2 series vectors were carried out

in Escherichia coli DH5a or TOP10 cells grown in 2 3 TY or LB media supplemented with appropriate selection antibiotics. E. coli

PIR1 cells were used for constructs in pIDC and pIDS vectors containing the R6K origin of replication. E.coli DH10 EmBacY cells

were used for bacmid isolation.

Recombinant proteins Hrp1, Rna14–Rna15 and Pcf11–Clp1 were expressed in E. coli BL21 Star (DE3) cells or BL21 Star (DE3)

pLysS cells grown in 23 TYmedia until an OD600nm of 0.6 – 1.0 was reached. Expression was induced with 1 mM IPTG for an appro-

priate time and temperature as described. For all other recombinant proteins and complexes, the Spodoptera frugiperda Sf9 cell line

was used for baculovirus-driven overexpression. Suspension cultures were grown at 27�C, 140 rpm in Insect-XPRESS protein-free

insect cell medium with L-glutamine.

Endogenous CPF was purified from Saccharomyces cerevisiae by using a Ref2-TAPS strain. Yeast strains were grown at 30�C in

YPDmedia (YPDmedia per L: 20 g peptone, 20 g D-glucose, 10 g yeast extract) in a 120 L fermenter for 19 h. Yeast was harvested at

an OD600nm of 6–7.

METHOD DETAILS

Cloning

Pap1 and Cft2

Sequences encoding S. cerevisiae Pap1 and Cft2 were codon-optimized for E. coli expression and synthesized de novo (GeneArt).

Pap1 was amplified by PCR to introduce upstream BamHI and downstream XhoI sites (primers Pap1_F and Pap1_R) prior to cloning

into a modified pACEBac1 vector with an in-frame C-terminal StrepII tag (SII) and site for cleavage by 3C PreScission protease. Cft2

was also amplified and cloned as above (primers Cft2_F and Cft2_R). Constructs were confirmed by sequencing.

Ysh1–-Mpe1–Yjr141w, Ysh1–Mpe1 and Ysh1–Yjr141w complexes

Sequences encodingS. cerevisiae Ysh1, Cft2, 8H-3C-Cft2, Mpe1,Mpe1-3C-SII, Yjr141w and SII-3C-Yjr141wwere codon-optimized

for E. coli expression and synthesizedwith upstreamBamHI and XhoI sites, and downstreamKpnI and XbaI sites (GeneArt). Using the

XhoI and KpnI sites, each of these genes was cloned into MultiBac vector pIDS, and multi-gene constructs were made iteratively in

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

ePISA, European Bioinformatics Institute, EBI Krissinel and Henrick, 2007 N/A

PDB2PQR Dolinsky et al., 2004 N/A

PROPKA Li et al., 2005 N/A

APBS Baker et al., 2001 N/A

SerialEM Mastronarde, 2005 N/A

EPU FEI company N/A

MotionCor 2 Zheng et al., 2017 N/A

Gctf Zhang, 2016 N/A

RELION 2 Scheres, 2012 N/A

EMAN Tang et al., 2007 N/A

PyMOL 1.5.0.5 Schrödinger LLC N/A

UCSF Chimera Pettersen et al., 2004 N/A

HADDOCK 2.2 van Zundert et al., 2016 N/A

InkScape 0.92.3 https://inkscape.org/ N/A

Other

Novex NuPAGE 4-12% Bis-Tris gels Invitrogen NP0323BOX

Amicon Ultra Centrifugal Filter Units Millipore UFC901096

NB. ‘‘SII’’ denotes a StrepII tag, ‘‘3C’’ denotes a protease cleavage site and ‘‘6H/8H’’ denotes a His6/His8 tag. These descriptors are positioned before

or after a gene/protein name based on whether tag is N- or C-terminal
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pIDS by using PI-SceI and BstXI digestion and ligation as described previously (Casañal et al., 2017). Final pIDS multi-gene con-

structs of Cft2_Ysh1_Mpe1, Cft2_Ysh1_Mpe1_Pta1, 8H-3C-Cft2_Ysh1_Mpe1-3C-SII, 8H-3C-Cft2_Ysh1_Mpe1-3C-SII_Yjr141w

and SII-3C-Yjr141w_Ysh1 were then fused with empty pACEBac1 by Cre-Lox recombination to provide the Tn7L and Tn7R sites

necessary for bacmid integration.

CPFcore

The Cft2_Ysh1_Mpe1_Pta1 construct in pIDS was fused with the previously described (Casañal et al., 2017) Cft1_Pfs2-3C-SII_Yth1-

3C-8H_Pap1_Fip1 pIDC/pACEBac1 plasmid by Cre-Lox recombination. Plasmids from > 30 colonies were then screened by restric-

tion digest with combinations of XhoI, KpnI, PI-SceI, BstXI and I-CeuI, in order to select a clone with one copy of each gene. The

resultant Cft2_Ysh1_Mpe1_Pta1_Cft1_Pfs2-3C-SII_Yth1-3C-8H_Pap1_Fip1 plasmid in pIDS/pIDC/pACEBac1 was further verified

by PCR for each gene.

Polymerase module plus Cft2

A modified version of the biGBac system (Weissmann et al., 2016) was used. Vectors functionally equivalent to the previously-

described pBIG1a,b,c,d,e and pBIG2ab,abc,abcd,abcde plasmids were created by cloning the necessary Gibson overhangs,

spacers and Swa1 sites into pACEBac1. In this way, our pBIG1 series vectorswere selectable using gentamycin rather than ampicillin

and spectinomycin. An additional chloramphenicol resistance gene was added to our pBIG2 equivalents, so these plasmids were

selectable using gentamycin and chloramphenicol.

Briefly, pACEBac1 plasmids containing Cft1, Pfs2-3C-SII and Yth1, and pIDC plasmids containing Pap1 and Fip1 were amplified

by PCR using the original biGBac primers and introduced into pBIG1a by Gibson assembly. Cft2 in pIDS was amplified using modi-

fied biGBac primers that anneal to the p10 promoter and HSV-TK terminator (biGBac_pIDS_CasI_F and biGBac_pIDS_CasI_R) and

was introduced into pBIG1b by Gibson assembly. Multi-gene cassettes from pBIG1a and pBIG1b were released by PmeI digestion

and introduced into pBIG2ab by Gibson assembly. The final Cft1_Pfs2-3C-SII_Yth1_Fip1_Pap1_Cft2 pBIG2ab plasmid was verified

by SwaI and PmeI digestion.

Ysh1 and Mpe1 truncations

All Ysh1 (full, Ysh1-N and Ysh1-C) and Mpe1 (full, Mpe1-1, Mpe1-2, Mpe1-3, Mpe1-4 and Mpe1-5) constructs were PCR amplified

and cloned into pACEBac1 using BamHI and XhoI sites with a cleavable C-terminal StrepII tag on Mpe1. Primers are detailed in the

Table S2. All cloneswere verified by sequencing. Ysh1 andMpe1 truncations were then combined pairwise in all combinations for co-

expression using the biGBac method (Weissmann et al., 2016). Constructs were amplified by PCR from pACEBac1 plasmids and

introduced into pBIG1a by Gibson assembly, along with wild-type Cft2.

Recombinant baculovirus-driven protein expression

Bacmids were isolated from E. coli DH10 EmBacY cells, as described (Bieniossek et al., 2008). Each bacmid was verified by PCR for

the genes of interest. To make P1 virus, 6-well dishes were seeded with 1.03 106 Sf9 cells per well in 2.0 mL InsectExpress medium

(Lonza). Cells were transfected with 10 mg bacmid per well, using FugeneHD reagent as described by the manufacturer (Promega).

Four days post-transfection, cells were checked for fluorescence, conditionedmediumwas harvested, diluted 1:1 with freshmedium

containing 20% FBS and 0.2 mm-filtered. P1 virus was stored at 4�C in the dark. P2 (amplified) virus was prepared by infecting sus-

pension cultures ofSf9 cells at 2.03 106/mLwith 1% v/v P1 virus and incubating for 3–4 days (140 rpm, 27�C). Cells were checked for

fluorescence, pelleted by centrifugation (10003 g, 5min) and supernatant was 0.2 mm-filtered. Large-scale expression cultures were

then set up by infecting 4–12 L suspension cultures of Sf9 cells at 2.03 106/mL with 1% v/v P2 virus. Following incubation (140 rpm,

27�C), cells were harvested by centrifugation (1000 3 g, 10 min, 4�C) 48 hours post-infection, washed in ice-cold PBS and snap

frozen in liquid nitrogen. Pellets were stored at �80�C.

Protein purification

CF IA, CF IB, Rna14–Rna15 and Pcf11–Clp1 were expressed in E. coli and purified as described previously (Gordon et al., 2011;

Kessler et al., 1997). Polymerase module complexes were expressed in Sf9 cells and purified as described previously (Casañal

et al., 2017). EndogenousCPFwas purified froma yeast strain where theREF2 genewasmodified to contain a TAPS tag as described

previously (Casañal et al., 2017).

For all other complexes, a standardized protocol was followed. Cell pellets from 2 L Sf9 cells were resuspended in 200 mL 50 mM

HEPES pH 7.9, 150 mMNaCl, 0.5 mMMg(OAc)2, 1 mM TCEP supplemented with 50 mg/mL RNase, 50 mg/mL DNase and EDTA-free

protease inhibitors, and lysed by sonication. Lysate was cleared by centrifugation (39,0003 g, 45min, 4�C) prior to incubation (2–4 h,

4�C,) with 2 mL of StrepTactin Sepharose HP resin (GE Healthcare) pre-equilibrated in the same buffer. Beads were washed in batch

four timeswith 200mL buffer (as above, but without DNase, RNase or protease inhibitors) by centrifugation (6003 g, 10min, 4�C) and

re-suspension. Washed beads were pooled to a gravity column, then protein was eluted with buffer supplemented with 6 mM des-

thiobiotin. If cleavage of the Strep tag was required, 1 mg PreScission protease was added and the mixture incubated (4–12 h, 4�C).

The eluate was then diluted with 50mMHEPES pH 7.9 to reduce the salt concentration to 100mMNaCl before anion exchange chro-

matography. Samples were loaded onto a 1 mL Mono Q 5/50 GL column (GE Healthcare) and eluted over a 100 CV gradient from

100–1000 mM NaCl. This separation allowed the removal of contaminants, excess subunits, PreScission protease and

degraded complexes. Fractions containing proteins/complexes of interest were then pooled and concentrated using an Amicon�

Ultra centrifugal filter unit with an appropriate molecular weight cut-off (100K for CPFcore and polymerase module; 50K for nuclease
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sub-complexes; 30K for Pap1 and Cft2). Size exclusion chromatography was then performed using a Superose 6 Increase column

(either 3.2/300, 10/300 or 16/600 depending on yield) pre-equilibrated in 10 mM HEPES pH 7.9, 150 mM NaCl, 1.0 mM TCEP.

Purified proteins/complexes were either used immediately for making cryo-EM grids or growing crystals, or were concentrated as

above (10–20 mM), flash-frozen in liquid nitrogen and stored at �80�C.

Cleavage and Polyadenylation activity assays

Long CYC1 substrate

RNA sequences are described in Table S2. Unless otherwise stated, cleavage reactions of 20 mL comprised 100 nM unlabeled 259 nt

CYC1 substrate, 100 nM enzyme (e.g., CPFcore, Ysh1–Mpe1), 200 nM CF IA and 200 nM CF IB in a buffer of 10 mM HEPES pH 7.9,

125 mMNaCl, 2.0 mMMg(OAc)2, 1.0 mMDTT and 1 U/mL RiboLock (Thermo). For experiments to test polyadenylation, 2.5 mM ATP

was also included in the buffer. Reactions were started by mixing 10 mL 200 nM RNA with 10 mL 200 nM protein, 400 nM CF IA and

400 nM CF IB, and incubated at 30�C in a thermal cycler. After 10, 30 and 90 min, reactions were stopped by the addition of 20 mL

stopping buffer (80% v/v formamide, 1 M NaCl, 0.05% w/v bromophenol blue) and heating (72�C, 5 min). Negative control reactions

were also set up containing only the cleavage factors and RNA for the duration of the longest time point. Samples were then analyzed

by denaturing 6% acrylamide/7 M Urea PAGE (TBE, 20W, 25 min). Gels were stained in TBE with 1/10,000 SyBr Green (Life Tech-

nologies) for 15 min at room temperature, de-stained for 20 min in distilled water and imaged with a ChemiDoc XRS+ (BioRad).

Short substrates

RNA sequences are described in Table S2. Reactions were set up as above, but using fluorescent RNA oligonucleotide substrates

labeled at the 50 end with FAM and at the 30 end with AlexaFluor 647 (IDT). After stopping the reaction, reactions with substratesR 36

nt were analyzed by denaturing 20% acrylamide/7 MUrea PAGE and reactions with substrates% 30 nt were analyzed by denaturing

25% acrylamide/6 MUrea PAGE (TBE, 20W, 30min). Gels were then scanned twice with a Typhoon FLA-7000 (GE) using the 473 nm

laser/Y520 filter to detect FAM and the 635 nm laser/R670 filter to detect A647. Greyscale images from each channel were contrast-

normalized to the same background intensity and then layered as a false-color TIF file (GIMP).

Pull-down experiments

Strep-tagged ‘bait’ proteins and complexes in pull-down buffer (10 mM HEPES pH 7.9, 150 mM NaCl, 0.5 mM Mg(OAc)2, 0.05%

Tween-20) were first immobilized on equilibrated Streptactin (GE) beads. 100 mL of bait protein at 1.5 mMwas added to 40 mL beads

in 860 mL pull-down buffer and incubated for 60min at 4�C. Beadswere thenwashed twice in 1.0mL pull-down buffer (6003 g, 5min,

4�C) and divided equally between four tubes, each containing 10 mL bait-loaded beads and 250 mL pull-down buffer. Unloaded beads

were also included as negative controls. 20 mL of untagged ‘prey’ proteins CF IA, CF IB, Rna14–Rna15 and Pcf11–Clp1 at 4.0 mM

concentration were added to each bait and allowed to bind for 60 min at 4�C. Beads were then washed four times in 1.0 mL pull-

down buffer (6003 g, 5 min, 4�C) prior to elution by addition of SDS-PAGE loading buffer (50 mM Tris-HCl pH 6.8, 10% v/v glycerol,

2%w/v SDS, 0.05%w/v bromophenol blue), heating (95�C, 2 min), and analysis by Bis-Tris 4%–12% gradient SDS-PAGE in MOPS-

SDS buffer (200 V, 50 min). Bands were visualized by staining with InstantBlue (Expedeon).

Electrophoretic mobility shift assay (EMSA)

50-FAM fluorescently-labeled RNA oligonucleotides (IDT) were dissolved in DEPC water. For each sequence tested for binding, a se-

ries of reactions were prepared on ice, each containing 1.0 mL 500 nM RNA, 1.0 mL 10 3 loading dye (0.4% w/v orange G, 50% v/v

glycerol, 1 mM EDTA) and 8.0 mL of serially-diluted protein at concentrations of 5.0, 2.5, 1.25, 0.62 and 0.31 mM in 10 mMHEPES pH

7.9, 150 mMNaCl and 0.5 mMMg(OAc)2. This gave final binding reactions of 10 mL with 50 nM RNA, 13 loading dye and proteins at

concentrations of 4.0, 2.0, 1.0, 0.5 and 0.25 mM. Samples were incubated on ice for 30min prior to analysis by native 6% acrylamide/

TBE PAGE (40 min, 100 V constant). Gels were then scanned with a Typhoon FLA-7000 (GE) using the 473 nm laser/Y520 filter.

Chemical synthesis of BuUrBu

All starting materials were purchased from Sigma Aldrich unless otherwise stated and used without any further purification. NMR

spectra were acquired on a Bruker Avance-III operating at 400 MHz, using deuterated solvents as detailed and at ambient temper-

ature (300K). Notation for the 1HNMR spectral splitting patterns includes: singlet (s), triplet (t), quintet (quint) and broad singlet (bs).

Chemical shifts (d) are quoted in ppm and coupling constants (J) are quoted in Hertz. 1HNMR spectra are reported using the residual

non deuterated solvent as internal standard ((CD3)2CO
1H, 2.05 ppm, CD3OD 1H, 3.31 ppm, (CD3)2SO

1H, 2.50 ppm).

Synthesis of 2,5-dioxopyrrolidin-1-yl 2,2,2-trifluoroacetate (NHS-TFA, 2)
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The synthesis was performed according to a previously published method (Adamczyk et al., 2000). Trifluoroacetic anhydride

(TFAA, 9.2mL, 66.2mmol) was cooled to 0�CandNHS (1, 5.0 g, 43.4mmol) added in one portion under N2. The reaction waswarmed

to RT and stirred for 1 h. Excess of TFAA/TFA was removed under reduced pressure. The solid residue was then dissolved in toluene

(25 ml) and the remaining amounts of TFAA/TFA were co-evaporated on a rotary evaporator. The process was repeated twice with

toluene and three times with dichloromethane (DCM, 3 3 25 ml), providing 2 as a white solid. Yield: quantitative.
1H NMR (400 MHz, (CD3)2CO) d 3.02 (4H, s).

Synthesis of 4,4’-(carbonylbis(azanediyl))dibutyric acid (AcBuUrBuAc, 4)

The synthesis was performed with a modified version of previously published methods. (M€uller et al., 2010; Zhao et al., 2002).

g-Aminobutyric acid (3, 2.27 g, 22.0 mmol) and K2CO3 (3.59 g, 26.0 mmol) were dissolved in 10 mL of H2O in a three-necked round

bottom flask and the solution was cooled to 0�C. Simultaneously, a solution of triphosgene (683 mg, 2.3 mmol) in toluene (2 ml) and a

solution of K2CO3 (4.0 g, 29.0 mmol) in H2O (10mL) were added dropwise (over 15 min) to the vigorously stirred reaction mixture. The

reactionwas brought to RT and additionally stirred for 4 h. At the end of the reaction, the toluene layer was discarded and the aqueous

layer was extracted twice with diethyl ether. The aqueous solution was then acidified with concentrated HCl (final pH �2) and 4

precipitated as a crystalline white solid upon cooling. The precipitate was filtered and washed with a small portion of ice-cold water.

Yield: 22%
1H NMR (400 MHz, CD3OD) d 3.15 (4H, t, J = 8 Hz), 2.32 (4H, t, J = 8 Hz), 1.76 (4H, quint, J = 8 Hz).

Synthesis of bis(2,5-dioxopyrrolidin-1-yl) 4,4’-(carbonylbis(azanediyl))dibutyrate (BuUrBu,5)

The synthesis was performed according to previously published methods (M€uller et al., 2010; Rao et al., 2002). AcBuUrBuAc

(4, 100 mg, 0.43 mmol) was dissolved in dry pyridine (2 mL) under N2 and cooled to 0�C. NHS-TFA (2, 546 mg, 2.6 mmol) was added

in one portion under a flow of N2 and the reaction was brought to RT over 2 h. After addition of ethyl acetate the raw product was

isolated by filtration and then suspended in a DCM:MeOH mixture. The insoluble components were removed by filtration and the

filtrate was dried on a rotary evaporator. Compound 5 was isolated as a white solid. Yield: 83%
1H NMR (400 MHz, (CD3)2SO) d 5.97 (2H, bs), 3.05 (4H, t, J = 8 Hz), 2.81 (8H, s), 2.65 (4H, t, J = 8 Hz), 1.72 (4H, quint, J = 8 Hz).

Cross-linking coupled to mass spectrometry

The purified complexes Ysh1–Mpe1, Ysh1–Yjr141w and Ysh1–Mpe1–Yjr141w were cross-linked with the N-hydroxysuccinimide

(NHS) esters disuccinimidyl dibutyric urea (BuUrBu also known as DSBU) and the isotopically-coded disuccidinimidyl suberate

(DSS H12/D12) purchased from Creative Molecules (Canada). The cross-linking reactions were incubated for 45 min at 37�C at a final

excess of either 100- or 50-fold that of the protein concentration. The reactions were quenched by adding NH4HCO3 to a final con-

centration of 50 mM and incubating for further 15 min.

The cross-linked samples were freeze-dried and resuspended in 50 mM NH4HCO3 to a final protein concentration of 1 mg/mL,

reduced with 10 mM DTT and alkylated with 50 mM iodoacetamide. Following alkylation, proteins were digested with trypsin

(Promega, UK) at an enzyme-to-substrate ratio of 1:20, overnight at 37�C. The samples were acidified with formic acid to a final con-

centration of 2% (v/v) and the peptides fractionated by peptide size exclusion chromatography, using a Superdex Peptide 3.2/300

column (GE Healthcare) with 30% (v/v) acetonitrile/0.1% (v/v) TFA as mobile phase and at a flow rate of 50 mL/min. Fractions were

collected every 2 min from 1.0 –1.7 mL elution volume, lyophilized and resuspended in 2% (v/v) acetonitrile and 2% (v/v) formic acid.

The fractions were analyzed by nano-scale capillary LC–MS/MS using an Ultimate U3000 HPLC (ThermoScientific Dionex, USA) to

deliver a flow of approximately 300 nL/min. A C18 Acclaim PepMap100 5 mm, 100 mm3 20 mmnanoViper (ThermoScientific Dionex,

USA), trapped the peptides before separation on a C18 Acclaim PepMap100 3 mm, 75 mm 3 250 mm nanoViper (ThermoScientific

Dionex, USA). Peptides were eluted with a gradient of acetonitrile. The analytical column outlet was directly interfaced via a nanoflow

electrospray ionization source, with a hybrid dual pressure linear ion trap mass spectrometer (Orbitrap Velos, ThermoScientific,

USA). MS data were acquired in data-dependent mode. High-resolution full scans (R = 30,000, m/z 300-2000) were recorded in
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the Orbitrap. For samples cross-linked with DSS, MS/MS scans of the 20 most intense MS peaks were recorded in the linear quad-

rupole ion trap (LTQ) after CID activation (collision energy 35). For samples cross-linked with the CID cleavable BuUrBu, the 3 most

intense MS peaks were CID activated (collision energy 30) and high resolution MS2 spectra were acquired (R = 30,000, m/z 300-

2000). After in-source CID activation (collision energy 30), the three most intense ions recoded in MS2 spectra were CID activated

(collision energy 35) and the MS3 spectra were recorded in the LTQ ion trap.

For data analysis, Xcalibur raw files were converted into the MGF format through MSConvert (Proteowizard; (Kessner et al., 2008))

and used directly as input files for StavroX1 (Götze et al., 2012) and MeroX (Götze et al., 2015). Searches were performed against an

ad hoc protein database containing the sequences of the complexes and a set of randomized decoy sequences generated by the

software. The following parameters were set for the searches: maximum number of missed cleavages 3; targeted residues K, S,

Y and T; minimum peptide length 5 amino acids; variable modifications: carbamidomethyl-Cys (mass shift 57.02146 Da), Met-oxida-

tion (mass shift 15.99491 Da); DSS cross-links mass shift 138.06808 Da (precision: 10 ppm MS1 and 0.8 Da MS2), BuUrBu modifi-

cation fragments: 85.05276 Da and 111.03203 (precision: 5 ppm MS1 and 10 ppm MS2); False Discovery Rate cut-off: 5%. Finally,

each fragmentation spectrum was manually inspected and validated.

Hydrogen-deuterium exchange mass spectrometry (HDX-MS)

Deuterium exchange reactions of three complexes, Ysh1–Mpe1, Ysh1–Yjr141w and Ysh1–Mpe1–YJR141Wwere initiated by diluting

the protein in D2O (99.8%D2OACROS, Sigma, UK) in 10mMHEPES pH7.9, 150mMNaCl, 1mMTCEP to give a final D2Opercentage

of�95%. For all experiments, deuterium labelingwas carried out at 23�C (unless otherwise stated) at four points, 0.3 s (3 s on ice), 3 s,

30 s and 300 s in triplicate. The labeling reaction was quenched by the addition of chilled 2.4% v/v formic acid in 2 M guanidinium

hydrochloride and immediately frozen in liquid nitrogen. Samples were stored at �80�C prior to analysis.

The quenched protein samples were rapidly thawed and subjected to proteolytic cleavage by pepsin followed by reversed phase

HPLC separation. Briefly, the protein was passed through an Enzymate BEH immobilized pepsin column, 2.13 30mm, 5 mm (Waters,

UK) at 200 ml/min for 2 min, the peptic peptides were trapped and desalted on a 2.13 5 mmC18 trap column (Acquity BEH C18 Van-

guard pre-column, 1.7 mm,Waters, UK). Trapped peptides were subsequently eluted over 11min using a 3%–43%gradient of aceto-

nitrile in 0.1% v/v formic acid at 40 mL/min. Peptides were separated on a reverse phase column (Acquity UPLC BEH C18 column

1.7 mm, 100 mm x 1 mm, Waters, UK) and detected on a SYNAPT G2-Si HDMS mass spectrometer (Waters, UK) over a m/z of

300–2000, with the standard electrospray ionization (ESI) source with lock mass calibration using [Glu1]-fibrino peptide B

(50 fmol/mL). The mass spectrometer was operated at a source temperature of 80�C and a spray voltage of 2.6 kV. Spectra were

collected in positive ion mode.

Peptide identification was performed by MSe (Silva et al., 2005) using an identical gradient of increasing acetonitrile in 0.1% v/v

formic acid over 11 min. The resulting MSe data were analyzed using Protein Lynx Global Server software (Waters, UK) with an

MS tolerance of 5 ppm.

Mass analysis of the peptide centroids was performed using DynamX software (Waters, UK). Only peptides with a score > 6.4 were

considered. The first round of analysis and identification was performed automatically by theDynamX software, however, all peptides

(deuterated and non-deuterated) weremanually verified at every time point for the correct charge state, presence of overlapping pep-

tides, and correct retention time. Deuterium incorporation was not corrected for back-exchange and represents relative, rather than

absolute changes in deuterium levels. Changes in H/D amide exchange in any peptide may be due to a single amide or a number of

amides within that peptide.

Protein complex crystallization

Purified Ysh1–Mpe1 complex was concentrated to 8.3 mg/ml in 10 mM HEPES pH 7.9, 150 mM NaCl, 1.0 mM TCEP. Crystals were

grown at room temperature by sitting drop vapor diffusion against an 80 mL reservoir of 26%w/v PEG 3000, 0.1 M CHES pH 8.7. The

final drop of 400 nL comprised 200 nL protein and 200 nL crystallization buffer. Crystals were cryo-protected by the addition of 0.5 mL

crystallization buffer supplemented with 20% v/v glycerol, prior to harvesting in nylon loops and flash-cooling by plunging into liquid

nitrogen.

X-ray data collection, structure determination, refinement and analysis

Diffraction datasets (Table 1) of 900 images were recorded at Diamond Light Source, beamline I04-1 on a Pilatus 6M detector

(Dectris), using an oscillation range of 0.2� and an exposure time of 0.2 s per image. Data were collected at a temperature of

100 K. Data were processed with the XIA2 (Winter, 2009) automated pipeline, using XDS (Kabsch, 2010) for indexing and integration,

and AIMLESS (Evans and Murshudov, 2013) for scaling and merging. Resolution cut-off was decided by a CC1/2 value > 0.5 in the

highest resolution shell. The structure was solved by two-component molecular replacement with Phaser (McCoy et al., 2007), using

the crystal structure of human CPSF73 (PDB: 2I7V; (Mandel et al., 2006)) and the NMR structure of human RBBP6 (PDB: 2C7H; (Pugh

et al., 2006)) as sequential search models. Following rigid-body refinement of the molecular replacement solution, phenix.autobuild

(Terwilliger et al., 2008) was successful in placing 68% of residues. The model was completed manually by iterative cycles of model-

building using COOT (Emsley et al., 2010) and refinement with phenix.refine (Adams et al., 2010). Evaluation by MolProbity was used

throughout the process to preserve correct model geometry. The calculation of buried surface area was carried out using the ePISA

service at the European Bioinformatics Institute, EBI. For the electrostatic potential calculations, partial charges were first assigned
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using PDB2PQR (Dolinsky et al., 2004), implementing PROPKA (Li et al., 2005) to estimate protein pKa values. Electrostatic surfaces

were then calculated using APBS (Baker et al., 2001).

Protein cross-linking for electron microscopy

CPFcore at a concentration of 3.0mg/mL (5.4 mM) in 50mMHEPESpH7.9, 150mMNaCl, 1mMTCEP and 1mMMg(OAc)2was cross-

linked on ice for 20 min by the addition of BS3 to final concentration of 1.0 mM. The reaction was then quenched by the addition of

1 M NH3HCO3 pH 8.0, and crosslinking was confirmed by 3%–7% gradient Tris-acetate PAGE. Cross-linked complexes were then

separated from aggregates by size-exclusion chromatography (Superose 6 increase 3.2/300) in a buffer containing 10 mM

HEPES pH 7.9, 150mMNaCl, 0.5 mMMg(OAc)2, 1 mM TCEP. Fractions that eluted at the same volume as non-cross-linkedmaterial

were pooled.

Electron cryo-microscopy (cryo-EM)

Ysh1–Mpe1–Yjr141w

Cross-linked Ysh1–Mpe1–Yjr141wwas diluted to 350 nM in 10mMHEPES, pH 7.9, 150mMNaCl. Cryo samples were then prepared

on UltraAuFoil R1.2/1.3 gold supports (Russo and Passmore, 2014). Grids were made hydrophilic by plasma treatment with 9:1

argon:oxygen for 30 s. Three microliters of sample was applied to grids, blotted for 10 s, and vitrified by plunging into liquid ethane

using a Vitrobot MK IV (FEI) at 4�C, 100% relative humidity. Preliminary micrographs suggested that the complex was substantially

smaller than expected (�8 nm). Thus, to enhance contrast we used a Volta phase plate with applied defocus and collected data

only in holes with thin ice, on specimens prepared on all-gold supports. Micrographs were collected at IGBMC, Strasbourg on a

Cs-corrected FEI Titan Krios microscope (FEI) operating at 300 keV and equipped with a Volta phase plate, K2 camera (Gatan)

and Gatan Image Filter (GIF) with a slit-width of 20 eV. At 105,0003magnification, the calibrated pixel size was 1.09 Å. Gain-normal-

ized, LZW-compressed TIF movies with a total electron dose of �45 e-/Å2 were recorded in super-resolution mode over 9 s

(42 frames) with applied defocus of �0.5 mm. SerialEM software was used for automatic acquisition (Mastronarde, 2005). After

manual inspection, 994 micrographs were used in subsequent image processing.

Movie frames were aligned and a dose-weighted average calculated with MotionCor2 (Zheng et al., 2017). The contrast transfer

function (CTF) and image phase shift was estimated using Gctf (Zhang, 2016) All subsequent image-processing steps were carried

out in RELION2 (Scheres, 2012). Initially, auto-picking of 509,298 particles was carried out using aGaussian blob as a reference. After

several rounds of 2D and 3D classification (necessary to both clean dataset and enrich rare views), four classes that represented

different views were low-pass filtered to 20 Å and used for template-based auto-picking. The resultant 429,703 particles were better

centered, and subsequent 2D and 3D classification led to a subset of 43,308 particles that contributed to the final map with an aniso-

tropic resolution of 4.8 Å in the best direction. The resolution estimation reported is based on the gold standard Fourier shell corre-

lation (FSC) at 0.143, and the calculated FSC is derived from comparisons between reconstructions from two independently refined

half-sets. The map was post-processed, and the final reconstruction was filtered to 6 Å.

CPFcore

Cross-linked CPFcore was diluted to 250 nM in 10 mM HEPES, pH 7.9, 150 mM NaCl. Cryo samples were prepared as above, but

using a 6 s blot time. Test datasets were also acquired onQuantifoil R1.2/1.3 grids coatedwith graphene oxide or amorphous carbon,

but this did not improve the specimen.Micrographswere collected atMRC-LMBon a Tecnai G2 Polaramicroscope (FEI) operating at

300 keV, using a Falcon III camera (FEI). At 59,0003magnification, the calibrated pixel size was 1.78 Å. Uncompressedmovies were

acquired in integration mode with a total electron dose of �60 e-/Å2 over 2 s (62 frames) with applied defocus of �2.5, �3.0, �3.5,

�4.0 and �4.5 mm. After manual inspection, 704 micrographs were used in subsequent image processing.

Movie frames were aligned and averaged with MotionCorr. The contrast transfer function (CTF) was calculated using Gctf. All

further image-processing steps were performed in RELION2. Initially, a subset of 20 micrographs with different defocus values

were used to manually pick �5,000 particles for initial reference-free 2D classification. The resulting 2D classes were low-pass

filtered to 20 Å and used as templates for automated particle-picking. From the initial 506,293 particles picked, iterative 2D classi-

fication was used to clean the dataset. In the cleaned data, 116,800 particles formed classes in which only density for polymerase

module was visible; this was confirmed by a map at �8 Å resolution following 3D refinement. The remaining 3973 particles formed

classes in which additional globular subunits were visible.

Negative stain electron microscopy

Cross-linked CPFcore was diluted to 35 nM in 10 mM HEPES pH 7.9, 150 mM NaCl, 0.5 mM Mg(OAc)2, 1 mM TCEP. Copper grids

(400-mesh) with continuous thin carbon filmwere made hydrophilic by glow-discharge in air for 20 s. Three microliters of sample was

applied to the support and allowed to adsorb for 60 s before wicking away with filter paper. Grids were then applied sequentially to

two 30 ml drops of 2% w/v uranyl acetate, first to wash (quick) and then to stain (30 s). Excess stain was then wicked away with filter

paper until dry. Micrographs were acquired on a Tecnai Spirit microscope (FEI) operating at 120 keV, equipped with an Ultrascan

1000CCD camera (Gatan). At 26,0003magnification, the calibrated pixel size was 3.98 Å. 618micrographs were acquired in regions

of equivalent stain thickness at �0.6 mm defocus with a total electron dose of 40–60 e-/Å2 over 2 s.

274,806 particles were initially picked with e2boxer (Tang et al., 2007). All subsequent processing was performed in RELION2.

Several rounds of reference-free 2D classification were used clean bad particles from the dataset, and to discard particles classified
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on the basis of stain thickness, leaving a final subset of 107,817 particles in equivalently thick stain. A common lines approach was

used to generate an initial model, which was refined to give a final map with a resolution of 20 Å. One round of 3D classification was

then used to separate conformational heterogeneity, prior to a final 3D refinement to yield amap with a resolution of 25 Å from 23,969

particles. The resolution estimation is based on the gold standard Fourier shell correlation (FSC) at 0.143, and the calculated FSC is

derived from comparisons between reconstructions from two independently refined half-sets.

Visualization of structural data

All structural figures depicting crystallographic data (cartoon, stick and surface representations) were rendered in PyMOL

(Schrödinger LLC). Structural figures of EM maps with docked components were rendered in Chimera. For the model in Figure 6,

to-scale cleavage factor protein outlines were prepared in Inkscape based on PyMOL-rendered surface representations of PDB:s

2L9B (Moreno-Morcillo et al., 2011), 4EBA (Paulson and Tong, 2012), 2J8P (Qu et al., 2007), 2KM8 (Leeper et al., 2010), 2X1F

(Pancevac et al., 2010), 4C0B (Dupin and Fribourg, 2014), 2NPI (Noble et al., 2007) and 1SZA (Meinhart and Cramer, 2004).

Docking

To prepare the CPSF73 and RBBP6 protein models for docking (PDB: 2I7V and 2C7H, respectively), all solvent atoms and ligands

were removed. Docking was performed with HADDOCK 2.2 (van Zundert et al., 2016) using the WeNMR grid service (Wassenaar

et al., 2012). For preparation of ambiguous interactions restraints, CPSF73 residues M50, D51, Y55, D57 and RBBP6 residues

F13, K45, R78, R79 and P81 were specified as active. For both molecules, passive residues were defined automatically within a

6.5 Å radius of active residues.

QUANTIFICATION AND STATISTICAL ANALYSIS

Crystallographic calculations (e.g., integration, scaling, merging) were performed as described in methods text, using the default

software parameters unless otherwise stated. Processing and refinement statistics are detailed in Table 1.

Statistical evaluation of HDX-MS data in DynamX 3.0

The HDX-MS data collected in triplicate in this study allowed us to calculate the corresponding uncertainty for each difference in

deuterium uptake data point expressed as one standard deviation (SD), as described previously (Houde et al., 2011). The average

of all the individual experimentally determined SD values for all calculated mean difference data points for each peptide at all charge

states and replicates was determined and the value used as the best estimate of SD for any difference point. This valuewas then used

to calculate the standard error of the mean (SEM) for any mean difference value, as obtained from the average of the three separate

HDX-MS experiments conducted on the same sample. Using this value for SEMandmultiplying it by the appropriate Student’s t table

value for the 98% confidence gave an estimated 98% confidence limit of �0.5 Da for any mean value for difference calculated from

three replicate HDX-MS experiments. This value is represented as the gray dashed lines on the difference plots. Any value outside of

these limits can be considered significant.

Scoring cross-linked peptides in Stavrox 3.6.6

The scoring algorithm used by Stavrox reflects the quality of the respective fragment ionmass spectrum, which is calculated from the

number of signals above a specified signal-to-noise ratio. The score is based on the number of identified b- and y-type ions as well as

on the number and length of the ion series (Götze et al., 2012). To estimate the quality of a fragment ion spectrum the total number of

fragment ions above the threshold as well as the number of signals with relative intensities above 10% are taken into account. The

length of the respective b- or y-type ion series also influences the score. Each b- and y-type ion series of every crosslinked peptide is

divided by the total length of the peptide. A logarithmic conversion of this probability yields the score that is displayed by StavroX.

Decoy analysis

False-positive peptide identifications and hence false discovery rate (FDR) were determined by searching the acquired LS-MS/MS

data against a decoy database, generated by inverting the true sequences supplied in the fasta data file. This inversion can only lead

to false-positives. An FDR of 5% was applied to this dataset.

DATA AND SOFTWARE AVAILABILITY

The accession number for the atomic coordinates and structure factors for the Ysh1–Mpe1 X-ray crystal structure reported in this

paper is PDB: 6I1D. The accession numbers for the CPFcore negative-stain EM map and the Ysh1–Mpe1 cryo-EM map reported

in this paper are EMDB: 0324 and EMDB: 0325, respectively. Raw data (e.g., uncropped, unannotated gels, plots, lists of MS pep-

tides) corresponding to individual figure panels have been deposited in Mendeley Data (https://doi.org/10.17632/rnsb352sx3.1).
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