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Abstract

The granular temperature is an index of the level of

collisional activity in a granular flow, and increasingly

important in the verification of extended kinetic theo-

ries. The granular temperature is related to the square

of the difference between a particle’s velocity and that

of the group mean. Image analysis of high-speed video

is the most common method to measure granular tem-

perature in experimental flows and depends on corre-

lation of a search mask or a portion of the original

image to the next image frame to determine the par-

ticle’s movement. This invariably involves some level

of estimation of the location at a resolution finer than

the pixels that make up the image. However, errors in

determining particle movement at the subpixel level

can be shown to have a significant impact on granular

temperature identification. We show that taking parti-

cle movement to be a chain of displacement vectors
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provides context to the apparent impulses on the par-

ticle. Here we propose two novel methods for deter-

mining the granular temperature of experimental flows,

namely a novel method of initializing Particle Image

Velocimetry (PIV) for granular systems where each search

subset is centred on a previously determined particle

location to reduce bias, and a method of filtering the

apparent impulses on a particle on a frequency basis.

We term these methods Guided-PIV and Impulse Fre-

quency Filtering (IFF), respectively. In a verification

exercise using synthetically generated images, we show

Guided-PIV to produce substantially more accurate re-

sults than ordinary applications of PIV. The IFF method

is shown to greatly reduce the influence of analyzed

framerate on granular temperature results. Our results

demonstrate practical improvements for granular tem-

perature identification from image analysis, throughout

a range of experimental image quality levels, and we

anticipate that these improvements will enable exper-

imental assessment towards verification of theorized

models of collisional-frictional granular flows.
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1 Introduction

In the study of granular flows, recent attention has cen-

tred on the collisional activity between particles. Gen-

erally, the low flow resistance of a granular flow is

attributed to a reduction in the long-lasting frictional

contacts between particles. The overburden pressure of

the flow may instead by balanced by a collisional parti-

cle pressure [1], originally termed a dispersive pressure

by Bagnold [2]. The granular temperature was origi-

nally termed by Ogawa [3] as an index of the colli-

sionality of the flow, and corresponds to the average

fluctuating component of the energy of a particle. For

a field of particles with known velocity, the granular

temperature is calculated by comparing each particle’s

velocity to the group mean velocity, and averaging the

square of these velocity fluctuations. Granular temper-

ature was rapidly adopted as an input into kinetic theo-

ries [4,5,6]. However, the ability to accurately measure

the granular temperature of physical flows has lagged

behind the quantity’s adoption in constitutive models.

The most commonly applied methods to quantify gran-

ular temperature in published experimental results have

involved automated image analysis of high-speed im-

agery, namely Particle Tracking Velocimetry (PTV) [7,

8,9] and Particle Image Velocimetry (PIV) [10]. While

the analyzed images are typically photographs taken

through transparent flume side walls, Planar Laser In-

duced Fluorescence [11] and dynamic X-ray radiogra-

phy [12] have been used to image inside flows. PTV re-

quires video that clearly shows discrete particles, and

as such is typically limited to monodisperse flows in

laboratory settings. PTV involves determining the par-

ticle locations in each frame, and linking the particles

between frames to generate displacement vectors (Fig-

ure 1a). Alternatively, PIV consists of partitioning the

initial image into search subsets (typically 8 to 64 pix-

els) and searching for the best matching location in

the following image to generate displacement vectors.

Either method returns a field of displacement vectors

from which the granular temperature can be calculated.

This is theoretically sound, but as this paper will dis-

cuss, small errors in image analysis can lead to large in-

accuracies in measured granular temperature. Further-

more, without an accepted reference standard, there is

no way to calibrate measurements.

The calculation of granular temperature from a vector

displacement field is a natural extension of the origi-

nal use of image analysis for flows: i.e. the calculation

of flow velocity. The velocity profile (Figure 1b) is the

most commonly referenced depth profile for a flow and

can be calculated by averaging the velocity vectors of

each of the particles in a region of the flow (‘ensem-

ble average’). If the errors in particle position are dis-

tributed without bias, the ensemble averaging process

will lead to an unbiased estimation of velocity profile.

Gollin et al. [13] utilized PTV and PIV algorithms in-

dependently on high-speed video images of granular

flows in a small laboratory flume and found both algo-

rithms to similarly determine the velocity profile, inde-

pendent of the image frame rate.

Recent advances in cameras with high temporal reso-

lution and increased image resolution have fundamen-

tally changed the input data available for image analy-

sis. The high temporal resolution minimizes the parti-

cle displacement between frames, enabling a minimum

displacement matching algorithm to be used rather than
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requiring more advanced filtering. The camera can be

placed ‘closer’ to the flow (physically, or by means of

a longer focal length lens). The higher image resolu-

tion means each particle is represented by more pix-

els (hereafter termed the ‘image diameter’). This can

aid particle delineation as well as increase the texture

available for PIV. For the purposes of determining the

collisionality of the flow, the high temporal resolution

also enables full tracking of the particle’s trajectory and

minimizes the error due to undersampling [14,13].

However, as this paper will discuss, some of the sources

of error in measuring granular temperature are worse

for faster camera frame rates or for particles represented

by more pixels. Gollin et al. [13] demonstrated that

the potential for mismeasurement of granular temper-

ature can be much higher with PTV than PIV, and is

dependent on the magnitude of particle displacement

per frame, with lower displacements per frame leading

to higher identified granular temperatures. This coun-

terinuitively can lead to a reduction in the accuracy of

granular temperature measurement as technology im-

proves, unless the methods used are understood and

assessed critically. The image remains represented by

discrete pixels (Figure 1c), hence, sub-pixel inaccura-

cies in the image analysis methods can lead to spuri-

ous components in the identified displacement vectors

(Figure 1d) and substantial errors within the calculated

granular temperature. Rather than averaging out veloc-

ity fluctuations as with the calculation of the velocity

profile, the calculation of granular temperature isolates

and compounds the fluctuations. The apparent fluctu-

ations may be real (due to collisional particle move-

ment) or artifacts of the particle location identification

process. Even a flow without any granular temperature

can exhibit a ’noise floor’, a minimum granular tem-

perature that would be apparent from the identifica-

tion process. Granular temperature measurements do

not benefit from averaging in the same way that an a

velocity measurements do, and thus even long duration

measurements on a steady-state flow are not immune

to this error.

Here, an error framework is presented to assess the in-

fluence of sub-pixel particle position errors on the de-

termination of granular temperature. A review of PIV

and PTV methods is presented, including a discussion

on the general sources of error which are common to

image correlation and sub-pixel estimation schemes.

Subsequently, a first novel hybrid method (’Guided-

PIV’) is described where identified particle locations

are utilized to initialize PIV tracking. Synthetic images

are then analyzed to evaluate the noise floor of both

Guided-PIV and PTV methods. Then, a second novel

method is presented based on frequency based filtering

of PTV results. Using this approach, we decompose

a chain of particle movement into orthogonal vectors

of velocity fluctuation, suitable for conversion into the

frequency domain. The frequency spectra of the im-

pulses can indicate if alternating compensatory errors

are present. The possibility for frequency-based filter-

ing is explored with a view to reducing the influence

of image frame rate on granular temperature measure-

ments. Finally, both novel methods are demonstrated

on simulated images of a collisional flow generated in

a Discrete Element Model.
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2 Granular temperature from Image Analysis

The typical method for calculating granular tempera-

ture is performed on the displacement vectors between

two image frames, as identified by PIV or PTV (Fig-

ure 2a). When the displacement vectors are grouped

into bins, each corresponding to a discrete partition of

the flow height, the mean flow velocity can be found

by averaging the results of each identified vector in the

bin (Figure 2b). This is done for each coordinate direc-

tion (u, v). The granular temperature for bin k can be

calculated by first calculating the fluctuation compo-

nents (Figure 2c) in each coordinate of an orthogonal

system: [13]

(u∗i )k = (ui)k− ūk (1)

where * denotes the fluctuation component, i repre-

sents an individual vector and ūk the average flow ve-

locity in the coordinate direction. The mean of the squares

of this quantity is calculated for each bin k as follows

by an ensemble average of the Nk particles in the bin:

〈
(u∗)2

〉
k
=

∑
Nk
i=1

[
(u∗i )

2
]

k
Nk

(2)

The granular temperature is given as (units of velocity

squared):

Tk =
1
2

〈[
(u∗i )

2
]

k
+
[
(v∗i )

2
]

k

〉
(3)

In Equation 3, the factor 1
2 is a scaling factor to account

for the spatial dimension of the system [15]. When a

three-dimensional system is observed through planar

(two-dimensional) imagery, a 1
3 scaling factor is used

when assuming the out-of-plane movement is zero. Al-

ternatively, when assuming that out-of-plane movement

is equal to bed-normal movement, the granular temper-

ature is given as: [16,17]

Tk =
1
3

〈[
(u∗i )

2
]

k
+2
[
(v∗i )

2
]

k

〉

2.1 Effects of misidentification of particle movement

Figure 1d schematically illustrates a particle on a straight

path (zero granular temperature), with the identified

particle locations from successive frames indicated. Dis-

placement vectors are then drawn between particle lo-

cations. If the particle locations deviate from the true

path, the displacement vectors will have spurious com-

ponents of movement, which would erroneously increase

granular temperature. The effects of misidentification

of particle movement can be assessed by propagating a

particle velocity error term −→ε through the expression

for granular temperature. If−→ε is zero-mean and uncor-

related with −→u true, and the length of the vector has the

average E
(∥∥−→ε ∥∥)≡ a, the granular temperature can be

shown to increase by a2.

Estimation of the average particle velocity error a can

be made from an estimation of the particle positioning

variance b (in physical units, not pixels) and the an-

alyzed framerate f = 1
∆ t . Through propagation of the

positioning error in a two-point linear velocity equa-

tion, a characteristic velocity error term can then be

taken as some multiple of f
√

2b, leading to a granu-

lar temperature noise floor on the order of 2 f 2b. As an

example, a characteristic positioning error of σ (ε) =
√

b = 0.1 px (pixels), for images analyzed at 1000 fps
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with PTV and a 3 px / mm scale factor would result in

a granular temperature error ε(T ) of:

ε(T ) = 2 f 2b

= 2(1000 s−1)2
[
(0.1 px)

(
0.001m

3px

)]2

= 0.0022
m2

s2

As PIV is subject only to the positioning error on the

final point, the variance would be half of the variance

for PTV. Further detail on the above deriviations is pro-

vided as Supplementary Material.

2.2 Particle Tracking Velocimetry

Particle Tracking Velocimetry (PTV) involves deter-

mining the location of each particle in successive frames,

and using an algorithm to link the particle locations be-

tween the frames. As the results include tracking infor-

mation on a particle basis, the results, in theory, are bet-

ter suited to calculation of granular temperature than

PIV. However, the accuracy of PTV is influenced by

both particle location identification and matching par-

ticles between frames because the method reduces a

particle to its centroid location and discards informa-

tion about the particle’s appearance.

PTV requires video frames with clearly distinguishable

particles (Figure 3a) as each particle must be identified

and the centre-of-mass estimated (Figure 3b). Particles

in dilute flows, appearing with well-defined edges, may

be detected using a single pixel intensity threshold (bi-

narization) [13]. For dense flows, the Particle Mask

Correlation (PMC) method [18] involves assuming an

image of a representative particle (the “mask”) and cal-

culating the cross-correlation between this mask and

the image. The correlation score between the mask,

centred on each pixel of the image, forms the basis for

detecting particles. Local peaks in the correlation score

are likely to be the centre of mass of the particles. To

generate the mask, a two-dimensional Gaussian distri-

bution is commonly utilized [19]. A further step is to

then interpolate the fit of the particle mask on a sub-

pixel basis (Section 2.4).

After the particle locations are identified, the next step

in PTV is for a matching algorithm to determine the lo-

cation of the same particle between successive frames

(Figure 3e). The simplest matching algorithm pairs the

locations with minimum displacement. Matching algo-

rithms for PTV also typically enforce that one particle

in the first frame corresponds to one particle in the sec-

ond frame.

If the matching algorithm incorrectly matches particle

locations, the ‘wild vector’ that results will increase

the calculated granular temperature. Wild vectors most

commonly occur when the PMC step did not recog-

nize a particle in one of the paired frames. To reduce

wild vectors, various methods of matching and filtering

have been proposed. The simplest is to tightly limit the

search neighbourhood to the maximum probable travel

distance. While this is compatible with simple direct

matching, the flow velocity in terms of particle diame-

ters per frame becomes a limiting factor in the match-

ing success. Cross-correlation and displacement algo-

rithms [20] compare the displacement of a potential

matching pair to the average displacement of the adja-

cent group. Because they enforce a general measure of
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uniformity on the identified vectors, these methods are

not suitable for the determination of granular tempera-

ture of highly collisional flows. Other proposed match-

ing algorithms include a method based on Voronoı̈ tes-

selation [7].

2.3 Particle Image Velocimetry

Particle Image Velocimetry (PIV) methods were devel-

oped for tracer particles in a fluid flow and essentially

correlate textures between successive image frames. The

original geotechnical application of PIV was to iden-

tify small displacements within continuum geomateri-

als. As such, great emphasis has been placed on devel-

oping improved shape functions utilized to interpolate

the fits of the cross-correlation at a subpixel level. PIV

consists of defining a region of the image as a subset

or Interrogration Window, typically a square of 8 to 64

pixels per side, and searching for the location in the

second (comparison) image where the best correlation

is seen with the original subset location. The match-

ing algorithms consider only the best correlation match

within a prescribed search zone, similar to Minimum

Displacement matching in PTV, owing to the small dis-

placements expected within geomaterials. Popular im-

plementations of PIV methods include PIVlab [21] and

geoPIV [22].

Typically, the subsets are laid out in a regular grid pat-

tern (Figure 3e), and may or may not be overlapping.

Here, we refer to this method as Grid-PIV. The origi-

nal locations are not informed by a priori knowledge of

particle locations. The size of the subset is typically set

larger than a characteristic particle diameter and there-

fore typically contains multiple particles. Adrian and

Westerweel [23] suggested the optimum range was 5-

10 particles per subset.

For uniform, lightly shearing flows, the particles within

a subset are not likely to move relative to each other.

For flows with high rates of shear, such as in the vicin-

ity of frictional boundaries, the position of the parti-

cles in the faster and slower moving layers will be dif-

ferent to each other, and thus the appearance of the

subset would be different in the second image. This

phenomenon, known as gradient biasing [24], has been

subject to attempts to improve cross-correlation perfor-

mance by deforming the sub-images using a multi-pass

method.

However, for more collisional flows, the change in rel-

ative particle positions within a subset is not as eas-

ily determined, and these methods are not as applica-

ble. PIV for subsets of multiple particles will have an

inherent averaging effect, or suffer loss-of-correlation

that precludes matching. Additionally, tracking infor-

mation for individual particles is not available. It has

been found that the identified granular temperature de-

creases as the size of the PIV subset increases [25,

16,26,27]. Sarno [27] has suggested a multi-pass ap-

proach where the size of the subset is systematically

varied. Hart [28] proposed using progressively smaller

subsets, down the order of one particle size. This method

does not use a priori knowledge of particle locations

but does use a priori knowledge of maximum displace-

ment as results from subsets are used to limit the search

distance for smaller subsets.
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2.4 Image matching by cross-correlation on a subpixel

level

At the heart of both the PIV and PTV methods is the

requirement to match a search image to its location

within a final image. An important difference between

PIV and PTV is that in PTV the particle mask is uti-

lized as the search subset for both the original and final

image. For PTV, all particles are essentially identical

during the matching phase, as only the identified loca-

tion is input into the matching algorithm. This means

that during the PMC phase any texture or differentia-

tion between particles would typically worsen the scores.

In contrast, the PIV matching algorithm uses a portion

of the original image as the search subset and is aided

by texture and differentiation between particles.

In both PIV and PTV, the cross-correlation method is

utilized to identify the movement on the basis of whole

pixels. To determine movement on a sub-pixel level, a

method is required to interpolate these results and esti-

mate the location of the maximum [22]. The definition

of this sub-pixel estimation function is part of the tech-

nology of the method of image analysis. The PTV rou-

tine utilized in this paper uses MATLAB’s lsqcurvefit

function to optimize the sub-pixel location and size pa-

rameters of the Gaussian mask to best fit the window

of the final image. For PIV, a bi-cubic interpolant was

utilized in the original geoPIV [29] and extended to

a bi-quintic B-spline interpolant for geoPIV-RG [30].

PIVlab [21] fits a Gaussian distribution using up to

nine points.

In this paper, the geoPIV software package [22] was

used with a bi-cubic shape function and a B-spline func-

tion, respectively. The use of these two versions of the

software does not represent a proposed novel improve-

ment, but instead serves to demonstrate the capabili-

ties of existing PIV software in comparison to PTV,

for the purposes of determining the granular tempera-

ture of monodisperse granular flows.

3 Guided-PIV: PIV initiated with particle location

information

As discussed above, PIV is typically deployed for gran-

ular flow analysis using a regular grid of search subsets

(Figure 3c). This often leads to averaging within the

subset and/or poor correlation as the particles move rel-

ative to each other. As an alternative, a hybrid method

of particle location identification and PIV tracking is

proposed here for granular flows where the particles

have a sufficient image diameter and are distinguish-

able in the images. The method seeks to locate the

PIV subsets at the particle locations, limiting loss-of-

correlation through relative particle movement in a shear-

ing or collisional flow. Unlike tracer particles in a con-

tinuum fluid flow where the tracer particle displace-

ments are representative of the continuum in which

they transported, the particle displacement results in

a collisional granular system need to be captured for

all particles to mitigate bias. Enforcing one subset per

particle and vice versa at PIV initiation is critical to ob-

tain an image analysis displacement vector field that is

representative of the true particle displacement vector

field.

In this method, the particle locations determined by

Particle Mask Correlation are used to initialize PIV for

each pair of frames (Figure 3d). We thus term the new

method Guided-PIV. One PIV subset is centred at each
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identified particle location, and the subset size is set to

the average particle diameter. The search zone is set

to be slightly larger than the maximum expected parti-

cle movement, based on the results of an initial pass of

PTV. By using PIV instead of PTV for measuring par-

ticle displacements, advancements made in PIV sub-

pixel identification can lead to reduced noise in mea-

surements. For flows of slightly irregular particles, the

particle shapes and texture will generally aid matching

with PIV as opposed to having a detrimental impact on

PTV.

Note that Cowen and Monismith [31] proposed a hy-

brid technique where a deformation field was recon-

structed from regularly spaced non-overlapping PIV

interrogration windows, and PTV was used to deter-

mine the particle locations in that field. The currently

proposed method differs from the Cowen and Moni-

smith method in that the PIV interrogration windows

are located after the particle locations have been deter-

mined, rather than a regular grid, and the subset sizes

are set to the particle size.

4 Simulated flows and synthetic images

In order to explore the potential effects of errors in

particle location determination from image analysis, it

was desired to generate synthetic images from simu-

lated flows where the particle positions are explicitly

known to enable comparison of the true granular tem-

perature and any measured values from imaging meth-

ods. A Discrete Element Model (DEM) using the Mer-

curyDPM software [32,33] was used to simulate a flow

in a chute, inclined at 24◦, under steady-state condi-

tions with the model parameters listed in Table 1. Par-

ticles which left the periodic boundary at the bottom of

the chute reentered the model at the top of the chute.

Figure 4 presents a visualization of the particles in the

cell, with the color gradient representing particle ve-

locity. The model is laterally confined by flat, rigid, and

frictional sidewalls and was thus only singly periodic.

The DEM returns the position of all 27,500 particles

at a sample rate of 2000 Hz. Gollin et al. [34] provide

further details on the specific DEM technique.

For each frame, the model can be queried for particles

close to the sidewall, designated as the ‘camera’ loca-

tion. Synthetic images (Figure 5a) were built by lay-

ering particles from back to front. Each particle was

represented by a 2-D Gaussian distribution, with the

parameters adjusted with distance from the ‘camera’

lens to simulate the shallow depth-of-field associated

with a wide aperture lens.

In the following sections, exercises are conducted on

these synthetic images where the granular temperature

is known. In Section 5, two exercises are conducted on

images where the particles do not move relative to each

other, and thus the true granular temperature is zero. A

third exercise is conducted in Section 7 on 1250 im-

ages of the simulated collisional flow. The true granular

temperature can be calculated from the known particle

positions and compared to the measured values.

5 Rigid Body Displacement exercises

5.1 Synthetic image exercise 1: subpixel accuracy

The accuracy of the subpixel estimation process has

been shown to be influenced by the texture in the im-

age as well as the choice of interpolation function. The
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phenomenon of PIV results that are biased towards in-

teger values of displacement is known as ‘peak lock-

ing’. Stanier et al. [35] investigated this bias in the es-

timated subpixel components and found that the bias

was higher for particles represented by fewer pixels.

Murray et al. [14] performed a series of simple exper-

iments and generated synthetic images to explore the

sources of error affecting the determination of velocity

and acceleration for non-deforming interrogation win-

dows. The largest error source was found to be due to

poor texture, leading to peak locking, and exceeded 0.1

pixels. In this way, the use of somewhat irregular parti-

cles is considered beneficial for PIV performance. The

choice of shape function used for the subpixel inter-

polant led to an error on the order of 0.01 px for a cubic

shape function, as opposed to 0.001 px for a B-spline

function.

Here, a series of synthetic images was generated based

on the first frame of the simulated flows, described in

Section 4, to evaluate the sub-pixel accuracy in the de-

termination of particle location for each method. In

each image, the particle was moved 0.025 px horizon-

tally (x direction). Over 40 frames, this corresponds to

1 px of movement. At each step, the error between the

true position of the particle and the identified position

of the particle was calculated. The error was calculated

as the length between positions, so it follows that the

error is always positive. The above process was com-

pleted for 4 rows (y direction) each 0.33 px apart. The

errors were averaged over all rows (over all y) for each

x (Figure 6). Four particle diameters dp were trialled:

5, 6, 12, and 24 px. The PTV, Guided-PIV, and Guided-

PIV-B-spline methods (Table 2) were included in this

comparison.

The PTV method (Figure 6a) returned very low aver-

age error values (< 0.07 px). This is not unexpected,

as the image was generated using the same equation as

that which the Particle Mask Correlation process uti-

lizes. The error was highest for larger particle diame-

ters. This confirms proper functioning of the subpixel

algorithm for PTV.

The Guided-PIV method with bi-cubic subpixel inter-

polant (Figure 6b) was suitable for particle (and sub-

set) sizes of dp = 5 px or larger. The average error is

lowest for the larger dp = 24 px particles, on the or-

der of 0.12 px. For the dp = 5 px particles, the aver-

age error ranged up to 0.24 px. These error values are

considerably increased from those of PTV. When the

Guided-PIV method is used with a B-spline subpixel

interpolant (Figure 6c), only particle sizes of 12 and

24 px are suitable for the B-spline. The level of error

reduces to a maximum of 0.08 px for the dp = 24 px

particles.

This exercise confirms that the PTV method can per-

form well when particles are similar to the mask. For

PIV, it was seen that the sub-pixel estimation algorithm

has a significant influence on accuracy.

5.2 Synthetic image exercise 2: Noise floor of

granular temperature measurements

To quantify the ‘noise floor’ of granular temperature

as identified by the different image analysis methods,

a verification exercise was undertaken using synthetic

images of multiple particles in a flow field. The impli-
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cations of the particle location identification error on

granular temperature were previously shown in Sec-

tion 2.1. In this exercise, the true granular temperature

is zero as the particles do not undergo relative displace-

ment. The synthetic images were analyzed using both

PTV and the Guided-PIV methods (Table 2), and the

errors in particle location identification are expected to

manifest as a ‘false’ granular temperature.

The images were generated using the first frame of the

simulated flow (Figure 5a), but with a uniform horizon-

tal displacement applied to each particle in each image

ranging between 0.3 px to 9.6 px per frame. The move-

ment per frame was intentionally chosen to not be a

whole or half pixel, as these were previously shown to

have the least error for PIV (Figure 6b). The left and

right boundaries were made periodic, such that as par-

ticles exited the frame, the particles entered the frame

on the other side. Each particle was represented by a

24 px diameter Gaussian mask. Once again, these con-

ditions are ideal for PTV as the search mask is identical

to the mask used to generate the images.

Figure 7 illustrates the average identified granular tem-

perature, normalized by the square of the average ve-

locity. The noise is over one order of magnitude higher

for PTV than Guided-PIV over the range of particle

movements per frame trialled. Both methods illustrated

a decrease in noise as movement per frame is increased,

which was expected from Section 2.1, through 4.8 px

displacement per frame. Guided-PIV demonstrated a

minimum of noise at 7.2 px per frame, with an increase

in noise at 9.6 px. It is expected that for larger displace-

ments, large errors could occur due to a breakdown of

the matching algorithm (especially direct matching in

PIV).

This exercise confirmed that granular temperature iden-

tification signfiicantly depends on the particle move-

ment between frames, and that consideration should be

made for this when selecting the analyzed frame rate

for images. The exercise also produced promising re-

sults for Guided-PIV.

6 Tracking particle trajectories between frames

Considering the flow on a particle basis rather than a

frame-by-frame basis can be instructional to help quan-

tify and illustrate the influence of particle location misiden-

tification on the granular temperature. A post-processing

routine created chains of particle movement for the PTV

and Guided-PIV results by matching the end points and

start points of the displacement vectors in successive

frames. Figure 8a) illustrates the path of three represen-

tative particles from the simulated flow which undergo

multiple collisions. The true particle path is shown from

the DEM results, as well as the identified particle loca-

tion from PTV. The Guided-PIV results are also shown

as a cumulative sum of the displacement vectors from

the start of the chain. Overall, the two tracking meth-

ods illustrate general agreement with the true particle

locations.

6.1 Comparison of impulse spectra

Spurious components of velocity vectors are discern-

able when considered in the context of particle move-

ment across many frames. Considering a particle on a
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path (Figure 9a), an error in determination of particle

location would lead to a velocity vector with both a true

component (the actual movement) and an errant com-

ponent. In the next frame, the errant component would

require an equal and opposite error component to re-

turn to the original path. Viewed over the entire chained

path. the error components would have the property of

alternating about the mean in each successive frame

and be akin to high-frequency noise. We now explore

using frequency-based methods to identify and filter

out the error component during the measurement of

granular temperature.

To analyze the apparent impulses on a frequency basis,

it can be assumed that velocity changes of the parti-

cle are due to impulses at a right angle to the instanta-

neous direction of the particle, or directly in line with

the particle’s instantaneous direction. Each orientation

can include impulses in the positive or negative direc-

tion. The displacement vectors are decomposed into

the vector projection (inline) and rejection (perpendic-

ular) oriented to the displacement vector from the pre-

vious interval (Figure 9b). For the rejection, the vector

is compared with the current particle direction, and cast

as negative or positive based on whether it acts to direct

the particle to the left or right. For the projection, the

scalar b1 = ‖b1‖ is compared with the original velocity

‖a‖ to determine the scalar impulse.

When the particle motion is decomposed into these im-

pulses, this produces a scalar signal of positive and

negative values and a near-zero mean (Figure 9c). This

signal is suitable for transformation into the frequency

domain by the Discrete Fast Fourier Transform (DFFT)

(Figure 9d). A series of equal magnitude impulses in

alternating directions for each frame would manifest as

a harmonic signal at the Nyquist frequency fn, defined

as half the sampling frequency fs. The frequency spec-

tra also has the property of being symmetrical about

fn.

Using this method of impulse decomposition and spec-

tral analysis, Figure 8b) presents the frequency spectra

of apparent impulses on the same particle trajectories

as Figure 8a). Results are presented for tracking by the

PTV and Guided-PIV, as well as the true particle path

from the simulation. The magnitude of impulses iden-

tified by Guided-PIV is similar to the the true parti-

cle path across the frequency spectrum. The magnitude

of PTV impulses is much higher, which would lead

to a much higher granular temperature result. There is

also a frequency dependence visible in the PTV results

(Figure 8b) that is absent from the Guided-PIV results.

The magnitude of the impulses generally increase up to

fn. With a clear indication that the error in particle lo-

cation identification is distinguishable on the frequency

spectra of apparent impulses, we investigate the possi-

bility of using a frequency-based filter (Figure 9d) to

improve the accuracy of measuring granular tempera-

ture from high-speed imagery of monodisperse granu-

lar flows.

6.2 Granular temperature on a particle basis

The granular temperature T of a particle can be related

to the change in energy from a collision. If the particle

had initial velocity ca before the collision and now has

the final velocity cb
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T =
1
3
〈[

c2
b− c2

a
]〉

(4)

where 〈−〉 denotes ensemble averaging over all par-

ticles. The 1/3 factor is a dimensional scaling factor

similar to Equation (3), and subject to the same con-

siderations.

Assuming particle mass m, the momentum balance be-

tween three successive frames is:

mca +mv = mcb (5)

where v is the velocity fluctuation term.

If we consider impulse co-ordinates aligned with the

initial direction of travel ca, Equation (5) may be ex-

panded to be:

mca+mv =


ca,i

0

0

+m


vi

vp

vq

= m


cb,i

cb,p

cb,q

= mcb (6)

By Equations (4) and (6), the granular temperature can

be expressed by the sum of impulses:

T =
1
3

〈{[
(ca,i + vi)

2 + v2
p + v2

q

]
− [ca,i]

2
}〉

T =
1
3
〈{

2vica,i + v2
i + v2

p + v2
q
}〉

(7)

For granular temperature of a chain of particle move-

ment N intervals long, in each interval k:

T =
1

3N

[
N

∑
k=1

(
2vk,ick,i

)
+

N

∑
k=1

(
v2

k,i + v2
k,p + v2

k,q
)]

(8)

By Parseval’s theorem, the sums of the squares of the

impulses ∑
N
k=1

(
v2

k,i + v2
k,p + v2

k,q

)
may be taken from

the time-domain series or the frequency spectra. When

averaging over all chains to comprise the flow, the chain

should be weighted by N to maintain equivalence to the

ensemble average.

6.3 Impulse Frequency Filtering (IFF)

The potential for the error components to be distin-

guishable by frequency (Section 6.1) leads to the pos-

sibility of filtering the impulse series of a trajectory

by frequency. The novel Impulse Frequency Filtering

(IFF) method is based on the concept that modern-day

high-speed cameras can produce images with a suffi-

ciently high frame rate that the frequency of the appar-

ent impulses brought on by misidentification of particle

location is well above the actual frequency of particle

collisions. A low-pass filter can be applied to the fre-

quency series, the simplest of which would be a cut-off

frequency (Figure 9d). Here, after the DFFT is taken,

the components smaller than the frequency of interest

are summed and used in the calculation of the granular

temperature (Equation 7). In the application example

(Section 7), the cut-off frequency was determined on a

per-chain basis by considering the cumulative sum of

the frequency components. The cut-off frequency was

set as the lowest frequency where the average compo-

nent value (from 0 Hz to the interested frequency) ex-
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ceeded 1.5 times the average component value from 0

Hz to 300 Hz.

7 Synthetic image exercise 3: simulated collisional

flows

Here we present the results of a verification exercise

to demonstrate the concept of distinguishing real colli-

sions from the error component by using the frequency-

filtering method, described in Section 6.3, and to val-

idate the two proposed novel improvements for gran-

ular temperature determination. The exercise was con-

ducted using the DEM results for a steady-state colli-

sional flow (Section 4). 1250 sequential frames of the

simulated flow were analyzed. For each frame, three

images were generated, representing three levels of im-

age quality. The particle locations are identical in each

set of images. In the base case (Figure 5a), the particles

are represented by a Gaussian distribution identical to

the search mask in the Particle Mask Correlation step.

In Figure 5b, the same image has been corrupted by

Gaussian white noise that is generated anew each frame

by the MATLAB imnoise function. The standard de-

viation of the noise magnitude is 1.2% of the amplitude

of the particle image. The noise simulates when the

imaging sensor is amplified excessively. Experimen-

tal images may also be subject to optical imperfections

which are persistent and stationary across the images.

We simulated the case of scratched and smeared side-

wall glass by merging a picture of a worn area of an

experimental flume (Figure 5c) onto the synthetic im-

ages (Figure 5d).

The images were analyzed by the regular Grid-PIV,

PTV, and Guided-PIV methods. Both PIV methods used

bicubic subpixel estimation, a subset size equal to the

particle diameter dp = 24 px, and a search zone size

of 5 px in each direction from the edge of the search

subset. All methods are able to correctly identify the

velocity profile (Figure 10), however in the scenario

with scratched glass, both Grid-PIV and Guided-PIV

slightly underidentify the velocity. The stationary scratches

are likely the dominant feature in some subsets, result-

ing in zero movement identified for the subset.

A comparison was made of the granular temperature

profile identified by each analysis method for each of

the image sets (pure, noisy, and scratched sidewall glass)

generated for collisional flow simulated by the DEM

(Figure 11). The “actual” granular temperature has been

calculated using Equations 1-3 and true positions of the

particles adjacent to the sidewall as exported from the

DEM. Therefore, all compared quantities are the local

granular temperature in the vicinity of the sidewall.

For the classic methods, Grid-PIV and PTV were tri-

alled without frequency-based filtering. The regular Grid-

PIV methods are found to systematically underpredict

granular temperature for each of the image sets by up

to approximately 30%. Each of the PTV cases also re-

sults in an identified granular temperature well in ex-

cess of the actual values, typically by a factor of 2 or

more. For PTV, the lowest granular temperature result

is for the ‘pure’ case, which overidentifies the granu-

lar temperature by at least 70% for the majority of the

flow height. The addition of white noise to the image

increases the measured granular temperature further by

approximately 15%. The granular temperature for the
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‘scratched glass’ case is much higher. The match is

poorest in the lowest portion of the frame, where the

glass has the highest opacity (Figure 5d).

The proposed Guided-PIV method demonstrates results

that are much closer to the actual granular tempera-

ture than both of the PTV and Grid-PIV results. The

comparison for the ‘pure’ particles case is the clos-

est to actual (within +/- 16%), followed by the ‘white

noise case’ (overidentification up to 29%). The gran-

ular temperature is underidentified in the ‘scratched

glass’ case, in which the velocity profile is also under-

identified (Figure 10).

The impulse-frequency-based filtering method, discussed

in Section 6.3, was then applied to both the Guided-

PIV and PTV results with the results termed Guided-

PIV-IFF and PTV-IFF, respectively. With the frequency-

based filter applied to the Guided-PIV results, the clos-

est match to actual is seen for the images corrupted by

white noise. For the pure images, the frequency filter-

ing method results in a generally underidentified gran-

ular temperature. In the case of scratched and smeared

sidewall glass, the filtering exacerbates the underiden-

tification of granular temperature.

The frequency-based filtering method demonstrates the

largest improvement for the PTV results. After filtering

impulses by frequency, the ‘pure’ particle case follows

the actual granular temperature profile within 15% for

the majority of the dense flow height. The case with

white noise improves as well, with the results within

20% of actual for the majority of the flow height. The

case with scratched glass shows similar results in the

upper portion of the flow, where the optical obstruction

was not as pronounced, but continues to overidentify

granular temperature in the lower portion of the flow.

8 Conclusion

Granular temperature, as a measure of the collisional-

ity of a flow, is one of the two primary inputs in ki-

netic theories regarding particle pressure in a granular

flow. The direct measurement of granular temperature

is not possible, and is either inferred from backcalcu-

lation or approximated from image analysis. Recent

advances in ultra-high-speed video cameras have en-

abled experiments to be recorded at higher frame rates,

which in turn lends itself to capturing a more magnified

image (in terms of pixels per particle). This may make

it easier to track particles between frames as the rel-

ative movement between frames is minimized. How-

ever, Gollin [36] found that a decreased interval be-

tween analyzed images can skew the identified granu-

lar temperature.

A framework to relate sub-pixel errors to granular tem-

perature measurements illustrated that even errors on

the order of 0.1 px can increase the identified granular

temperature by an amount similar to the ’true’ granu-

lar temperature of many flows. As such, it is important

that researchers understand the accuracy of their meth-

ods and understand the potential bias that the analy-

sis method may have on granular temperature. In many

cases, a higher resolution image captured at a higher

frame rate may actually be detrimental to the accurate

measurement of granular temperature.

Images captured at a higher framerate and each parti-

cle represented by more pixels are well-suited for PIV
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methods. The lower relative movement per frame al-

lows for particle tracking with the matching guided

only by a maximum search zone set to reasonable lim-

its of particle movement between frames. Any avail-

able texture and differentiation is helpful for PIV to

distinguish between particles and perform sub-pixel iden-

tification. However, early work with PIV has resulted

in systematically lower granular temperature than the

true value and hence a novel hybrid method of PIV was

proposed, where for each frame the particle location

information from the Particle Mask Correlation step of

PTV is used to lay out the search subsets for PIV. This

allows for one particle per subset in PIV, avoiding the

inherent averaging effects or loss of correlation when a

subset contains multiple particles.

Synthetic images were utilized to assess the ‘noise floor’

of granular temperature determinations from both the

PTV and Guided-PIV methods. The Guided-PIV method

returned over an order of magnitude less noise. The

noise floor typically decreased as particle movement

per frame increased, however, Guided-PIV illustrated a

local minimum beyond which the matching algorithm

begins to return false matches.

Synthetic images of a simulated collisional flow were

analyzed in a verification exercise to check local granu-

lar temperature adjacent to a sidewall. The Guided-PIV

method performed with much greater accuracy than

Grid-PIV or PTV. The use of particle location infor-

mation to initialize PIV is shown to reduce bias affect-

ing granular temperature. This led to an improvement

in ability to measure granular temperature over PTV

(Figure 11), using only a classical PIV algorithm.

A frequency-based method (IFF) was proposed to ac-

count for errors in the determination of particle loca-

tion from video. This method was developed for the

case where the video was captured at a much higher

frame rate than frequency of collisions. The method

sucessfully improved the accuracy of granular temper-

ature measurement by PTV analysis.

Finally, a discussion must be had regarding error miti-

gation versus error suppression. Firstly, our results demon-

strate that experimental considerations such as cleanli-

ness of the sidewall glass and the quality of the light-

ing trump the relative differences between image anal-

ysis algorithms. Careful experimental procedure is rec-

ommended to mitigate errors. Secondly, the impulse-

frequency-filtering (IFF) method is a method of error

suppression, but when applied to PTV results was not

able to perform better than the Guided-PIV method

which produces much less error, even before filtering.

The PTV-IFF method remains useful for the case of

severely scratched glass sidewalls or particles display-

ing less texture. It also is likely applicable to internal

images of a flow captured by advanced methods [12,

37] which do not display the level of detail required

for PIV.
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Table 1: Discrete Element Model parameters for flows constrained by frictional sidewalls. Superscript (w) indicates
wall contact; subscripts (n) and (t ), normal and tangential parameters, respectively.

Parameter Symbol Scaling Value
Diameter dp 1.5 mm

Mass m 4.29 ·10−6 kg
Contact model Simple Linear Spring-Dashpot

Collisional time 0.005
Normal restitution en 0.7
Normal stiffness Kn mg/d2 2 ·105

Sliding stiffness Kt , Kw
t mg/d2 2/7 ·Kn

Normal damping γn
√

g/d 70
Sliding damping γt , γw

t
√

g/d 2/7 · γn

Particle-particle friction µ 0.45
Particle-wall friction µw 0.35

Table 2: Image analysis methods considered

Method name PIV subset layout PIV subpixel estimator Filtering applied
Grid-PIV Regular grid Bicubic None

Guided-PIV Centred on particle Bicubic None
Guided-PIV-B-spline Centred on particle B-spline None

Guided-PIV-IFF Centred on particle Bicubic Frequency-based
PTV n/a n/a None

PTV-IFF n/a n/a Frequency-based
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Fig. 1: A typical analysis workflow of side-on video of a monodisperse granular flow (a) using PTV identifica-
tion of displacement vectors, which are averaged in horizontal bins to calculate (b) depthwise velocity profile.
However, (c) identification of the particle centroid location, especially on a sub-pixel level, is often impercise. (d)
Illustration of particle path from identified displacement vectors, demonstrating how errors at the sub-pixel level
can result in false components of displacement vectors which would contribute to granular temperature.
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Fig. 3: Comparison of classic PIV, Guided-PIV, and PTV methods, each for analyzing (a) high speed videos
of distinguishable monodisperse particles. (b) The PTV and Guided-PIV methods begin by identifying particle
locations. (c) The classic PIV method uses a regularly spaced grid of search subsets while (d) the Guided-PIV
method uses the particle location results to center each search subset on a particle location. Both PIV and Guided-
PIV use the full image information during matching, while (e) the PTV matching phase uses only the field of
particle locations.
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Fig. 4: Front and side views (a,b) of a flow, laterally confined by flat, rigid, and frictional sidewalls. The simulation
domain is lx× ly = 30d×66d with a total of N = 27500 particles simulated. Glued (black) particles make the base
bumpy and the colour gradient represents slow (blue) to fast (red) particles as z increases. Notably there is an
additional influence of wall friction in the spanwise (y) velocity gradient. (c) flowing particle system. (b) taken
from [34].
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(a) ’clean’ Gaussian distribution (b) with noise (similar to camera at extended sensitivity settings)

(c) view of scratched and smeared sidewall glass (d) with scratched and smeared sidewall glass

Fig. 5: Representative frames from synthetic image exercises
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(a) PTV, pure Gaussian particle

(b) Guided-PIV

(c) Guided-PIV w/ B-spline

Fig. 6: Accuracy of subpixel estimator and peak-locking phenomenon.
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Fig. 7: Identified granular temperature, normalized by the square of mean flow velocity, as a function of particle
movement (in terms of pixels per frame) for a synthetically generated image (dp = 24 px) where no relative
displacement occurs and thus the true magnitude of granular temperature is zero. The results illustrate a noise
floor for granular temperature identification, with Guided-PIV performing at least one order of magnitude better.
The optimum displacement for Guided-PIV for lowest noise is around 7.2 px/frame, as opposed to around 4.8
px/frame for PTV.
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(a) Particle position (b) Spectra of apparent impulses

Fig. 8: True particle positions (from DEM) and the frequency spectra of apparent impulses on three representative
single chains of particle motion. Also shown is a comparison of (a) particle location tracking and (b) frequency
spectra of apparent impulses on the particle, for Guided-PIV and PTV methods.
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Fig. 9: Schematic of (a) chained PTV displacement vectors representing the path of a particle, (b) decomposing
the changes in velocity to perpendicular and inline impulse components, (c) a timeseries of the perpendicular
and inline impulse components, which are subject to the DFFT to produce (d) a frequency spectrum of apparent
impulses on the particle. The components less than the frequency of interest can be summed for calculation of
granular temperature, with higher frequencies regarded as spurious.

0 1 2 3 4 5 6 7 8

Velocity

0

5

10

15

z
/d

Pure PTV

Pure Guided-PIV

Pure Grid-PIV

Noisy PTV

Noisy Guided-PIV

Noisy Grid-PIV

Scratched PTV

Scratched Guided-PIV

Scratched Grid-PIV

Actual

Fig. 10: Measurement of velocity profile by PTV and Guided-PIV methods.
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Fig. 11: Measurement of granular temperature profile by PTV, Guided-PIV, and Grid-PIV methods. Frequency-
based filtering of impulses applied to the PTV and Guided-PIV methods, shown as PTV-IFF and Guided-PIV-IFF,
demonstrates an improvement in accuracy of granular temperature identification, except where sidewall glass was
heavily scratched and smeared.
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