
This is a repository copy of A time‐based arc‐length like method to remove step size 
effects during fracture propagation.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/179468/

Version: Accepted Version

Article:

Hageman, T. and de Borst, R. orcid.org/0000-0002-3457-3574 (2021) A time‐based arc‐
length like method to remove step size effects during fracture propagation. International 
Journal for Numerical Methods in Engineering, 123 (1). pp. 180-196. ISSN 0029-5981 

https://doi.org/10.1002/nme.6852

This is the peer reviewed version of the following article: Hageman, T, de Borst, R. A time-
based arc-length like method to remove step size effects during fracture propagation. Int J 
Numer Methods Eng. 2021; 1- 17., which has been published in final form at 
https://doi.org/10.1002/nme.6852. This article may be used for non-commercial purposes 
in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This 
article may not be enhanced, enriched or otherwise transformed into a derivative work, 
without express permission from Wiley or by statutory rights under applicable legislation. 
Copyright notices must not be removed, obscured or modified. The article must be linked 
to Wiley’s version of record on Wiley Online Library and any embedding, framing or 
otherwise making available the article or pages thereof by third parties from platforms, 
services and websites other than Wiley Online Library must be prohibited.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

RESEARCH ARTICLE

A time-based arc-length like method to remove step size effects

during fracture propagation

Tim Hageman | René de Borst *

Department of Civil and Structural

Engineering, University of Sheffield,

Sheffield, UK

Correspondence

*René de Borst, Department of Civil and

Structural Engineering, University of

Sheffield, Sheffield S1 3JD, UK. Email:

r.deborst@sheffield.ac.uk

Funding information

Horizon 2020 European Research Council

Grant 664734 "PoroFrac"

Summary

An arc-length like method is presented which alters the size of the time increment

when simulating crack propagation problems. By allowing the time increment to

change during the time step a constraint can be imposed, which is used to enforce

the fracture to propagate a single element length per time step. This removes the

effect of the (interface) element size on propagating fractures, and therefore allows

smooth fracture propagation during the simulation. The benefits of the scheme are

demonstrated for three cases: mode-I crack propagation in a double cantilever beam,

a shear fracture including inertial and visco-plastic effects in the surrounding mate-

rial, and a pressurised fracture inside a poroelastic material. These cases highlight

the ability of this scheme to obtain more accurate and non-oscillatory results for the

force-displacement relation, to remove numerically-induced stepwise fracture prop-

agation, and to allow for arbitrary propagation velocities. An added benefit is that

plastic strains surrounding a fracture are no longer affected by the (interface) element

size.
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1 INTRODUCTION

Fracture propagation is a mostly unwanted, but common phenomenon in many engineering problems. The fractures can be

represented using a smeared approach, for instance using gradient damage or phase-field formulations1,2,3,4, or as a sharp dis-

continuity using e.g., interface elements5,6,7, the extended finite element method8,9,10,11, or isogeometric analysis12,13. While the

latter class of (discrete) methods allows for a unambiguous definition of the fracture path and the corresponding fracture aper-5

ture, they limit the fracture to propagate over discrete number of element only, thus limiting the propagation of a crack to discrete

interval lengths. As a result, oscillations are often observed in load-displacement curves when small load steps are used due to

the simulations alternating between no fracture propagation and a sudden propagation over one or more element lengths14,15.

Similar issues arise for time-dependent problems in which using smaller time steps results in jumps and pauses in the fracture

propagation16,17.10

These issues are the result of prescribing a constant load or time increment. For time-independent cases, the load increment

can be altered during the step by using an arc-length method18,19,20,21, which allows a constraint to be enforced. This constraint

was originally taken in the form of a relation between the displacements and applied force, and allows the simulation of structural

behaviour such as snap-backs and snap-throughs. More recently it has been shown that energy-based constraints can be more

effective22,23.15
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FIGURE 1 Allowable propagation window

While attempts have been made to alter the time increment as part of the finite element scheme24,25,26, the time step size in

time-dependent problems is usually prescribed at the start of a time step and kept constant. This is commonly done in explicit

dynamics, where stability criteria are evaluated to allow for the largest stable time increment27,28,29. These criteria, however,

are solely evaluated based on results from the previous steps, and therefore are unable to adapt the time step such that it would

result in a continuous fracture propagation. Alternatively, the time increment can be recalculated based on converged results,20

allowing for additional criteria to be imposed on the fracture propagation30,31.

Herein we will present an arc-length scheme which uses the time step similar to a load increment. In this way an arc-length

like scheme can be applied to cases in which the deformations are governed by the dynamics of the system and not by changes in

the external forces. The scheme will be applied to several fracture propagation problems, using the stresses ahead of the fracture

as a criterion that should be fulfilled. As a result, the time increment is dynamically adapted during the current time step to25

allow for a continuous fracture propagation. The general scheme will be described in Section 2. Afterwards, the scheme will

be elaborated and assessed for three cases: Mode-I fracture in a double cantilever beam with a time dependent load (Section

3), a shear fracture limited by inertial effects (Section 4), and a pressurised fracture propagating through a saturated poroelastic

material (Section 5).

2 TIME-BASED ARC-LENGTH LIKE METHOD30

The element size effects mentioned in the Introduction are the result of interface elements being inserted along the complete

boundary between two adjacent elements. Inserting new interface elements can therefore only increment the fracture length by

(a multiple of) the element size. As a result, the fracture propagation during a time step is limited to propagating through a

discrete number of elements. When small time or load steps are used, this results in a stepwise propagation pattern in which the

fracture propagates for a single element length, and then pauses for several time steps until the propagation criterion is fulfilled35

and the next element fractures. When larger steps are used, small oscillations are often observed due to the simulation alternating

between one and two elements fracturing during a time step.

To prevent these interface element size effects, a single element should fracture during each time step. We define the fracture

propagation criterion fc such that the fracture propagates when fc ≥ 0. By altering the time step size in such a manner that this

criterion is exactly fulfilled at the end of the step, it is guaranteed that exactly a single element fractures during each step. This40

corresponds to searching for a converged solution in the region indicated in Figure 1.

This approach bears similarities to an arc-length scheme. But where in traditional arc-length methods a constraint is used

in the load-displacement space, we impose a constraint in the fracture length-time space. As a result, the time increment takes

the role served by of the load increment in traditional arc-length methods. However, where the load increment is allowed to be

negative in order to resolve unloading and snap-back behaviour, the time increment can only be positive and, depending on the45

temporal discretisation scheme, non-zero.

It was chosen to use the time at the end of the current step, tj+1, as an independent degree of freedom instead of the time

increment. This time is treated in a similar manner as traditional degrees of freedom, and thus gets transferred from the current

step to the next step, automatically keeping track of the time. Both the new time tj+1 and the old time tj are available, allowing for

the time increment to be determined easily. If the time increment had been taken as an independent degree of freedom instead,50

it would have needed to be added separately in order to keep track of the current time.
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FIGURE 2 Geometry and boundary conditions for the double cantilever beam.

The fracture propagation constraint that should be fulfilled at tj+1 is described through:

f ∗
c
=

⎧
⎪⎨⎪⎩

f
j+1
c = 0 unless

tj+1 − tj − Δtmin = 0 if f
j+1
c (tj + Δtmin) > 0

tj+1 − tj − Δtmax = 0 if f
j+1
c (tj + Δtmax) < 0

(1)

in which the minimum time step size Δtmin > 0 is added to prevent issues due to the common singularity in time-discretisation

schemes at Δt = 0 s. However, this value can be chosen sufficiently small to approximate a sudden propagating fracture, and thus

allows multiple propagation steps within a short time interval. The maximum time step size Δtmax accounts for the possibility

that the fracture does not propagate within a reasonable time, allowing for the fracture propagation to pause when a physical55

cause is present, e.g., due to crack arrest. This maximum time step size also warrants numerical stability of the solution scheme,

forcing the solver towards the correct solution. By including these two boundaries on the time step in the used criterion, these

edge cases of zero and unrealistically large time steps are caught and prevented through imposing the time increment directly

in the formulation. It should be noted, however, that this usually is not needed, with the fracture propagating a single element

within the allowed time increment window.60

Varying the time at which the internal forces are evaluated results in a nonlinear system of equations for all but the simplest

cases. To resolve these equations, an iterative Newton-Raphson scheme is employed which, in addition to the traditional degrees

of freedom, includes the time at the end of the time step as a degree of freedom. This scheme is summarised as:[
)fint

)u

)fint

)t
)f ∗

c

)u

)f ∗
c

)t
+ �

][
duj+1

dtj+1

]

i+1

=

[
fext
0

]
−

[
fint
f ∗
c

]

i

(2)

Dependent on the used propagation criterion, the )f ∗
c
∕)t term can be zero and the )f ∗

c
∕)u term can be extremely sparse,

resulting in a poorly conditioned or near-singular system matrix. To resolve this, a constant � ≥ 0 is added to the diagonal to

improve the condition number of the system matrix. Since this term is only added to the system matrix, it does not affect the

solution. It does, however, provide some damping to the changes in time obtained from the Newton-Raphson scheme, providing

added stability to the scheme while possibly reducing the convergence rate.65

In the remainder of this paper this scheme will be applied to three cases, demonstrating its capabilities and showcasing the

advantages compared to using a constant time step. For the reference solutions which use a constant time step size, a constraint

is placed on the tj+1 degree of freedom in a similar manner as traditional degrees of freedom, limiting the new time such that

tj+1 = tj +Δt. The spatial discretisation for these cases will be performed using Bézier extracted T-splines7,13,32,33,34, exploiting

their improved inter-element continuity to evaluate the stresses ahead of the fracture on the element boundaries. Since the stresses70

are directly evaluated ahead of the fracture tip, no interpolation functions are used inside the fracture propagation criterion.

However, if standard Lagrangian elements are employed the propagation criterion can be adapted to include the interpolation

used to obtain the stresses. Similar propagation criteria can also be employed for X-FEM8,9,11 or X-IGA15 to adapt the method

to fractures propagating in arbitrary directions.

3 CASE 1: DOUBLE CANTILEVER BEAM75

The first case which we consider is the double cantilever beam. The dimensions and material properties are as in Fathi et al.15.

The example consists of a 10 mm×1 mm domain, through which a fracture propagates with an initial length of 1 mm as shown

in Figure 2. The material is characterised by a Young’s modulus E = 100 MPa and a Poisson ratio � = 0.3.
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For this quasi-static case the equilibrium condition holds:

LT� = 0 (3)

with LT the divergence mapping operator. The problem is made time-dependent by imposing a constant velocity v = 0.01mm∕s

at the tips of the beam. To obtain a clear definition for the external forces, this imposed velocity is implemented through the

external forces:

Fext = kd(uy ± v t) (4)

which use a dummy permeability kd to enforce the vertical displacements uy to be equal to the enforced displacement ∓vt.

Finally, the fracture is propagated once �yy exceeds the tensile strength in the first integration point ahead of the fracture:

fc = �yy − ft (5)

using the tensile strength ft = 1 MPa. The fractured elements use an exponential traction separation law, using the fracture

energy c = 0.1 kN∕m.80

3.1 Discretisation

The governing equations, Eq. (3) and (5), are discretised using cubic T-splines N , resulting in the force vector:

f = ∫
Ω

BTDelBuj+1 dΩ + ∫
Γd

NT �czm dΓd −

2∑
i=1

NTkd
(
Nuj+1 ± v tj+1

)
= 0 (6)

where B = LN , Del being the linear-elastic stiffness matrix, and �czm represents the traction resulting from the traction-

separation law used for fractured elements. The propagation constraint is discretised as:

fc = sT
2
DelBuj+1 − ft = 0 (7)

with sT
2

a vector used to select the �yy stress component. This assumes the current time step is within the allowed limits,

Δtmin < t
j+1 − tj < Δtmax. When this is not the case, the limiting cases from Eq. (1) are discretised as:

kt
(
tj+1 − tj

)
=

{
ktΔtmin if tj+1 − tj ≤ Δtmin

ktΔtmax if tj+1 − tj ≥ Δtmax
(8)

using a sufficiently high constant kt to enforce these time step size limits. This approach shows similarities to the dummy stiffness

approach used for interface elements, where a large value is used to prevent the fracture from attaining a negative opening (or

in this case, prevent negative time increments).

The discretised equations are solved using the scheme from Eq. (2), which, for the time tj+1 being within the limits, results in:[∫
Ω
BTDelB dΩ + ∫

Γd
NT )�

j+1
czm

)u
dΓd −

∑2

i=1
kdN

TN ∓
∑2

i=1
kdN

T v

sT
2
DelB 0

][
duj+1

dtj+1

]

i+1

= −

[
f

fc

]

i

(9)

Since only the traction-separation law is nonlinear, this system converges within a few iterations. For the simulations using a85

constant time step, the fracture propagation criterion is checked based on these converged results, and two different approaches

are adapted once the fracture propagates. Either more iterations are added to re-obtain a converged solution using the new

fracture length at the end of the time step, resulting in a fully implicit scheme, or the simulation continues with the next time

step, resulting in a partially explicit scheme which obtains a solution using the old fracture length. For the simulations using

the time-based arc-length scheme, the moment of fracture propagation coincides with the end of the time step and therefore no90

further iterations with the updated fracture length are performed once a converged solution is achieved.

The discretisation used 100×10 elements. To enforce the imposed external forces, a dummy stiffness kd = 1010 N∕m is used.

Since no issues arise for a zero time step size, Δtmin = 0.0 s is used, and the maximum time step size is chosen sufficiently large

not to inhibit the results, Δtmax = 20.0 s.

3.2 Results95

The force-displacement results are shown in Figures 3 and 4 for the simulation using the time-based method and the simulations

allowing for fracture propagation during the time step. The simulations using smaller time steps result in small oscillations due
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FIGURE 3 Force-displacement resulting from simulations using a constant time step, and the time-based method.
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FIGURE 4 Force-displacement results, zoomed at areas of interest.
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FIGURE 5 Force-displacement resulting from simulations using a constant time step while only evaluating fracture propagation

at the end of the step, and the time-based method.
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FIGURE 6 Evolution of the fracture length.

to the fracture propagating either over one element length or not at all, whereas Δt = 4 s results in a rather smooth curve near

the peak load because at least one new interface element is being created during each time step. This can also be observed from

the evolution of the fracture length, see Figure 6, where a continuous propagation is observed when using the largest time step100

up to t = 64 s. This figure also shows the limited propagation rates that can be obtained due to the constant time step size, with

the propagation velocity corresponding to vfrac = n ⋅ dx∕Δt with n an integer and dx the interface element size.

However, when the time step size is adapted, a smooth fracture propagation is observed throughout the entire simulation. The

pauses in the fracture propagation have disappeared, and therefore no drops in the force-displacement relation are observed.

Since the propagation criterion is exactly fulfilled at the end of the step, this simulation results in a higher peak load compared105

to the constant time step results, which consistently underestimate the load. This underestimation is a result of the fracture

propagation being assumed part of the time step, thereby obtaining an external force that is insufficient to propagate the fracture

another element. In contrast, by adapting the time step the peak load at the moment of fracture propagation is recorded.

Underestimating the external force can also be removed by ending the current time step at the moment the fracture propagates,

as shown in Figure 5. Indeed, doing so results in the external force slightly exceeding the expected load, and stresses around110

the newly created fracture which exceed the propagation criterion. However, as the time step is increased, this overestimation

becomes worse. With the implicit fracture propagation method two elements fractured for the first two steps of the simulation.

In contrast, when the fracture propagation criterion is only checked once at the end of the simulation the stresses at the second

element should already exceed the allowed stresses for two elements to fracture at once, requiring significantly higher stresses

around the fracture tip, thereby limiting the propagation to a single element for the entire duration of the simulation. As a result,115

this simulation only converges towards the other simulations around t = 80 s, around the same moment the implicit propagation

scheme has had two steps without fracture propagation.

4 CASE 2: INERTIA-DRIVEN SHEAR FRACTURE

The second case which we consider is a fracture propagating due to shear stresses, while being limited by inertial and visco-

plastic effects in the domain35,36. This case consists of a 500 × 250 m domain on which external forces are applied (�xx =120

8.55 MPa, �yy = 10 MPa, �xy = 1.8 MPa). To prevent stress waves from reflecting from the domain boundaries, absorbing

boundary conditions are employed. An initial 75 m long fracture is present at the centre of the domain, see Figure 7, which

starts to propagate due to the external stresses.

The momentum balance is given as:

LT� − �ü = 0 (10)
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with a density � = 2500 kg∕m3. The material is assumed to exhibit visco-plastic deformations and to obey a non-associated

flow rule, defined through the yield function f and the plastic potential function g:

f =
√
3J2 + �sp − ks g =

√
3J2 + �sp (11)

with p the pressure and J2 the second invariant of the deviatoric stresses. The constants are defined as �s = 6sin(�)∕(3−sin(�),

�s = 6sin( )∕(3 − sin( ), and ks = 6c cos(�)∕(3 − sin(�), with the cohesion c = 0, the angle of internal friction � = 31◦, and

the dilatancy angle  = 0◦. Up to the yield function, elastic deformations occur governed by a Young’s modulus E = 10 GPa

and a Poisson’s ratio � = 0.25. Once the stress exceeds the yield function the plastic deformations are described by a linear

Perzyna model:

� −
(
�trial − Δ�Delmp

)
= 0 (12a)

f −
��0

Δt
Δ� = 0 (12b)

with mp the direction of the plastic strain, the viscosity parameter ��0 = 107 Pa s, and the plastic deformation increment Δ�.

Finally, the propagation criterion for the fracture is given by:

fc = �xy − fp�yy (13)

with fp = 0.45 the peak coefficient of friction. The fractured elements use an exponential traction-separation law, also utilising

this peak coefficient of friction, a residual friction coefficient fr = 0.045, and a fracture release energy c = 17.4 kN∕m.125

4.1 Discretisation

The spatial discretisation is carried out in the same manner as in Section 3.1, using cubic T-splines. The temporal discretisation

is done using a Newmark scheme, evaluating the force vectors at the new time and discretising the velocity and acceleration as:

u̇j+1 =



�
(
tj+1 − tj

) (
uj+1 − uj

)
−

(



�
− 1

)
u̇j −

(
tj+1 − tj

)( 


2�
− 1

)
üj (14)

üj+1 =
1

�
(
tj+1 − tj

)2
(
uj+1 − uj

)
−

1

�
(
tj+1 − tj

) u̇j −
(

1

2�
− 1

)
üj (15)

Using these temporal and spatial discretisations the force vector is given as:

f =∫
Ω

BT�j+1 dΩ + ∫
Ω

�NTN

(
1

�
(
tj+1 − tj

)2
(
uj+1 − uj

)
−

1

�
(
tj+1 − tj

) u̇j −
(

1

2�
− 1

)
üj

)
dΩ

+∫
Γd

NT �czm dΓd + ∫
Γ

NTRTCRN

(



�
(
tj+1 − tj

) (
uj+1 − uj

)
−

(



�
− 1

)
u̇j −

(
tj+1 − tj

)( 


2�
− 1

)
üj

)
dΓ

−∫
Γ

NT �ext dΓ = 0

(16)
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with the rotation matrix R and the damping matrix C = �[cs 0; 0 cp], cs and cp being the pressure and shear wave speeds,

respectively. The fracture propagation criterion from Eq. (13) is discretised as:

fc =
(
sT
4
− fps

T
2

)
�j+1 = 0 (17)

Equations (16) and (17) are solved using the iterative scheme from Eq. (2) as:[
Keff +M + C∗ + ∫

Γd
NT )�

j+1
czm

)u
dΓd keff +m + c∗(

sT
4
− fps

T
2

)
dT
eff

0

][
duj+1

dtj+1

]

i+1

= −

[
f

fc

]

i

(18)

with the sub-matrices given by:

Keff = ∫
Ω

BTDeffB dΩ (19a)

keff = ∫
Ω

BTdeff dΩ (19b)

M = ∫
Ω

�

�
(
tj+1 − tj

)2NTN dΩ (19c)

m = ∫
Ω

�NTN

(
−2

�
(
tj+1 − tj

)3
(
uj+1 − uj

)
+

1

�
(
tj+1 − tj

)2 u̇j
)

dΩ (19d)

C∗ = ∫
Γ




�
(
tj+1 − tj

)NTRTCRN dΓ (19e)

c∗ = ∫
Γ

NTRTCRN

(
−


�
(
tj+1 − tj

)2
(
uj+1 − uj

)
−

(



2�
− 1

)
üj

)
dΓ (19f)

To obtain a quadratic convergence rate, the effects of plastic deformations need to be included in the effective stiffness matrix

Deff and the time-dependent stiffness vector deff . These matrices are obtained by taking the derivatives of Eq. (12) with regards

to the stresses, strains, time increment, and plastic increment, resulting in:

[
Deff deff
)Δ�

)�

)Δ�

)t

]
=

[
I + Δ�Del

)mp

)�
Delmp

)f

)�
−

��0

tj+1−tj

]−1 ⎡⎢⎢⎣
Del − Δ�Del

)mp

)�trial
Del 0

0 −Δ�
��0

(tj+1−tj)
2

⎤⎥⎥⎦
(20)

The domain is discretised using two different meshes, using 320 (dx = 1.56 m) and 640 (dx = 0.78 m) small elements in

the horizontal direction near the discontinuity and larger elements used away from the interface. Both meshes have 60 elements

in the vertical direction. To enforce the initial conditions, the first t0 = 1 s is done suppressing plastic deformations and not

allowing the fracture to propagate. This results in the maximum allowed time step Δtmax = 0.01 s being used for all steps. After130

this initial period the fracture is allowed to propagate, resulting in a single step in which the fracture suddenly propagates with

the minimum time step size Δtmin = 10−5 s, followed by steps within the time step size limits.

4.2 Results

A time step is considered to be converged when the normalised energy based residual becomes lower than 10−9. Since a consistent

stiffness matrix is used, the simulations should attain a quadratic convergence rate. However, as shown in Figure 8a, this is not the135

case with a sudden drop in the error at the start of the time step, followed by a super-linear (but not fully quadratic) convergence

that displays oscillations. When looking at the convergence of the time step size in Figure 8b a quadratic convergence is observed,

with the time error defined as (Δtj − Δtconv)∕Δt1 using the "correct" time increment Δtconv from the converged solution. Since

the temporal degree of freedom shows a quadratic convergence rate, it is likely that the issues with the energy based residual

arise due to the large variations in time step size. These large changes in time step alter the energy available during the current140

time step, and therefore strongly influence the energy based convergence criterion.

The evolution of the fracture length is shown in Figure 9a. While the time based arc-length scheme obtains a smooth fracture

propagation, its propagation starts off much slower compared to the simulations using a constant time step. In contrast, the

simulations using a constant time step show pauses between each fracture propagation for the finest time step. Using the coarser
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FIGURE 8 Convergence of the Newton-Raphson solver for selected time steps.

time step size shows pauses after 2-3 fracture propagation events, giving the impression that the simulation yields a smooth145

propagation with breaks, whereas this is solely the effect of the element-wise propagation.

In order to use smaller time steps for the arc-length-like scheme, a smaller element size needs to be used at the discontinuity.

Results for this smaller element size are shown in Figure 9b, where the simulation with the coarse time step coincides with the

results using a variable step size. This indicates that the time step size obtained using the coarse mesh was insufficient to properly

capture the inertial effects and their interactions with the fracture, while the element size was sufficient using constant time steps.150

The plastic deformations for the 320 horizontal element mesh are shown in Figure 10. Peaks in the plastic strain are observed

for the simulations using a constant time step due to the stresses exceeding the propagation criterion around the fracture tip

before the fracture propagates. While this effect is decreased for smaller time steps, it is still present. In contrast, the time based

arc-length method obtains smooth plastic strains near the discontinuity, even though a coarser time step size is used compared

to both other results. This difference remains upon mesh refinement, as shown in Figure 11. While the largest peaks, which155

correspond to the propagation pausing and restarting, have disappeared for the large time step, small peaks which correspond

to stresses exceeding the propagation criterion are still present. This indicates that these effects are easily removed when using

the adaptive time step method, but that very fine elements and small time steps are required when a constant time step is used.

5 CASE 3: PRESSURISED FRACTURE INSIDE POROELASTIC MATERIAL

The final case highlights the ability of the method to simulate multi-physics problems. For this purpose we simulate a fracture160

filled with a pressurised fluid propagating through a poro-elastic medium37,38,39. The domain is 80× 160 m with a fracture with

initial length Lfrac = 0.5 m at the left boundary with an imposed inflow Qin = 0.5m2∕s, see Figure 12.

The stresses inside the poroelastic material are governed by the quasi-static momentum balance of the solid-fluid mixture:

LT (� − �pm) = 0 (21)

with the stresses inside the porous solid � governed by a linear-elastic model, E = 15 GPa and � = 0.2. The interstitial fluid

pressure is denoted by p, the Biot coefficient � = 1.0 and m = [1 1 0]T . The mass balance is used to describe the interstitial

pressure changes due to the solid compression and the diffusion of the fluid:

1

M
ṗ + ( ⋅ u̇ − ( ⋅

(
k

�
(p

)
= 0 (22)
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FIGURE 9 Fracture propagation

with the Biot modulus M = 4.41 GPa, the intrinsic permeability k = 10−14 m2, and the viscosity � = 10−3 Pa ⋅ s. The fluid

flow within the fracture with opening height ℎ is modelled using a discontinuous pressure model16,40,41:

ki
(
2pd − p

+ − p−
)
−
)

)x

(
ℎ3

12�

)pd

)x

)
+ ℎ̇ = 0 (23)

allowing for a jump between the discontinuity pressure pd and the interstitial fluid pressure by imposing an interface permeability

ki = 10−10 m∕Pa s. Finally, the fracture propagation criterion from Eq. (5) is used with ft = 0.1 MPa and c = 0.1 kN∕m.

5.1 Discretisation165

Cubic T-splines are used for the spatial discretisation of the interstitial and discontinuity fluid pressures,Np andNd while quartic

T-splines are used for the solid deformations, Ns. The use of this unequal order mesh is common in order to fulfil the inf-sup

condition42, and thereby to prevent spurious pressure oscillations43. Using an implicit Euler scheme, the momentum and mass
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(a) Δt = 1 ms, t = 1.2 s

(b) Δt = 0.1 ms, t = 1.2 s

(c) Time-based propagation method, t = 1.219 s

FIGURE 10 Plastic strains around the right fracture tip using 320 horizontal elements.

balances are discretised as:

f = ∫
Ω

BT
s
DelBsu

j+1 dΩ − ∫
Ω

�BT
s
mNpp

j+1 dΩ + ∫
Γd

NT
s
�czm dΓd

+ ∫
Γd

NT
s
ndNdp

j+1

d
dΓd − ∫

Γ

NT
s
�ext dΓ = 0

(24)

q = ∫
Ω

1

M
(
tj+1 − tj

)NT
p
Np

(
pj+1 − pj

)
dΩ + ∫

Ω

�

tj+1 − tj
NT
p
mTBs

(
uj+1 − uj

)
dΩ

+ ∫
Ω

k

�
(NT

p
(Npp

j+1 dΩ + ∫
Γd

kiN
T
p

(
Npp

j+1 −Ndp
j+1

d

)
dΓd − ∫

Γ

NT
p
qext dΓ = 0

(25)

qd =∫
Γd

−
ℎ3

12�
(NT

d
(Ndp

j+1

d
dΓd − ∫


d

1

tj+1 − tj
NT
d
Ns

(
JuKj+1 − JuKj

)
dΓd

+ ∫
Γd

kiN
T
d

(
Npp

+j+1 +Npp
−j+1 − 2Ndp

j+1

d

)
dΓd + ∫

)Γd

NT
d
Qext d)Γd = 0

(26)
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(a) Δt = 1 ms, t = 1.2 s

(b) Δt = 0.1 ms, t = 1.2 s

(c) Time-based propagation method, t = 1.200 s

FIGURE 11 Plastic strains around the right fracture tip using 640 horizontal elements.

Equations (24)-(26) and the fracture propagation criterion from Eq. (5) are solved in a monolithic manner using the scheme

from Eq. (2) as:
⎡⎢⎢⎢⎢⎣

K +Kd Qs Qd 0

Qf C +H +Hp,p Hp,d c + qf
Qd +Hd Hd,p Hd,d qdt
sT
2
DelBs 0 0 �

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

duj+1

dpj+1

dp
j+1

d

dtj+1

⎤⎥⎥⎥⎥⎦i+1

= −

⎡⎢⎢⎢⎢⎣

f

q

qd
fc

⎤⎥⎥⎥⎥⎦i

(27)

in which the constant � = 105 Pa is included to improve the stability of the solver and the conditioning of the matrix. While

this stabilisation decreased the convergence rate to linear, it was necessary to obtain converged solutions. The matrices used in

Eq. (27) are given in the Appendix.

The results are presented for two meshes, a coarse mesh using elements with dx = 0.5 m near the discontinuity, and a

finer mesh using dx = 0.125 m. Both these meshes use coarser elements away from the discontinuity. No minimum time step170

increment is enforced for the results presented in Figure 13, whereas Δtmin = 0.01 s is used for all other simulations.

5.2 Results

The fluid flux vectors, Eq. (25)-(26), are normally multiplied by −Δt to create a more symmetric tangential matrix. However, it

was seen that this drastically impacted the convergence. An explanation for this is the singularity at Δt = 0 that is created by the

1∕Δt terms providing a "resistance" against going towards a negative time step increment in the Newton-Raphson algorithm,175

whereas this resistance is not present if the governing equations are multiplied. As a result, the system tries to preserve a positive

time step increment when the 1∕Δt terms are present, pressurising the fracture and thereby propagating the fracture. When
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FIGURE 12 Geometry and boundary conditions used for the pressurised fracture.

(a) Not multiplied, t = 0.18 s (b) Multiplied with Δt, t = −2.1 ⋅ 10−5 s

FIGURE 13 Effect of multiplying the governing equations on the interstitial fluid pressure after the first time step without

enforcing a minimum time step increment Δtmin

Δt terms are present, the governing equations try to converge towards a negative time step, thereby oscillating between the

minimum time step limit and the fracture propagation criterion. Removing this minimum time step limit reveals the solution the

system prefers to converge to, see Figure 13, namely to slightly decrease the time step such that the fluid diffusion terms cause180

a build-up of the pressure, with these strong pressure oscillations driving the fracture propagation.

Results with a constant time step size are presented in Figure 14. The time based arc-length scheme is able to obtain a

continuous fracture propagation, whereas steps are observed when a constant time step is used. Furthermore, with the largest

time step a single propagation velocity with occasional single time step pauses is obtained for the complete simulation. As was

the case in the previously presented results, refining the mesh reduces the steps in the fracture propagation for small time steps,185

and approximates a more continuous propagation. Comparing the results for the coarse mesh with the fine mesh, shows that the

coarse mesh is sufficient to accurately resolve the propagation when the arc-length-like scheme is used, whereas the finer mesh

is necessary for the constant time step sizes to obtain correct results.

6 CONCLUDING REMARKS

We have presented a time-based arc-length like scheme which adapts the time increment to allow the fracture to propagate190

over a single element length. In addition to the spatial degrees of freedom, the time at the end of the step is resolved using a
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FIGURE 14 Fracture propagation

single monolithic scheme. By enforcing a single element to fracture at the end of each step a continuous fracture propagation is

obtained. In contrast, propagation becomes step-wise when a constant and small time increment is used, or shows pauses when

larger time steps are used. We note that the physics can dictate step-wise crack propagation44, and the present scheme helps to

separate numerical effects from truly physical effects.195

The advantages of the scheme have been demonstrated through three cases. The double cantilever beam showed the abil-

ity to accurately capture force-displacement behaviour without over or underestimating the peak load. This case furthermore

showed the limited propagation velocities that could be obtained when using a constant time increment, whereas using a variable

increment smooth propagation was obtained. The shear fracture case highlighted the benefits of a smooth fracture propaga-

tion, resulting in smoother plastic strain fields around the fracture, i.e. without effects of the (interface) element size. It also200

showed the ability to attain a quadratic convergence rate of the scheme. In the final case it was demonstrated showed that the

same conclusions hold for poroelastic problems, which indicating some issues which can arise regarding the convergence in

diffusion-dominated problems.
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APPENDIX TANGENTIAL STIFFNESS SUB-MATRICES

The system matrices used in Eq. (27) related to the momentum balance are given by:

K = ∫
Ω

BT
s
DelBs dΩ

Kd = ∫
Γd

NT
s

�czm

)u
dΓd

Qs = ∫
Ω

−�BT
s
mNp dΩ

Qd = ∫
Γd

NT
s
ndNd dΓd
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the matrices related to the mass balance of the poroelastic material as:

Qf = ∫
Ω

�

tj+1 − tj
NT
p
mTBs dΩ

C = ∫
Ω

1

M
(
tj+1 − tj

)NT
p
Np dΩ

H = ∫
Ω

k

�
(NT

p
(Np dΩ

Hp,p = ∫
Γd

kiN
T
p
Np dΓd

Hp,d = ∫
Γd

−kiN
T
p
Nd dΓd

c = ∫
Ω

−1

M
(
tj+1 − tj

)2NT
p
Np

(
pj+1 − pj

)
dΩ

qf = ∫
Ω

−�(
tj+1 − tj

)2NT
p
mTBs

(
uj+1 − uj

)
dΩ

and the matrices related to the mass balance of the discontinuity as:

Qd = ∫
Γd

−1

tj+1 − tj
NT
d
Nds dΓd

Hd = ∫
Γd

−
ℎ2

4�
(NT

d
Ndp

j+1

d
Nds dΓd

Hd,p = ∫
Γd

kiN
T
d
Np dΓd

Hd,d = ∫
Γd

−2kiN
T
d
Nd −

ℎ3

12�
(NT

d
(Nd dΓd

qdt = ∫
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1(
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d
Ns
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