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SUMMARY

The Cycladic, the Minoan, and the Helladic (Mycenaean) cultures define the Bronze Age (BA) of Greece.

Urbanism, complex social structures, craft and agricultural specialization, and the earliest forms of writing

characterize this iconic period. We sequenced six Early to Middle BA whole genomes, along with 11 mito-

chondrial genomes, sampled from the three BA cultures of the Aegean Sea. The Early BA (EBA) genomes

are homogeneous and derive most of their ancestry from Neolithic Aegeans, contrary to earlier hypotheses

that the Neolithic-EBA cultural transitionwas due tomassive population turnover. EBA Aegeanswere shaped

by relatively small-scale migration from East of the Aegean, as evidenced by the Caucasus-related ancestry

also detected in Anatolians. In contrast, Middle BA (MBA) individuals of northern Greece differ from EBA pop-

ulations in showing�50%Pontic-Caspian Steppe-related ancestry, dated at ca. 2,600-2,000 BCE. Such gene

flow events during the MBA contributed toward shaping present-day Greek genomes.

INTRODUCTION

The Bronze Age (BA) period in Eurasia was marked by

pivotal changes on the social, political, and economic levels,

visible in the appearance of the first large urban centers

and monumental palaces (Harding, 2000). The Aegean

Sea—an embayment of the Mediterranean surrounded

by mainland Greece, western Anatolia, and Crete (Fig-

ure 1A)—has played an important role in the formation of

these innovations, particularly because some of the first

ll
OPEN ACCESS

Cell 184, 2565–2586, May 13, 2021 ª 2021 The Authors. Published by Elsevier Inc. 2565
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).



monumental urban centers were formed around its shores

(Renfrew, 2011).

The BA civilizations in the Aegean, often termed Aegean Cul-

tures, include the Minoan civilization in Crete (3,200/3,000–

1,100 BCE) (Wilson, 2008), the Helladic civilization in mainland

Greece (3,200/3,000–1,100 BCE) (Wright, 2008) including the

Mycenaean (i.e., the last phase of Helladic [1,600–1,100 BCE]),

the Cycladic civilization in the Cycladic islands in the middle of

the Aegean Sea (3,200/3,000–1,100 BCE) (Broodbank, 2008),

and the western Anatolian cultures (3,000–1,200 BCE) (Sxaho�glu,

2008; Yakar, 2012). These cultures exhibit distinct characteris-

tics in pottery style, burial customs, architecture, and art (Cline,

2012; Shelmerdine, 2008). However, they share common inno-

vations related to craft and agricultural (e.g., wine and oil)

specializations, the creation of large storage facilities and redis-

tribution systems as well as palaces, intensive trade, and the

A

B

Figure 1. Geographical location of archeo-

logical sites and radiocarbon dates

(A) Archeological sites are indicated by square

symbols, colored according to their correspond-

ing Aegean cultural group. Asterisks indicate ar-

cheological sites for which mitochondrial DNA

(mtDNA) capture data were generated (STAR

Methods). The whole genomes of six individual

samples (Pta08,Kou01,Kou03,Mik15, Log02, and

Log04) sequenced are colored according to their

radiocarbon dates.

(B) Radiocarbon dates of the six whole-genome

sequenced individuals from this study together

with 12 individuals from present-day Greece from

previous studies (Lazaridis et al., 2017, Mathieson

et al., 2018, Hofmanová et al., 2016). For the two

Mesolithic individuals, only mtDNA data is avail-

able (Hofmanová et al., 2016). The bar indicates

the range of the Cal 1-sigmaOxCal calibrated date

for each individual (STAR Methods).

See also Figures S1 and S3, Table 2, and Docu-

ment S1.

extensive use of metals. The increasing

economic and cultural exchange that

developed in the BA Aegean laid the

groundwork for modern economic sys-

tems—including capitalism, long-dis-

tance political treaties, and a world trade

economy (Kristiansen, 2016). In late BA

(LBA), the earliest forms of writing

appear—Linear A Minoan and Linear B

Mycenaean scripts. Although Linear A

has yet to be deciphered, Linear B

(1,450 BCE) is the earliest attested form

of Greek (Ventris and Chadwick, 1953a,

1953b)—one of the living languages with

the longest documented history within

the Indo-European family. These nov-

elties define the early forms of urbaniza-

tion, traditionally described as the urban

revolution and the emergence of civiliza-

tion (Childe, 1942, 1950; Renfrew, 1972),

and constitute significant milestones in European history (Cline,

2012; Renfrew, 2011).

Based on extensive archaeological data, several hypotheses

on the origin and development of these cultures have been pro-

posed, including: (1) local innovation, where changes were

based on genetic and cultural continuity of local Neolithic groups

(Dickinson, 2016; Oakley and Renfrew, 1972; Tsountas and

Manatt, 1897); (2) the immigration of new populations from Ana-

tolia and the Caucasus during the Early BA (EBA) and the Middle

BA (MBA) (Blegen and Haley, 1928; Caskey, 1971; Wace, 1957);

and (3) the arrival of possible speakers of Indo-European lan-

guages from the Pontic-Caspian Steppe at the beginning of

the EBA (Coleman, 2000; for review, see Pullen, 2008; Dickinson,

2016) (Document S1). In central, northern, and western Europe,

most BA genomes are amixture of local farmers, themselves de-

scendants of Aegean Neolithic populations (Hofmanová et al.,
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2016), and local hunter-gatherers (HG) (Table 1) (Allentoft et al.,

2015; Lazaridis et al., 2014; Mathieson et al., 2018). Ancient

DNA data have unveiled massive population movements from

the East, bringing in a Caucasus HG component together with

an Eastern HG component in similar proportions (de Barros

Damgaard et al., 2018; Jones et al., 2015). These components

may be attributed to a migration wave of Pontic-Caspian Steppe

populations during the late Neolithic and EBA (�2,800 BCE) (Al-

lentoft et al., 2015; Antonio et al., 2019; Haak et al., 2015; Olalde

et al., 2019). Recently, Steppe-related ancestry was reported

during the BA in the northern Balkans in Bulgaria (Mathieson

et al., 2015), on the Balearic Islands, and in Sicily (Fernandes

Table 1. Labels for key populations discussed in the text

European HG (EUHG) Hunter-gatherers of the twelfth to the sixth millennium BCE from western, central and northern

Europe (present-day Spain, Luxembourg, Hungary (WHG), Sweden (SHG), Switzerland (Bichon),

and Italy (Villabruna)) (Lazaridis et al. 2014; Jones et al. 2015; Mathieson et al. 2015; Fu et al. 2016).

Eastern HG (EHG) Hunter-gatherers of the sixth millennium BCE from eastern Europe, more specifically present-day

northwestern and southwestern Russia (EHG) (Haak et al. 2015; Mathieson et al. 2015).

Iran Neolithic/

Caucasus HG

Neolithic (N) farmers of the eleventh to the first millennium BCE of present-day Iran and HG of

the Caucasus region. These populations cluster in genomic analyses from previous studies

(Iran_HotuIllb, Iran_N, Iran_LN, Iran_ChL, Iran_IA, CHG) (Gamba et al. 2014; Jones et al. 2015;

Broushaki et al. 2016; Lazaridis et al. 2016).

European Neolithic European farmers of the sixth to the third millennium BCE in central, northern and western

Europe (Europe_MNChL, Europe_EN) (Gamba et al. 2014; Allentoft et al. 2015; Günther et al. 2015;

Haak et al. 2015; Mathieson et al. 2015; Olalde et al. 2015).

Aegean and

Anatolian Neolithic

Neolithic farmers of the ninth to fourth millennium BCE from central Anatolia (Anatolia_Boncuklu,

Anatolia_Tepecik_Ciftlik) as well as the Aegean (i.e., northern and southern Greece (Greece_N) and

northwestern Anatolia (Anatolia_N) (Mathieson et al. 2015; Hofmanová et al., 2016; Kilinç et al. 2016;

Lazaridis et al. 2016)).

Balkans Neolithic Neolithic and Chalcolithic farmers of the seventh to fourth millennium BCE from present-day

Bulgaria, Croatia, Romania, Serbia, and North Macedonia (Balkans_Neolithic, Balkans_Chalcolithic)

(Mathieson et al. 2018).

Anatolian ChL and BA Neolithic farmers of the fifth to second millennium BCE from northwestern Anatolia

(Anatolia_Kumtepe, Anatolia_ChL, Anatolia_BA) (Lazaridis et al. 2016; 2017; Omrak et al. 2016).

Armenia ChL_BA Late Neolithic - Chalcolithic - farmers and Caucasus BA populations of the fourth to the first

millennium BCE from present-day Armenia (Armenia_ChL, Armenia_EBA, Armenia_MLBA)

(Allentoft et al. 2015; Lazaridis et al. 2016).

Levant/Natufian Semi-sedentary Epipaleolithic populations, Neolithic farmers and BA populations of the

twelfth to the second millennium BCE from the Levant (Levant_N, Natufian, Levant_BA)

(Lazaridis et al. 2016).

Steppe Bronze Age populations of the fifth to the second millennium BCE from the Pontic-Caspian

Steppe region (Steppe_EMBA, Steppe_MLBA) (Allentoft et al. 2015; Haak et al. 2015;

Mathieson et al. 2015).

Balkans EBA Bronze Age populations of the fourth to second millennium BCE from present-day Bulgaria

and Croatia (Balkans_EBA) (Mathieson et al. 2018).

Balkans LBA Bronze Age populations of the second to first millennium BCE from present-day Bulgaria

(Balkans_LBA) (Mathieson et al. 2018).

Aegean EBA Populations of the third millennium BCE in the Aegean (EBA) sequenced in this study: two

Early Cycladic individuals from the island of Ano Koufonisi (Kou01, Kou03), one Early Helladic

individual from Manika in Euboea (Mik15) and one Early Minoan Individual from Kephala

Petras in Crete (Pta08).

Aegean MBA Populations of the second millennium BCE in northern Greece (MBA) from the site of Elati-

Logkas (Log02, Log04, this study).

Helladic-Manika-EBA Early Bronze Age Helladic individuals from Manika on the island of Euboea of the third

Millennium BCE (Mik15, this study).

Cycladic-Koufounisi-EBA Early Bronze Age Cycladic individuals from the island of Ano Koufonisi of the third millennium

BCE (Kou01, Kou03, this study).

Minoan-Petras-EBA Early Bronze Age Minoan individuals from Kephala Petras on the island of Crete of the third

millennium BCE (Pta08, this study).

Chronological abbreviations used throughout the text: N-Neolithic, EN-Early Neolithic, LN-Late Neolithic, MNChL-Middle Neolithic to Chalcolithic,

ChL-Chalcolithic, LNBA-Late Neolithic to Bronze Age, BA-Bronze Age, EBA-Early Bronze Age, EMBA-Early to Middle Bronze Age, MBA-Middle

Bronze Age, MLBA-Middle to Late Bronze Age, IA-Iron Age.
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et al., 2020), but not in Sardinia (Marcus et al., 2020). However, it

remains unclear how much further this ancestry extends either

temporally or geographically into southeastern Europe.

Despite their importance for understanding the rise of western

civilization and the spread of Indo-European languages, no BA

whole genomes from the Aegean have been sequenced to

date. Hence, the genetic origins of the peoples behind the

Neolithic-BA transition and their contribution to the present-

day Greek population remain controversial (Coleman, 2000;

Hughey et al., 2013; Lazaridis et al., 2017). Neolithic whole ge-

nomes from present-day Greece and western Anatolia are

almost indistinguishable, supporting a common Aegean

Neolithic population spreading across the Aegean Sea (Hofma-

nová et al., 2016). Caucasus HG-related ancestry is present in

some of the late Neolithic Aegean individuals, Chalcolithic Ana-

tolians (Kılınç et al., 2017; Lazaridis et al., 2017; Omrak et al.,

2016), LBA Mycenaeans, and Early to Middle BA (EMBA) Mi-

noans (Lazaridis et al., 2017), raising the possibility of gene

flow from the East. LBA Mycenaeans also show evidence for

an ancestry attributable to gene flow from the Pontic-Caspian

Steppe, or from Armenia (Lazaridis et al., 2017). Finally, pre-

sent-day Greeks were found to be quite genetically distinct

from these previously reported Minoans and Mycenaeans,

although the source of this difference was not investigated.

The dearth of genomic data from the Neolithic to the BA tran-

sition period in the Aegean has left key questions partially

unanswered for understanding particular aspects of the BA de-

mographic process in Europe, which we address:

(1) Were the Aegeans who triggered the BA transition related

to Neolithic groups from the same area?

(2) What was the genetic affinity among the Helladic, Cycla-

dic andMinoan EBA civilizations (i.e., did their cultural dif-

ferences entail population structure, and how did they

relate to LBA populations such as the Mycenaeans)?

(3) Did the Eastern (Caucasus or Iran) ancestry observed in

some Neolithic and Chalcolithic Anatolians persist until

the EBA in the Aegean? What was the timing of such

gene flow?

(4) Did the massive migration from the Pontic-Caspian

Steppe into central Europe have an influence on the

Aegean BA populations? If so, what was the timing and

magnitude of this gene flow?

(5) How are Aegean individuals across the BA related to pre-

sent-day Greeks who inhabit the same area?

To answer these questions and to characterize the popula-

tions who were behind the sophisticated palaces and urban cen-

ters of the Aegean BA, we generated whole genomes from BA

Aegeans, including four from the EBA and two representing the

Cycladic culture (Figure 1).We used existing tools for phenotypic

prediction on nuclear capture data and applied standard popu-

lation genomic methods to characterize the relationship among

ancient and present-day populations. To infer the demography

of the Aegean from the Neolithic to the present-day, we capital-

ized on whole genome data and utilized approximate Bayesian

computation (Tavaré et al., 1997) coupled with deep learning

(ABC-DL) (Mondal et al., 2019), which we have extended to ac-

count for the typical low depth of coverage, damage, and mod-

ern human contamination characterizing ancient genomes.

RESULTS AND DISCUSSION

Dataset

Individual samples and radiocarbon dates

We screened 70 individual samples for the presence of human

DNA. Six individual samples with a human DNA content higher

than 1% were selected for whole genome sequencing (WGS)

(Table S1; STAR Methods). For three of those, nuclear capture

data was also generated. For these six individuals, we used sam-

ple material from the petrous bone for both radiocarbon dating

and DNA sequencing (Figure 1; Table 2; STAR Methods): one

EBA Helladic individual from the site of Manika on the island of

Euboea (Mik15), one EBAMinoan from the site of Kephala Petras

(the burial rock shelter) on the island of Crete (Pta08), two EBA

Cycladic individuals from the island of Koufonisi (Kou01 and

Kou03), and two MBA individuals from the site of Elati-Logkas

in northern Greece (Log02 and Log04) (Figures 1A and S1). To

improve clarity and to emphasize the archaeological site, culture,

and time period of the sequenced individuals, we will refer to

these individuals as: Helladic-Manika-EBA (Mik15), Minoan-Pet-

ras-EBA (Pta08), Cycladic-Koufonisi-EBA (Kou01 and Kou03),

and Helladic-Logkas-MBA (Log02 and Log04). Moreover, four

individuals (Mik15, Pta08, Kou01, and Kou03) will be jointly

referred to as EBA Aegeans, distinguishing them from the

more recent (by �1,000 years) individuals, Log02 and Log04,

who will be referred to as MBA Aegeans. Similar labels are uti-

lized to group published genomic data from reference individuals

(Table 1). Moreover, to assist reproducibility, the labels of previ-

ously published populations are italicized throughout the text. In

addition to generating data for the abovementioned six individ-

uals, we captured the mtDNA genome for 11 individual samples

(Figure 1; Table S1; STAR Methods).

Six ancient Aegean whole genomes

The resulting depth of coverage for the Aegean BA genomes

ranged between 2.63 and 4.93 (average: 3.73) (Tables 2 and

S1; and STAR Methods). The number of SNPs covered by at

least one read is considerably higher for the six Aegean BA ge-

nomes than for the Aegean BA SNP capture data from Lazaridis

et al. (2017) when considering the ‘‘1240K’’ SNP capture set (Ma-

thieson et al., 2015) but also across an ‘‘intergenic region’’ SNP

set defined in this study (Figure S2A). The latter includes

�5,270,000 SNP sites located at least 20 kb away from anno-

tated genes and CpG islands (STAR Methods). Note that whole

genomes from the populations studied hereafter have more

low frequency variants in the intergenic regions than were de-

tected in the 1240K SNP set for the same regions (Figure S2B).

This likely owes to the SNP ascertainment scheme in the latter

(Clark et al., 2005).

We observed typical ancient DNA damage patterns at the 50

and 30 termini of the DNA fragments, as well as short sequence

reads (average length between 49.9 and 74.3 bases across ge-

nomes, after adaptor removal and mapping), attesting to the

authenticity of the ancient data (Figure S3; STAR Methods).

Across individuals, contamination rate estimates ranged be-

tween 0.6% and 1.1%, and between 0.01% and 1.49% when
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estimated using the X chromosome and mtDNA, respectively

(Table 2).

Population structure and demographic history

Genomic homogeneity across the Aegean during the

EBA despite distinct cultural backgrounds

The overall genome-wide genetic relationship of the Aegean BA

individuals was studied in the context of ancient and present-day

Eurasian populations (STARMethods). Despite their distinct cul-

tures, the EBA Helladic, Cycladic, and Minoan genomes

resemble one another in all analyses. Outgroup f3-statistics of

the form f3(Yoruba;Y,X), where X is one of the present-day pop-

ulations included in Dataset I (STAR Methods) and Y the ancient

individuals from this study, show that the Helladic-Manika-EBA,

Minoan-Petras-EBA, and Cycladic-Koufonisi-EBA have a similar

profile, which contrasts with the Helladic-Logkas MBA. EBA Ae-

geans have higher genetic similarity with present-day southern

Europeans, particularly present-day Sardinians (Figure S4). In

the classical multidimensional scaling (MDS) analysis, the pro-

jected genetic dissimilarities between pairs of individuals esti-

mated by an identity-by-state distance matrix in two dimensions

(STAR Methods) show that the four EBA individuals (Mik15,

Pta08, Kou01, Kou03) and the two MBA individuals (Log02 and

Log04) form two groups (Figure 2) in agreement with the f3 pro-

files. In line with the results above, ancestry proportions esti-

mated by ADMIXTURE for K > 2 using Dataset II (Table S2;

STAR Methods) suggest that the EBA Aegeans are genetically

similar to one another and distinct from the MBA Aegeans (Fig-

ures 3 and S5).

Compared to other ancient Eurasian populations, the EBA Ae-

geans are similar to other Aegean BA and Anatolian populations,

but are quite distinct from all Balkan populations. For instance, in

the MDS analysis, they fall within or near Minoan-Lasithi-MBA,

Mycenaean-Peloponnese-LBA, and Anatolian populations

such as Anatolia_Tepecik_Ciftlik (Figure 2). Similarly, in the

ADMIXTURE analysis, the EBA Aegeans show similar ancestry

proportions to other Aegean populations, such as the Minoan-

EMBA and Anatolia_Kumtepe, as well as Anatolian populations

spanning the Chalcolithic and the EMBA (e.g., Anatolia_ChL,

Anatolia_BA) (Figure 3).

The genomic EBA homogeneity across cultures in the Aegean

and parts of Anatolia may indicate that Aegean populations used

the sea as a route to interact not only culturally but also geneti-

cally. This could have been the result of an intense network of

communication in the Aegean, which has been well documented

on the archaeological level and has been dubbed the ‘‘Interna-

tional Spirit of the Aegean’’ (Renfrew, 1972). Moreover, given

the high similarity between Minoan-Petras-EBA and the Cycla-

dic-Koufonisi-EBA, the genomic data also informs debates

related to the formation of colonies from the Cycladic islands

to Crete (Doumas, 2010; Papadatos, 2007).

Ancestry components of EBA Aegeans indicating gene

flow from a source related to the CHG during the

Neolithic

ADMIXTURE results indicate that the EBA Aegean population

consists mostly of an ancestry component shared with

Neolithic Aegeans (accounting for >65%), whereas most of

the remaining ancestry can be assigned to Iran Neolithic/Cau-

casus HG-related populations (17%–27%) (Figure 3). These

results were replicated with qpWave/qpAdm (STAR Methods)

using Dataset I (Tables 3 and S3). When considering early

Neolithic populations and HG populations as potential

Table 2. Genomic and archaeological data for the six BA whole-genome sequenced individuals from this study

Archaeological

site

Sample

ID

Time

period Culturea

Age

(cal

BCE)

Shotgun

DoC

(all)b

Shotgun

DoC

(5 bp trim)b
Capture

DoCc

Contam.

mtDNA

(%)d
Contam.

X (%)e Sex

mtDNA

haplogroup Y haplogroup

Manika Mik15 EBA Early

Helladic

2890–

2764

3.5 2.2 – 0.01–0.58 – XX J2b1 –

Petras Pta08 EBA Early

Minoan

2849–

2621

4.0 3.0 38.0 0.01–0.52 1.0–1.1 XY H G2-L156

Koufonisi Kou01 EBA Early

Cycladic

2464–

2349

2.6 2.0 42.9 0.02–0.97 0.6–0.8 XY K1a2c J2a-M410

Kou03 EBA Early

Cycladic

2832–

2578

2.8 2.2 – 0.18–1.49 – XX K1a –

Logkas Log02 MBA Middle

Helladic

1924–

1831

4.3f 3.4 109.1 0.02–0.39 – XX H55a –

Log04 MBA Middle

Helladic

2007–

1915

4.9 4.0 - 0.02–0.94 – XX J1c+16261 –

Details on the origin of the individuals, their cultural group, and their radiocarbon dates. ID: identifier; BCE: Before the Common Era; DoC: Depth of

Coverage; 5 bp trim: 5 bp trimming; mtDNA: mitochondrial DNA; Contam.: Contaminaton;EBA: Early Bronze Age; MBA: Middle Bronze Age. See

also Figures 1, S2, and S3, Tables 1 and S1, and STAR Methods.
aTerminology of cultural groups.
bDepth of Coverage (DoC) before (‘‘all’’) and after trimming 5 bp from the extremities of the reads (‘‘5 bp trim’’).
cAverage number of reads covering the nuclear capture regions.
d95% credible interval (STAR Methods).
e95% confidence interval assuming a European population (HapMap CEU) as contaminant (Star Methods).
fUSER-treated sample (STAR Methods).
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sources, EBA individuals were in general found to be consis-

tent with the majority of their ancestry deriving from popula-

tions related to Anatolia_N (�69%–84%) (Table 3). This sug-

gests that the people behind the Neolithic to BA transition

largely had ancestors from the preceding Aegean farmers, in

line with archaeological theories for the EBA transformation

(Dickinson, 2016; Renfrew, 1972; Tsountas and Manatt,

1897) (Document S1). The second component in qpWave/

qpAdm could be assigned to Iran_N/CHG-related populations

(�16%–31%) (Table 3). In line with this result, in the MDS

analysis (Figure 2), the Aegean EBA individuals are on an

axis connecting Neolithic Aegeans to the Iran Neolithic/Cau-

casus HG (‘‘Caucasus-axis’’).

To further test for gene flow events from outside of the

Aegean, D-statistics were computed. In particular, we tested

whether an H3 population (e.g., Iran_N or CHG—the blue

component in ADMIXTURE) (Figure 3) shares more alleles

with H1 = Anatolia_N (D > 0) or with Aegean/Anatolian popula-

tions from different time periods (H2 = Greece_N, BA Ae-

geans/Anatolians, present-day Greeks and Cypriots) (D < 0),

using the ancient Ethiopian Mota (Gallego Llorente et al.,

2015) as an outgroup D(Anatolia_N, H2; H3, Mota) (Figure S6).

The EBA Aegean genomes were found to be similar to one

another. Although EBA Aegeans carry the ‘‘Iran Neolithic/Cau-

casus HG-like’’ component in other analyses (e.g., Figure 3),

no statistically significant evidence for gene flow from Iran_N

or CHG was detected. However, a visible trend suggests

that Aegeans dating to �4,000 BCE onward (from Anato-

lia_ChL to Mycenaean) share more alleles with Iran_N/CHG

than with Anatolia_N (Figure S6). This trend is replicated in

the ADMIXTURE results (Figure 3), where small proportions

of CHG-like components were observed from the Neolithic on-

ward in individuals on both sides of the Aegean and in Anatolia

but not in the Balkans. This CHG-like component increases in

frequency during the early Neolithic in Anatolia (e.g., Boncuklu,

Tepecik-Ciftlik) (Kılınç et al., 2016), the late Neolithic in the

Aegean (e.g., Greece_N) (Hofmanová et al., 2016; Omrak

et al., 2016), and during the BA in Anatolia (Anatolia_BA) (Laz-

aridis et al., 2017). This is not seen in the Balkans, where the

transition from Neolithic to BA is mostly associated with an in-

crease in ‘‘European HG-like’’ ancestry (Figure 3).

To compare competing scenarios, and to infer the mode and

tempo of potential gene flow events into the Aegean while ac-

counting jointly for the population history of Neolithic, BA, and

present-day populations from Greece, we performed ABC-DL

(Mondal et al., 2019) (Document S1; STAR Methods). To deter-

mine the relationship between HG and Aegean Neolithic, we

first contrasted 3-leaf models (Figure 4A; Table S4) of the three

ancestral populations: CHG, EHG, and Aegean Neolithic. In

this analysis, the 3-leaf model (EHG, CHG, and Aegean

Neolithic) had the greatest posterior probability (P(M|D) =

0.999). This result is in agreement with Jones et al. (2015),

who found a closer relationship between CHG and ‘‘Early

Farmer’’ from Stuttgart, than with WHG. We used this tree

for the more complex 7-leaf models (Figure 4B; Table S4). In

line with all of the above results, 7-leaf models without a

CHG-like pulse of gene flow (models B1, B2, and B3) (Fig-

ure 4B) were associated with lower posterior probabilities

Figure 2. Multidimensional scaling analysis (MDS)

Included are the six Aegean Bronze Age individual samples from the present study, 259 ancient genomes, and 638 modern individuals (gray shapes) of Eurasian

ancestry (Table S2; STAR Methods). Population labels are given in Table 1.

See also Table S5 and Document S1.
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(0.000–0.014). In contrast, a model including such gene flow,

estimated at 16% (0.2%–29%, 95% highest posterior density

interval) (Table S4) at �5,700 BCE (8,299–2,881 BCE, 95%

highest posterior density interval) (Table S4) was assigned

much higher support (posterior probability of 0.98 for model

B4) (Document S1; STAR Methods). Taken together, these re-

sults suggest that a population related to the Caucasus HG

had either directly influenced the Aegean through migration,

or a CHG-like component was indirectly introduced through

exchanges with Neolithic Anatolian populations.

Unlike for most European populations, little EHG

contribution is seen during the EBA

In central, western, and northern BA Europe, the CHG compo-

nent is generally accompanied by an EHG component (Allentoft

et al., 2015; Haak et al., 2015; Jones et al., 2015) – which would

be expected to appear in similar proportions if transmitted

through Steppe-related populations (de Barros Damgaard

et al., 2018). In contrast, EBA Aegeans carry little to no EHG

ancestry. Based on the D-statistics analysis, we cannot reject

that most EBA Aegean genomes and Anatolia_N are equally

close to EHG (Figure S6). Moreover, when considering three po-

tential sources in qpWave/qpAdm, EBA individuals carry only

�1%–8% EHG versus 24%–25% CHG ancestry (i.e., substan-

tially less EHG ancestry) (Table 3). This is further supported by

ADMIXTURE results (Figure 3), indicating that changes from

Neolithic to EBA were mostly associated with increases in

IranN/CHG-like ancestry in the Aegean and Anatolia, whereas

the Balkans and the rest of Europe were mostly associated

with increases in EHG-like ancestry (Figure 3). Finally, all ABC-

DL models including an EHG pulse into the ancestor of EBA Ae-

geans (models B5 and B6) (Figure 4) have negligible posterior

probability support (0.000–0.002). Taken together, these results

suggest little influence of populations related to EHG during the

EBA in the Aegean, further implying that the Caucasus compo-

nent arrived in the Aegean independently.

Genomic heterogeneity during the Aegean MBA, likely

owing to geneflow fromaSteppe-like population prior to

2,000 BCE

Considerably more population structure is observed in the

Aegean during the MBA compared to the EBA. MBA individuals

Figure 3. ADMIXTURE analysis for modern and ancient Eurasian individuals

Shown are a subset of individuals forK = 3, which has the lowest cross validation error (CV = 0.974). Results for the full dataset and statistical support are shown in

Figure S5. The six BA individuals whole genome sequenced in this study are highlighted with an asterisk. Abbreviations for chronological periods and population

names are given in Table 1.

See also Table S2, Document S1, and STAR Methods.
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from northern Greece are quite distinct from the EBA Aegeans,

as can be seen across all analyses. For example, in the f3 anal-

ysis, unlike the EBA Aegeans, they are equally distant to a

much larger set of populations across Europe (Figure S4). In

MDS (Figure 2) and ADMIXTURE (Figure 3) analyses, they form

a separate group distinct from the EBA Aegeans, sharing the

same components as the present-day Greeks. In contrast, the

Minoan-Lasithi-MBA are very similar to the EBA Aegean popula-

tions (Figures 2 and 3).

The primary feature distinguishing the Helladic-Logkas-MBA

from the contemporary Minoan-Lasithi-MBA, as well as from

the EBA populations, is the higher proportion of ‘‘European HG-

like’’ ancestry. For instance, in ADMIXTURE, the ‘‘European

HG-like’’ component accounts for 26%–34% of the overall Log-

kasancestry,more than four timesgreater than the2%–6%found

in the Aegean EBA individuals (Figure 3). Similarly, in qpWave/

qpAdm, a Helladic-Logkas-MBA individual (Log04) was consis-

tent with a 3-way admixture model, deriving �58% of her

ancestry from Aegean Neolithic populations; the remaining

ancestry canbe attributed toCHG-like andEHG-like sources (ac-

counting for �16% and �27%, respectively)—that is, having a

muchgreater contribution fromEHG as compared to the EBAAe-

geans (Table 3). Because EHG and CHG are the major compo-

nents of Steppe-related populations (e.g., Steppe_EMBA with

66% EHG-like and 34% IranN/CHG-like0 (Figure 3), consistent

with previous results (de Barros Damgaard et al., 2018), this

Table 3. qpWave/qpAdm admixture models

Period Test Ref1 Ref2 Ref3

Mixture Prop.

Ref1 ± SE

Mixture Prop.

Ref2 ± SE

Mixture Prop.

Ref3 ± SE p value

EBA Kou01 Anatolia_N CHG 0.75 ± 0.03 0.25 ± 0.03 0.67

Kou01 Anatolia_N Iran_N 0.75 ± 0.03 0.25 ± 0.03 0.90

Kou03 Anatolia_N CHG 0.69 ± 0.03 0.31 ± 0.03 0.10

Mik15 Anatolia_N CHG 0.84 ± 0.03 0.16 ± 0.03 0.08

Mik15 Anatolia_N Iran_N 0.84 ± 0.03 0.16 ± 0.03 0.07

Pta08 Mik15 Iran_N 0.98 ± 0.03 0.02 ± 0.03 0.09

Pta08 Mik15 CHG 0.99 ± 0.03 0.01 ± 0.01 0.07

Kou01 Anatolia_N CHG EHG 0.74 ± 0.04 0.25 ± 0.03 0.01 ± 0.02 0.67

Kou01 Anatolia_N Iran_N EHG 0.74 ± 0.03 0.24 ± 0.03 0.02 ± 0.02 0.88

Kou03 Anatolia_N Iran_N EHG 0.67 ± 0.03 0.25 ± 0.03 0.08 ± 0.02 0.82

MBA Log02 Kou01 EHG 0.81 ± 0.02 0.19 ± 0.02 0.07

Log02 Kou03 WHG 0.91 ± 0.02 0.09 ± 0.02 0.06

Log02 Anatolia_N Balkans_LBA CHG 0.22 ± 0.05 0.65 ± 0.06 0.12 ± 0.04 0.08

Log02* Kou01 Steppe_MLBA 0.61 ± 0.03 0.39 ± 0.03 0.20

Log02* Kou01 Europe_LNBA 0.56 ± 0.04 0.44 ± 0.04 0.05

Log04 Kou01 Balkans_LBA 0.21 ± 0.06 0.79 ± 0.06 0.08

Log04 Kou03 Balkans_LBA 0.26 ± 0.07 0.74 ± 0.07 0.07

Log04 Mik15 Balkans_LBA 0.21 ± 0.06 0.79 ± 0.06 0.06

Log04 Anatolia_N CHG EHG 0.58 ± 0.03 0.16 ± 0.03 0.27 ± 0.02 0.12

Log04* Anatolia_N Steppe_EMBA 0.53 ± 0.03 0.47 ± 0.03 0.35

Log04* Anatolia_N Steppe_MLBA 0.38 ± 0.03 0.62 ± 0.03 0.13

Log04* Pta08 Balkans_LBA 0.15 ± 0.04 0.85 ± 0.04 0.06

Log04* Pta08 Steppe_MLBA 0.44 ± 0.03 0.56 ± 0.03 0.36

LBA Mycenaean Log04 Minoan_Lasithi 0.36 ± 0.04 0.64 ± 0.04 0.35

Mycenaean Log04 Minoan_Odigitria 0.21 ± 0.04 0.79 ± 0.04 0.45

Mycenaean Anatolia_N Kou03 0.37 ± 0.09 0.63 ± 0.09 0.40

Present-day Crete Log02 Iran_N 0.82 ± 0.04 0.18 ± 0.04 0.08

Cypriot Pta08 CHG Villabruna 0.64 ± 0.02 0.32 ± 0.02 0.04 ± 0.01 0.31

Cypriot Pta08 CHG WHG 0.65 ± 0.02 0.32 ± 0.02 0.03 ± 0.01 0.23

Greek Log02 EHG 0.93 ± 0.02 0.07 ± 0.02 0.16

Greek Log02 MA1 0.96 ± 0.02 0.04 ± 0.02 0.10

Greek Log02 Kostenki14 0.93 ± 0.02 0.07 ± 0.02 0.07

For a test population, the estimated admixture proportions (±1 standard error, SE) for n = 2 or n = 3 source populations (Ref1, Ref2, and Ref3) are

shown. Ancestry was inferred from both ‘‘ultimate’’ sources representing the earliest populations, and ‘‘proximate’’ sources (row labeled with a *

symbol) representing populations down to the Bronze Age (STAR Methods). Only a subset of the results with p values R0.05 are depicted. See

also Tables 1 and S3.
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supports the hypothesis that populations from the Pontic-Cas-

pian Steppe contributed to the ancestry of the Helladic-Logkas-

MBA individuals. This combined ancestry has been observed in

central, western, and northern BA Europeans and interpreted as

the result of a ‘‘massive’’ Steppe migration (Allentoft et al.,

2015; Haak et al., 2015; Jones et al., 2015; Mathieson et al.,

2018; Olalde et al., 2019). OurADMIXTURE estimates are consis-

tentwithan increaseofEHGcomponents in theLateNeolithicand

EBA inmost regions of Europe, including in the Balkans (Figure 3;

Document S1). Yet, in Anatolia, such an increase in EHG-like

Figure 4. Model comparison in ABC-DL analysis

(A) Posterior probabilities P(M|D) of different 3-leaf models (models A1–A4) calculated with ABC-DL to establish the topology of the three ancestral populations:

CHG, EHG and Aegean Neolithic.

(B) Seven-leaf demographic models (models B1–B6) extending the tree from (A) with the highest posterior probability, each including Neolithic, EBA and MBA

Aegeans, present-day Greeks, CHG, EHG, and Pontic-Caspian Steppe_EMBA populations. Yellow (EHG-like), light blue (CHG-like), and dark blue (Steppe-like)

arrows indicate a single pulse of gene flow from simulated ‘‘ghost’’ populations diverged from EHG, CHG, and Steppe_EMBA. Posterior probabilities are listed

below each schematic topology (Document S1; STAR Methods).

See also Figure S2 and Tables 1 and S4.
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ancestry is residual, and in the Aegean, it is only seen later in the

MBA (Helladic-Logkas-MBA) and LBA (Mycenaean) individuals,

suggesting a later arrival of Steppe-related ancestry in the

Aegean.

Evidence for such a Steppe contribution is provided, for

example, in MDS (Figure 2), where the Helladic-Logkas-MBA fell

on a ‘‘Steppe-axis’’ connecting Neolithic Aegeans with Steppe

populations. In ADMIXTURE (Figure 3), the Helladic-Logkas-

MBA carries similar relative amounts of the ‘‘Iran Neolithic/Cauca-

sus HG-like’’ (�1/3) and ‘‘European HG-like’’ (�2/3) components

asSteppe_EMBA. Moreover, unlike the Neolithic and the EBAAe-

geans and Anatolians, as well as the Minoan-Lasithi-MBA, the

Helladic-Logkas-MBA share significantly more alleles with CHG,

EHG and Steppe_EMBA compared to Anatolia_N (Figure S6). In

addition, the Helladic-Logkas-MBA Log04 individual could also

be directly modeled as 2-way admixture (proximate sources) of

Anatolia_N (�53%) and Steppe_EMBA (�47%), or Anatolia_N

(�38%), and Steppe_MLBA (�62%), consistent with a strong

genetic contribution from the Steppe (Table 3). Furthermore, de-

mographic modeling suggests that gene flow (8%–45%, 95%

highest posterior density interval) (Table S4) from a ghost popula-

tion related to Steppe_EMBA, prior to the MBA split, considerably

improves the fit of the model to the data (model B4 versus model

B1) (Figure 4B). The timing of such gene flow into the ancestors of

the Helladic-Logkas-MBA ought to have occurred by �1,900

BCE, based on the radiocarbon dates of the Logkas individuals,

and was estimated at �2,300 BCE (2,616–2,003 BCE 95% high-

est posterior density interval) (Table S4) in the ABC-DL analysis.

This suggests that a Steppe-like migration wave may have

reached the Aegean by the MBA. Because Steppe-related

ancestry is essentially absent in Sardinia (Fernandes et al., 2020;

Marcus et al., 2020), and because we have no evidence of

Steppe-like or EHG-like ancestry among Minoans, this may sug-

gest that Steppe-related populations did not cross the sea during

the BA. Supporting this hypothesis, the archaeological record

does not indicate that BA populations from the Pontic-Caspian

Steppe were sea-faring people (Anthony, 2010).

Note, however, that the Steppe-like ancestry observed in the

Logkas individuals may have been brought directly by migrating

populations originally from the Pontic-Caspian Steppe or indi-

rectly by populations with substantial Steppe-like gene flow

(e.g., Balkans_LBA or Europe_LNBA) (Table 3). Alternatively,

the Steppe-like component may have been brought by an un-

sampled, genetically similar, population (e.g., MBA Balkans).

The indirect contribution is supported by ADMIXTURE estimates

that suggest an earlier influence of Steppe-related ancestry in

the Balkans than in the Aegean (Figure 3), and by qpWave/

qpAdm modeling of the MBA Log04 individual as 2-way admix-

ture involving Balkan LBA (Table 3). This finding is consistent

with the suggestion of intermittent genetic contact between the

Balkans and the Steppe populations during the BA (Mathieson

et al., 2018) and is in line with archaeological evidence of cultural

contacts between southeastern Europe and the Pontic-Caspian

Steppe around 2,500 BCE (Anthony, 2010). This may further be

related to previous hypotheses based on both archaeological

and linguistic evidence that populations with Steppe-like

ancestry contributed to the formation of the Helladic culture (Co-

leman, 2000) (Document S1).

Assessing sex-biased gene flow and inbreeding during

the EBA and MBA

To assess sex-biased gene flow among the BA Aegeans, mtDNA,

Y-, and X-chromosomes were analyzed. The 17 inferred mtDNA

(Tables 2 and S2) and the two Y-chromosome haplogroups (Table

2) are common among European Neolithic individuals and do not

show any clear evidence of sex-biased gene flow from outside of

the Aegean (Document S1). To further investigate sex-biased

gene flow, we compared the ancestry on the X chromosome

versus the autosomes with a supervised ADMIXTURE following

Goldberg et al. (2017). We found no evidence for sex-biased

gene flow in EBA Aegeans, with point estimates of Iran_N/CHG-

like ancestry on the X chromosome overlapping with those of au-

tosomes (Figure 5A). In contrast, among MBA Aegeans, although

Log04 has similar amounts of Steppe-like ancestry on the X chro-

mosome and the autosomes, Log02 is inferred to harbor no

Steppe-like ancestry on the X chromosome versus 25%–52%

Steppe-like ancestry on the autosomes (Figure 5B). Moreover,

in themtDNA, we found no significant (STARMethods) population

structure (AMOVA p value = 0.293) between EBA and MBA

Aegeans from the North of Greece (Pella, Paliambela, Xeropigado

Koiladas, and Elati-Logkas) (Figure 1; Document S1). Together,

these patterns on the X chromosome and mtDNA could be ex-

plained by male-biased gene flow from Steppe-like ancestry

into the Aegean. Similarly, Goldberg et al. (2017) and Olalde

et al. (2019) suggested that the immigration of Pontic-Caspian

Steppe populations during the Late Neolithic/EBA in Europe

may have involved a much larger number of males than females.

To gain further genetic clues aboutmarital practices during the

EBA and the MBA, we inferred contiguous genomic regions

in homozygous states—also called runs of homozygosity

(ROH)—in four present-day Greek and the six BA Aegean whole

genomes (Figure S7). Log04 hadmore (twenty-nine versus seven

at most) and longer ROH (two ROH above 5 Mb) (Document S1)

than other ancient individuals. Different evolutionary/demo-

graphic processes (Ceballos et al., 2018; Pemberton et al.,

2012), including recent inbreeding (Yengo et al., 2019), could

explain the Log04 data; in any case, Log02 does not harbor

similarly long ROH, suggesting that the underlying cause

may not generally characterize the Helladic-Logkas-MBA (Docu-

ment S1).

LBA Myceneans: Armenia versus Steppe-like gene flow

The last phase of the BA is associated with a Late Helladic cul-

ture termed Mycenaean. Around 1,200 BCE, the Mycenaean

civilization began to decline, the palaces were destroyed, the

system of writing (Linear B) was abandoned, and their arts and

crafts ceased. The causes of their decline are disputed (e.g., cli-

matic change, invasions) (Middleton, 2020). Lazaridis et al.

(2017) showed that Mycenaeans were quite distinct from pre-

sent-day populations, but it remained unclear how they relate

to EBA populations.

Despite cultural similarity with the Helladic-Logkas-MBA

individuals, analyses suggest that the Mycenaean-Peloponn-

ese-LBA were quite distinct genetically, occupying a position in-

between the Logkas and the EBAAegean and theMinoan-Lasithi-

MBA inMDS (Figure 2). Unlike the Logkas individuals, they carry a

lower European-HG-like component in ADMIXTURE (Figure 3)

and do not share significantly more alleles with Iran_N/CHG or
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EHG compared toAnatolia_N in theD-statistics (Figure S6). How-

ever, like the Helladic-Logkas-MBA, they share more alleles with

Steppe_EMBA. Mycenaean-Peloponnese-LBA had previously

been shown to be consistent with a qpWave/qpAdm model that

either involved BA Steppe- or Armenian-related populations (Laz-

aridis et al., 2017). We recapitulated this result and we additionaly

found thatMycenaean-Peloponnese-LBA data are also consisent

with a model involving an EBA Aegean and Anatolia_N as source

populations (Table 3). In contrast, the Helladic-Logkas-MBA

require a Steppe-like source and cannot be explained with a sim-

ple model involving an Armenian-like source (Tables 3, S3,

and S5).

There are further alternative explanations consistent with the

data. First, the Mycenaean-Peloponnese-LBA could be the de-

scendants of populations closely related to the MBA Logkas

population and to an EBA Aegean population—a 2-way admix-

ture between populations related to Helladic-Logkas-MBA

(�21%–36%) and the Minoan_Odigitria_EMBA and Minoan_La-

sithi_MBA (�64%–79%). Similarly, a 2-way admixture between

the Helladic-Logkas-MBA Log04 individual (�34%–36%) and

EBA Aegeans (�64%–66%) could not be rejected (Table S3).

Second, populations related to Armenia BA may have contrib-

uted to the Aegeans in a geographically localized fashion during

the LBA or earlier (Table S5). This scenario was proposed in the

archaeological literature (Drews, 1988) and would imply that the

Mycenaeans would not have left much trace in individuals from

later generations.

Present-day Greek populations resemble MBA Logkas

Lazaridis et al., (2017) found present-day Greek populations to

be quite distinct from later phases of the BA in the Aegean. In

contrast, our results reveal that present-day individuals from

Greece (northern Greece—Thessaloniki—and Crete) are closely

related to the Helladic-Logkas-MBA individuals of northern

Greece, falling near present-day Greeks in MDS analysis (Fig-

ure 2), sharing the same ancestry components in ADMIXTURE

(Figure 3), and having very similar D-statistics (Figure S6). More-

over, in qpWave/qpAdm analyses (Table 3), the Thessaloniki in-

dividuals could be successfully modeled with �93%–96% MBA

Logkas-related ancestry, and a small fraction (4%–11%) of a

second component (either EHG or Eurasian Upper Paleolithic

populations such as Kostenki14 [Fu et al., 2016] orMA1 [Ragha-

van et al., 2014]). The latter are basal populations that constitute

a distant outgroup to the Aegean genomes and appear to be

interchangeable in this analysis across tests. This suggests

that modern populations from northern Greece and Crete could

be descendants of Aegean EBA populations, with subsequent

admixture with populations related to the Pontic-Caspian

Steppe EMBA. Interestingly, modern Cypriots carry no evidence

for Steppe-like gene flow across analyses (Figures 2, 3, and S6;

Table 3).

Phenotypic insights: Pigmentation and lactose

intolerance

Usinggenotypedata,wepredicted thatPta08,Kou01, andLog02

most likely had brown eyes, dark brown to black hair, and dark

skin (Table S1; STAR Methods). These predictions match the vi-

sual representations ofmale individuals fromBAwall paintings of

MinoanCrete for hair andeyecolor. Theeyeandhair color predic-

tions were similar to those from later periods of the Aegean BA

(Lazaridis et al., 2017). Although the overall prediction for all three

individuals was of dark skin, they also all carried alleles strongly

A B

Figure 5. Sex-biased gene flow

Comparison of X-linked and autosomal genetic ancestries associated with (A) Iran_N/CHG-like and (B) Steppe-like components in EBA andMBA Aegean ancient

genomes. Violins show the distribution of point estimates across 100 replicates for the corresponding autosomal ancestry, with median indicated by a dot and

interquartile ranges indicated by boxes. For the violin plots, we considered a random set of autosomal SNPsmatching X-linked SNPs in number (i.e., 8,133) (STAR

Methods). Orange diamonds show the point estimates and one associated Standard Error for the same ancestries on the X chromosome.

See also Figure 3 and Table 1.
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associated with lighter skin color (rs1426654 in the gene

SLC24A5, and rs16891982 in SLC45A2) (Mathieson et al.,

2015). The latter is in linewith observations that skin depigmenta-

tion has been segregating since the Neolithic in southern Europe

(Hofmanová et al., 2016; Mathieson et al., 2015).

Adulthood lactose tolerance was tested on two strongly asso-

ciated variants, the T allele for rs4988235 under selection in

ancient and modern Europeans (Enattah et al., 2008; Mathieson

et al., 2015; Tishkoff et al., 2007) and the A allele for rs182549

(�22018A) (Enattah et al., 2002). All three individuals carried

the ancestral state in homozygous form (including the MBA Log-

kas) both at �13910T and at �22018A. This is in line with other

results for Neolithic Europeans and Aegeans (Allentoft et al.,

2015; Hofmanová et al., 2016; Mathieson et al., 2015) and sug-

gests that dairying may well have been practiced (Evershed

et al., 2008) while individuals were lactose intolerant (Document

S1). This observation supports a model of mutation-limited

adaptation, as has been observed widely across species and

phenotypes (Casillas and Barbadilla, 2017; Harris et al., 2018;

Jensen et al., 2019).

Concluding remarks

During the EBA, the Aegean saw key innovations in trade, craft

specialization, social structure, and urbanization. These

changes—that mark the end of the Neolithic Period—left indel-

ible marks on Europe and signaled the start of the urban revolu-

tion. At the beginning of this cultural transformation, the Aegean

world was mostly split between three iconic palatial civilizations,

the Helladic, the Cycladic, and the Minoan, each distinguishable

by their artwork, pottery style, burial customs, and architecture

(Cline, 2012; Shelmerdine, 2008).

To better understand the origin of the people behind this trans-

formation, we sequenced four EBA individuals covering all three

Aegean BA cultures (Helladic, Cycladic, and Minoan), two MBA

individuals from northern Greece, as well as 11 mtDNA genomes

from EBA Aegeans. The increased number of variants covered

by the whole genomes from this study compared to previous

SNP capture data from later periods in the BA Aegean (Fig-

ure S2A), as well as the inherent random variant selection char-

acterizing whole genomes (Figure S2B), allowed us to perform

demographic inference and statistically contrast population his-

tories. Moreover, the whole genomes generated here can be

easily combined with any genomic data (whole genomes, cap-

ture data—1240K or otherwise) with a limited loss of variants in

future studies of human population history. Note that future

work will be required to determine how representative the

analyzed genomes of the Aegeans are of the BA Cycladic,

Minoan, and Helladic cultures as a whole.

In summary, these genomes from the Cycladic, Minoan, and

Helladic (Mycenaean) BA civilizations suggest that these cultur-

ally different populations were genetically homogeneous across

the Aegean and western Anatolia at the beginning of the BA. The

EBA genomes drew their ancestry mainly from local Aegean

farmers and from populations related to theCHG. These findings

are consistent with long-standing archaeological theories

regarding the Neolithic-Bronze Age transformation, namely the

immigration of new peoples from Anatolia and the Caucasus

(Blegen and Haley, 1928; Caskey, 1971; Wace, 1957). However,

because the contribution of the local Neolithic populations was

significant (Dickinson, 2016; Renfrew, 1972; Tsountas and Man-

att, 1897), both local and incoming elements appear to have

contributed to the EBA innovations.

In contrast, the MBA Aegean population was considerably

more structured. One likely reason for such structure is addi-

tional Pontic-Caspian Steppe-related gene flow into the Aegean,

for which evidence was seen in the newly sequenced MBA Log-

kas genomes. Present-day Greeks—who also carry Steppe-

related ancestry—share�90%of their ancestry withMBA north-

ern Aegeans, suggesting continuity between the two time pe-

riods. In contrast, LBA Aegeans (Mycenaeans) may carry either

diluted Steppe- or Armenian-related ancestry (Lazaridis et al.,

2017). This relative discontinuity could be explained by the gen-

eral decline of theMycenaean civilization as previously proposed

in the archaeological literature (Middleton, 2019). Finally, the in-

ferred migration waves all predate the appearance of Linear B

script (1,450 BCE) (Chadwick, 2014). As a result, the genomic

data could support both dominant linguistic theories explaining

the emergence of Proto-Greek and the evolution of Indo-Euro-

pean languages (Gray et al., 2011). Namely, that these languages

either originated in Anatolia (Renfrew, 1972, 1989, 2000) (corre-

lating with the Anatolian and Caucasus-like genetic ancestries)

or they originated in the Pontic-Caspian Steppe region (Anthony,

2010) (correlating with the Steppe-like ancestry). Future Meso-

lithic to BA genomes from Armenia and the Caucasus regions

in general could help to further pinpoint the origins and the

mode of gene flow into the Aegean and to better integrate the

genomic data with the existing archaeological and linguistic

evidence.
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Szécsényi-Nagy et al. (2015); Televantou (2008); Theocharis (1959, 1973); To-

dorova (1995); Tomkins and Schoep (2012); Triantaphyllou (2001, 2008, 2017);

Triantaphyllou et al. (2015, 2018); Tsartsidou and Kotsakis (2020); Tsipopoou-

lou (1999, 2002, 2010, 2012a, 2012b, 2017); Tsirtsoni (2016a, 2016b); van

Oven and Kayser (2009); Vavouranakis (2015); Ventris and Chadwick (1956);

Voutsaki (2012); Wace and Blegen (1916); Wakeley (2008); Walsh et al.

(2011, 2013); Walter and Felten (1981); Weiss (2000); Weninger et al. (2009);

Whittle (1997); Wiener (2013); Windler et al. (2013); Wollstein et al. (2010); Xan-

thoudides (1924); Xu et al. (2010); Zapheiropoulou (2008); Ziota (2007); Ziota

and Triantaphyllou (2004).

REFERENCES

Aeschbacher, S., Beaumont, M.A., and Futschik, A. (2012). A novel approach

for choosing summary statistics in approximate Bayesian computation. Ge-

netics 192, 1027–1047.

Akamatis, I. (2009). Proistoriki Pella: Nekrotafeio Epoxhis Chalkou. In Kermatia

Filias. Studies in Honour of Ioannis Touratsoglou, S. Drougou, D. Evgenidou,

C. Kritzas, N. Kaltsas, B. Penna, I. Tsourti, M. Galani-Krikou, and E. Ralli,

eds. (Numismatic Museum), pp. 193–213.

Alexander, D.H., Novembre, J., and Lange, K. (2009). Fast model-based esti-

mation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664.
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Sirak, K., Siska, V., Grygiel, R., Carlsson, J., Manica, A., et al. (2018). A

genomic Neolithic time transect of hunter-farmer admixture in central Poland.

Sci. Rep. 8, 14879.

Fernandes, D.M., Mittnik, A., Olalde, I., Lazaridis, I., Cheronet, O., Rohland, N.,

Mallick, S., Bernardos, R., Broomandkhoshbacht, N., Carlsson, J., et al.

(2020). The spread of steppe and Iranian-related ancestry in the islands of

the western Mediterranean. Nat. Ecol. Evol. 4, 334–345.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Ancient skeletal element This study Sample ID: Mik15

Ancient skeletal element This study Sample ID: Pta08

Ancient skeletal element This study Sample ID: Kou01

Ancient skeletal element This study Sample ID: Kou03

Ancient skeletal element This study Sample ID: Log02

Ancient skeletal element This study Sample ID: Log04

Ancient skeletal element This study Sample ID: AGI03

Ancient skeletal element This study Sample ID: AGI04

Ancient skeletal element This study Sample ID: AGI05

Ancient skeletal element This study Sample ID: AGI06

Ancient skeletal element This study Sample ID: AGI07

Ancient skeletal element This study Sample ID: AGI08

Ancient skeletal element This study Sample ID: AGI09

Ancient skeletal element This study Sample ID: AGI10

Ancient skeletal element This study Sample ID: AGI11

Ancient skeletal element This study Sample ID: AGI12

Ancient skeletal element This study Sample ID: KMA01

Ancient skeletal element This study Sample ID: KMA02

Ancient skeletal element This study Sample ID: KMA04

Ancient skeletal element This study Sample ID: KMA05

Ancient skeletal element This study Sample ID: KMA06

Ancient skeletal element This study Sample ID: KOU04

Ancient skeletal element This study Sample ID: KOU05

Ancient skeletal element This study Sample ID: KOU06

Ancient skeletal element This study Sample ID: KOU07

Ancient skeletal element This study Sample ID: LOG01

Ancient skeletal element This study Sample ID: LOG08

Ancient skeletal element This study Sample ID: MIK01

Ancient skeletal element This study Sample ID: MIK02

Ancient skeletal element This study Sample ID: MIK03

Ancient skeletal element This study Sample ID: MIK04

Ancient skeletal element This study Sample ID: MIK05

Ancient skeletal element This study Sample ID: MIK06

Ancient skeletal element This study Sample ID: MIK07

Ancient skeletal element This study Sample ID: MIK08

Ancient skeletal element This study Sample ID: MIK09

Ancient skeletal element This study Sample ID: MIK10

Ancient skeletal element This study Sample ID: MIK12

Ancient skeletal element This study Sample ID: MIK13

Ancient skeletal element This study Sample ID: MIK19

Ancient skeletal element This study Sample ID: MIK20

Ancient skeletal element This study Sample ID: MIK21

Ancient skeletal element This study Sample ID: MIK22

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Ancient skeletal element This study Sample ID: PAL04

Ancient skeletal element This study Sample ID: PAL05

Ancient skeletal element This study Sample ID: PEL01

Ancient skeletal element This study Sample ID: PEL02

Ancient skeletal element This study Sample ID: PEL03

Ancient skeletal element This study Sample ID: PEL04

Ancient skeletal element This study Sample ID: PEL05

Ancient skeletal element This study Sample ID: PTA02

Ancient skeletal element This study Sample ID: PTA09

Ancient skeletal element This study Sample ID: TSI01

Ancient skeletal element This study Sample ID: TSI03

Ancient skeletal element This study Sample ID: TSI04

Ancient skeletal element This study Sample ID: XER01

Ancient skeletal element This study Sample ID: XER02

Ancient skeletal element This study Sample ID: XER03

Ancient skeletal element This study Sample ID: XER06

Ancient skeletal element This study Sample ID: XER07

Ancient skeletal element This study Sample ID: XER08

Ancient skeletal element This study Sample ID: XER09

Ancient skeletal element This study Sample ID: XER10

Ancient skeletal element This study Sample ID: XER11

Ancient skeletal element This study Sample ID: XER13

Ancient skeletal element This study Sample ID: XER15

Ancient skeletal element This study Sample ID: XER16

Chemicals, peptides, and recombinant proteins

AccuPrime Pfx SuperMix Thermo Scientific Cat#12344040

AmpliTaq Gold Buffer II (10x) Life Technologies Cat#4311816

AmpliTaq Gold DNA Polymerase Life Technologies Cat#4311816

ATP Solution (100 mM) Life Technologies Cat#R0441

Bovine Serum Albumin (BSA) (20 mg/ml) Roche Diagnostics Cat#10711454001

Bradford fish gel (Gelatin from cold

water Fish)

Sigma G7041-100G

Bst Polymerase, Large Fragment (8 U/ml) New England Biolabs GmbH Cat#M0275S

dNTPs (each 10 mM) QIAGEN, Hilden, Germany Cat#201901

dNTPs (each 25 mM) Agilent Technologies Cat#600677

EDTA (0.5 M, pH 8.0) Ambion/Applied Biosystems,

Life Technologies

Cat#AM9262

HCl Fisher Scientific H/1200/PB17

Herculase II Fusion DNA Polymerase Agilent Technologies Cat#600677

Herculase II Reaction Buffer Agilent Technologies Cat#600677

IA cane Iso Analytical R006

IAEA 600 International Atomic Energy Agency IAEA600

IAEA N2 International Atomic Energy Agency IAEA N2

MgCl2 (25 mM) Life Technologies Cat#4311816

NEBNext End Repair Enzyme Mix New England Biolabs GmbH Cat#E6050L

NEBNext End Repair Reaction

Buffer (10X)

New England Biolabs GmbH Cat#E6050L

Nuclease-free H2O Life Technologies Cat#AM9932

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

PEG-4000 Thermo Scientific Cat#EL0011

Phenol/chloroform/

isoamylalcohol (25:24:1)

Roth, Karlsruhe, Germany Cat#A156.1

Proteinase K Roche Diagnostics,

Mannheim, Germany

Cat#3115828001

Sodium N-lauryl sarcosinate Merck Millipore, Merck KGaA,

Darmstadt, Germany

Cat#428010

T4 DNA Ligase (5 U/ml) Thermo Scientific Cat#EL0011

T4 DNA Ligase Buffer (10X) Thermo Scientific Cat#EL0011

T4 DNA Polymerase (5 U/ml) Thermo Scientific Cat#EP0062

T4 Polynucleotide Kinase Invitrogen Cat#EK0032

Tango Buffer (10x) Life Technologies Cat#BY5

ThermoPol Buffer (10X) New England Biolabs GmbH Cat#M0275S

Trichlormethan/Chloroform Roth, Karlsruhe, Germany Cat#3313.1

Tris-EDTA Sigma-Aldrich Cat#T9285

Tris-HCl (1M, pH 8.0) Life Technologies Cat#15568025

USER TM enzyme New England Biolabs GmbH Cat#M5505L

Critical commercial assays

Agilent 2100 Expert Bioanalyzer System

and High Sensitivity DNA Analysis Kit

Agilent Technologies Cat#5067-4626 (kit)

Qubit Fluorometric quantitation

and dsDNA HS Assay Kit

Invitrogen Cat#Q32854 (kit)

Cat#Q32856 (tubes)

Deposited data

Sequencing data (this study) European Nucleotide Archive https://www.ebi.ac.uk/ena/browser/view/PRJEB37782

351 individuals, whose data derive from

the ’1240k’ SNP capture assay

Lazaridis et al., 2017 https://reich.hms.harvard.edu/sites/reich.hms.harvard.

edu/files/inline-files/MinMyc.tar.gz

225 ancient ’1240k’ SNP captured

individuals

Mathieson et al., 2018 https://reich.hms.harvard.edu/sites/reich.hms.harvard.

edu/files/inline-files/Genomic_Hist_SE_Europe_

Mathieson.tar.gz

2,068 worldwide modern individuals

(genotyped on the Human Origins

SNP array)

Lazaridis et al., 2016 https://reich.hms.harvard.edu/sites/reich.hms.harvard.

edu/files/inline-files/NearEastPublic.tar.gz

1000 Genomes International HapMap 3

Consortium et al., 2010

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data

Bar8 Hofmanová et al., 2016 https://www.ebi.ac.uk/ena/browser/view/SAMEA3672571

KK1 Jones et al., 2015 https://www.ebi.ac.uk/ena/browser/view/SAMEA3609088

S_Greek-1, S_Greek-2, B_Crete-1,

B_Crete-2 from Simons Genome

Diversity Project

Mallick et al., 2016 https://www.ebi.ac.uk/ena/browser/view/PRJEB9586

Sidelkino de Barros Damgaard et al., 2018 https://www.ebi.ac.uk/ena/browser/view/ERR2572846

YamnayaKaragash_EBA de Barros Damgaard et al., 2018 ftp://ftp.sra.ebi.ac.uk/vol1/run/ERR257/

ERR2572845/Yamnaya.realigned.calmd.

readsadded.bam

Oligonucleotides

IS4, IS5, IS6 and IS7 (Meyer and Kircher, 2010)

IDT, Leuven, Belgium

N/A

MYBait kit https://arborbiosci.com/genomics/

targeted-sequencing/mybaits/

mybaits-custom-dna-seq/

N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

P5 and P7 (Meyer and Kircher, 2010)

IDT, Leuven, Belgium

N/A

SureSelectXT in-solution target

enrichment kit

Agilent Technologies

(custom design); Gnirke

et al., 2009

N/A

Software and algorithms

ABC-DL Mondal et al., 2019 https://github.com/oscarlao/ABC_DL

abc package R Csilléry et al., 2010 https://cran.r-project.org/web/packages/abc/

index.html

AdapterRemoval v2.1.7 Schubert et al., 2016 https://adapterremoval.readthedocs.io/en/latest/

Admixtools v. 5.1 Patterson et al., 2012 https://github.com/DReichLab/AdmixTools

ADMIXTURE Alexander et al., 2009 http://dalexander.github.io/admixture/download.html

ANGSD v. 0.921 Korneliussen et al., 2014 http://www.popgen.dk/angsd/index.php/Change_log

ape v5.3 Paradis and Schliep, 2019 http://ape-package.ird.fr

ARLEQUIN version 3.5.2.2 Excoffier and Lischer, 2010 http://cmpg.unibe.ch/software/arlequin35

bwa v0.7.15 Li and Durbin, 2010 http://bio-bwa.sourceforge.net/

BamDamage v. 20140602 Malaspinas et al., 2014 https://savannah.nongnu.org/projects/bammds

cmdscale function (in R) R Development Core Team, 2018 https://www.rdocumentation.org/packages/stats/

versions/3.6.2/topics/cmdscale

contaminationX (Moreno-Mayar et al., 2020) https://github.com/sapfo/contaminationX

contamMix v. 1.0-10 Fu et al., 2013 https://science.umd.edu/biology/plfj

Eigensoft v. 7.2.1 Patterson et al., 2006 https://github.com/DReichLab/EIG

Encog v3.4 Heaton, 2015 https://github.com/jeffheaton/encog-dotnet-core/

releases/tag/v3.4

fastqc v0.11.5 Andrews, 2010 https://www.bioinformatics.babraham.ac.uk/

projects/fastqc

fastSimcoal2 (Excoffier and Foll, 2011) http://cmpg.unibe.ch/software/fastsimcoal2

fastx_trimmer v0.0.13.2 Hannon lab 2010 http://hannonlab.cshl.edu/fastx_toolkit

FigTree v1.4.4 Andrew Rambaut https://groups.google.com/g/figtree-discuss/c/-

9_1l88HPOA

GATK v3.7 DePristo et al., 2011 https://gatk.broadinstitute.org

GenotypeGVCFs Poplin et al., 2017 https://gatk.broadinstitute.org/hc/en-us/articles/

360046224151-GenotypeGVCFs

GLIMPSE v1.0.1 Rubinacci et al., 2021 https://github.com/odelaneau/GLIMPSE

haploGrep v2.1.19 Weissensteiner et al., 2016 https://haplogrep.i-med.ac.at

HaplotypeCaller Poplin et al., 2017 https://gatk.broadinstitute.org/hc/en-us/articles/

360041415292-HaplotypeCaller

HIrisPLex-S Chaitanya et al., 2018 https://hirisplex.erasmusmc.nl

phangorn v2.5.5 Schliep, 2011 https://cran.r-project.org/web/packages/phangorn/

index.html

PhyML v3.1 Guindon et al., 2010 http://www.atgc-montpellier.fr/phyml/

Picard tools v2.9.0 Broad Institute http://broadinstitute.github.io/picard/

PLINK 1.9 Purcell et al., 2007 https://zzz.bwh.harvard.edu/plink/plink2.shtml

popHelper Francis, 2017 http://pophelper.com/

Samtools v. 1.10 Li et al., 2009 https://github.com/samtools/samtools

SeaView v5.0.4 Galtier et al., 1996;

Gouy et al., 2010

http://doua.prabi.fr/software/seaview

Snakemake v5.3.0 (Mölder et al., 2021) https://snakemake.readthedocs.io/en/v5.3.0/

Tablet 1.19.09.03 Milne et al., 2013 https://ics.hutton.ac.uk/tablet/

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Anna-

Sapfo Malaspinas, email: annasapfo.malaspinas@unil.ch

Materials availability

This study did not generate new unique reagents.

Data and code availability

The accession number for the bam files of the ancient genomes and nuclear and mtDNA capture data reported in this study is Eu-

ropean Nucleotide Archive: PRJEB37782 (https://www.ebi.ac.uk/ena/browser/view/PRJEB37782). ABC-DL code with aDNA simu-

lator is available at https://github.com/olgadolgova/ABC_DL_aDNA. Supplementary information to the present article, in addition to

the supplemental tables and figures, are available in Document S1.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Archaeological material and ethics permission

Skeletal material from ten archaeological sites representing the Bronze Age civilizations were chosen (Cline, 2012; Dickinson, 1994;

Treuil et al., 1989). For a detailed chronology, terminology and archaeological background on Aegean cultures see Document S1.

We produced whole genomes from four archaeological sites (Petras, Manika, Koufonisi, Elati-Logkas) and mtDNA genomes from

six archaeological sites (Agios Kosmas, Koufonisi, Manika, Paliambela-Kolindrou, Pella, Xeropigado Koiladas, see Figure 1). The in-

dividual samples from two archaeological sites (Koumasa and Tsikniades) yielded no DNA. Information for the archaeological sites

and individual samples is available at Document S1.

Wewere given permission by the GreekMinistry of Culture and Sports to sample and extract DNA aswell as to radiocarbon date all

human remains mentioned in this study according to Greek law for destructive sampling of archaeological material (N.3028/02).

METHOD DETAILS

Radiocarbon dating

Radiocarbon dates of the petrous bone samples used for WGS, newly reported in this study are summarized in Table S1. We report

the uncalibrated 14C age, the calibrated ranges (1 and 2 sigma) using OxCal v4.3.2. (Ramsey, 2017) and INTCAL13 (Reimer et al.,

2013), and the C/N ratio and the % carbon as additionally quality criteria for showing collagen preservation (Table S1).

Extraction of collagen from the samplesMik15, Kou03, Log04 and Pta08 was performed in the BioArch facility of the University of

York before being sent to the Curt-Engelhorn-Zentrum-Mannheim for 14C dating. Collagen was extracted from four human petrous

bones using a modified Longin (1971) method as in Kontopoulos et al. (2019). The exterior surfaces of the bone samples were me-

chanically cleaned using a scalpel. Bone chunks of 300-500mgwere demineralized in 8mL 0.6MHCl at 4�C. Samples were agitated

twice daily and the acid solution was changed every two days. After demineralization, the supernatant was drained off and samples

were rinsed (x3) with distilled water. Gelatinization was carried out by adding 8mL pH3HCl, and samples were placed in hot blocks at

80�C for 48h. The supernatant was filtered using EzeeTM filters and was freeze-dried for two days in pre-weighed plastic tubes.

Collagen yields (weight in % of dry bone), which are commonly used to distinguish well-preserved from poorly-preserved collagen

were estimated using the formula: bone mass (mg)/collagen mass (mg) x 100, where bone mass is the weight of bone chunks after

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Other

Amicon Ultra-4 Centrifugal Filter

Units, 30kDa

Merck Millipore, Darmstadt,

Germany

Cat#UFC803096

Amicon Ultra-15 Centrifugal Filter

Units, 50kDa

Merck Millipore, Darmstadt,

Germany

Cat#UFC905096

MinElute PCR Purification Kit QIAGEN, Hilden, Germany Cat#28006

MSB Spin PCRapace Invitek, Stratec Molecular,

Berlin, Germany

Cat#1020220400

Ezee filters 9ml Elkay Laboratory Products Cat#127-3193-000

Tin capsules 4mm x 3.2 mm OEA Laboratories Cat#C11130.500P
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cleaning the exterior surfaces, and collagenmass is the extractedmaterial that remains following demineralization, gelatinization and

filtering.

Samples Kou01 and Log02 were sent as a piece of petrous bone to the Curt-Engelhorn-Zentrum Mannheim for 14C dating.

Collagen was extracted following standard protocols of the Curt-Engelhorn-Zentrum Mannheim.

Ancient DNA Data Generation

DNA extraction

All pre-PCR sample preparation steps were carried out in the clean room facilities of the Palaeogenetics Group at the Johannes Gu-

tenberg-University Mainz, which is physically separated from any post PCR laboratories as previously described (Scheu et al., 2015).

Ancient DNA was extracted using two different extraction methods:

Protocol A:Weused 0.5g bone powder as input for DNA extraction and followed a previously published protocol (Hofmanová et al.,

2016; Scheu et al., 2015) with minor modifications. For lysis 6mL EDTA (0.5M, pH8), 250mL N-Laurylsarcosine (5%) and 30mL Pro-

teinase K (14-22mg/mL) were added to the powder and left under constant shaking for 48h at 37�C. After a subsequent phenol/chlo-

roform (phenol/chloroform/ isoamyl alcohol 25:24:1) extraction the aqueous phase was transferred to a 50kD Amicon filter unit

(Merck Millipore) for clean-up and concentration up to a final volume of 200mL DNA extract. Optionally, an additional pre-lysis

step was performed: prior to lysis, the powder was washed for 45min at 37�C using 1mL EDTA, 250mL N-Laurylsarcosine and

30mL 20 Proteinase K, the powder was then pelleted and the supernatant discarded. Extractions I and II of Kou01, Log02 and

Pta08 followed Protocol A. Extraction Kou01_II followed Protocol A with an additional pre-lysis step. DNA extractions for the mtDNA

capture experiments followed extraction protocol A.

Protocol B: DNA extraction was performed using 0.15 g bone powder. Pre-lysis was performed by adding 1mL EDTA (0.5M, pH8)

to the bone powder and incubating the suspension at 37�C for 30min under constant shaking (Kou03_IV, Log04_III, Mik15_I and

Pta08_III) or for 10min without shaking (Log02_III). Afterward, each sample was incubated with 1mL lysis buffer consisting of

950mL EDTA (0.5M, pH8), 20mL Tris-HCl (1M, pH8), 17mL N-Laurylsarcosine (5%) and 13mL Proteinase K (14-22mg/ml) at 37�C for

24h under constant shaking, followed by a concentration and washing step using 1x Tris EDTA on 30kD Amicon filter units (Merck

Millipore). The extracts were then purified using silica columns (MinElute PCRPurification Kit). For extract Log02_III the lysis step was

repeated after 24h by removing the supernatant, adding 1 mL additional lysis buffer to the bone powder pellet and incubating for

another 24h, followed by merging both extracts prior to the Amicon filter wash.

Library preparation

DNA extracts were converted into double-indexed sequencing libraries according to Kircher et al. (2012) withmodifications. ForWGS

blunt-end repair was performed using the NEBNext End Repair Module: 20 mL of DNA extract are mixed with NEBNext End Repair

Reaction Buffer (10X, 7mL), NEBNext End Repair Enzyme Mix (3.5mL) and nuclease-free water (39.5mL; for a final reaction volume of

70 mL) and incubated for 15 min at 25�C followed by 5 min at 12�C. Hybridized adapters P5 and P7 were used at a concentration of

0.75 mM. The WGS libraries were amplified in 12 PCR parallels each with an individual index combination using AccuPrimeTM Pfx

SuperMix and 3 mL fill-in product per parallel (final reaction volume: 25 mL; final primer concentration: 200 nM each). The PCR

was performed in 10-11 cycles and the temperature profile followed the manufacturer’s recommendations but using an annealing

temperature of 60�C, extending for 30 s during each cycle and performing a final elongation step for 5min. The DNA extract of

Log02 was treated with USERTM enzyme prior to library preparation for WGS drastically reducing the effects of DNA deamination

(Briggs et al., 2010) (Figure S3): 16,25ml of DNA extract were mixed with 5ml USERTM Enzyme and incubated for 3 h at 37�C (Verdugo

et al., 2019). The blunt-end repair step followed immediately. After adaptor fill-in and before library amplification, a sample was taken

for qPCR, to infer the number of DNA molecules successfully transferred into sequencing libraries (Hofmanová et al., 2016).

Sequencing

We processed a total of 70 individual bone samples; 15 samples contained no DNA that could be transferred into libraries for

sequencing. The remaining 55 genomic libraries (pooled equimolar) were sequenced on an Illumina MiSeqTM platform (50 bp, SE)

at StarSEQ GmbH (Mainz, Germany) to measure the human DNA content. Demultiplexing was performed by the sequencing facility.

Based on the screening results, we selected six individual samples with high endogenous DNA content (ranging from 12.6% to

55.9%; Table S1) for whole genome shotgun sequencing (Kou01, Kou03, Log02, Log04, Mik15, and Pta08; all from petrous bone

samples). DNA sequencing for whole genome sequence data were performed using Illumina’s HiSeq2500 at the LausanneGenomics

Technologies Facility (GTF) at the University of Lausanne (Mik15, Pta08, Kou01, Kou03, Log04) as well as an Illumina HiSeq3000 at

the Next Generation Sequencing Platform (Institute of Genetics) at the University of Bern (Log02).

For three individual samples (Pta08, Kou01 and Log02), a capture experiment was conducted targeting 5,329 putative neutral,

autosomal regions, as well as 388 autosomal SNPs associated with phenotypes of interest (i.e., 5,717 regions in total). These

were enriched by in-solution hybridization capture as described in Veeramah et al. (2018). The targeted regions span around

4.9Mb of the nuclear genome, each region ranges from 80 to 1,001 bp, with 79%of them spanning 1,001 bp each. For these captured

libraries, a 100 bp single-end rapid run was performed on an Illumina HiSeq2000 sequencer at the Institute for molecular genetics,

genetic engineering research and consulting (IMSB) (now Molecular Genetics and Genome Analysis Group) at the University Mainz,

Germany.

In addition to nuclear data, the mitochondrial genome was captured for 11 samples using Agilent’s SureSelectTM in-solution target

enrichment kit (custom design) (Gnirke et al., 2009) as detailed in Hofmanová et al. (2016). Prior to enrichment 2-4 libraries originating
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from 2-3 independent extractions (Table S1) were prepared for each sample according to Kircher et al., (2012) as described in Hof-

manová et al. (2016) and pooled equimolarly. Sequencing and demultiplexing of the mtDNA capture samples were performed on an

Illumina MiSeqTM platform (50 bp, SE) at StarSEQ GmbH (Mainz, Germany).

Processing and Mapping of the Raw Sequencing Data

Sequencing reads from screening, WGS, nuclear and mtDNA capture experiments, as well as those from eight published genomes

(Table S1), were mapped with an in-house mapping pipeline implemented in the workflow manager snakemake (Mölder et al., 2021)

and consisting of the following steps. First, sequence reads were checked for quality before and after removal of adapters using

fastqc version 0.11 (Andrews, 2010). Illumina adapters were removed with AdapterRemoval version 2.1.7 (Schubert et al., 2016)

filtering out ambiguous bases (N, –trimns), bases of low quality (phred score % 2) from both ends of the reads (—trimqualities),

and reads shorter than 30 base pairs (bp, –minlength 30). Reads were aligned to the human reference genome (GRCh37 for the

screening, WGS and nuclear capture data; and to the revised Cambridge Reference Sequence (rCRS, NC_012920.1) for the mtDNA

capture data) using BWAALN version 0.7.15 (Li and Durbin, 2010) with disabled seeding (-l 1024) to reduce the effect of post-mortem

damage-related error (Schubert et al., 2012). Alignments with a quality score below 30 were discarded with samtools version 1.4 (Li

et al., 2009), PCR duplicates were removed at the library level using ‘Picard tools’ MarkDuplicates version 2.9.0 (http://broadinstitute.

github.io/picard) and local realignment around indels was performed usingGATK version 3.7 (DePristo et al., 2011). Themd flag of the

alignments was recomputed using calmd from samtools version 1.4 (Li et al., 2009). For the WGS data, reads were also trimmed at

both ends by 5 bp after adapted removal and prior to mapping in order to reduce the impact of post-mortem damage-related error. In

this case, reads shorter than 30 bp after 5 bp-trimming were discarded using fastx_trimmer version 0.0.13.2 (http://hannonlab.cshl.

edu/fastx_toolkit). Statistics for the screening, WGS, nuclear and mtDNA capture experiments (including the performance of the nu-

clear capture experiment) can be found in Table S1.

Authenticity of data

Error analysis

We used the software package ANGSD v. 0.921 (Korneliussen et al., 2014) to assess the overall and type-specific error rates of the

WGS and nuclear capture data. This method uses an outgroup species to estimate the expected number of derived alleles in the

human genome. Any excess of derived alleles in the sample is then interpreted as the result of errors. We obtained the expected

number of derived alleles in the human genome by using a modern individual (SS6004480) from Prüfer et al. (2014) and the chimp

genome (mapped to GRCh37) as outgroup species. As expected for aDNA (Orlando et al., 2015), underlying the effects of post-mor-

tem damage, C to T and G to A substitutions accounted for most of the observed errors in the individual samples (Figure S3). For the

untrimmed WGS data, we estimated overall error rates from 0.6% to 0.91% (Figure S3). Note that the Log02 extract was USERTM

-treated, which drastically decreased the error rate (0.11%). After trimming 5 bp from each end of the reads, the overall error rates

were reduced from 0.35% to 0.11% (excl. Log02, Figure S3). The trimmed dataset was used for downstream WGS population ge-

netic analyses. For the untrimmed nuclear capture data, the overall error rates were generally higher and ranged from 0.87% to

1.18% (Figure S3), which might reflect the fact that the nuclear capture data were sequenced on an older platform (Illumina Hi-

Seq2500) than the one used for the WGS data (Illumina HiSeq3000).

Ancient DNA damage and fragmentation

The data were inspected for characteristics of ancient DNA (e.g., being fragmented and damaged) using the bamdamage software

package (Malaspinas et al., 2014) (Figure S3; Table S1). These features can also be informative about the authenticity of the DNA. The

distribution of read lengths was unimodal for each sequencing lane and the reads were shorter than the number of cycles used for

sequencing, as expected for ancient DNA (Figure S3; Table S1). Furthermore, the damage patterns across the reads showed

increased C to T and G to A substitutions at the read termini, consistent with the degradation pattern for ancient DNA (e.g., Briggs

et al., 2010). Consistent with the results from the ANGSD error analysis, the damage pattern for the USERTM-treated Log02 individual

was one order of magnitude lower compared to the other individuals.

mtDNA-based contamination estimation

The software package ContamMix v. 1.0-10 (Fu et al., 2013) was used to quantify the level of contamination using the mtDNA

chromosome for the WGS and mtDNA capture data. This method assumes that the coverage is high enough to call the true

endogenous mtDNA consensus sequence and that the data contains less than 50% contamination. A set of 311 worldwide

modern mitochondrial genomes (Green et al., 2008) serves as source of potential contamination. Sequence reads are therefore

modeled as a mixture of any of these 311 genomes and the endogenous consensus sequence of unknown proportions. For this

analysis, the data were mapped to the whole genome for both the WGS and the mtDNA capture data to reduce the effect of

nuclear DNA of mitochondrial origin (NUMT). The data were either trimmed prior to mapping (WGS) or using Contamix (mtDNA

capture). The inferred fractions of exogenous mitochondrial sequences correspond to the amount of contamination. We first

built a mtDNA consensus sequence using ANGSD v. 0.921 (-doFasta 2), which was then aligned to the panel of 311 mtDNA

sequences via mafft v. 7.310 (Katoh and Standley, 2013). Both the alignment and the mapped reads were then used in a

MCMC framework to estimate the level of contamination. The Markov chain was run for 10,000 (for the estimates based on

trimmed data, see below) to 100,000 (when restricting the analyses to transversions only, see below) iterations (after burn-in)

using the default value 0.1 for the hyperparameter alpha of the Dirichlet prior distribution. For the WGS individual samples,
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we estimated the contamination with modern mtDNA within the 95% credibility interval to be below 1.5% (Table S1). These

findings are in line with estimates from earlier reported ancient samples (e.g., Moreno-Mayar et al., 2018) and suggest that pop-

ulation genetic analyses of the WGS data may not be substantially affected. As damage was high (up to 50% at the end of the

reads) for the mtDNA capture data (Table S1), we report three estimates: trimming 5 bp (as for the WGS data) or 10 bp at the

read termini and finally only considering transversions. Point estimates for contamination for the mtDNA capture data are below

�5% in most cases (Table S1). The exceptions are three mitochondrial genomes with relatively low coverage: AGI02 (4%–15%

contamination after 5 bp trimming), PAL04 (4%–8% contamination after 5 bp trimming), and XER01 (2%–13% contamination

after 5 bp trimming) (Table S1). However, in all three cases the point estimates are lower after 10 bp trimming and even lower

when considering only transversions, suggesting that damage might not be accounted for properly for those estimates or that

the DoC is too low to call the true consensus. In any case, the data for these three samples should be interpreted with care.

X chromosome-based contamination estimates

For this analysis we used contaminationX, an X chromosome-based method described in Moreno-Mayar et al. (2020) (https://github.

com/sapfo/contaminationX) to estimate contamination for the two males (Kou01 and Pta08). As described in Moreno-Mayar et al.

(2020), the HapMap data (International HapMap 3 Consortium et al., 2010) was used as a reference panel. In brief, this method le-

verages the fact that the X chromosome (excluding the pseudoautosomal regions) is hemizygous in males. Thus, the occurrence of

multiple alleles at a given site on the X chromosome can be attributed to either error or contamination. Base counts are modeled as a

function of an error rate estimated from the data, the allele frequencies in the contaminant population, and the contamination fraction,

which is estimated with a maximum likelihood optimization. Since estimates obtained through this method have been shown to vary

slightly with the assumed ancestry of the contaminant (Moreno-Mayar et al., 2020), we considered the allele frequencies of three

HapMap populations: YRI, CHB and CEU. We ran the ‘two-consensus’ method, considered sites with a depth of coverage R 3X

and % 20X, and obtained a 95% confidence interval through 1,000 block-jackknife replicates following Moreno-Mayar et al.,

(2020). Results are summarized in Tables 1 and S2. For both individuals, contamination estimates had little variation across panels

and were below 1.1%. Given the magnitude of these estimates, we assumed that contamination had little impact on subsequent

analyses.

Uniparental markers

Haplogroups

Consensus sequences for the mtDNA were called from the bam files using ANGSD v. 0.921 (Korneliussen et al., 2014), with param-

eters ‘‘-doFasta 2’’ and ‘‘-doCounts 1.’’ We used HaploGrep v2.1.19 (Weissensteiner et al., 2016) to infer the mtDNA haplogroups of

the samples (Document S1). In order to determine the Y chromosome haplogroups bcftools v. 1.4 (Li et al., 2009) was used to perform

haploid calls (i.e., specifying–ploidy 1) on the Y chromosome of the two males (Pta08 and Kou01). The sequenced data were

compared to approximately 60,000 Y chromosome variants reported for the phase 3 of the 1000 Genomes project (Poznik et al.,

2016). To call haplogroups for Kou01 and Pta08, the analysis was restricted to sites with a minimum depth of 5 reads and minimum

base quality scores of 20. Moreover, analysis was restricted to sites with at least 80%of the reads supporting one of the two alleles at

a 1000Genomes project SNP variant.We then performed a binary tree search as in Schroeder et al. (2015) against the 1000Genomes

Y-phylogeny (Poznik et al., 2016) to determine the Y chromosome haplogroups of the two individuals. Further information about

mtDNA and Y chromosome haplogroups can be found in Document S1 and Table S1.

Population structure among mtDNA sequences

To understand the structure among the mtDNA sequences, we first built a phylogenetic tree and then conducted an Analysis of Mo-

lecular Variance (AMOVA, Excoffier et al., 1992). The phylogenetic tree (Document S1) was built for the 17mtDNA sequences in Table

S1 (six and eleven from the WGS and mtDNA capture data, respectively) using an additional two San mitochondrial genomes

(AY195783 and AY195789) (Mishmar et al., 2003) as outgroups. The sequences were first aligned using SeaView v5.0.4 (Gouy

et al., 2010) and then converted to phylip format using the R package ape v5.3 (Paradis and Schliep, 2019). PhyML v3.1 (Guindon

et al., 2010) and the R package phangorn 2100 v2.5.5 (Schliep, 2011) were used to determine the best mutational model for our

data. In our case, F84 + I + G was the best model. The sequences were loaded on PhyML v3.1 and the tree was generated using

this model with a BioNJ starting tree, SPR moves, and 10,000 bootstrap replicates. The resulting tree (with all nodes with bootstrap

support below 50% collapsed) can be found in Document S1. The resulting tree topology is also mostly coherent with publicly avail-

able data (Eupedia, 2018) and haplotypes cluster together. However, samples from the same archeological site do not strictly form

clades.

For the AMOVA, the individual samples were pooled into two groups according to their geographic location, culture and time

period: EBA Helladic North (3 Pella, 2 Paliambela, 4 Xeropigado Koiladas); and MBA Helladic North (2 Elati-Logkas). See map on

Figure 1 in the main text for grouping and locations. Using the mtDNA sequences aligned with SeaView v5.0.4 (Gouy et al., 2010),

we carried an AMOVA with Arlequin v.3.5.2.2 (Excoffier and Lischer, 2010), using 10,000 permutations of individual mtDNA se-

quences between groups to assess significance. Pairwise FST between pairs of groups was estimated based on pairwise distances

of mtDNA sequences, using 10,000 permutations to assess significance. The data type was set to DNA in haplotypic format, with a

total of 16,479 variable sites. The results indicate limited differentiation between EBA andMBA in northern Greece, with an explained

variance among groups of 2.96% corresponding to an estimated FST of 0.0296 (p = 0.293).
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Reference panels

The six WGS ancient individuals were studied in the context of previously published modern and ancient data of two kinds: i) geno-

types/variants (mostly fromSNP array capture data), and ii) whole genome sequence data. To serve the purpose of different analyses,

different datasets were assembled:

Dataset 0: Three reference panels made available by David Reich’s laboratory were combined. These data include 2,068modern

individuals (621,799 SNPs) genotyped on the Human Origins SNP array (https://reich.hms.harvard.edu/sites/reich.hms.harvard.

edu/files/inline-files/NearEastPublic.tar.gz; Lazaridis et al., (2016), 351 ancient individuals (1,150,639 SNPs) whose data derive

from the ‘1240K’ SNP capture assay (https://reich.hms.harvard.edu/sites/reich.hms.harvard.edu/files/inline-files/MinMyc.tar.

gz; Lazaridis et al., (2017) as well as 225 ancient individuals (1,233,013 SNPs) from Mathieson et al., (2018) (https://reich.hms.

harvard.edu/sites/reich.hms.harvard.edu/files/inline-files/Genomic_Hist_SE_Europe_Mathieson.tar.gz). The data were down-

loaded in the PACKEDANCESTRYMAP format and we used EIGENSOFT package 7.2.1 (Patterson et al., 2006; Price et al.,

2006) with default parameter settings to merge these datasets and to convert them into the Plink format. This merged dataset

contained 621,272 SNPs in total, with 616,427 SNPs being autosomal. Note that the 19 ancient individuals published in Lazaridis

et al. (2017) (https://www.ebi.ac.uk/ena/browser/view/PRJEB20914) as well as four additional individuals B_Crete-1 (SA-

MEA3302765) and B_Crete-2 (SAMEA3302625) (Mallick et al., 2016) (https://www.ebi.ac.uk/ena/browser/view/PRJEB9586);

YamnayaKaragash_EBA and Sidelkino (de Barros Damgaard et al., 2018), together with the BA Aegean six samples (Kou01,

Kou03,Mik15, Pta08, Log02, Log04) were joined from the BAM files after applying the following post-processing steps for these

samples. Given the relative low depth of coverage formost of these individuals (Figure S2), rather than calling genotypes, one read

at random for each SNP position was sampled, following the steps described below. First, we filtered the BAM files to keep only

the aligned bases (minimum base quality of 20) mapping to the position of the SNPs in the reference panel using samtools 1.10 (Li

et al., 2009). Second, we randomly sampled one allele at each position per individual and coded it as homozygote reference (‘‘0/

0’’) or homozygote alternative (‘‘1/1’’), if it matched the reference or alternative allele in the filtered reference panel, respectively, or

asmissing data (‘‘./.’’) otherwise. Third, wemerged the resulting table of genotypes with the reference panel. Fourth, given that the

modern reference panel contained called genotypes, including heterozygotes, we simulated the sampling of just one read per

individual (as done for the sub-set of ancient individuals mentioned above). This was done by randomly converting heterozygous

sites into 0/0 or 1/1 with 50% probability. These data (Dataset 0) were further processed in two ways to fit the purpose of different

analyses.

Dataset I: For the f/D-statistics, we tried to maximize the number of SNPs used in each analysis. Following Lazaridis et al. (2017),

this dataset used the following additional filters on Dataset 0: for analyses involving both present-day and ancient data, the so-

called ‘‘HO’’ set of 591,642 SNPs was used; for analyses involving ancient individuals only, the so-called ‘‘HOIll’’ set of 1,054,671

SNPs was used (see Lazaridis et al. [2017] for details on the SNP sets) of which 1,054,637 SNPs were retained for this merged

dataset.

Dataset II: For this dataset, to discard rare alleles that were likely due to sequencing/mapping errors and to reduce linkage, both

minor allele frequency and linkage disequilibrium filters (MAF of 0.05 and r2 > = 0.4) were applied on Dataset 0 using PLINK v1.90

(Purcell et al., 2007) (–maf 0.05–indep-pairwise 200 25 0.4). To avoid biases due to the increased damage patterns for ancient

DNA, these filters were only applied to the 2,068 present-day individuals from the Human Origins panel, retaining 165,447

SNPs. These data were then rejoined to the ancient individuals. Moreover, individuals marked as related and outliers were

removed and we kept only present-day individuals of primarily Eurasian individuals as determined by an ADMIXTURE run with

K = 3. We selected the present-day individuals with more than 90% Eurasian ancestry component, thus excluding individuals

that did not cluster with those from the same continent (Table S2). A panel restricted to this set of individuals was then created

by including 1346 individuals (564 ancient and 782 present-day) from Dataset 0. Finally, to allow for a more balanced sample

size per population, a maximum of 20 individuals per population were retained removing the individuals with the most missing

data. The resulting dataset of 969 individuals (331 ancient and 638 present-day) was used for ADMIXTURE. ForMDS, we further

applied a filter to exclude individuals with a proportion of missing haploid genotype calls greater than 0.95 using PLINK v1.90,

removing 47 ancient low-quality samples from the panel (Table S2, ‘‘Excluded mind 0.95’’ tab) and removed populations of

less relevance for this analysis. In Table S2, all individuals from Dataset 0 that were used in ADMIXTURE and MDS are listed.

Dataset III: This set included four ancient and fourmodern publicly available full-genomes that were remappedwith the same pro-

cedure as the six genomes from this study (Table S1, ‘‘Additional genomes’’ tab): YamnayaKaragash_EBA (3,018-2,887 BCE)

(deBarrosDamgaard et al., 2018),KK1 (CHG; 7,745-7,579BCE) (Jones et al., 2015),Bar8 (NeolithicBarçın; 6,122-6,030BCE) (Hof-

manová et al., 2016), Sidelkino (EHG; 9,386-9,231 BCE) (de Barros Damgaard et al., 2018), S_Greek-1 and S_Greek-2

(SAMEA3302732 and SAMEA3302763; present-day Greeks from Thessaloniki) (Mallick et al., 2016), B_Crete-1 and B_Crete-2

(SAMEA3302765I and SAMEA3302625; modern Cretans) (Mallick et al., 2016). The modern genomes from this dataset were

used for the ROH analysis. The ancient genomes selected had similar or higher mean depth of coverage than the whole genomes

sequenced in this study and were therefore more suitable for demographic history reconstruction.

Dataset IV: This dataset (used for ABC-DL) consisted of the four ancient genomes described above and the present-day Greek

(S_Greek-1) from Dataset III as well as two genomes reported in this study,Mik15 (to represent Aegean EBA) and Log04 (to repre-

sent Aegean MBA).
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After remapping (see above), we followed the gvcf methods (Poplin et al., 2017) for variant calling in each of the BAM files. First,

every BAM file was called for variants using HaplotypeCaller (Poplin et al., 2017), which produced a gVCF file for a single individual.

We then merged all the gVCF files using GenotypeGVCFs (Poplin et al., 2017) with default parameters.

The final VCF file was re-calibrated following Genome Analysis Toolkit (GATK) Variant Quality Score Recalibration (VQSR) recom-

mendations (DePristo et al., 2011).We converted the VCF files to PLINK format with PLINK v1.90 and added the ancestral information

from the chimpanzee reference genome (panTro4) as described in Mondal et al., (2019). We marked the reference allele as Ancestral

and all the alternative alleles as Derived.

An ‘‘intergenic region SNP set’’ was used for this analysis, in an effort to reduce the impact of background selection on demographic

inference (Ewing and Jensen, 2016; Johri et al., 2020). All genomic regions containing CpG islands defined in Bock et al. (2007) were

excluded, as well as Ensemble genes and their 20 kb upstream and downstream regions. Genomic regions of at least 10kb and sepa-

rated by at least 100kbwere kept. Within each genomic regionwe concatenate genomic fragments that were at% 5kb from each other

and thatwere neither in genes nor inCpG islands. Finally, only SNPs covered by at least 10 readswere included in this dataset, resulting

in 7,314 regions (comprising 713Mb) and 5,268,391 SNPs after filtering. This dataset was converted into PED format with PLINK v1.90.

The data were divided into two subsets (‘‘training’’ and ‘‘replication’’) using –thin 0.5 and –exclude functions in PLINK v1.90. Each

subset accounted for 50% of SNPs from each individual. The ‘‘training’’ subset was used for noise injection in the simulation and

training processes, and another ‘‘replication’’ subset represented the observed data in the ABC-DL framework (Document S1).

Multidimensional Scaling (MDS)

Classical MDS, also called Principal Coordinate Analysis (Cox and Cox, 2008), was used to summarize in two dimensions the rela-

tionships among our six ancient samples in the context of 259 previously published ancient, and 638 primarily Eurasian genomes

selected from Dataset II (Table S2). For each individual and site, the identity-by-state distances for each pair of individuals were

calculated, using a minimum base quality filter of 20. These distances were then used to compute the MDS projection via the

cmdscale R function with a custom script (Document S1)and to quantify how much variance is explained by each dimension (Figure

2; Document S1).

ADMIXTURE analysis: Population structure and sex-biased gene flow

We used the software ADMIXTURE v1.31 (Alexander et al., 2009) to infer population structure and sex-biased gene-flow.

To infer population structure, we estimated the average genomic ancestry proportions for a total of 638 modern and 331 ancient

Eurasian individuals in Dataset II (Table S2) considering an unsupervised ADMIXTURE model with K ranging from 2 to 6 (Figure S5;

Document S1). For the unsupervised ADMIXTURE analyses, ten independent replicates were run and the one with the lowest cross-

validation (CV) error was selected. The ‘‘haploid’’ option was used as the data included pseudo-haploid data, generated by randomly

sampling a single read for each locus. The R package popHelper (Francis, 2017) was used to visualize the estimated admixture pro-

portions for each individual.

To assess sex-biased gene flow, ADMIXTURE was run considering a supervised model with two known sources (K = 2) for each

studied period. When analyzing the EBA Aegeans, we considered Anatolia_N (n = 26) as proxy for the Anatolian Neolithic-like

ancestry and merged Iran_N (n = 6) with CHG (n = 2) to represent the Iran_N/CHG-like ancestry. For the MBA Aegeans, Anatolia_N

(n = 26) and Steppe_EMBA (n = 27) were used as proxies for the Anatolian Neolithic-like and Steppe-like ancestry respectively. For

this analysis, we considered all of the SNPs on the autosomes from Dataset II (165,402 SNPs) and retrieved pseudo-haploid data for

8,133 SNPs on the X chromosome, following the same filtering criteria. As the X chromosome has fewer SNPs (8,133), 100 replicates

of ancestry proportion estimates for the autosomes considering 8,133 autosomal SNPs at random were generated. The results are

presented in a violin plot corresponding to the distribution (across the 100 replicates) of the autosomal ancestries for each individual

(Figure 5). For this analysis, we also used the ‘‘haploid’’ option in ADMIXTURE and pseudo-haploid data as input.

f3/D-statistics

Outgroup f3-statistics (Patterson et al., 2012) were computed to explore the broad genetic affinities between individuals of interest

and present-day populations in Dataset I. Specifically, f3-statistics of the form f3(Yoruba; Y, X) – where X represents one of the pre-

sent-day populations included in Dataset I and Y represents an ancient or present-day individual of interest – were computed

(Figure S4). In this case Y∈ {Anatolia_N,Greece_N,Mik15,Pta08,Kou03,Anatolia_BA,Kou01,Minoan_Odigitria, Log04, Log02,Min-

oan_Lasithi,Mycenaean,Greek, Crete, Cypriot}. In Figure S4, the geographic distribution of the f3-statistics computed for each pop-

ulation X is shown.

D-statistics of the form D(Anatolia_N, X; Y, Mota)were computed using Dataset I (Figure S6).Mota is an ancient Ethiopian (Gallego

Llorente et al., 2015).

For both statistics, standard errors were estimated through a weighted block jackknife approach over approximately 5-Mb blocks.

For D-statistics, absolute Z-scores greater than 3.3 (corresponding to a p-value < 0.001) were regarded as statistically significant.

qpWave/qpAdm analysis

The qpWave/qpAdm (Haak et al., 2015; Lazaridis et al., 2017) framework was used to test for the number of migration waves of

ancestry and to estimate the admixture proportion of a Test population based on Dataset I (Tables 3, S3, and S5; Document S1).
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Here a set of ‘‘Left’’ populations (Test population and potential source populations) together with a set of ‘‘Right’’ populations (diverse

outgroups) allowed for the testing of the number of waves of ancestry from ‘‘Right’’ to ‘‘Left’’ populations, and for estimation of the

admixture proportions of the Test population. Following Lazaridis et al., (2017), two sets of outgroups were used, one using early

Neolithic sources and HG (16 populations, ultimate sources). Note that the African individual Mota was used as fixed outgroup.

All: Mota, AfontovaGora3, Anatolia_N, CHG, EHG, ElMiron, GoyetQ116-1, Iran_N, Kostenki14, Levant_N, MA1, Natufian, Us-

t_Ishim, Vestonice16, Villabruna, WHG.

Likewise, we also defined a second set (proximate sources) by adding younger populations down to the Bronze Age into the ‘‘All’’

set of populations. This may allow for the identification of simpler models underlying the likely complex admixed populations.

All+: All (see above) W Anatolia_ChL, Armenia_ChL, Armenia_EBA, Armenia_MLBA, Europe_LNBA, Europe_MNChL, Iberia_BA,

Iran_ChL, Levant_BA, Steppe_EMBA, Steppe_MLBA.

The Left set is chosen to include the Test population (for which the admixture proportions are being modeled) and N populations

from the All (or All+) set. The Right set is then All \Left, testing against the maximal set of Right outgroups. To evaluate the relatedness

of the BA Greek individuals, we also added our individual samples, as well as the Minoans and Mycenaeans from Lazaridis et al.

(2017), and BA Balkan individual samples (Mathieson et al., 2018) as potential sources to the Left set. We further split the BA Balkan

samples into EBA and LBA since the amount of reported Steppe admixture is increased in individuals from LBA (Mathieson et al.,

2018). We infer the rank = N-1 using qpWave and estimate the admixture proportion for the test populations using qpAdm. We

show only feasible admixture proportions (in the interval [0,1]) and use a significance threshold of a = 0.05 to reject models.

To make our results comparable to Lazaridis et al. (2017), we used the HO set of 591,642 SNPs for joined analyses of modern and

ancient data and the HOIll set of 1,054,671 SNPs (1,054,637 SNPs retained after merging datasets) for analyses considering only

ancient individuals (Dataset I).

ROH analysis

ROH were computed for the four present-day Greek genomes described in Dataset III, alongside the six BA Aegean genomes

(Kou01, Kou03, Log02, Log04,Mik15, Pta08). The data were first imputed by extracting all bi-allelic SNPs from 1000 Genomes phase

3 (positions and alleles) (International HapMap 3 Consortium et al., 2010). Second, we called genotypes in the form of genotypes

likelihoods at all these variant sites in the ten genomes (four present-day Greek genomes and six BA Aegean genomes). For this

step, we used bcftools v1.8 constraining the calling model to the positions and alleles extracted at the first step. Third, we imputed

genotypes and estimated haplotypes usingGLIMPSE v1.0.1 (Rubinacci et al., 2021) using 1000Genomes phase 3 as reference panel

within overlapping chunks of �2Mb. The imputation outcome takes the form of haplotype calls, which are essentially a phased

version of the most likely genotypes. The imputed dataset contained 43,258,118 SNPs.

Runs of homozygosity were called on the imputed haplotype data of the 10 individuals, either using all the imputed variants (total:

43,285,118 SNPs) or a subset of the variants excluding transitions (total: 13,542,104 SNPs). ROH were identified using PLINK 1.9

(Purcell et al., 2007) with the option—homozyg printing all identified ROH of at least 500 kb (—homozyg-kb 500). The following ar-

guments were kept with default parameters as specified in PLINK 1.9: a minimum of 100 SNPs per ROH (—homozyg-snp 100), a

minimum density of one SNP per 50 kb (—homozyg-density 50), merging consecutive ROH with gaps shorter than 1 Mb (—homo-

zyg-gap 1000), scanning window spanning 50 SNPs (—homozyg-window-snp 50), including at most one heterozygous call per win-

dow (—homozyg-window-het 1), and at most five missing calls per window (—homozyg-window-het 5). Results are shown in

Figure S7.

ABC-DL

Overview

ABC is a Bayesian statistical framework that comprises a family of algorithms (Beaumont et al., 2002; Bertorelle et al., 2010; Pritchard

et al., 1999; Tavaré et al., 1997) to perform model comparison and parameter estimation using simulated data. ABC has a long tradi-

tion in population genomics as - especially for complex models - it is generally straightforward to generate data but often difficult to

estimate the likelihood analytically (Hoban et al., 2012). In short, ABC-based demographic inference is conducted by generating

simulated data under the prior probabilities of the parameters/demographic models considered in the study; each simulated dataset

is then compared with the observed data by means of a set of summary statistics that capture relevant information in the data; the

parameters/models used to generate the simulations are accepted as sampled from their posterior distributions if the summary sta-

tistics are similar to the ones estimated in the observed data.

For any given dataset, several summary statistics can be defined. Nevertheless, identifying summary statistics that capture all of

the information present in the data pertaining to the parameter or model of interest is usually not straightforward. For a given set of

summary statistics, several computational methods - such as machine learning (Beaumont, 2019) - have been proposed to autom-

atize the choice of informative summary statistics. ABC-DL relies on DL to define the informative summary statistics to be used in

ABC (Wong et al., 2018). The joint site frequency spectrum (jSFS) has been previously used as input to the DL for comparing complex

demographic models (Lorente-Galdos et al., 2019; Mondal et al., 2019). In this work, we have extended the ABC-DL framework to

account for aDNA specificities by augmenting the simulator to include features typical of aDNA such as high error rates and low

coverage prior to calling genotypes.
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Simulations

We used the coalescence-based simulator fastSimcoal2 to generate�713 Mbp of sequenced data assuming neutrality, considering

a recombination rate over the genome of 1.0e-8 (Li and Jakobsson, 2012) and a mutation rate sampled from a Normal distribution

with mean 1.61e-8 and standard deviation of 0.13e-8 (Lipson et al., 2015). Since fastSimcoal2 requires times to be specified in gen-

erations, each date was initially scaled by the average human generation time (29 years) estimated by Fenner (2005). After this step,

the simulated data were first re-sampled to match the observed depth of coverage, genotypes were then recalled on the resulting

alleles, noise was introduced tomimic the increased error rate in aDNA, and contamination was simulated assuming that it originated

from present-day Greeks (Document S1).

Demographic models

We applied a two-step model comparison approach to define the topology of the underlying demographic model. First, we tested

four three-leaf models to establish the topology of the three ancestral populationsCHG, EHG and Aegean Neolithic (Figure 4A) based

on the prior distributions of demographic parameters listed in Table S4. The tree with highest support was then used as a backbone

for more complex 7-leaf models (Figure 4B). We compared six 7-leaf plausible models compatible with previous results for Eu-

rope_LNBA and with results from this study (Figure 4B), based on the prior distributions of demographic parameters listed in Table

S4.

For model comparison, each network was trained with 20,000 simulations per model, setting as output for each simulation the

probability of assignment to one of the models. Next, we generated an additional set of 100,000 simulations per model, and used

each DL network to predict the probability of assignment to each demographic model. A combined DL prediction was obtained

by averaging over the 100 DL predictions. This combined prediction was used as the summary statistic for the ABC analysis. For

defining the best summary statistic of a parameter from a demographic model, we trained 10 independent DL networks with

10,000 simulations as the training dataset, and generated a combined DL prediction to be used in the ABC step by averaging

over the 10 DL. We used the prediction as a summary statistic in the ABC analysis to generate the posterior distribution of the

parameter.

Validation of the ABC-DL approach

Model choice

The accuracy of ABC-DL for distinguishing between the proposed models was quantified using simulated genomic data from the

different models as observed data, and by inferring the posterior probability of each model with ABC-DL. The contingency table be-

tween the model that produced the simulation and the model with the largest posterior probability defines the confusion matrix (Csil-

léry et al., 2010). The diagonal of the confusionmatrix quantifies howwell the ABC-DL approach properly identifies themodel used to

generate the data. The confusion matrix for the four three-leaf models suggests that ABC-DL can distinguish the different models, as

the P(Real Model|Inferred Model) ranged between 0.66 to 0.96 (Table S4). For the 7-leaf models, the confusion matrix suggests that

ABC-DL can distinguish the models as the P(Real Model|Inferred Model) ranged between 0.69 to 0.95 (Table S4).

Parameter estimation

For each parameter, Spearman’s rank correlation between the values used to simulate the data and the DL prediction was computed

to quantify the amount of information that the DL prediction provided. Furthermore, we estimated how well the mean of the posterior

recapitulates the true value of each parameter by means of the factor 1.25 statistic, the fraction of times that the estimated mean of

the posterior was within the range of 80% to 125% of the simulated value of a parameter (see Table S4, Document S1, and Excoffier

et al., [2005] for details). When ABC-DL was applied to the observed data, divergence between the shape of the prior and posterior

distribution was estimated by means of the Kullback-Leibler divergence (KL-divergence) (Kullback and Leibler, 1951). Reduction in

the amount of uncertainty of the posterior with regards to the prior was judged by means of the ratio of highest density interval (HDI).

For the three-leaf model A1, all of the validation analyses discussed above suggest that it is possible to obtain reliable posterior dis-

tributions for the parameters (Table S4; Document S1). For the 7-leaf model B4, we observed a high variability in the performance of

ABC-DL for estimating the posterior distributions of the parameters (Table S4; Document S1), which can be expected given the

complexity of the model. Nevertheless, for the estimated time and amounts of CHG-related and Steppe_EMBA-related gene flow

reported in the text, we have (i) a Spearman’s rank correlationR 0.5 between the DL prediction and the value used in the simulation,

(ii) high (R1.5) ratio factor 1.25 posterior mean/random prior, (iii) large (> 0.5) KL-divergence between posterior and prior, and (iv)

strong reduction in HDI (> 2), that is, in the uncertainty of the posterior distribution compared to the prior distribution. These results

suggest that the estimations obtained by ABC-DL for these four parameters substantially reduce the amount of our prior uncertainty.

Phenotype prediction

The genotype likelihoods from the mapped reads of our nuclear capture data were calculated using ANGSD v. 0.921 (Korneliussen

et al., 2014). For this, we specified the SAMtools model (-GL 1) and inferred major/minor alleles from the genotype likelihood (-do-

MajorMinor 1 -doMaf 1). We used a minimum read depth of 20 (-genoMinDepth 20) and trimmed 10 bases of the reads from both

ends (-trim 10). Furthermore, we assumed a uniform prior for the genotypes (-doPost 2) and only considered called genotypes

with posterior probabilities > 0.95 (-postCutoff 0.95) and base (-minQ 30) and mapping (-minMapQ 30) qualities of 30 in Phred score.

Using these data, we extracted genotypes for Kou01, Log02 and Pta08 for two SNPs on chromosome 2 – rs4988235 and rs182549 –

in which the alleles T �13,910 and A �22,018 respectively are informative of lactase persistence. Furthermore, we used the capture
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data to infer eye-, hair- and skin color for the individuals Kou01, Log02 and Pta08 using the HIrisPLex-S DNA Phenotyping Webtool

(https://hirisplex.erasmusmc.nl/). We compared our dataset with the 41 SNPs published as HIrisPlex-S (Chaitanya et al., 2018;Walsh

et al., 2017) and found an overlap of 30 SNPs (Table S1, ‘‘Nuclear capture’’ tab). Note that HIrisPLex-S is an extension of the previ-

ously publishedHIrisPLex, which contains 24 SNPs for eye and hair color determination (Walsh et al., 2014) and that our data cover 23

of those 24 SNPs. The HIrisPLex-S webtool calculates individual prediction probabilities and associated values for the loss of pre-

diction accuracy (AUC loss) depending on the available set of SNPs. The results for Kou01, Log02 and Pta08 are given in Table S1.

The most supported eye, hair and skin color is the one with the highest prediction probability (Table S1). A discussion about lactose

intolerance can be found in Document S1.
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Supplemental figures

Figure S1. Images of archaeological site Elati-Logkas (Log02, Log04), related to Table 2 and Document S1

(A) Elati-Logkas, view of the cemetery with burials covered by stones known as ‘‘periboloi.’’ (B) Elati-Logkas, Burial 80.1 (Log04) is a pit-grave in the circumference

of an inner enclosure built from rough stones. The buried individual was in crouched position lying to the left side, with the hands bent and the palms supporting

the skull. Inside the same walls, four other similar burials were excavated with no grave goods apart from only one flint stone blade in tomb 80.5. (C) Elati-Logkas,

Burial 22.1 (Log02) is the main among three pithos-inhumations and one secondary burial inside the ‘‘peribolos 22.’’ The grave itself is bordered by rough stones,

with the buried individual laid on a ceramic ‘‘stretcher.’’ Several vertical lines are still visible on the skeletal remains. The individual of the burial 22.1 was found in a

supine position with the hands crossed on the abdomen, the legs bent in a crouched position to the left, and the skull turned to the right side. There were no grave

goods found in the burial 22.1. Photo credits: Ephorate of Antiquities of Kozani, Hellenic Ministry of Culture, Greece. Courtesy of Dr. Georgia Karamitrou-

Mentessidi.
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Figure S2. Comparison of SNP capture and WGS data, related to Figure 4 and Tables 2 and S1

(A) Number of single nucleotide polymorphisms (SNPs) in the nuclear genomic data from this study (WGS data) in comparison with previously published BA

genomic data from the Aegean. The number of covered SNPs across BA Aegeans based on two SNP sets are shown. On the left: the number of SNPs based on

the 1240K SNP set (Dataset I) defined by the array used in Lazaridis et al. (2017) to enrich the libraries. On the right: the number of SNPs based on the intergenic

regions defined for the ABC-DL analysis below (Dataset IV, STAR Methods). The green box plots (median indicated by a horizontal line and interquartile range

indicated by the box) correspond to the number of SNPs among the BA Aegean data from present-day Greece (Lazaridis et al., 2017); the blue box plots

correspond to the number of SNPs among the whole genome sequence (WGS) data from this study. (B) One-dimensional Site Frequency Spectrum (SFS) for the

seven whole genomes used for demographic analyses (ABC-DL). The seven genomes included here are:Mik15 and Log04 from this study, YamnayaKaragash_

EBA (3,018-2,887 BCE) (de Barros Damgaard et al., 2018), KK1 (CHG; 7,745-7,579 BCE) (Jones et al., 2015), Bar8 (Neolithic Barçın; 6,122-6,030 BCE) (Hof-

manová et al., 2016), Sidelkino (EHG; 9,386-9,231 BCE) (de Barros Damgaard et al., 2018), and S_Greek-1 (SAME3302732; modern Greek from Thessaloniki)

(Mallick et al., 2016).STAR Methods In blue ("WGS") the SFS for the regions included in Dataset IV (STAR Methods). In red ("1240K") the SFS for the regions in

Dataset IV restricted to the sites overlapping with the SNPs included in the 1240K array.
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Figure S3. Error rates, damage, and read length distributions for the WGS and nuclear capture data from this study, related to Figure 1 and

Tables 2 and S1

(A) Error rate for whole genome sequencing before (lighter colors) and after (darker colors) trimming 5 bp from the extremities of the reads. Log02 was USERTM-

treated. (B) Error rate for nuclear capture data for different mutation types. Columns 1 and 2 show transitions and column 3 shows transversions. (C) Read length

distribution for whole genome sequencing. (D) Read length distribution for nuclear capture data. (E) Post-mortem damage pattern for whole genome sequencing

(C to T and G to A substitutions). Dashed lines indicate partial data removal resulting from trimming 5 bp from the extremities of the reads. The color of each curve

indicates the analyzed sample according to panel A. Log02 (dark green curve) was USERTM-treated. (F) Post-mortem damage pattern for nuclear capture data.

Curves are colored according to panel B. See STAR Methods for details.
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Figure S4. Genetic affinities between Neolithic, BA, and present-day Aegeans compared to other present-day Eurasian populations, related

to Table 1

f3-statistics of the form f3(Yoruba; Y, X): Y corresponds to either Neolithic Anatolians or Greeks,Minoan-Petras-EBA individual from the island of Crete (Pta08), the

Cycladic-Koufounisi-EBA individuals (Kou01, Kou03), the Helladic-Manika-EBA individual from the island of Euboea (Mik15), the Helladic-Logkas-MBA in-

dividuals from northern Greece (Log02, Log04), previously published BA Aegeans (Mycenaeans and Minoans), and present-day Greeks (incl. Cretans), Cypriots,

while X are other present-day populations from Dataset I (Lazaridis et al., 2014, 2016, 2017) (STAR Methods). For clarity, we only show results for west Eurasian

and north African populations and cap f3 values below 0.15. For each case, we show the geographic distribution of f3 (warmer colors represent greater sharing

between populations X and Y). Beside each map, we plot the f3 values for the 15 populations that are most closely related to each of the populations in Y (bars

represent ~1.95 standard errors). In agreement withMDS andADMIXTURE analyses, we observed that ancient and present-day Anatolians andGreeks share the

most genetic drift with present-day central and southern European populations.
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(legend on next page)
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Figure S5. ADMIXTURE analysis using ancient and modern populations with the number of ancestry components ranging from K = 2–6 and

cross-validation error, related to Figure 3, Table 1, and Document S1

(A) For this analysis we consider a total of 969 individuals (638 modern and 331 ancient) and 165,447 SNPs (Dataset II, STARMethods). Each bar represents one

individual. Individuals from the same population were grouped. For all K > 2, red represents the component mostly present in ‘‘European Neolithic-like,’’ light blue

in ‘‘Neolithic Iran/Caucasus HG-like’’ and orange for ‘‘European HG-like.’’ (B) Cross-Validation error (CV error) for K ranging from 2 to 6. The CV-error is plotted for

the ten runs for each value of K (STAR Methods).
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Figure S6. Exploring differential allele-sharing in Aegean/Anatolian populations through time with D-statistics, related to Table 1

D-statistics of the form D(Anatolia_N, H2; H3, Mota) were computed, testing whether Anatolia_N (H1), or ancient/modern Anatolian and Aegeans (H2) share more

alleles with CHG, Iran_N, EHG, or Steppe_EMBA (H3, STAR Methods). For this analysis, the genome of an Ethiopian individual (Mota) was used as an outgroup.

Points represent D-statistics, and horizontal error bars represent ~3.3 standard errors (SE corresponding to a p-value of ~0.001 in a Z-test). Vertical bars

represent upper and lower bounds of the dates available for the populations. In this figure, the populations are ordered chronologically, using either radiocarbon

dates (when available) or dated archaeological context. Horizontal dashed lines indicate time periods. Vertical dashed lines mark the zero. A value of D = 0 in-

dicates no gene flow or ancestral population structure (Durand et al., 2011), thus H1 and H2 are symmetrically related to H3 and Mota. In this case, D < 0 would

indicate potential gene flow between H3 and H2, and D > 0 would indicate potential gene flow between H3 and H1. Abbreviations for chronological periods and

population names are given in Table 1.

ll
OPEN ACCESSArticle



Figure S7. Estimated total ROH length by size category for six ancient and four modern genomes, related to Document S1

(A) ROHs estimated from 43 million imputed transitions and transversions, and (B) 13 million imputed transversions (STAR Methods).
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