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REVIEW ARTICLE OPEN

Walking on common ground: a cross-disciplinary scoping

review on the clinical utility of digital mobility outcomes
Ashley Polhemus 1✉, Laura Delgado Ortiz 2,3,4, Gavin Brittain 5, Nikolaos Chynkiamis 6, Francesca Salis7, Heiko Gaßner 8,

Michaela Gross9, Cameron Kirk10, Rachele Rossanigo7, Kristin Taraldsen11, Diletta Balta12, Sofie Breuls 13,14, Sara Buttery15,

Gabriela Cardenas2,3,4, Christoph Endress9, Julia Gugenhan9, Alison Keogh16, Felix Kluge 17, Sarah Koch2,3,4, M. Encarna Micó-

Amigo10, Corinna Nerz 9, Chloé Sieber 1, Parris Williams15, Ronny Bergquist11, Magda Bosch de Basea2,3,4, Ellen Buckley 18,

Clint Hansen 19, A. Stefanie Mikolaizak9, Lars Schwickert9, Kirsty Scott18, Sabine Stallforth8, Janet van Uem19, Beatrix Vereijken 11,

Andrea Cereatti7,12, Heleen Demeyer13,14,20, Nicholas Hopkinson 15, Walter Maetzler 19, Thierry Troosters13,14, Ioannis Vogiatzis6,

Alison Yarnall10, Clemens Becker9, Judith Garcia-Aymerich 2,3,4, Letizia Leocani21, Claudia Mazzà18, Lynn Rochester10, Basil Sharrack5,

Anja Frei1, Milo Puhan1 and Mobilise-D

Physical mobility is essential to health, and patients often rate it as a high-priority clinical outcome. Digital mobility outcomes

(DMOs), such as real-world gait speed or step count, show promise as clinical measures in many medical conditions. However,

current research is nascent and fragmented by discipline. This scoping review maps existing evidence on the clinical utility of

DMOs, identifying commonalities across traditional disciplinary divides. In November 2019, 11 databases were searched for records

investigating the validity and responsiveness of 34 DMOs in four diverse medical conditions (Parkinson’s disease, multiple sclerosis,

chronic obstructive pulmonary disease, hip fracture). Searches yielded 19,672 unique records. After screening, 855 records

representing 775 studies were included and charted in systematic maps. Studies frequently investigated gait speed (70.4% of

studies), step length (30.7%), cadence (21.4%), and daily step count (20.7%). They studied differences between healthy and

pathological gait (36.4%), associations between DMOs and clinical measures (48.8%) or outcomes (4.3%), and responsiveness to

interventions (26.8%). Gait speed, step length, cadence, step time and step count exhibited consistent evidence of validity and

responsiveness in multiple conditions, although the evidence was inconsistent or lacking for other DMOs. If DMOs are to be

adopted as mainstream tools, further work is needed to establish their predictive validity, responsiveness, and ecological validity.

Cross-disciplinary efforts to align methodology and validate DMOs may facilitate their adoption into clinical practice.

npj Digital Medicine           (2021) 4:149 ; https://doi.org/10.1038/s41746-021-00513-5

INTRODUCTION

Physical mobility is an essential aspect of health. Mobility
impairment is associated with reduced quality of life, falls,
hospitalization, mortality, and other adverse events in many
chronic conditions1–7. It is therefore unsurprising that people
living with chronic conditions often rate physical mobility—and
specifically walking ability—as one of the most important clinical
outcomes8–13.
Traditional mobility measures include patient-reported out-

comes (how well an individual thinks they can walk), objective
clinical assessments (an individual’s examined capacity to walk),
and subjective clinical assessments (how well a clinician thinks an
individual can walk given a set of standard criteria). These
measures can be subject to recall bias, Hawthorne effects,
substantial training requirements, and ceiling or floor effects,

among other limitations14–20. They are acquired infrequently and
often conducted in clinical settings that rarely reflect the complex
environmental determinants of real-world function, raising ques-
tions of their ecological validity14,21–23.
It is now technologically feasible to conduct quantitative

mobility assessments during real-world walking, defined as
unsupervised, unscripted walking behavior that occurs in non-
simulated everyday situations14,24,25. Walking-related digital mobi-
lity outcomes (DMOs) including gait speed, step length, and step
count are increasingly used to quantify gait quality in multiple
medical conditions. Emerging evidence suggests that DMOs may
be sensitive, ecologically valid markers of health status14,21,23, but
they are unvalidated and therefore not yet accepted as main-
stream research and clinical assessment tools. This gap has
sparked multidisciplinary calls to validate and qualify (i.e., seek
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regulatory approval for) DMOs as clinical endpoint measures26–31.
These calls suggest that collaboration across traditional clinical
divides will accelerate the qualification process, which entails
patient engagement, extensive technical validation, large clinical
studies, and an intensive review by regulatory authorities12,28,29,31.
This process must prove that DMOs are technically feasible to
measure, relevant to patients, clinically meaningful, and cost-
effective, among other considerations. In this context, clinical
meaningfulness is judged by three psychometric properties:
construct validity (i.e., they measure what they are supposed to
measure), predictive validity (they are associated with important
clinical outcomes such as mortality), and responsiveness (they
change in response to effective interventions)32–34.
Many DMOs have been investigated and proposed, but

systematic evidence on their psychometric properties is often
lacking. This is in part due to fragmentation of the literature by
discipline, terminology, and methodology—both within and
between clinical disciplines. Systematic evidence is beginning to
accumulate, but is generally limited to clinical settings and specific
medical conditions, DMOs, or psychometric properties3,35–37.
These reviews, although foundational, provide a narrow and
incomplete understanding of the research landscape. An over-
arching view of existing evidence is needed to guide strategic
priority setting, inform the design of validation efforts, and identify
common research goals—and therefore opportunities for colla-
boration—which exist across traditional research domains.

Objective

The aim of this scoping review is to generate cross-disciplinary
maps of existing evidence on the clinical meaningfulness of
DMOs. We stratified our review by four research questions (Fig. 1)
designed to map evidence pertaining to the known-groups
validity, convergent validity, predictive validity, responsiveness,
and ecological validity of a predefined set of DMOs. The resulting
maps identify commonalities across disciplinary divides, suggest
promising DMOs for further validation, and outline current
research gaps. Although walking impairment is of interest in
many medical conditions, it was impossible to map the entire
research field in a single review. We selected four diverse medical
conditions as exemplars, representing diverse etiologies and
patterns of mobility impairment: Parkinson’s disease (PD),
multiple sclerosis (MS), chronic obstructive pulmonary disease
(COPD), and proximal femoral fracture (PFF)31. They were
selected due to their prevalence, impact on quality of life,
economic burden, and evidence base35,37–39. Walking impair-
ment is known to play a central role in the patient experience of
each of these conditions12,40–44. These conditions are the focus
of Mobilise-D, an Innovative Medicines Initiative 2 Joint Under-
taking that aims to develop and validate DMOs for regulatory
and clinical endorsement45.

RESULTS

Characteristics of included studies

Searches yielded 19,672 unique records, of which 2903 were
deemed eligible for full-text review. Of these, 855 records were
eligible for inclusion (PD: n= 307; MS: n= 270; COPD: n= 225;
PFF: n= 53), representing 5019 unique analyses from 775 studies
(Fig. 2). The list of included records is available on our project
repository46. Reviewer agreement was substantial at the abstract
(16 raters, weighted Cohen’s κ= 0.77, Fleiss’ κ= 0.56) and full-text
stages (22 raters, weighted Cohen’s κ= 0.75). Gait speed was
studied most frequently in all medical conditions except COPD,
which favored daily step count (Supplementary Fig. 1). Character-
istics of included studies and their populations are provided in
Supplementary Table 8. Most studies were small (median [IQR]: 50
[30–94] participants) and included populations with moderate
median disease severity. We observed substantial methodological
heterogeneity both within and between the medical conditions,
although the methods were often unclearly reported (Table 1).

Known-groups validity

Overall, 282 studies investigated differences in DMOs between
healthy and pathological gait (Fig. 3) and 137 studies compared
DMOs across disease severity strata (Supplementary Fig. 4).
Several DMOs exhibited consistent evidence of known-groups
validity in PD, MS, and COPD, although few investigated
differences between known groups for any DMO in PFF. Gait
speed, step/stride length, step/stride length variability, and
measures describing the support phase of gait were consistently
different between known groups, although the evidence is limited
for disease severity strata in COPD. DMOs describing cadence,
step/stride time, and daily step count were consistently different
between known groups in MS and COPD, but less so in PD.

Convergent validity

We identified 378 studies that investigated associations between
DMOs and validated measures of condition severity, lower-
extremity function, health-related quality of life, and other
constructs. Gait speed, step/stride length, cadence, and step/
stride time exhibited consistent relationships with measures of
condition severity (Fig. 4) and lower-extremity function (Supple-
mentary Fig. 5). Mapped associations between DMOs and
measures of balance, falls, and health-related quality of life are
provided in Supplementary Figs. 6–9. Gait speed, daily step count,
and daily walking time were consistently associated with health-
related quality of life in all conditions. Gait speed, step/stride
length variability, and step/stride time variability were most
consistently related to balance and falls, although this primarily
reflected studies in PD and MS.

Fig. 1 Research questions (left) and psychometric properties (right) addressed by this review. DMO digital mobility outcome.
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Predictive validity

Only 33 studies investigated the predictive validity of DMOs (PD:
n= 10; MS: n= 7; COPD: n= 14; PFF: n= 2). Most studies (22 of
33, 66.7%) adjusted at least some of their analyses for known
predictors or common confounders. In PD, several DMOs were
related to future disease progression, falls, physical function, and
cognition47–58 (Supplementary Fig. 10) In MS, gait speed was
associated with disease progression59,60, future falls61,62, and
functional status63. One study identified a relationship between
daily step count and disease progression64. Another identified a
relationship between stride time variability, but not stride speed
variability, and falls65. In COPD, gait speed66–70 and daily step
count71–75 demonstrated relationships with mortality. One study
identified a relationship between step count and disease
progression72. Evidence for relationships with exacerbations76,77,
activities of daily living72, health-related quality of life72, and
healthcare utilization69,74,78 was limited or inconsistent. In PFF, one

study found a relationship between gait speed and healthcare
utilization79, while the relationship between gait speed and
activities of daily living was inconsistent79,80.

Responsiveness to intervention

We identified 208 studies that used DMOs as outcome measures
in controlled interventional trials. Of these, 140 (67.3%) reported
using a DMO as a primary outcome and 79 (38.0%) reported using
a DMO as a secondary outcome. However, many studies reported
several “primary” outcomes and it was often unclear which
outcomes, if any, were used in the power analysis. Studies were
generally designed to evaluate the efficacy of interventions rather
than the responsiveness of DMOs; therefore, evidence of DMOs’
responsiveness could not be clearly disentangled from the efficacy
of the various experimental interventions. Thus, we created two
maps to estimate responsiveness. Figures 5 and 6 map analyses
from all included studies and studies in which interventions were

Fig. 2 PRISMA flow diagram. This diagram shows how records were screened for eligibility in this review.
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“effective,” respectively. For our purposes, “effective” interventions
are those which yield significant differences in any primary

endpoint between experimental and control or comparator arms.
The former is likely to underestimate responsiveness (it is
confounded by the true efficacy of the experimental interven-

tions), and the latter is likely to overestimate it (it is biased in favor
of successful studies that used DMOs as primary outcomes). Gait
speed, step/stride length, cadence, daily step count, and walking
time often responded to “effective” interventions in all conditions,

although outcomes were relatively inconsistent.

Ecological validity

Excluding measures of daily walking volume, only 17 studies
measured spatiotemporal DMOs during real-world walking (PD:
n= 8; MS: n= 5; COPD: n= 2; PFF: n= 2). Relationships exhibited
by real-world and in-clinic DMOs are compared for PD81–88 and

MS21,89–92 in Fig. 7 and Supplementary Fig. 12, respectively. In
COPD, real-world walking cadence differed from healthy con-
trols93 and real-world gait speed was associated with disease

severity94. In PFF, timed gait speed tests were conducted at home
in two studies95,96. These tests were not responsive to interven-
tion, although interventions in both studies were found to be

ineffective. These relationships were similar to those observed in
clinical settings, but such comparisons were qualitative.

Assessment of bias

Manual inspection revealed key differences in research strategy
between the medical conditions. Records in PD were more likely
to study specific subpopulations with gait impairments (e.g.,
fallers, individuals with freezing of gait). Several records in MS and
PD, but not COPD or PFF, specifically studied populations with
early-stage disease. The body of literature on PD, COPD, and PFF
appeared to exhibit a survivorship bias (in this case, the tendency
for healthier-than-average individuals with a given characteristic
to be included in a study) with respect to age and condition
severity. Only studies in MS, which represented a younger
population, reflected the full range of disease severity and
demonstrated the expected colinearity of age and disease severity
(Supplementary Fig. 2). This is likely due to an association between
age, condition severity, and comorbidities or cognitive impair-
ment, which were often exclusion criteria in included studies.
Meta-regression showed that conference abstracts (adjusted

odds ratio [95% confidence interval]: 2.44 [1.59–3.76], p < 0.001),
studies with fast walking assessments (1.54 [1.10–2.17], p= 0.02),
and studies on at-risk subgroups such as fallers (2.03 [1.47–2.80],

Table 1. Walking conditions and measurement methods used in included studies.

PD, n= 265 MS, n= 250 COPD, n= 193 PFF, n= 48

Measurement method

Stopwatch 49 (18.5%) 158 (63.2%) 37 (19.2%) 34 (70.8%)

Video/optoelectronic system 65 (24.5%) 24 (9.6%) 4 (2.1%) 0 (0.0%)

Instrumented walkway 51 (19.2%) 34 (13.6%) 10 (5.2%) 8 (16.7%)

Instrumented treadmill 10 (3.8%) 6 (2.4%) 2 (1.0%) 0 (0.0%)

Instrumented environment 2 (0.8%) 1 (0.4%) 0 (0.0%) 0 (0.0%)

Wearable sensora (hip/waist) 32 (12.1%) 16 (6.4%) 49 (25.4%) 0 (0.0%)

Wearable sensor (other/mixed locations) 58 (21.9%) 31 (12.4%) 74 (38.3%) 4 (8.3%)

Pedometer 1 (0.4%) 0 (0.0%) 31 (16.1%) 1 (2.1%)

Mobile phone 1 (0.4%) 1 (0.4%) 0 (0.0%) 0 (0.0%)

Video gaming system (e.g., Kinect) 6 (2.3%) 4 (1.6%) 0 (0.0%) 0 (0.0%)

Other 14 (5.3%) 3 (1.2%) 4 (2.1%) 4 (8.3%)

Measurement setting

Clinic/lab 252 (95.1%) 240 (96.0%) 63 (32.6%) 41 (85.4%)

Home/real world 20 (7.5%) 25 (10.0%) 135 (69.9%) 5 (10.4%)

Walking bout length

Short walk (≤1min or <20m) 204 (77.0%) 211 (84.4%) 35 (18.1%) 34 (70.8%)

Longer walk (>1min or 20m) 49 (18.5%) 54 (21.6%) 21 (10.9%) 13 (27.1%)

Real-world walking bouts 17 (6.4%) 24 (9.6%) 139 (72.0%) 4 (8.3%)

Unclear 13 (4.9%) 10 (4.0%) 3 (1.6%) 0 (0.0%)

Walking bout speed

Habitual speed 205 (77.4%) 95 (38.0%) 35 (18.1%) 23 (47.9%)

Fast speed 34 (12.8%) 158 (63.2%) 22 (11.4%) 19 (39.6%)

Set speed (i.e., on a fixed-speed treadmill) 10 (3.8%) 5 (2.0%) 2 (1.0%) 0 (0.0%)

Averaged bouts of variable speeds 3 (1.1%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Real-world walking bouts 17 (6.4%) 23 (9.2%) 140 (72.5%) 3 (6.2%)

Unclear 32 (12.1%) 19 (7.6%) 6 (3.1%) 8 (16.7%)

Data are presented as n (%) of included studies. Multiple records were identified for several studies; thus, the total number of studies differs from the total

number of records. The sum of percentages may exceed 100%, as studies often reported results for multiple measurement methods or walking conditions.

Measurement method, measurement setting, walking bout length, and walking bout speed indicate the categories of walking conditions reported in included

studies.

PD Parkinson’s disease, MS multiple sclerosis, COPD chronic obstructive pulmonary disease, PFF proximal femoral fracture.
aWearable sensors refer to any wearable data acquisition device other than pedometers, including accelerometers and inertial measurement units.
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p < 0.001) were more likely to report significant results than their
counterparts. Conversely, studies on populations with mild disease
severity (0.46 [0.34–0.61], p < 0.001) were less likely to report
significant findings than those with moderate severity. In studies
comparing pathological to healthy gait, those that matched
patients and controls for gait speed were less likely to report
significant findings for any DMO (0.39 [0.18–0.83], p= 0.014).
Contrary to our expectations, adjusted models were more likely to
yield significant findings than univariate analyses in studies
investigating the prognostic value of DMOs. This suggests that
DMOs that did not reach significance in multivariate models were
not consistently reported and that our maps may overestimate the
true repeatability of these relationships. No other study character-
istics were associated with study outcomes. Sensitivity analyses
yielded similar estimates of all effects. It is important to note that
these relationships are observational, and may not hold at the
individual or study level97. They merely suggest that methodolo-
gical and population heterogeneity contributed to the incon-
sistencies observed in our maps. Detailed results of these analyses
are provided in the Supplementary materials (Supplementary
Notes 3 and 5, Supplementary Fig. 3, and Supplementary Table 7).

Qualitative appraisal of existing evidence

We identified several notable evidence gaps. Few records studied
the predictive validity of DMOs in any of the four conditions. Only
gait speed and step count were regularly used as outcomes in
interventional studies. Few DMOs were studied regularly in COPD
and PFF.
Despite these gaps, evidence consistently supported the

validity of gait speed, step/stride length, cadence, step/stride
time, step/stride time variability, and daily step count whenever it
was available (Table 2). In PD, more positive evidence was
available for daily walking time than step count, but evidence
supporting these measures was similar in the other conditions.
Several DMOs exhibited evidence in PD and MS but lacked

evidence in the other two conditions. Additional detail is provided
in Supplementary Tables 10–13.

DISCUSSION

Recent calls to validate real-world DMOs are based on three
premises: that DMOs are clinically meaningful, that relationships
observed in clinical settings translate to real-world walking, and
that opportunities for collaboration across clinical disciplines
exist30,31. This review conditionally supports these premises.
Mobility indeed appears to be a concept of cross-disciplinary
clinical interest. Multiple DMOs were regularly studied in the four
included conditions and consistently exhibited evidence of
construct validity, predictive validity, and responsiveness. Few
studies measured real-world walking in this review, but those that
did provide provisional evidence that relationships observed in
clinical settings translate to real-world walking.
While condition- and context-specific validation studies are

certainly required for the formal validation of DMOs29,98, it appears
that collaborative approaches to validation can speed this
process30,31. The regulatory pathway for validating and qualifying
DMOs—and digital outcomes in general—is taking shape due to
the collaborative efforts of regulators, industry, academics, and
precompetitive consortia28,29,98–102. The time is right for colla-
borative development of terminology, algorithms, methods, and
evaluation frameworks for mutually interesting DMOs, which may
streamline the validation of DMOs in PD, MS, COPD, PFF, and other
medical conditions.
However, the volume of existing evidence varied across

conditions and DMOs. Compared to PD and MS, evidence in PFF
and COPD was sparse and concentrated on fewer DMOs. These
differences, plus the differences in prevailing methodologies,
suggest disparate research strategies between the conditions.
DMOs appear to be more established in some conditions than
others. Even in recent studies, uninstrumented gait speed tests

Fig. 3 Known-groups validity: number and outcome of eligible studies assessing differences in DMOs between patients and healthy
controls. PD Parkinson’s disease, MS multiple sclerosis, COPD chronic obstructive pulmonary disease, PFF proximal femoral fracture. Data are
presented as: Number of studies with statistically significant differences between groups/Total studies (%). DMOs known to be highly
intercorrelated were grouped (i.e., step length and stride length), and all DMOs were organized according to previously established domains
of gait. *Proportion of studies exceeds the expected false-positive rate as determined by Bernoulli hypothesis testing and
Benjamini–Hochberg adjustment.
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were used more frequently than other spatiotemporal DMOs in
MS, COPD, and PFF. These tests are widely used, well-established,
inexpensive, and simple to implement. However, they are limited
by sensitivity to methodology, Hawthorne effects, and other
shortcomings103,104. Current methods to measure other DMOs are
newer, less mature, and more expensive, requiring significant
infrastructure and technical expertise105. As these factors likely
influence the adoption and study of DMOs, we do not consider
lack of evidence to constitute negative evidence or inferiority in
this review. These gaps are merely areas in which more evidence
must be established.
The purpose of scoping reviews is to map research fields and

set an agenda for future research106,107. The relationships
observed here provide clues on the contexts in which DMOs
might be useful as outcome measures and suggest gaps that
should be addressed to inform DMO validation.

Predictive Validity

Endpoint qualification requires evidence that DMOs are associated
with “hard” clinical outcomes such as falls, hospitalization, and
mortality. Relationships between these outcomes and in-clinic gait
speed are established in many conditions108,109, including those
studied here. However, with few exceptions, evidence on the
predictive validity of other DMOs is sparse. Despite the purported
potential of spatiotemporal parameters and real-world DMOs as
clinical measures, further work is needed to confirm their
predictive validity before they can be considered for regulatory
qualification.

Responsiveness to Intervention

This review identified preliminary evidence for the responsiveness
of common DMOs. However, included studies were not specifically
designed to assess the responsiveness of DMOs; they were

designed to test the efficacy of interventions. It is not yet clear
which DMOs are responsive to which types of interventions, nor is
it clear what constitutes clinically meaningful changes in these
DMOs. The context-dependency and relative magnitude of DMOs’
responsiveness should be confirmed against “gold standard”
outcomes through adequately powered interventional studies and
meta-analyses. Any future work should report measures of effect
size to quantify the responsiveness of DMOs.

Ecological validity

Scripted walking assessments, which test functional capacity at a
single timepoint, are not necessarily representative of habitual or
spontaneous walking behavior21,110,111. If DMOs are to be used as
real-world measures or interpreted as “ecologically valid,” the
psychometric properties of DMOs measured during real-world
walking must be established. At the time of our search, records
measuring real-world walking were relatively rare. Real-world
walking assessment remains technically and logistically challen-
ging105. The performance of existing algorithms, which are usually
validated under controlled clinical conditions, varies with chan-
ging environment, activities, and walking speed112. The effect of
this variation on DMOs’ clinical utility is unclear. While research on
real-world walking has recently accelerated in PD and MS, future
work should enrich this evidence. As a priority, this work should
supplement the pioneering studies that conduct head-to-head
comparisons of DMOs measured in the clinic and in the real
world84,110,111. In the near future, literature on real-world DMOs
should be systematically reviewed to establish similarities and
differences between real-world and in-clinic walking assessments.

Importance to patients

The clinical perspectives and psychometric properties discussed
here, while necessary, are ultimately insufficient to guide DMO

Fig. 4 Convergent validity: associations between DMOs and disease severity measures. PD Parkinson’s disease, MS multiple sclerosis,
COPD: chronic obstructive pulmonary disease, PFF: proximal femoral fracture. Data are presented as: Number of studies with statistically
significant associations between DMOs and measures of disease severity/Total studies (%). Disease severity measures include the UPDRS,
UPDRS-III, and Hoehn & Yahr scale in PD, EDSS, and PDDS in MS, FEV1 % predicted and GOLD stage in COPD, and patient- or physician-rated
global measures of improvement in all four conditions. Most relevant measures in PFF fell under different categories, such as activities of daily
living. DMOs known to be highly intercorrelated were grouped (i.e., step length and stride length), and all DMOs were organized according to
previously established domains of gait. *Proportion of studies exceeds the expected false-positive rate as determined by Bernoulli hypothesis
testing and Benjamini–Hochberg adjustment.
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selection and validation. This review mapped hundreds of
promising relationships from studies conducted in various
contexts, populations, and settings, begging the question, “Of
the DMOs and relationships we can validate, which should we
validate?”
Regulatory bodies such as the Food and Drug Administration,

the European Medicines Agency, and local Health Technology
Assessment bodies expect this question to be addressed from the
patient perspective113–115. The onus is on researchers to prove
that new digital outcomes are important and meaningful within
the context of patients’ daily lives114,116. This refers not only to the
construct the measure assesses but also to the level of change the
measure can detect. However, relationships between DMOs and
the constructs that matter to patients are not always direct. While
some DMOs (i.e., gait speed, daily step count) are readily
interpretable, others may have little intuitive or practical meaning
to anyone other than a gait specialist (i.e, stance time variability).
The relationships between DMOs and meaningful constructs must
be established both statistically and through early patient
engagement, journey mapping, and formal qualitative research,
and collaborative agenda setting. Existing guidance113,115,117,118

and worked examples from past projects12,102 can shape this
interaction. The maps generated in this study can be used to
match candidate DMOs with prioritized walking-related constructs
and experiences. These candidate DMOs should then be
considered specifically when addressing the evidence gaps
described here.

Generalizability and context

Relationships between DMOs, condition severity, and physical
function in all four conditions suggest that DMOs may be useful to
monitor disease progression or changes in mobility status over
time. Similarly, cross-sectional and longitudinal associations
between DMOs and falls suggest that DMOs may be useful to
quantify fall risk in PD and MS. However, the maps presented here

should be treated as directional. The included conditions are
highly heterogeneous, representing an array of symptoms under
single diagnostic umbrellas. It is entirely possible that the utility of
any given DMO is context-dependent, differing between environ-
ments, early and late-stage disease, during an acute health event
or exacerbation, or between disease subtypes. Examples include
individuals with relapsing vs. progressive courses119 or ataxic vs.
paretic gait120 in MS, freezing of gait121, orthostatic hypoten-
sion122, tremor-dominant vs. postural instability gait disorder
subtypes123 in PD, oxygen users in COPD124, or those with
different fracture and surgery types in PFF125. For many
subpopulations, additional original research may be required.
When evidence exists, nuanced perspectives on DMOs’ clinical
utility can be explored through a systematic review.

Strengths and limitations

Our maps aggregated a large, heterogeneous body of literature to
identify overarching trends, inform future research, and identify
opportunities for cross-disciplinary collaboration. Technical and
clinical subject matter experts took part in multidisciplinary review
teams, guiding the design of the review and interpretation of the
results. Despite its rigor, this review has several notable limitations.
For feasibility, we limited included records on PD and MS to those
published in 2016 or later. Thus, findings for these two diseases
should be interpreted as trends in the literature, rather than an
exhaustive tabulation of existing evidence. However, methods
remained systematic and data saturation was generally observed.
Inconsistent reporting necessitated the use of a relationship’s
statistical significance, rather than its effect size, in our maps and
analyses. Therefore, trends should be interpreted as the repeat-
ability, rather than strength, of observed relationships. Additional
systematic reviews and meta-analyses are needed to estimate the
strength of key relationships and assess the quality of existing
evidence. Despite the breadth of mobility symptoms and disease
trajectories covered in the four included medical conditions, the

Fig. 5 Responsiveness of DMOs used as primary or secondary endpoints in all eligible interventional studies. PD Parkinson’s disease, MS
multiple sclerosis, COPD chronic obstructive pulmonary disease, PFF proximal femoral fracture. Data are presented as: Number of studies with
statistically significant differences between groups/Total studies (%). Interventions in eligible studies were not necessarily effective, and this
map may underestimate the responsiveness of DMOs. DMOs known to be highly intercorrelated were grouped (i.e., step length and stride
length), and all DMOs were organized according to previously established domains of gait. *Proportion of studies exceeds the expected false
positive rate as determined by Bernoulli hypothesis testing and Benjamini–Hochberg adjustment.
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relationships observed here may differ in other conditions, or even
within specific subpopulations of the included conditions.
Although many DMOs were included, evidence is emerging for
other DMOs such as sample entropy, Lyapunov exponents and
detrended fluctuation analysis, which are of special interest in real-
world assessments126–131. As these measures mature, this review
should be updated and expanded to include additional DMOs.
Finally, we present our results at a high level and many interesting
subanalyses were not conducted. We hope that this work will
inspire and enable a deeper investigation into the topics
discussed here.

Conclusions

Existing evidence supports cross-disciplinary validation efforts for
gait speed, step and stride length, cadence, and step count, but is
inconsistent or lacking for other DMOs. The relationships exhibited
by these DMOs were similar across conditions, signaling potential
opportunities for cross-disciplinary collaboration. Future work
should include further epidemiological studies, systematic
reviews, and meta-analyses to confirm and quantify the relation-
ships observed in this scoping review.

METHODS

Review methodology

We followed the scoping review framework developed by Arksey
and O’Malley and advanced by Levac et al.106,107. This framework
consists of six stages: (1) identifying the research question, (2)
identifying relevant studies, (3) selecting studies, (4) charting the
data, (5) collating, summarizing, and reporting results, and (6)
consulting with relevant stakeholders. Study conduct and report-
ing adhered to the PRISMA-ScR (PRISMA Extension for Scoping
Reviews) guidelines for scoping reviews132. A detailed review

protocol was designed and published a priori133, and is
summarized here.

Identifying relevant studies

Search strategies were iteratively developed and tested in
exchange with a research librarian and subject matter experts.
In November 2019, the librarian searched 11 databases for
scientific and gray literature (MEDLINE, EMBASE, CINAHL,
Cochrane Library, Scopus, Web of Science, IEEE Xplore, ACM
Digital Library, ProQuest Dissertations, OpenGrey, National Infor-
mation Center’s Projects in Progress Database). Final searches with
structure (mobility terms) AND (population terms) identified all
English-language abstracts published between January 1999 and
November 2019. Similar searches in Google Scholar and manual
collation of references supplemented this corpus. The search
strategy for MEDLINE is provided in Supplementary Table 1 and all
search strategies are provided on the project repository46.

Selecting studies and charting the data

All relevant definitions, eligibility criteria, reference sheets, and
data extraction forms are provided in Supplementary Note 1,
Supplementary Table 2, or the project protocol133. To be eligible, a
record must have reported an original analysis that addressed at
least one of our research questions with respect to an included
DMO in an included population. For the sake of feasibility, we
prespecified a list of included DMOs (Supplementary Table 3),
limited assessments of construct validity and predictive validity to
predefined lists of validated measures, and set a lower limit of ten
patients per analysis (or study arm, in the case of interventional
trials). We did not otherwise exclude based on methodology.
Predefined lists were developed by internal panels of clinical,
technical, and research experts. Texts published in any language
spoken within our research group (English, German, Spanish,

Fig. 6 Responsiveness of DMOs used as primary or secondary endpoints when a studied intervention was effective. PD Parkinson’s
disease, MS multiple Sclerosis, COPD chronic obstructive pulmonary disease, PFF proximal femoral fracture. Data are presented as: Number of
studies with statistically significant differences between groups/Total studies (%). This map may overestimate the responsiveness of DMOs,
which were occasionally used as sole primary outcomes (i.e., gait speed and step count), since negative results could be due either to the
DMO’s responsiveness or to the intervention’s efficacy. DMOs known to be highly intercorrelated were grouped (i.e., step length and stride
length), and all DMOs were organized according to previously established domains of gait. *Proportion of studies exceeds the expected false-
positive rate as determined by Bernoulli hypothesis testing and Benjamini–Hochberg adjustment.
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French, Italian, Portuguese, Danish, Norwegian, Swedish, Hebrew,
Dutch, Catalan, Russian) were eligible.
We assessed eligibility through abstract and full-text screening.

All reviewers were trained, piloted study materials, and completed

consistency checks before each screening phase. Records were

included in full-text screening if a single reviewer deemed an
abstract eligible, while rejection by two reviewers was required to
exclude. Full-text screening was conducted by those with relevant
clinical and technical expertise. One reviewer screened each full-

text and, if eligible, extracted data. One of three senior reviewers
(A.P., N.C., and H.G.) then checked each review for accuracy.
Disagreements were resolved through discussion or, when
necessary, a third review. Records stemming from the same study

were identified through keyword and author searches and
confirmed via manual review. These records were linked and
duplicate analyses were removed. The net agreement was

assessed via Fleiss’ κ134 and individual agreement between each
reviewer and the primary reviewer (A.P.) was monitored via
Cohen’s κ

135. Record screening and data management were
conducted in DistillerSR (Evidence Partners, Ottawa, Canada).
Scoping reviews map broad, previously uncharted bodies of

literature; thus, Arksey and O’Malley’s framework allows for the

reflexive adaptation of eligibility criteria to ensure scope remains
manageable106. We made three such adaptations according to a
predefined process. First, we added a second, condition-specific

abstract screening phase because limited disease-area knowledge
led to the overinclusion of ineligible records. Exclusion during this
phase was restricted to criteria associated with disease-specific
knowledge. Due to the volume of relevant literature, we limited

full-text review in PD and MS to literature published during or
after 2016. Therefore, maps of PD and MS must be interpreted as
trends in recent research, rather than an exhaustive tabulation of
evidence. These maps were monitored for data saturation, defined

as “the point in the research process when no new information is
discovered in data analysis… [and the] researcher can be
reasonably assured that further data collection would yield similar

results.”136 Maps of COPD and PFF remained exhaustive. Finally,
we shifted from a parallel full-text review paradigm, in which all
records are reviewed independently in duplicate, to the review/
quality-control paradigm described above. All changes were made

between the abstract and full-text review stages, approved by the
study team, and applied to all records.

Fig. 7 Ecological validity of DMOs in Parkinson’s disease: DMOs collected in clinical vs real-world environments. Data are presented as:
Number of studies with statistically significant associations between DMOs and measures of lower-extremity function/Total studies (%). DMOs
known to be highly intercorrelated were grouped (i.e., step length and stride length), and all DMOs were organized according to previously
established domains of gait. *Proportion of studies exceeds the expected false-positive rate as determined by Bernoulli hypothesis testing and
Benjamini–Hochberg adjustment.

Table 2. Qualitative appraisal of existing evidence.

Gait domain Digital mobility outcome PD MS COPD PFF

Pace Gait speed ++ ++ ++ ++

Step/stride length ++ + + ?

Rhythm Cadence ++ ++ + ?

Step/stride time + + ? ?

Phase Stance time ++ + ? ?

Swing time + + ? ?

Single support time + + ? ?

Double support time + + ? ?

Base of support Step width − + ? ?

Step width variability − − ? ?

Variability Step/stride speed variability + ? ? ?

Step/stride length variability ++ + ? ?

Step/stride time variability + + ? ?

Stance time variability + ? ? ?

Swing time variability + + ? ?

Single support time
variability

? + ? ?

Double support time
variability

? − ? ?

Asymmetry All asymmetry measures ++ + ? ?

Volume Daily step count + + ++ ?

Daily walking time + ? + ?

Number of walking bouts − ? ? ?

Walking bout length ? + ? ?

PD Parkinson’s disease, MS multiple sclerosis, COPD chronic obstructive

pulmonary disease, PFF proximal femoral fracture.
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Collating, summarizing, and reporting results

We systematically mapped the results of eligible records through
frequency analysis, which was stratified by medical condition and
DMO. Each map reflects the volume and outcome of existing
evidence on a specific association, relationship, or characteristic of
DMOs, as described in Table 3. For our purposes, “volume” of
evidence refers to the number of unique analyses reported in the
corpus, and “outcome” refers to the proportion of these analyses
which yielded statistically significant results according to the
authors’ original analyses. It is important to note that this
approach describes an association’s repeatability, rather than its
strength. The latter would be more appropriately described by
measures of effect size, but because effect sizes were not
consistently reported or interpreted in included studies, they
were not feasible to map. This issue should be the focus of future
systematic reviews and meta-analyses.
For ease of interpretation, DMOs were organized into the

previously established domains Pace, Rhythm, Phase, Base of
Support, Variability, and Symmetry137–141. DMOs within each of
these domains are known to exhibit similar characteristics and are
highly inter-correlated. Step count, walking time, walking bout
length, or duration were categorized as “Volume of Walking.”
Operational definitions of these domains and their associated
DMOs are provided in Supplementary Table 3.

Assessing risk of bias

Critical appraisal of individual studies is not required for scoping
reviews132, and was not conducted here. However, given the
heterogeneity of included records, it was necessary to identify
sources of bias and assess sensitivity to study design before we
could confidently interpret our maps.
Because our data were comprised of statistical tests reported by

the authors themselves, it was important to consider the potential
influence of statistical heterogeneity, multiple testing, and false
positives. Inclusion of underpowered analyses or those unadjusted
for multiple testing could inflate the observed repeatability of
mapped relationships. It was, therefore, necessary to confirm
whether observed proportions exceeded type 1 error rates (i.e.,
false positives) expected under conservative conventional
assumptions. Observed distributions were subjected to single-
population Bernoulli hypothesis tests with a mean of zero and an
expected false-positive rate of 5% (assuming the conventional α
= 0.05). These hypothesis tests were then adjusted for multiple
testing through a Benjamini–Hochberg procedure142. When the
proportion of studies reporting statistically significant results
exceeded expected false-positive rates, this was indicated on the
maps. The proportions themselves were not adjusted and should

be interpreted with the potential impact of statistical hetero-

geneity in mind.
We also assessed clinically plausible sources of bias and effect

modification in the entire corpus through manual inspection and
random-effects meta-regression97,143,144. Potential effect modifiers
included the speed and length of walking bouts, statistical analysis
methods, and the size, median age, and disease severity of study

populations. Supplementary methods and variable definitions are
provided in Supplementary Note 3 and Supplementary Table 4.
Associations between study outcomes and potential effect
modifiers were modeled on the entire corpus through univariate

logistic regression assuming random-effects per study. Models
were subsequently adjusted for medical condition, research
question, and DMO domain and significance tests were adjusted

through a Benjamini–Hochberg procedure142. In a sensitivity
analysis, unreported study characteristics were treated as missing
and multiple imputed using the method of chained equations and
assuming the missing-at-random hypothesis97,145. Data analysis

was conducted in R (version 3.6.1)146.

Qualitative appraisal of the evidence

We defined a systematic qualitative appraisal protocol to
synthesize and interpret our maps. For each medical condition,
we compiled and appraised evidence related to DMOs’ known-
groups validity, convergent validity, predictive validity, respon-

siveness, and ecological validity. Each DMO’s overall rating in each
condition describes its potential for further validation as a clinical
endpoint according to current evidence. The appraisal protocol is
provided in Supplementary Tables 5 and 6.

Consulting with relevant stakeholders

Levac et al. recommend that research teams involve stakeholders

throughout the review process, as stakeholders can provide
nuanced insights beyond those reported in the literature107. We
regularly discussed review design and data interpretation with

clinical, technical, epidemiological, regulatory, academic, and
industry subject matter experts. Patients were not directly
involved in this review. However, we plan to use these results in
future priority-setting exercises with patient representatives.

DATA AVAILABILITY

The datasets generated during and/or analyzed during the current study are available

in the OSF project repository (https://osf.io/k7395).

Table 3. Psychometric properties mapped in this review.

Property Maps generated in this review

Known-groups validity Number and proportion of analyses per DMO and medical condition, which found a statistically significant
difference
(1) between pathological and healthy gait, or (2) between disease severity strata

Convergent validity Number and proportion of analyses per DMO and medical condition, which found a statistically significant, cross-
sectional association between a DMO and validated measures of relevant constructs (e.g., disease severity, physical
function, health-related quality of life, etc.)

Predictive validity Number and proportion of analyses per DMO and medical condition, which found a statistically significant
association between a DMO measured at baseline and a clinically relevant outcome at follow-up (i.e., mortality,
physical function, healthcare utilization, etc.)

Responsiveness to intervention Number and proportion of analyses per DMO and medical condition, which found a significant difference between
experimental and control groups in an interventional study

Ecological validity DMOs measured in clinical and real-world settings were mapped separately and trends were compared qualitatively
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