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Influence of background preprocessing on the performance of deep
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Abstract.

Purpose: Segmentation of the vessel tree from retinal fundus images can be used to track changes in the retina,

and be an important first step in a diagnosis. Manual segmentation is a time consuming process that is prone to error;

effective and reliable automation can alleviate these problems but one of the difficulties is uneven image background

which may affect segmentation performance.

Approach: We present a patch-based deep learning framework, based on a modified U-Net architecture, that

automatically segments the retinal blood vessels from fundus images. In particular, we evaluate how various pre-

processing techniques: images with either no processing, N4 bias field correction, contrast limited adaptive histogram

equalization (CLAHE), or a combination of N4 and CLAHE, can compensate for uneven image background and

impact final segmentation performance.

Results: We achieved competitive results on three publicly available datasets as a benchmark for our comparisons

of pre-processing techniques. In addition, we introduce Bayesian statistical testing which indicates little practical

difference (Pr > 0.99) between pre-processing methods apart from the sensitivity metric. In terms of sensitivity and

pre-processing, the combination of N4 correction and CLAHE performs better in comparison to unprocessed and N4

pre-processing (Pr > 0.87) but compared to CLAHE alone, the differences are not significant (Pr ≈ 0.38− 0.88).

Conclusions: We conclude that deep learning is an effective method for retinal vessel segmentation and that

CLAHE pre-processing has the greatest positive impact on segmentation performance, with N4 correction helping

only in images with extremely inhomogeneous background illumination.

Keywords: retinal vessel segmentation, deep learning, U-Net, fundus imaging, Bayesian hypothesis testing, image

background correction.

*Peter Rockett, p.rockett@sheffield.ac.uk

1 Introduction

Retinal diseases are a major public health concern in both the aged and working populations. For

example, diabetic retinopathy (DR) is one of the leading causes of blindness in an aging population.

There are an estimated 93 million people with DR worldwide, a number which is only expected

to rise1, 2. Non-invasive visual inspection can provide valuable insight into the condition of an

eye. The structure of retinal blood vessels is an important indicator of disease, and observing and

measuring changes in vessel morphology, such as branching patterns and vessel width, can result

in accurate early detection of retinal diseases3. The assessment of retinal blood vessels may reveal

conditions such as hypertension, diabetic retinopathy, stroke, atherosclerosis, and cardiovascular

disease4.

Screening programs of at-risk groups can provide a mechanism for early detection, and thus

prevent blindness, but as programs become more extensive, analysis of large volumes of data is
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becoming an increasingly challenging task for clinicians5. Segmentation of retinal blood vessels

can also be useful for several other reasons including longitudinal monitoring for diagnosis and

disease progression, computer-assisted laser surgery, and biometric identification4, 6.

The manual segmentation of vessels is time-consuming, expensive, and prone to inter- and

intra-rater variability. Automating vessel segmentation can dramatically increase the throughput

and efficiency of screening processes, as opposed to lengthy and tedious manual labeling. Automa-

tion can also increase reproducibility. and decrease subjectivity. Some sort of human intervention

is still usually required when it comes to decision making on the clinical pathway; however, as

technology develops and our confidence in the technology grows, automation will undoubtedly

play a huge role in the new era of technology-driven precision medicine7–9.

Over the past 20 years, a large amount of research and published work has been devoted to the

automated segmentation of retinal blood vessels. In general, methods may be considered unsuper-

vised or supervised. Unsupervised methods utilize prior knowledge of vessel structure and often

rely on rule-based schemes. These algorithms revolve around morphological processing, vessel

tracking, filter matching, multi-scale, or model-based approaches. Supervised methods, on the

other hand, utilize labeled ground truth data to train a classifier model, and optimization during

the training stage is used to infer a functional mapping between input and output data. The trained

model is then used to predict outputs for unseen data in a testing stage. A comprehensive review

of segmentation methods is beyond the scope of this paper although reviews of previous work can

be found in10 and.11

Deep learning has recently emerged as a promising approach for automated retinal vessel seg-

mentation12 where deep learning refers to neural networks with many layers that are capable of

automatically extracting features13. An advantage of deep learning, compared to classical machine

learning, is its self-organizing capability. Classical machine learning algorithms require carefully

extracted, hand-crafted features, which is a time consuming and complex process that requires do-

main expertise. Deep learning methods, on the other hand, can automatically learn features from

raw input data. This has led to a paradigm shift in which researchers are now focused on optimizing

network architectures and training processes, as opposed to hand-crafting features. Recently, deep

learning methods have been utilized within the medical imaging community to address a variety

of problems across many different applications and imaging modalities14.

Deep learning methods, and more conventional methods, are commonly proposed in conjunc-

tion with some form of pre-processing. Researchers have found that pre-processing the images

beforehand often gives improved results, however, there is often little justification for why certain

methods are chosen, and no consensus on what methods work best. In this paper, we investigate

the impact of various pre-processing techniques previously published in the literature on the per-

formance of a deep learning based retinal vessel segmentation method. We evaluate methods in a

systematic and statistically robust way in addition to highlighting some limitations currently found

in the literature, and suggest future improvements.

1.1 Previous Work

1.1.1 Deep Learning Methods for Retinal Vessel Segmentation

Many state-of-the-art deep learning based segmentation methods employ convolutional neural net-

works (CNNs). CNNs were introduced by LeCun,15 but have recently gained wider recognition

after the seminal paper of Krizhevsky et al.16 since they can automatically learn representations
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of image data with increasingly complex levels of extraction via convolutional layers. Convolu-

tional layers drastically reduce the number of weights to be learned when compared to traditional,

fully-connected neural networks due to weights being shared among convolutional layers.

Liskowski and Krawiec17 were one of the first to publish work detailing a deep learning ap-

proach to retinal vessel segmentation. These authors randomly extracted 20,000 patches from each

image in a training set; only patches inside the field of view (FOV) were considered. The decision

on the class of a particular pixel was based on an m×m patch centered at that pixel. Several basic

architectures were studied; a stack of three fully-connected layers preceding some combination of

convolutional layers were used in all. Data augmentation was applied to images throughout the

training process in the form of scaling, rotation, flipping, and gamma correction. These authors

also explored the notion of ‘structure prediction’ whereby the model classifies multiple pixels

within the center of a patch rather than just a single pixel. The learning of spatial relationships

between neighboring pixels allowed the network to better reconstruct the boundaries of vessels.

U-Net, introduced by Ronneberger et al.18, is a deep convolutional neural network geared to-

wards biomedical image segmentation that has been successfully applied to various tasks14. U-Net

is a development of the fully-convolutional network architecture19 with no fully-connected lay-

ers present in the network, which allows for unrestricted input image sizes and a reduction of

computational cost. A contracting, encoding path is followed by an expanding, decoding path.

Shallow layers in the network capture local information while deeper layers (whose retrospective

field is much larger) capture global information. The expanding decoder recovers a full resolution

pixel-to-pixel label map. Skip connections, that bypass layers, enable features to be concatenated

between the encoder and decoder avoiding bottlenecks in the network, and improving generaliza-

tion20.

For retinal vessel segmentation, Oliveira et al.21 used the stationary wavelet transform (SWT)

combined with a U-Net-inspired fully convolutional neural network. Patches were randomly ex-

tracted from the green channel and images transformed with the SWT. Data augmentation was

applied in the form of random flipping. The authors suggest using the SWT provides the net-

work with extra information, which in turn can generate more useful features and lead to better

segmentation performance.

Yan et al.22 utilized a U-Net like model in combination with both pixel-wise and segment-level

loss—previous deep learning methods had only used pixel-wise loss. These authors suggested

using this novel loss function can balance the importance of thick and thin vessels during training

leading to more effective features being learned. Green channel patches of 128× 128 pixels were

extracted from images in the training set and data augmentation applied in the form of: flipping,

rotation, resizing, and adding random noise.

Cherukuri et al.23 exploited knowledge about the structure of vessels by embedding two geo-

metrical priors into the loss function that was used to jointly train two networks: a representation

layer and a residual task network. These two priors had the effect of: i) encouraging diversity in

vessel orientation, and ii) adaptively penalizing noise to suppress false positives. The authors claim

this leads to better labeling of thin vessels as well as a less heavily parametrized network.

The very active area of machine learning for retinal vessel segmentation has recently been

reviewed by Mookiah et al.24 who also discussed wider issues of performance assessment and

comparison. Li et al.25 have comprehensively reviewed specifically deep learning approaches to

fundus image analysis. Readers are referred to these two review papers for a more in-depth survey

of state-of-the-art work.
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1.1.2 Pre-processing Methods for Retinal Images

It is widely accepted that some form of pre-processing can improve the performance of automated

segmentation methods. A quantified justification for the use of these methods, however, is often

lacking. Pre-processing of retinal images has two general goals: correcting intensity inhomogene-

ity, and vessel enhancement. It is common for any pre-processing steps to be preceded by green

channel extraction since this exhibits better contrast between vessels and the background which

is thought to give better overall segmentation performance. A number of different pre-processing

methods can be found in the vessel segmentation literature.

Contrast limited adaptive histogram equalization (CLAHE) is a common pre-processing step

for both supervised and unsupervised methods for vessel enhancement26. CLAHE is claimed to

allow the enhancement of local contrast while not amplifying noise in homogeneous regions of the

image27. CLAHE operates in small regions of the image called tiles where each tile is enhanced by

roughly matching the histogram of the output region to a specified histogram distribution (uniform

in this case). Neighboring tiles are then combined using bilinear interpolation. The contrast can be

limited in regions to avoid the amplification of noise.

Liskowski and Krawiec17 processed each patch by global contrast normalization (GCN) that

was claimed to help the learning process abstract from fluctuations in brightness between patches

(i.e. intensity inhomogeneity correction). GCN involves subtracting the mean pixel intensity from

each pixel’s intensity and dividing by the standard deviation of pixel intensities. This was followed

by zero-phase component analysis (ZCA) whitening. ZCA aims to remove any universal correla-

tions between neighboring pixels within the image patch thus allowing the network to concentrate

on higher-order correlations.

In terms of intensity inhomogeneity correction, both luminosity and contrast normalization are

recognized to improve the performance of automated analysis techniques28. Kaba et al.29 attempted

to remove intensity inhomogeneity by applying the N4 bias field correction algorithm30 to green

channel images. N4 correction is primarily used in magnetic resonance imaging (MRI) to deal with

uneven illumination caused by the placement of receiver coils, and although relatively unexplored

in the field of retinal image analysis, appears well-suited to the task. The algorithm uses a multi-

scale optimization approach to compute a bias field, which is then subtracted from the original

image.

1.1.3 Summary of Previously Published Results

The performance metrics commonly found in the literature to evaluate automated vessel segmen-

tation methods are: sensitivity (Se), specificity (Sp), accuracy (Acc), and area under the receiver

operating characteristic (ROC) curve (AUC)31; the first three measures are defined in (1).

Se =
TP

TP + FN

Sp =
TN

TN + FP

Acc =
TP + TN

TP + TN + FP + FN
(1)

4



where TP = numbers of true positives, TN = numbers of true negatives, FP = numbers of false

positive, and FN = numbers of false negative. The perfect classifier has a value of unity for each of

these metrics. The comparative values for leading existing methods in each class are summarized

in Table 1 (although it should be noted that accuracy has some limitations as a performance metric

due to its dependence on prevalence).

From reviewing the literature, it is evident that deep learning approaches have outperformed

conventional methods in recent years (with supervised methods generally outperforming unsuper-

vised methods). Higher accuracy and sensitivity (true positive rate) scores from deep learning

based methods suggest they are better at labeling vessels within the retinal image than conven-

tional methods. The higher AUC scores also suggest deep learning models have a greater degree

of confidence when deciding which pixels are vessels and which pixels are background due to the

implied lower false positive rate.

In terms of validating results, a further limitation of methods presented in the literature is the

lack of k-fold validation. The convention in the retinal segmentation field has largely been to quote

a single performance measure over fixed, prescribed test images, compare this with previously-

published values of the same metrics, and claim superiority if those metrics are bettered. Ul-

timately, the algorithms are being assessed on sampled, noisy data, and so the question arises

whether the reported differences are due to chance or due to genuine superiority of a proposed

method24. This is especially evident when papers are evaluating methods on the commonly-used

DRIVE retinal dataset24. Authors may be wary of carrying out cross-validation as it could lead

to lower performance measures and make their work seem inferior to previously published re-

sults. The reporting of single performance measures does, however, carry the danger of methods

becoming over-optimized to specific pathologies contained in the pre-defined train/test split – in

fact, producing a more trustworthy performance measure is the very motivation for cross valida-

tion in the first place. Maier-Hein et al.32 discuss such issues in connection with the instabilities of

ranking in biomedical image analysis competitions.

1.1.4 Research Issues

We are yet to see deep learning methods explore more sophisticated approaches for removing

uneven background illumination. In particular, there is scope to evaluate the effectiveness of lu-

minosity and contrast normalization techniques as pre-processing steps for deep-learning-based

automated segmentation methods. Consequently, in this paper we systematically investigate the

impact of a number of image pre-processing techniques and their combinations on the overall per-

formance of deep learning based retinal vessel segmentation. Starting with the green channel of

the respective color images since this exhibits the greatest vessel/background contrast, we have

considered four different pre-processing approaches that have previously been applied in the liter-

ature, but use of these methods have not been quantitatively justified in the papers that introduced

them.

We have evaluated each of the approaches using the three publicly available retinal image

datasets in Section 2. Due to the aforementioned issues with limited cross-validation in the liter-

ature, as well as using the pre-defined, popular train/test splits for the datasets, we have extended

our assessment to a cross-validation approach in an effort to get a more representative measure of

generalization. A subsidiary question—that we can only partially address here—is whether the

prescribed and widely-used training/testing splits in datasets have unduly influenced progress in
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Table 1 Notable segmentation results published in the literature for different conventional supervised methods, deep learning based methods, and unsupervised

methods.

Method
DRIVE STARE CHASE DB1

Se Sp Acc AUC Se Sp Acc AUC Se Sp Acc AUC

2nd Human Observer 0.7760 0.9724 0.9472 – 0.8952 0.9384 0.9349 – 0.8105 0.9711 0.9545 –

Supervised methods: Conventional

Soares et al.33 0.7332 0.9782 0.9466 0.9614 0.7207 0.9747 0.9480 0.9671 – – – –

Fraz et al.11 0.7406 0.9807 0.9480 0.9747 0.7548 0.9763 0.9534 0.9768 0.7224 0.9711 0.9469 0.9712

Kaba et al.29 0.7466 – 0.9410 – 0.7619 – 0.9456 – – – – –

Roychowdhury et al.34 0.7250 0.9830 0.9520 0.9620 0.7720 0.9730 0.9510 0.9690 0.7201 0.9824 0.9530 0.9532

Supervised methods: Deep learning

Liskowski & Krawiec et al.17 0.8149 0.9749 0.9535 0.9790 0.7867 0.9754 0.9566 0.9785 – – – –

Oliveira et al.21 0.8039 0.9803 0.9576 0.9821 0.8315 0.9858 0.9694 0.9905 0.7779 0.9864 0.9653 0.9855

Yan et al.22 0.7653 0.9818 0.9542 0.9752 0.7581 0.9846 0.9612 0.9801 0.7633 0.9809 0.9610 0.9781

Cherukuri et al.23 0.8425 0.9849 0.9723 0.9870 0.8664 0.9895 0.9803 0.9935 0.8017 0.9908 0.9788 0.9864

Unsupervised methods

Azzopardi et al.26 0.7655 0.9704 0.9442 0.9614 0.7716 0.9701 0.9497 0.9563 0.7585 0.9587 0.9387 0.9487

Zhang et al.35 0.7473 0.9764 0.9474 0.9517 0.7676 0.9764 0.9546 0.9614 0.7562 0.9675 0.9457 0.9565

6



the area together with investigators’ desire to report ever ‘better’ performance metrics? Similar

concerns have existed in the mainstream machine learning literature over the near-universal use of

common benchmark test datasets36.

Further, the performance metrics typically employed are all upper-bounded by unity, and these

have improved to the point where for many, this limit is being approached quite closely. In this

situation any reported improvements are likely to be small and, despite being numerically favor-

able, the performance difference may well so minor as to be of no practical importance. Hence the

‘effect size’—a measure of difference that is of practical importance—is a key adjunct to statistical

testing37; it is entirely possible for a performance difference to be significant in a statistical test but

to be so small to be of no practical value. See also Mookiah et al.24. Traditionally, null hypothesis

statistical testing (NHST)38 has been employed to gauge statistical significance between compet-

ing methods although over the years NHST has been the subject of much criticism. In addition,

NHST procedures do not readily lend themselves to assessing effect sizes. Consequently, in this

work we have employed the Bayesian testing procedures proposed of Benavoli et al.39 that directly

incorporate an assessment of effect size. A Bayesian method is advantageous since it directly es-

timates the quantity of interest—the probability of difference between two methods conditioned

on the data—as opposed to NHST which estimates the probability of observing the data given the

presumption of no difference (a null hypothesis).

Considering two methods A and B, and some performance measure S, we can compare the dif-

ferences ∆ = SA − SB. The Bayesian signed rank test39 defines a region of practical equivalence

(ROPE) for which a difference in performance |∆| is so small as to be of no real significance; we

have used the ROPE of ±1% (i.e. ∆ ∈ [−0.01 . . . + 0.01]), for all performance metrics, as sug-

gested by39 since this appears reasonable although this embodies some element of judgment. The

probability that method A is worse than B (i.e. SA < SB overall) can be estimated by integrating

the posterior probability density function (PPDF) of ∆ between −∞ and −0.01. Similarly, the

probability that A is better than B is obtained by integrating the PPDF of ∆ between +0.01 and

+∞. See Benavoli et al.39 for further details and discussion.

In this work we have made multiple comparisons between different treatments, a subject that

has attracted much attention in the frequentist statistics literature—see, for example, Midway et

al.40. The basis of a conventional NHST is to make a decision to reject or not-reject a null hypothe-

sis based on a chosen significance level, usually denoted as α, which is the long-term probability of

erroneously rejecting the null hypothesis, a so-called type I error. Making multiple such pairwise

comparisons inflates the probability of type I error over the family of tests, and in order to control

this, it is usual to employ a modification to α, such as the Bonferroni correction41. The Bayesian

hypothesis testing procedure, on the other hand, estimates the parameters of the posterior distribu-

tion of interest42 rather than making a binary decision about a null hypothesis. Consequently, there

is no concept of type I error in a Bayesian test, and thus no notion of having to control type I error

over multiple tests. The outcome of the test is a series of three probability values, one for each

outcome: SA < SB, SA ≈ SB, and SA > SB. The investigator is then able to directly interpret

these probability values. Again, see Benavoli et al.39 for a more detailed discussion.

In the remainder of the paper, we describe our methods in Section 3, and the results obtained

in Section 4; this section also contains extensive statistical comparisons. Section 5 analyses the

results, and offers some suggestions for future work. Section 7 concludes the paper.
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2 Data

Here, we focus exclusively on fundus images of the rear of the eye. There are several publicly

available datasets for analyzing fundus images that are commonly used to evaluate the perfor-

mance of retinal vessel segmentation methods: DRIVE43, STARE44, and CHASE DB145. DRIVE

consists of 40 images, each with a resolution of 565 × 584 pixels. Twenty training images and

twenty testing images are predefined in the dataset; methods in the literature typically use these

partitions when evaluating methods. STARE consists of 20 images with a resolution of 700 × 605

pixels; leave-one-out cross validation is typically used for performance evaluation. CHASE DB1

comprises 28 images with a resolution of 999 × 960 pixels (14 pairs of images captured from dif-

ferent children); the first 20 images are often taken as the training set, with the remaining 8 being

used for testing.

Manual vessel segmentations are provided by two experts for each dataset. The accepted ‘gold

standard’ is to take the first expert’s labeling as the ground truth, and human level performance

is often claimed when an automated method achieves segmentation results similar to those of the

second human observer. These datasets are well studied and have been used as a benchmark to

assess automated vessel segmentation methods in most retinal vessel segmentation papers over the

past decade.

3 Method

Having taken inspiration from the literature, we implemented a fully convolutional neural network

as the basis for our segmentation method. Further details about the architecture can be found

in Section 3.2. Before training networks, images were processed using one of four methods, as

described in Section 3.1. Images were split into training and testing sets either by adopting the

commonly-used train/test splits or in such a way to enable 5-fold cross validation with disjoint

training and testing sets. Patches were then randomly extracted from images in the training set

followed by model training (Section 3.3). The performance measures of: Se, Sp, Acc and AUC—

see (1)—were estimated, and, where appropriate, subjected to Bayesian signed rank tests39.

3.1 Pre-processing and Patch Extraction

Images from each dataset were processed in one of four different ways:

1. Unprocessed green channel—the ‘baseline’

2. N4 bias field correction

3. CLAHE processing

4. N4 bias field correction followed by CLAHE

The first method simply extracted the green channel from color RGB retinal images; each of

the other pre-processing methods were applied only to green channel images. We used the ITK

implementation of the N4 correction algorithm (https://itk.org/) with 5 scales and a max-

imum of 25 iterations per resolution level. We found these parameters to perform well at removing

uneven background intensity without smoothing the image too much and removing all contrast.

Our implementation of CLAHE was taken from the CV2 library (https://opencv.org/).
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We used a tile size of 8 × 8 (the default size in CV2), and set the threshold for contrast limiting at

1.5 (slightly lower than CV2’s default limit of 2) after a systematic search of the parameter space

as, from visual inspection, this seemed to result in marginally less noise in the processed image.

After pre-processing, image intensity values were normalized between [0 . . . 1] for inputting to

the convolutional neural network (CNN). Examples of the application of each method can be seen

in Figures 1 and 2. The unprocessed green channel image can be seen in the first column, followed

by N4 correction, CLAHE, and N4 + CLAHE, respectively.

Fig 1 An example of pre-processing methods for an image with typical inhomogeneous background illumination from

the DRIVE dataset. (a) Unprocessed image. (b) N4 bias field correction. (c) CLAHE. (d) N4 + CLAHE.

Fig 2 An example of pre-processing methods for an image with more noticeably inhomogeneous background illumi-

nation from the CHASE DB1 dataset. (a) Unprocessed image. (b) N4 bias field correction. (c) CLAHE. (d) N4 +

CLAHE.

After all pre-processing, 3,000 patches were randomly extracted from each training set im-

age. Patches were composited into new images allowing a 3,000-fold expansion in the size of the

training set, this dataset augmentation producing much larger training datasets with increased vari-

ability. For example, for the DRIVE dataset this increased the original 20 images to 20 × 3,000

= 60,000 training images. As suggested in Yan et al.22, we used a patch size of 128 × 128 pixels.

Patches were extracted from within and outside the image’s FOV. For each method, patches were

extracted from the same random set of locations in each of the four processed images to eliminate

a source of possible variability. This allows for a more direct comparison between pre-processing

methods.

3.2 Network Architecture

The network architecture used in this work is shown in Figure 3. Our design is based on U-Net, but

some modifications were made. Firstly, the depth of the network was reduced by removing max
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pooling and convolutional layers. We used much smaller input images than in the original paper,

thus there was no need for the original number of layers. Additional max pooling layers would

have further decreased the resolution of feature maps deeper in the network; very low resolution

feature maps are less likely to contribute a meaningful representation. We experimented with

increasing the depth of the network, and it had no effect on the segmentation performance. Our

implementation was also more computationally efficient due to a reduction of the total number of

weights. In addition to changing the depth, we doubled the number of convolutional layers prior

to max pooling, as suggested in Szegedy et al.46 Batch normalization (BN) was also incorporated

after the convolutional layers to improve performance and stability during training47.

Fig 3 Diagram of deep learning network architecture and key.

Rectified linear unit (ReLU) activation functions follow the BN layers. At present, ReLU

functions are widely considered to be the best non-linear function to use in deep neural networks

as their constant gradients allow for faster learning in networks with many layers.13 A sigmoidal

function was used at the output layer to map values between 0 and 1, and so approximate the

posterior probabilities of each pixel being a blood vessel.

3.3 Training

Before training, the weights in the network were randomly initialized with values drawn from a

uniform distribution in the range ±6 /
√
nj + nj+1, where nj is the number units in the j-th layer

of the network, since this initialization tends to approximately preserve the variance of the back-

propagated gradients and so improve learning48. The same pre-initialized network was used as

a starting point each time a new network was trained allowing for robust comparisons between

methods; trajectories of randomly initialized weights tend to explore markedly different modes in

function space.49 Data augmentation and random shuffling were performed on-the-fly to reduce

overfitting. Data augmentation included flips in the horizontal and vertical axes, and random 5-

degree rotations. We employed seeded randomness to ensure the order and orientation in which

patches were being fed into the network was identical for each pre-processing method. During

training, 10% of the training set was isolated for validation (the same group of patch locations

were used as the validation set for each pre-processing method). Each network was trained for 10

epochs with a batch size of 25, and a learning rate of 0.005. If the validation loss plateaued or

began to increase, the training process was automatically stopped.
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Adaptive moment estimation (ADAM)50 was used for gradient-based optimization with binary

cross-entropy (BCE) (2) as the loss function:

BCE =
−1

N

N∑

i=0

yi × log(ŷi) + (1− yi)× log(1− ŷi) (2)

where y is the label (1 for vessel and 0 for background), and ŷ is the estimated probability of

a pixel being a vessel, and N is the number of pixels in the segmentation map produced by the

network. The method was implemented using Keras (https://keras.io/) with Tensorflow

as the backend. The maximum amount of time a model took to train was around 4 hours when

using an Nvidia Titan RTX GPU. The inference time during testing was less than 2 seconds per

image.

3.4 Datasets and Testing

We evaluated our method using the three datasets: DRIVE, STARE, and CHASE DB1 described

in Section 2. To compare our method with those found in the literature, we initially used the

common train/test splits detailed above. We then performed 5-fold cross validation on the DRIVE

and CHASE DB1 datasets.

To evaluate our method, we used the four performance metrics commonly employed in the

retinal segmentation literature: Se, Sp, Acc, and AUC, as defined in (1). Only pixels within the

field of view (FOV) were considered. FOV masks are publicly available for the DRIVE dataset,

and we manually created binary FOV masks for STARE and CHASE DB1; simple thresholding

was used since the boundary between the retinas and background is obvious. Otsu’s method may,

however, be more appropriate given a larger dataset51.

During inference, each testing image was split into non-overlapping patches of 128 × 128

pixels. Zero-padding was used to ensure the image dimensions were integer multiples of the input

patch size. Output patches were combined after inference to construct a full resolution vessel prob-

ability map. Final binary segmentation maps were obtained by thresholding the probabilities at 0.5,

a threshold that selects the class label with the largest posterior probability under the assumption

of equal misclassification costs.

3.5 Statistical Testing

Due to shortcomings of NHST, we have used the Bayesian signed rank test proposed in39 to

compare results. We have used the Python implementations of this test available at http://

alessiobenavoli.com/research/bayesian-hypothesis-testing-in-machine-

learning/.

4 Results

4.1 Qualitative Results

To gain some insight into the characteristics and mislabeling modes of classifiers trained with

different image pre-processing methods, it is useful to qualitatively scrutinize representative prob-

ability and segmentation maps of images in testing sets. Figures 4 and 5 show typical images from

testing sets in the DRIVE and CHASE DB1 datasets, respectively.
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Fig 4 Automated segmentation example from the DRIVE dataset. The first row shows each pre-processing method:

unprocessed, N4, CLAHE, and N4 + CLAHE, respectively. The second row shows the probability map output for each

pre-processing method. The third row shows the final segmentation map (after thresholding) for each pre-processing

method.

After close study of Figure 4, a typical result from the DRIVE dataset, the following observa-

tions can be made:

• It appears that the network can distinguish between retina and background better after CLAHE

has been applied. Numerous false positives can be seen around the border region in the un-

processed images.

• The proposed method does a good job of distinguishing between vessels and other patholo-

gies present in the image. A combination of background correction and increased contrast

seems to help with this separation; this is particularly evident in the bottom left of the retina.

• The network struggles to find some of the smaller vessels in the image, irrespective of which

pre-processing method was used.

Additional observations can be made after studying Figure 5, a typical set of images from the

CHASE DB1 dataset:

12



Fig 5 Automated segmentation example from the CHASE DB1 dataset. The first row shows each pre-processing

method: unprocessed, N4, CLAHE, and N4 + CLAHE, respectively. The second row shows the probability map

output for each pre-processing method. The third row shows the final segmentation map (after thresholding) for each

pre-processing method.

• The network finds it difficult to locate vessels in darker areas of the image. More vessels

are detected in the top left corner of the retina after N4 bias field correction than in the

unprocessed image.

• CLAHE can help segment vessels within the optical disk.

• N4 bias field correction does not do a perfect job when faced with extremely uneven back-

ground illumination. It is difficult to find a balance of parameters that suit all images in the

dataset.

• The classifier again struggles to label the finer vessels in the image.

4.2 Quantitative Results

4.2.1 Prescribed Training/Testing Splits

Table 2 shows quantitative results for each pre-processing method using the commonly-adopted

training/testing splits for DRIVE, STARE, and CHASE DB1.
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4.2.2 Cross Validation Results

Table 3 shows results for each pre-processing method when using 5-fold cross-validation. Results

show better-than-human level performance for accuracy and specificity. A very slight change can

be seen between pre-processing methods on the DRIVE dataset; there is a maximum increase

in sensitivity of 1.8% between methods. The same can be seen for CHASE DB1, however, the

maximum increase in sensitivity is larger at 7.4%.

4.3 Statistical Comparisons

To conduct statistical comparisons of our results, we have used the Bayesian signed rank test de-

scribed in Section 3.5. Tables 4–6 show statistical comparisons between pre-processing methods

for each dataset when using the common train/test splits. Tables 7 and 8 show statistical com-

parisons between pre-processing after 5-fold cross validation; the commonly-used training/testing

arrangement for STARE is leave-one-out (i.e. N -fold cross validation) hence reference should also

be made to Table 5 for comparing the STARE cross-validation results.

The results in Tables 4 to 8 are a set of pairwise comparisons in which a classifier (with one

pre-processing method) shown on each row is compared with each of the other classifiers (with

different pre-processing methods) shown in the corresponding columns of that row. The outcome

of each pairwise comparison is a tuple of three numbers shown column-wise and representing, in

order, the posterior probabilities that:

• The median difference between the compared classifiers falls in the interval −0.01 to −∞
meaning that the row-classifier performs worse than the column-classifier with which it being

compared.

• The median difference between the compared classifiers falls in the region of practical equiv-

alence (ROPE) and that the effect size of any difference is of no/little practical significance.

• The median difference between the compared classifiers falls in the interval +0.01 to +∞
meaning that the row-classifier performs better than the column-classifier with which it is

being compared.

These three probabilities are presented in the following tables for each performance measure,

and for each pair of compared classifiers. To take an illustrative example from Table 4, the com-

parison between the sensitivities (Se) of the ‘Unprocessed’ (row) classifier, and the N4 classifier

(column 1), Pr(negative difference) = 0.0, Pr(in ROPE) = 0.0488, and Pr(positive difference) =
0.9512. Hence with 95.12% probability, we conclude that the classifier with N4 pre-processing

has a superior Se score to the classifier with no pre-processing. That Bayesian testing allows us

to make such a clear statement is in sharp contrast to NHST for which such a statement would be

an (all too common) misinterpretation; this added clarity is a notable advantage of the Bayesian

approach.

14



Table 2 Segmentation performance results for each pre-processing method for the DRIVE, STARE and CHASE DB1

datasets using the commonly-used, prescribed training/testing splits. Bold = best result

Dataset Method Se Sp Acc AUC

DRIVE

2nd Human Observer 0.7760 0.9724 0.9472 -

Unprocessed 0.6819 0.9902 0.9508 0.9677

N4 0.6659 0.9913 0.9497 0.9727

CLAHE 0.7563 0.9842 0.9550 0.9766

CLAHE + N4 0.7708 0.9826 0.9554 0.9766

STARE

2nd Human Observer 0.8952 0.9384 0.9349 -

Unprocessed 0.7498 0.9876 0.9634 0.9793

N4 0.7491 0.9880 0.9634 0.9796

CLAHE 0.7720 0.9858 0.9640 0.9802

N4 + CLAHE 0.7799 0.9853 0.9642 0.9811

CHASE DB1

2nd Human Observer 0.8105 0.9711 0.9545 -

Unprocessed 0.7396 0.9823 0.9572 0.9716

N4 0.7867 0.9785 0.9587 0.9758

CLAHE 0.7836 0.9801 0.9611 0.9774

N4 + CLAHE 0.7950 0.9771 0.9625 0.9814

Table 3 Cross validation segmentation performance results for each pre-processing method on DRIVE and

CHASE DB1; the corresponding leave-one-cross-validation results for STARE are shown in Table 2. Bold = best

result.

Dataset Method Se Sp Acc AUC

DRIVE

2nd Human Observer 0.7760 0.9724 0.9472 -

Unprocessed 0.6887 0.9877 0.9494 0.9703

N4 0.6844 0.9887 0.9497 0.9692

CLAHE 0.6975 0.9883 0.9508 0.9707

CLAHE + N4 0.7013 0.9876 0.9514 0.9711

CHASE DB1

2nd Human Observer 0.8105 0.9711 0.9545 -

Unprocessed 0.7157 0.9889 0.9623 0.9739

N4 0.7313 0.9887 0.9639 0.9811

CLAHE 0.7649 0.9874 0.9656 0.9798

CLAHE + N4 0.7688 0.9867 0.9657 0.9803
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Table 4 Bayesian signed rank test evaluation of results from the DRIVE dataset after using the given train/test split. Each pre-processing method is compared to

another in a paired fashion. The numbers in each cell (from the top, downwards) represent P (∆ ≤ 1%), P (−1% < ∆ < 1%), and P (∆ ≥ 1%), respectively.

N4 CLAHE N4 + CLAHE

Se Sp Acc AUC Se Sp Acc AUC Se Sp Acc AUC

Unprocessed

0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.1246 0.0 0.0 0.0 0.1304

0.0488 1.0 1.0 1.0 0.0 1.0 1.0 0.8754 1.0 1.0 1.0 0.8696

0. 9512 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

N4

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0001

0.0 1.0 1.0 1.0 1.0 0.9752 1.0 0.9999

0.0 0.0 0.0 0.0 0.0 0.0248 0.0 0.0

CLAHE

0.9851 0.0 0.0 0.0

0.0149 1.0 1.0 1.0

0.0 0.0 0.0 0.0

1
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Table 5 Bayesian signed rank test evaluation of results from the STARE dataset. Each pre-processing method is compared to another in a paired fashion. The

numbers in each cell (from the top, downwards) represent P (∆ ≤ 1%), P (−1% < ∆ < 1%), and P (∆ ≥ 1%), respectively.

N4 CLAHE N4 + CLAHE

Se Sp Acc AUC Se Sp Acc AUC Se Sp Acc AUC

0.4085 0.0 0.0 0.0 0.9927 0.0 0.0 0.0 0.9988 0.0 0.0 0.0

0.0958 1.0 1.0 1.0 0.0009 1.0 1.0 1.0 0.0012 1.0 1.0 1.0Unprocessed

0.4957 0.0 0.0 0.0 0.0064 0.0 0.0 0.0 0.0 0.0 0.0 0.0

N4 0.9921 0.0 0.0 0.0 0.9998 0.0 0.0 0.0

0.0079 1.0 1.0 1.0 0.0002 1.0 1.0 1.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.2039 0.0 0.0 0.0008

0.7783 1.0 1.0 0.9992CLAHE

0.0178 0.0 0.0 0.0

1
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Table 6 Bayesian signed rank test evaluation of results from the CHASE DB1 dataset after using the popular train/test split. Each pre-processing method is

compared to another in a paired fashion. The numbers in each cell (from the top, downwards) represent P (∆ ≤ 1%), P (−1% < ∆ < 1%), and P (∆ ≥ 1%),

respectively.

N4 CLAHE N4 + CLAHE

Se Sp Acc AUC Se Sp Acc AUC Se Sp Acc AUC

0.9998 0.0 0.0 0.0015 1.0 0.0 0.0 0.0115 0.9960 0.0 0.0 0.2354

0.0002 1.0 1.0 0.9985 0.0 1.0 1.0 0.9885 0.0040 1.0 1.0 0.7646Unprocessed

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

N4 0.0790 0.0 0.0 0.0001 0.3702 0.0 0.0 0.0020

0.4663 1.0 1.0 0.9999 0.6296 1.0 1.0 0.9980

0.4547 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.5885 0.0 0.0 0.0

0.4113 1.0 1.0 1.0CLAHE

0.0002 0.0 0.0 0.0

1
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Table 7 Bayesian signed rank test evaluation of results from the DRIVE dataset after using 5-fold cross validation. Each pre-processing method is compared to

another in a paired fashion. The numbers in each cell (from the top, downwards) represent P (∆ ≤ 1%), P (−1% < ∆ < 1%), and P (∆ ≥ 1%), respectively.

N4 CLAHE N4 + CLAHE

Se Sp Acc AUC Se Sp Acc AUC Se Sp Acc AUC

0.0380 0.0 0.0 0.0 0.8572 0.0 0.0 0.0 0.8716 0.0 0.0 0.0

0.0 1.0 1.0 1.0 0.0803 1.0 1.0 1.0 0.0940 1.0 1.0 1.0Unprocessed

0.9620 0.0 0.0 0.0 0.0625 0.0 0.0 0.0 0.0344 0.0 0.0 0.0

N4 0.9998 0.0 0.0 0.0 1.0 0.0 0.0 0.0

0.0002 1.0 1.0 1.0 0.0 1.0 1.0 1.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.1037 0.0 0.0 0.0

0.8788 1.0 1.0 1.0CLAHE

0.0175 0.0 0.0 0.0

1
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Table 8 Bayesian signed rank test evaluation of results from the CHASE DB1 dataset after using 5-fold cross validation. Each pre-processing method is compared

to another in a paired fashion. The numbers in each cell (from the top, downwards) represent P (∆ ≤ 1%), P (−1% < ∆ < 1%), and P (∆ ≥ 1%), respectively.

N4 CLAHE N4 + CLAHE

Se Sp Acc AUC Se Sp Acc AUC Se Sp Acc AUC

0.8350 0.0 0.0 0.0065 1.0 0.0 0.0 0.0005 1.0 0.0 0.0 0.0004

0.1611 1.0 1.0 0.9935 0.0 1.0 1.0 0.9995 0.0 1.0 1.0 0.9996Unprocessed

0.0038 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

N4 0.9948 0.0 0.0 0.0 1.0 0.0 0.0 0.0

0.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0

0.0052 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.5508 0.0 0.0 0.0

0.3765 1.0 1.0 1.0CLAHE

0.0728 0.0 0.0 0.0

2
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5 Discussion

5.1 Comparison with the State-of-the-art

When looking at results from the commonly-used training/testing splits, our proposed method in

combination with N4 bias field correction, and CLAHE outperforms all ‘classical’ supervised and

unsupervised vessel segmentation methods (Table 1). We also achieved consistently better results

than the deep learning method proposed in22, and mostly better results than those of Liskowski and

Krawiec17. The deep learning method proposed by Oliveira et al.21 shows marginally better per-

formance where the differences in accuracies between the two methods over the DRIVE, STARE,

and CHASE DB1 datasets are 0.23%, 0.54%, and 0.29%, respectively. As pointed out by Mookiah

et al.24, since the performance measures are upper-bounded by unity and that limit is being quite

closely approached, it is not clear whether the differences above represent an effect size of any

significance. Regardless, the scope of the present paper is to investigate the effects of various

background pre-processing steps rather than achieve better than state-of-the-art performance, and

our architecture fully meets the requirement of being competitive.

After 5-fold cross validation (CV), a decrease in performance can be seen in DRIVE (most

noticeably, in sensitivity) suggesting results presented in the literature could be unrepresentative of

the overall dataset, and may be over-optimized to the given train/test split. A similar trend can be

seen in CHASE DB1 in terms of a reduction in sensitivity. There are, however, some noticeable

increases in specificity and accuracy for the CV results.

Comparing the relative performances over the prescribed splits (Table 2) with the correspond-

ing results for cross validation (Table 3), sixteen of the measures increase in value with CV whereas

thirteen are lower, with one unchanged. We regard the CV results as more representative of gener-

alization performance because they effectively average over the variability in the datasets.

It is difficult to conclusively say one architecture/method is better than another without per-

forming comparative statistical validation. The small differences could be explained by chance,

or represent no practical difference. We suggest that all future biomedical segmentation papers

should routinely include these types of statistical tests as opposed to simply stating that the perfor-

mance measure for one method is “better” than another without any statistical justification, or any

assessment of the practical differences (i.e. effect size ). Indeed, such a shift was initiated in the

mainstream computer vision field in the early 1990s52.

5.2 The Impact of Pre-processing on Segmentation Performance

For the prescribed testing partitions (or the prescribed leave-one-out assessment in the case of

STARE)—see Table 2—the images processed with N4 bias field correction followed by CLAHE

consistently yielded the highest accuracy and AUC measures. When compared to the unprocessed

images, there was a slight improvement in accuracies of 0.48%, 0.08% and 0.55% for DRIVE,

STARE and CHASE DB1, respectively. N4 processing alone yielded the highest Sp measures for

DRIVE and STARE although, interestingly, the highest Sp for the CHASE DB1 was produced by

the unprocessed images. All our methods, irrespective of the pre-processing used, exceed second

observer performance on accuracy and specificity. Sensitivity, however, is consistently higher for

the second human observer across all datasets. This suggests a human decision maker is less

prone to false negatives, possibly due to better detection of finer vessels and/or vessel boundaries
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by taking contextual cues into account. Of the automated methods, the best performance was

obtained with N4 + CLAHE.

The results obtained suggest pre-processing can make a difference to segmentation perfor-

mance. If we consider the results from 5-fold cross validation for DRIVE and CHASE DB1 (and

leave-one-out validation of STARE) as being the most representative, statistical evaluation shows

significant changes in the sensitivity metric (Se) over different pre-processing methods. Statis-

tical evaluation also suggests there is no significant difference in accuracy, specificity, and AUC

thus pre-processing methods can be considered practically equivalent regarding those three met-

rics. There is arguably a case for reducing the region of practical equivalence as we are dealing

with very small margins of improvement in measures already above 95%. This, however, is rather

subjective.

Another noteworthy feature of the results in Table 4–8 is that in many cases, the Pr(in ROPE)
is unity (to 4 d.p.) indicating that all the probability mass of the posterior falls within the ROPE

interval implying no practical difference in these measures with (almost) complete certainty.

CLAHE pre-processing appears to be the most impactful method in terms of increasing the

sensitivity, which indicates that more vessels are being successfully detected. Better contrast may

allow the network to more clearly identify separation between vessel boundaries and background

allowing for more complete segmentation. When it came to finding the very fine vessels in the im-

ages, CLAHE did not seem to make much difference, which may be due to the inherent low-pass

filtering present in the U-Net architecture (as a result of the maxpooling and upsampling opera-

tions). Further experiments are needed to investigate the problem of very fine vessel detection.

Inhomogeneous background illumination correction with the N4 algorithm added some benefit

when combined with CLAHE. CHASE DB1 gained the most from this combination of background

correction. Images in the CHASE DB1 dataset appear to contain a larger amount of variation in

background intensity than images in DRIVE and STARE, which could explain why background

correction was more effective for CHASE DB1. It was difficult for the network to find vessels

in very dark parts of the image when no background correction had been applied. Standalone

N4 correction outperformed unprocessed images in CHASE DB1, however, unprocessed images

performed better in DRIVE, and performance was almost identical between these two methods in

STARE. Even when combined with CLAHE, N4 correction did not seem to significantly influence

the performance. The probability of the mean differences in sensitivity being practically equivalent

was significant when comparing CLAHE and CLAHE + N4.

Finally, a number of authors, for example, Chekuri et al.23 have reported improved perfor-

mance with using different loss functions in the network training. We have employed the common

binary cross-entropy loss across all comparisons, but it is an interesting area of future work to

quantitatively explore the influence of other loss functions on performance.

6 Code, Data, and Materials Statement

The datasets used in this work are publicly available and downloadable from the links given in

Section 2. Section 3 provides links to the open source image processing methods used. The

pre-processing, deep network and analysis code are all available at https://github.com/

pirlite2/spie-jmi.
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7 Conclusions

In order to investigate the impact of pre-processing techniques on the segmentation of retinal im-

ages, we have presented a deep learning framework for automated vessel segmentation in retinal

fundus images that achieves results that are competitive with recent deep learning approaches de-

scribed in the literature. Contrast limited adaptive histogram equalization (CLAHE) was found to

be the most effective pre-processing method. Removal of uneven background intensity using the

N4 bias field correction method is only really useful in cases of extreme inhomogeneity.

Further, we have assessed performance not only over the prescribed/commonly-used test sets

of images, but also using cross-validation and statistical testing. In particular, we have employed

a Bayesian statistical test due to Benavoli et al. which addresses many of the shortcomings with

conventional null hypothesis statistical testing. We believe our results highlight the importance

of validation methods as we have gained better insight into the influence of pre-processing, and

have been able to draw robust, statistically-founded conclusions that would not have been apparent

had we just considered results from the commonly-used training/testing splits often seen in the

literature.
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41 H. Abdi, “The Bonferonni and Šidák corrections for multiple comparisons,” in Encyclopedia

of Measurement and Statistics, N. J. Salkind and K. Rasmussen, Eds., SAGE, Thousand Oaks,

CA (2007).

42 J. K. Kruschke, “Bayesian estimation supersedes the t-test,” Journal of Experimental Psy-

chology. General 142(2), 573–588 (2013).

43 J. Staal, M. D. Abramoff, M. Niemeijer, et al., “Ridge-based vessel segmentation in color im-

ages of the retina,” IEEE Trans. Med. Imag. 23, 501–509 (2004). 10.1109/TMI.2004.825627.

44 A. D. Hoover, V. Kouznetsova, and M. Goldbaum, “Locating blood vessels in retinal images

by piecewise threshold probing of a matched filter response,” IEEE Trans. Med. Imag. 19,

203–210 (2000). 10.1109/42.845178.

25



45 C. G. Owen, A. R. Rudnicka, R. Mullen, et al., “Measuring retinal vessel tortuosity in 10-

year-old children: Validation of the computer-assisted image analysis of the retina (CA-

IAR) program,” Investigative Ophthalmology & Visual Science 50, 2004–2010 (2009).

10.1167/iovs.08-3018.

46 C. Szegedy, V. Vanhoucke, S. Ioffe, et al., “Rethinking the inception architecture for computer

vision,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2818–

2826 (2016). 10.1109/cvpr.2016.308.

47 S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reduc-

ing internal covariate shift,” in 32nd International Conference on International Conference on

Machine Learning - Volume 37, 448–456, (Lille, France) (2015).

48 X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural

networks,” in 13th International Conference on Artificial Intelligence and Statistics, 9, 249–

256, (Chia Laguna Resort, Sardinia, Italy) (2010).

49 S. Fort, H. Hu, and B. Lakshminarayanan, “Deep ensembles: A loss landscape perspective,”

CoRR abs/1912.02757 (2019).

50 D. P. Kingma and J. Ba, “ADAM: A method for stochastic optimization,” in 3rd International

Conference on Learning Representations, ICLR 2015, (San Diego, CA) (2015).

51 N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Sys. Man

Cybern. 9, 62–66 (1979). 10.1109/TSMC.1979.4310076.

52 R. C. Jain and T. O. Binford, “Ignorance, myopia, and naiveté in computer vision systems,”
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