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Abstract 13 

A new and nondestructive method for diagnosing magnesium (Mg) deficiency based on 14 

chlorophyll concentration distribution features of cucumber leaves was proposed. Mg 15 

deficient cucumber plants and Control plants were grown under non-soil conditions 16 

with special nutrient supply. Cucumber leaves were employed to collect hyperspectral 17 

images using a visible and near infrared (VIS/NIR) hyperspectral imaging system (400-18 

900 nm) and determine reference chlorophyll concentrations using high performance 19 

liquid chromatography (HPLC). An optimal chlorophyll concentration calibration 20 

model (Rp = 0.9087) was constructed and used to detect chlorophyll distribution maps 21 

of Mg deficient leaves and Control leaves. Results shown that chlorophyll content 22 

distributed more unevenly on Mg deficient leaves than Control leaves. The Standard 23 

Deviation (SD) value of the chlorophyll content at all the pixels on a chlorophyll 24 

distribution map was calculated for Mg deficient diagnostics. An Mg deficiency 25 

diagnostics model with satisfied performance (diagnostic rate 93.33%) was obtained. 26 

The result indicated the SD value of chlorophyll concentrations on the whole cucumber 27 

leaf could be employed to diagnose Mg deficiency nondestructively. 28 

Keywords: diagnostics; magnesium; deficiency; distribution; chlorophyll; cucumber 29 

 30 

  31 
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1. Introduction 32 

Magnesium (Mg) is an essential macronutrient element in plant growth and 33 

productivity, the shortage of Mg element causes imbalances in plant growth and 34 

drastically most importantly affect the quality and yield of agricultural products 35 

(Khaitov, 2018; Kwano et al., 2017; Ortas, 2018). Low level of Mg supplement often 36 

result in low chlorophyll production, which drastically impact the plant growth, 37 

flowering and fruit bearing (Farhat et al., 2016; Farzadfar et al., 2017; Saghaiesh et al., 38 

2019). Moreover, Mg shortage also affects the production of chemical components that 39 

are connected with the product qualities, like appearance, aroma, taste and nutrition 40 

(Canizella et al., 2015; Gomez-Perez et al., 2018; Nikolic et al., 2014; Schurt et al., 41 

2014). Although Mg deficiency diagnostics methods based on the Mg element content 42 

analysis with chemical methods, like inductively coupled plasma mass spectrometry, 43 

get good performance for diagnosing Mg deficient plants, the chemical analysis process 44 

is time-consuming, laborious and high cost (Guo et al., 2016; Nartvaranant, 2018). 45 

Therefore, more attention should be paid to the diagnostics methods that assess Mg 46 

status more efficiently. 47 

Rapid and nondestructive diagnostics methods based on leaf chlorophyll analysis 48 

have been proposed to diagnose nutrients deficiencies in plants. It is well known that 49 

the shortage of Mg element results in low chlorophyll in plant leaves and low 50 

chlorophyll density regions appear on Mg deficient plant leaves, so chlorophyll density 51 

can be used reasonably as an indicator for Mg deficient diagnostics (Samborska et al., 52 
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2018; Tatagiba et al., 2016). Many research demonstrated that reflectance in Vis/NIR 53 

spectrum is sensitive to the chlorophyll concentrations of leaf tissues (Cayuela et al., 54 

2014; Kurenda et al., 2014; Schouten et al., 2014; Zhou et al., 2017). Therefore rapid 55 

and nondestructive diagnostics methods based on soil and plant analyzer development 56 

(SPAD) analysis, visible (Vis) spectral technology or near infrared (NIR) technology 57 

have been proposed to diagnose Mg deficiency (Marian et al., 2009; Shaahan et al., 58 

1999). In these methods, one value was used to represent the chlorophyll level of the 59 

whole leaf sample. However, Mg deficiency causes a low chlorophyll density in small 60 

regions of a cucumber leaf at the early stage. The measurement of chlorophyll content 61 

on the whole cucumber leaf can improve the performance for diagnosis of Mg 62 

deficiency. 63 

Hyperspectral imaging technology has been used to detect the chlorophyll 64 

concentration distribution map on cucumber leaves. Hyperspectral imaging acquire 65 

both spectral and spatial information from an object and produces a three dimensional 66 

data cube that includes the spectral data of each pixel. As the spectral data of pixels is 67 

sensitive to the quality compounds in biological products, hyperspectral imaging 68 

technology has been employed to determine the distribution of various quality indexes 69 

in food and agricultural products, like triterpene acids in loquat leaf (Shi et al., 2018), 70 

compounds (protein, carbohydrate, sialic acid) in edible bird’s nest (Shi et al., 2017), 71 

chlorophyll in pepper leaves (Yu et al., 2016), tenderness in salmon (He et al., 2014), 72 

etc. These previous studies indicate that hyperspectral imaging technology could 73 
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determine the chlorophyll concentration distribution map on a cucumber leaf, and the 74 

chlorophyll distribution map can be used for nutrient diagnostics. 75 

In this paper, the distribution features of chlorophyll content were employed to 76 

establish new diagnostics method for diagnosing Mg deficiency. Mg deficient leaf 77 

samples were cultured under non-soil conditions and Mg status of the leaf samples were 78 

confirmed by Mg element analysis. Cucumber leaves were employed to collect 79 

hyperspectral images using a VIS/NIR hyperspectral imaging system (400-900 nm) and 80 

determine reference chlorophyll concentrations using high performance liquid 81 

chromatography (HPLC). The chlorophyll distribution maps of Mg deficient leaves and 82 

Control leaves were detected nondestructively. The main objectives of this paper are to 83 

(1) find differences in chlorophyll content distribution maps of Mg deficient and 84 

Control leaf samples; (2) extract suitable chlorophyll distribution features for 85 

diagnosing Mg deficiency based on chlorophyll content distribution maps. 86 

 87 

2. Materials and methods 88 

2.1 leaf samples 89 

Fresh leaf of Mg deficient cucumber plants and Control cucumber plants (Cucumis 90 

sativus, Biyu-3, FuNong seeds Co. Ltd., Shanghai, China) were used as analytical 91 

samples. Cucumber seeds were germinated in plug plant seed tray with perlite rock and 92 

distilled water. Seedlings were thinned to one plant/pot with a planting density of 20 93 

cm × 20 cm. Complete nutrient solution with all necessary elements was applied to the 94 
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cucumber plants before the three-leaf stage, then all the cucumber plants were divided 95 

into two groups, Control group and Mg deficiency group. Control fertilization with all 96 

macronutrients was performed to plants in Control group, and no Mg fertilization 97 

(complete nutrient solution with Mg eliminated) was performed to plants in Mg 98 

deficiency group. The components of complete nutrient solution were NO3 11.75 mmol 99 

L−1, NH4 1.0 mmol L−1, H2PO4 1.25 mmol L−1, K 6.5 mmol L−1, Ca 2.75 mmol L−1, Mg 100 

1.0 mmol L−1, SO4 1.0 mmol L−1, Fe 15 μmol L−1, Mn 10 μmol L−1, Zn 5 μmol L−1, B 101 

25 μmol L−1, Cu 0.75 μmol L−1, Mo 0.5 μmol L−1. All the plants were grown under non-102 

soil conditions (perlite rock) in green houses at Jiangsu University in China (32.11N, 103 

119.27E). The amount of nutrient solution for each plant per day was 500ml for the first 104 

two weeks after transplanting and 800-1000ml until harvesting. The experiment was 105 

performed in three replications, and 60 Mg deficient plants and 60 Control plants were 106 

obtained.  107 

2.2 Mg element determination 108 

To detect the nutrient status of plants in Mg deficient group and Control group, Mg 109 

element concentrations in nutrient deficient groups and Control group were determined. 110 

45 leaves at the first three nodes, the middle nodes, and the youngest nodes in Mg 111 

deficient and Control plants were collected for Mg elements determination. For each 112 

Mg element determination, 0.4g fresh leaf tissues without leaf veins was dried at 80℃ 113 

to a constant weight. The dry matter was dissolved into 25 mL nitric and perchloric acid 114 

mixture, placed on a electric hot plate and heated at 200 °C for 60 mins. Then the digest 115 
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was analyzed using atomic absorption spectrophotometer (AA300, PerkinElmer Inc, 116 

USA) (Sofi et al., 2017). 117 

 118 

2.3 Hyperspectral image collection 119 

A line-scan reflectance hyperspectral imaging system with a spectral resolution of 120 

2.8 nm was employed to collect raw hyperspectral image of cucumber leaf samples. 121 

The imaging system includes a spectrograph (ImSpector, V10E, Spectra Imaging Ltd., 122 

Finland), a high-performance camera (Bci4-1300, C-Cam Technologies, Belgium), an 123 

illumination unit consisting two fibre-optic light-guiding branches connected to a DC 124 

illuminator (DC-950A, Fiber Lite Illuminator，USA), a transitional stage operated by 125 

a stepper motor (Zolix SC300-1A, Zolix. Corp., China), an enclosure (450×600×750 126 

mm) and a computer. Cucumber leaf sample was placed on the conveyor belt to be 127 

scanned line by line using the hyperspectral imaging system. In order to improve the 128 

signal-to-noise ratio, the speed of sample movement, exposure time and the distance of 129 

a sample from the camera were optimized and set to 10 mm/scan, 45 ms and 18 cm. 130 

White reference image (a white ceramic tile considering to be ~99% reflective) and 131 

dark reference image (an image taken when the light is off and the lens is covered) were 132 

acquired to correct the raw images. The three dimensional data cube of a cucumber leaf 133 

hyperspectral image was shown in Fig. 1. 134 

 135 

Insert Fig. 1 here. 136 
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 137 

2.4 Chlorophyll concentration distribution map determination 138 

As described in 2.3, the hyperspectral imaging data cube contains a spectrum with 139 

a specific wavelength range for each pixel in a 2-dimensional image of the sample. At 140 

the same time, researchers demonstrated there are good relationship between leaf 141 

spectra and chlorophyll concentrations (Cayuela et al., 2014; Kurenda et al., 2014). 142 

Therefore, it possible to estimate the distribution of chlorophyll concentrations on the 143 

whole cucumber leaf based on the spectra data of each pixel and the chlorophyll 144 

concentration calibration model. Basically, chlorophyll concentration distribution map 145 

determination contains three steps, (1) building chlorophyll calibration models, (2) 146 

testing the calibration models, and (3) determining chlorophyll distribution map. 147 

 148 

2.4.1 Building calibration models 149 

A calibration set and a prediction set were composed of 120 fresh cucumber 150 

leaves. After hyperspectral image acquisition, spectral data of cucumber leaves in the 151 

calibration set and prediction set was extracted by defining an region of interest (ROI) 152 

(50×50pixels) in the center region of hyperspectral images. Partial least squares 153 

(PLS), interval partial least squares ( iPLS), simulated annealing - Interval partial least 154 

squares (SA-iPLS) were employed to build chlorophyll calibration models based on 155 

the extracted spectral data and reference chlorophyll concentrations determined using 156 
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high performance liquid chromatography (HPLC) (Shi et al., 2016; Shi et al., 2012). 157 

The root mean square error of cross-validation (RMSECV), the correlation coefficient 158 

in the calibration set (Rc), the root mean square error of prediction (RMSEP) and the 159 

correlation coefficient in the prediction set (Rp) (Shi et al., 2012) were calculated to 160 

evaluate the established calibration models. 161 

 162 

2.4.2 Testing the calibration models 163 

An independent testing set was composed of 40 fresh cucumber leaves. After 164 

hyperspectral image data acquisition, the spectral data (430-960nm) were extracted 165 

and substituted in the established PLS, iPLS, SA-iPLS chlorophyll concentration 166 

calibration models to predict the chlorophyll concentrations of the samples in the 167 

testing set. Then the reference chlorophyll concentrations of the testing samples were 168 

detected using HPLC. Finally, the root mean square error (RMSET) and the 169 

correlation coefficient of the testing set (Rt) were calculated to test the established 170 

calibration models. 171 

 172 

2.4.3 Estimating chlorophyll distribution map 173 

The flowchart of estimating a chlorophyll distribution map was shown in Fig. 2. 174 

After hyperspectral image acquisition, data cube of all pixels were extracted and 175 
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converted to spectra curves. The spectra data of every pixel was substituted in the 176 

established chlorophyll concentration calibration model to predict chlorophyll 177 

concentrations for each pixel. Then chlorophyll concentrations for each pixel were 178 

ranked into a 2-D matrix according to the coordinates of the pixels. Finally, 179 

chlorophyll distribution map can be obtained by converting the 2-D matrix to a 2-D 180 

figure, as shown in Fig. 2. 181 

 182 

Insert Fig. 2 here. 183 

 184 

2.5 Diagnostics of Mg deficiency based on chlorophyll distribution map 185 

Leaf samples in Mg deficiency group and Control group were used to detect 186 

chlorophyll concentration distribution maps using the methods described in above 187 

sections. The chlorophyll distribution maps of Mg deficient leaves were compared with 188 

those of Control leaves. Based on the results of comparison, chlorophyll distribution 189 

features were extracted and used to develop new Mg deficiency diagnostic methods. 190 

 191 

3. Results and discussion 192 

3.1 Mg nutrient status of cucumber plants 193 

Mg content in Control plants growing with complete nutrient solution and Mg 194 

deficiency group growing with no Mg nutrient solution were analyzed using the method 195 
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described in section 2.1. 15 cucumber leaves at the first three nodes, 15 cucumber leaves 196 

at the middle nodes and 15 cucumber leaves at the highest nodes in plants of Mg 197 

deficiency group and Control group were collected for Mg analysis. The results of Mg 198 

element analysis for Mg deficiency group and Control group were shown in Fig. 3. In 199 

Fig. 3, it shows that the averages of Mg element at the first three nodes, middle nodes 200 

and the highest nodes in plants of Mg deficiency group were 0.81 mg/g, 1.15 mg/g and 201 

1.39 mg/g, respectively. While in the plants of Control group, the averages of Mg 202 

element at the first three nodes, middle nodes and the highest nodes were 1.04 mg/g, 203 

1.26 mg/g and 1.43 mg/g, respectively. It could be found that the averages of Mg 204 

elements increase from the lowest nodes to the highest nodes. It could also be found 205 

that the average of Mg element at the first three nodes in Mg deficiency group is 206 

obviously lower than the averages of the other nodes. This results show that leaves at 207 

the first three nodes in Mg deficiency group have entered into Mg deficient status. 208 

 209 

Insert Fig. 3 here. 210 

 211 

3.2 Chlorophyll concentration distribution maps of Mg deficient leaves 212 

3.2.1 Building calibration models 213 

As described in section 2.4.1, a calibration set and a prediction set contained 120 214 

fresh cucumber leaves were used to build chlorophyll content calibration models. 215 

After hyperspectral image collection and HPLC analysis, the hyperspectral cucumber 216 
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images and reference chlorophyll content were obtained. Chemometrics methods PLS, 217 

iPLS, SA-iPLS were employed to build chlorophyll content calibration models using 218 

the hyperspectral image data and reference chlorophyll content. The performance of 219 

the PLS, iPLS, SA-iPLS models was shown in table 1. The Rc for PLS, iPLS and SA-220 

iPLS calibration models were 0.8149, 0.8472 and 0.9165, respectively. The Rp for 221 

PLS, iPLS and SA-iPLS calibration models were 0.7928, 0.8294 and 0.9087, 222 

respectively. The results shown that the SA-iPLS calibration model got better 223 

performance than the rest two calibration models. 224 

 225 

Insert Table 1 here. 226 

 227 

3.2.2 Testing the calibration models 228 

As described in section 2.4.2, an independent testing set contained 40 fresh 229 

cucumber leaves was used to test the established chlorophyll content calibration 230 

models. After hyperspectral image data acquisition, spectra data of the samples in 231 

testing set was extracted and substituted in the established PLS, iPLS, SA-iPLS 232 

models, so the predicted chlorophyll content of the samples in testing set was 233 

calculated. Then the samples in the testing set were used to determine reference 234 

chlorophyll content. Finally, the root mean square error of testing (RMSET) and the 235 
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correlation coefficient in the testing set (Rt) were calculated to test the established 236 

calibration models, as shown in Table 1. It could be found that the RMSET and Rt 237 

based on SA-iPLS were was 2.12 mg/g and 0.8938, respectively. The results mean 238 

that chlorophyll calibration model based on SA-iPLS gets better performance for 239 

predicting chlorophyll content of an unknown leaf sample. 240 

3.2.3 Estimating distribution map 241 

Mg deficient cucumber leaves and Control group cucumber leaves were used to 242 

collect hyperspectral images, then data cube of all pixels were extracted to estimate 243 

chlorophyll distribution maps, as described in Section 2.4.3. The chlorophyll 244 

distribution maps of cucumber leaves in Control group and Mg deficiency group are 245 

shown in Fig.4. The pixels with high chlorophyll content appeared along the main leaf 246 

veins on the distribution maps of Control group and Mg deficiency group. However, 247 

the pixels between the main leaf veins got lower chlorophyll content on the chlorophyll 248 

distribution maps of Mg deficiency group than those of Control group. This result made 249 

that chlorophyll content distributed less evenly on Mg deficient leaves than that on 250 

Control leaves. Results indicated that the Standard Deviation (SD) value of the 251 

chlorophyll content at all the pixels on a chlorophyll distribution map could be used as 252 

indicator for diagnosing Mg deficiency. 253 

 254 

Insert Fig. 4 here. 255 

 256 
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3.3 Diagnostics of Mg deficiency based on chlorophyll distribution map 257 

A calibration set and a prediction set containing 120 fresh Mg deficient leaves and 258 

Control leaves picked from the first nodes of cucumber plants were used to develop an 259 

Mg deficiency diagnostic method. After hyperspectral image acquisition, chlorophyll 260 

distribution maps of the 120 cucumber leaves were detected using the procedures 261 

described in section 3.2. The SD of chlorophyll content of all pixels in a chlorophyll 262 

distribution map was calculated for diagnostics of Mg deficiency, as the results in 263 

section 3.2.3 indicated that the homogeneity of chlorophyll content at the pixels of Mg 264 

deficient leaves was worse than that of Control leaves. The SD values of the Mg 265 

deficient and Control leaves in the calibration set were shown in Fig. 5.  266 

Fig. 5 shows the SD values of the chlorophyll content at all pixels of the Mg 267 

deficient cucumber leaves and Control cucumber leaves. The SD values of chlorophyll 268 

concentrations in Mg deficient leaves were higher than 2.25 mg/g, whereas most SD 269 

values of Control leaves were lower than 2.25 mg/g. Therefore, 2.25 mg/g was defined 270 

as a threshold for detecting Mg deficiency, as show in Fig. 5. According to this threshold, 271 

only one sample from Control group was misclassified into Mg deficiency group, as 272 

shown in Fig. 5 (a). After applying this threshold to an independent set (30 Mg 273 

deficiency leaves and 30 Control leaves), a diagnostic rates of 93.33% was achieved, 274 

as shown in Fig. 5 (b). Control leaves at the first node enter into aging status, in which 275 

chlorophyll in some small regions decreases slowly, early than the leaves at higher 276 

nodes. Chlorophyll decreasing in these leaves can increase their SD values and result 277 



15 

 

in the misclassification. Mg deficient leaves at the third nodes enter into Mg deficiency, 278 

which decreases chlorophyll in some small regions, lately than the leaves at lower nodes. 279 

Chlorophyll decreasing in these leaves can decrease their SD values and result in the 280 

misclassification. 281 

 282 

Insert Fig. 5 here. 283 

 284 

4. Conclusion 285 

An optimal chlorophyll content calibration model based on the hyperspectral 286 

images of cucumber leaves and the reference chlorophyll content of cucumber leaves 287 

was established. Chlorophyll distribution maps of Mg deficient leaves and Control 288 

leaves were obtained through calculating the chlorophyll content at each pixel by 289 

substituting its hyperspectral signal to the optimal chlorophyll content calibration 290 

model. Compared with the chlorophyll concentration distribution map, the main feature 291 

of Mg deficient chlorophyll distribution map is that chlorophyll content decreases in 292 

the regions between main leaf veins. The SD value of the chlorophyll content at all the 293 

pixels in Mg deficient and Control leaves were extracted and used as the indicator for 294 

diagnosing Mg deficiency. Result shown that a diagnostics model with good 295 

performance (diagnostic rate 93.33%) were established for measurement of Mg 296 

deficiency in cucumber plants. The result indicated that the extracted chlorophyll 297 

distribution feature could be employed to diagnose Mg deficiency. 298 
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