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ABSTRACT

Computer Vision has played a major role in Intelligent Transportation Systems (ITS) and traffic surveillance. Along with the rapidly growing
automated vehicles and crowded cities, the automated and advanced traffic management systems (ATMS) using video surveillance
infrastructures have been evolved by the implementation of Deep Neural Networks. In this research, we provide a practical platform for
real-time traffic monitoring, including 3D vehicle/pedestrian detection, speed detection, trajectory estimation, congestion detection, as well as
monitoring the interaction of vehicles and pedestrians, all using a single CCTV traffic camera. We adapt a custom YOLOv5 deep neural
network model for vehicle/pedestrian detection and an enhanced SORT tracking algorithm. For the first time, a hybrid satellite-ground
based inverse perspective mapping (SG-IPM) method for camera auto-calibration is also developed which leads to an accurate 3D object
detection and visualisation. We also develop a hierarchical traffic modelling solution based on short- and long-term temporal video data
stream to understand the traffic flow, bottlenecks, and risky spots for vulnerable road users. Several experiments on real-world scenarios and
comparisons with state-of-the-art are conducted using various traffic monitoring datasets, including MIO-TCD, UA-DETRAC and GRAM-RTM
collected from highways, intersections, and urban areas under different lighting and weather conditions.

Keywords – 3D Object Detection; Traffic Flow Monitoring; Intelligent Transportation Systems; Deep Neural Networks; Vehicle Detection;
Pedestrian Detection; Inverse Perspective Mapping Calibration; Digital Twins, Video Surveillance.

1 Introduction

S mart video surveillance systems are becoming a com-
mon technology for traffic monitoring and congestion
management. Parallel to the technology improvements,

the complexity of traffic scenes for automated traffic surveil-
lance has also increased due to multiple factors such as urban
developments, the mixture of classic and autonomous vehicles,
population growth, and the increasing number of pedestrians
and road users [1]. The rapidly growing number of surveil-
lance cameras (over 20 million CCD cameras only in USA
and UK) in the arteries of cities, crowded places, roads, in-
tersections, and highways, demonstrator the importance of
video surveillance for city councils, authorities and govern-
ments [2]. A large network of interconnected surveillance
cameras can provide a special platform for further studies on
trafficmanagement and urban planning [3]. However, in such a
dense and complex road environments, the conventional mon-
itoring of road condition is a very tedious, time-consuming,
yet less accurate approach than automated computer vision
and AI-based solutions. Hence, automated video surveillance
has been researched for many years to gradually replace the
humans with computers that can analyse the live traffic and
provide effective solutions to maintain transportation safety
and sustainability [4].
Computer Vision is one of the most investigated technolo-

gies for automated video surveillance inspired by the human
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Figure 1. Top: 3D object detection and speed estimation.
Bottom: Digital twin and modelling of the same scene.
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visual mechanism. The technology aims to enable computers
to analyse and interpret the content of digital videos. In au-
tomated traffic monitoring systems (ATMS) and Intelligent
Transportation Systems (ITS), computer vision can extract a
wide range of information from the traffic scenes [5].
Vehicle type recognition, vehicle counting, speed estimation,

tracking, and trajectory estimation are examples of automated
traffic scene analysis. Figure 1 represents a sample scenario of
road complexities including interactions between road users
(pedestrians, vehicles, cyclists), moving trajectories, speed
detection, and the density of the road users in various points
of the road scene. Figure 1, top row shows a 3D road-user
detection and localisation, and the bottom row shows the
bird’s eye view mapping and digital twin modelling of the
same scene, after camera calibration and inverse perspective
mapping (IPM).
In such highly dynamic environments, the ability of real-

time processing and accurate detection of multiple events
is crucial [6]. Furthermore, an efficient traffic monitoring
system should be capable of working with a grid of various
interconnected cameras on different urban locations, where
each camera may have a different resolution, viewing angles,
height, or focal length. This requires calibration of each and
every single camera based on the intrinsic camera parameters
and the mounting spec of each camera.
Although various methods of camera calibration such as

vanishing-based techniques [7] and multi-point calibrations
techniques [8] have been introduced for bird’s eye view map-
ping, fewer investigations have been conducted in the commu-
nity to introduce automated calibration methods.
The heart of an ATMS is the vehicle and pedestrian identifi-

cation, and in the field of computer vision, this task is handled
by object detection algorithms and tracking techniques [9].
In the past decade, deployment of Deep Neural Networks

(DNN) has led to significant advances in indoor object detec-
tion. The effectiveness and the accuracy of these contemporary
improvements should be investigated for the particular appli-
cation of traffic monitoring in a complex, dynamic, noisy and
crowded environment.
Further challenges such as bad weather conditions, chal-

lenging lighting conditions [10] during day and night, as well
as occlusion may also affect the performance of the object
detection in traffic monitoring systems [11].
In this study, we contribute in four areas a follows:

• Adapting a custom Deep Neural Network (DNN) for
vehicle/pedestrian detection.

• Developing an enhanced multi-object and multi-class
tracking and trajectory estimation.

• Developing a hybrid satellite/ground-based inverse per-
spective mapping (SG-IPM) and calibration method for
accurate localisation and distance estimation.

• 3D object bounding box estimation of the road users
using a single-view camera.

• Automated short- and long-term surveillance solutions
to understand traffic bottlenecks, risks, and hazards for
road users.

Figure 1 represents a sample output of our contributions
including 3D detection, tracking, and environment modelling.
Comprehensive details and discussions will be provided in the
next sections as follows:
In Section 2 a literature review on both conventional and

modern related works is conducted. Section 3 introduces our
methodology as an enhanced object detection and tracking al-
gorithm followed by presenting a novel satellite/ground-based
auto-calibration technique. In this section, we provide an envi-
ronment modelling technique as well as the 3D representation
of detected objects. Experimental results, evaluations, and
comparisons with state-of-the-art will be discussed in Sec-
tion 4, and finally, Section 5 concludes the article by discussing
the challenges and potentials for future works.

2 Related Work
In this section, we review three types of related works to auto-
mated traffic surveillance systems (ATMS) including classic
object detection methods, modern object detection research
directions, and also the CCTV camera calibration solutions,
as the prerequisite of any object detection methodology in the
context of traffic surveillance. Both classical and machine
learning-based methods for automated video surveillance
(AVS), automated traffic surveillance systems (ATMS), as well
as the camera calibration techniques will be reviewed.
Among classical methods, a series of studies have focused

on background subtraction (BGS) techniques for detecting
moving objects. Cheung et al. [12] have compared the per-
formance of different BGS methods such as the Mixture of
Gaussian (MOG), Median filter (MF), Kalman filter (KF)
and frame differentiation (FD) in various weather conditions
on a road-side surveillance camera. They reported a higher
precision rate using the MOG method. This method estimates
various Gaussian distributions that match with the intensity
distribution of the image background’s content.
Zhao et al. [13] have introduced an adaptive background

estimation technique. They divide the image into small none-
overlapped blocks followed by the principal component analy-
sis (PCA) on each block’s feature. Then they utilise the support
vector machine (SVM) to classify the vehicles. The method
seems to be robust in partial occlusion and bad illumination
conditions. However, it fails to detect stationary objects. The
presented system is only evaluated on ideal highway images
and neglects the crowded urban roads.
Chintalacheruvu et al. [14] have introduced a vehicle detec-

tion and tracking system based on the Harris-Stephen corner
detector algorithm. The method focuses on speed violation
detection, congestion detection, vehicle counting, and average
speed estimation in regions of interest. However, the presented
method requires prior road information such as the number of
lanes and road directions.
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In another approach, Cheon et al. [15] have presented a
vehicle detection system using histogram of oriented gradients
(HOG) considering the shadow of the vehicles to localise them.
They have also used an auxiliary feature vector to enhance the
vehicle classification and to find the areas with a high risk of
accidents. However, the method leads to erroneous vehicle
localisation during the night or day-time where the vehicles’
shadows are too long and not presenting the exact location
and size of the vehicle.
Although most of the discussed methods perform well

in simple and controlled environments, they fail to propose
accurate performance in complex and crowded scenarios. Fur-
thermore, they are unable to performmulti-class classifications
and can not distinguish between various categories of moving
objects such as pedestrians, cars, buses, trucks, etc.
With the emergence of deep neural networks (DNNs), the

machine learning domain received more attention in the object
detection domain. Inmodern object detection algorithms, Con-
volutional Neural Networks (CNN) learns complex features
during the training phase, aiming to elaborate and understand
the contents of the image. This normally leads to improvement
in detection accuracy compared to classical image processing
methods [16]. Such object detectors are mostly divided into
two categories of single-stage (dense prediction) and two-stage
(sparse prediction) detectors. The two-stage object detectors
such as RCNN family, consist of a region proposal stage and a
classification stage [17]; while the single-stage object detec-
tors such as Single-Shot Multi-Box Detector (SSD) [18], and
You Only Look Once (YOLO) see the detection process as
a regression problem, thus provide a single-unit localisation
and classification architecture [17].
Arinaldi et al. [19] reached a better vehicle detection per-

formance using Faster-RCNN compared to a combination of
MOG and SVM models.
Peppa et al. [20], developed a statistical-based model, a

random forest method, and an LTSM to predict the traffic
volume for the upcoming 30 minutes, to compensate for lack
of accurate information in extreme weather conditions.
Some researchers such as Bui et al. [21], utilised single-

stage object detection algorithms including he YOLOv3 model
for automated vehicle detection. They designed a multi-
class distinguished-region tracking method to overcome the
occlusion problem and lighting effects for traffic flow analysis.
In [22], Mandal et al. have proposed an anomaly detection

system and compared the performance of different object
detection including Faster-RCNN, Mask-RCNN and YOLO.
Among the evaluated models, YOLOv4 gained the highest
detection accuracy. However, they have presented a pixel-
based (pixel per second) vehicle velocity estimation that is not
very accurate.
On the other hand, the advancement of stereo vision sensors

and 3D imaging has led to more accurate solutions for traffic
monitoring as well as depth and speed estimation for road users.
Consequently, this enables the researchers to distinguish the
scene background from the foreground objects, and measure

the objects’ size, volume, and spatial dimensions [23].
LiDAR sensors and 3D point cloud data offers a new mean

for traffic monitoring. In [24], Zhang et al. have presented
a real-time vehicle detector and tracking algorithm without
bounding box estimation, and by clustering the point cloud
space. Moreover, they used the adjacent frame fusion tech-
nique to improve the detection of vehicles occluded by other
vehicles on the road infrastructures.
Authors in [25], proposed a centroid-based tracking method

and a refining module to track vehicles and improve the speed
estimations. Song, Yongchao, et al. [26] proposed a framework
which uses binocular cameras to detect road, pedestrians and
vehicles in traffic scenes.
In another multi-modal research, thermal sensor data is

fused with the RGB camera sensor, leading to a noise-resistant
technique for traffic monitoring [27].
Although many studies are conducting different sensors to

perform 3D object detection such as in [28], [29], the cost of
applying such methods in large and crowded cities could be
significant. Since there are many surveillance infrastructures
already installed in urban areas and there are more data
available for this purpose, 2D object detection on images has
gained a lot of attention in a more practical way.
Many studies including deep learning-based methods [30],

[31], have tried to utilise multi-camera and sensors to compen-
sate for the missing depth information in the monocular CCTV
cameras, to estimate the position and speed of the object, as
well as 3D bounding box representation from a 2D perspective
images [32].
Regardless of the object detection methodology, the CCTV

camera calibration is a key requirement of 2D or 3D traf-
fic condition analysis prior to starting any object detection
operation. A camera transforms the 3D world scene into
a 2D perspective image based on the camera intrinsic and
extrinsic parameters. Knowing these parameters is crucial for
an accurate inverse perspective mapping, distance estimation,
and vehicle speed estimation [33].
In many cases especially when dealing with a large network

of CCTV cameras in urban areas, these parameters can be
unknown or different to each other due to different mounting
setups and different types of cameras. Individual calibration
of all CCTVs in metropolitan cities and urban areas with
thousands of cameras is a very cumbersome and costly task.
Some of the existing studies have proposed camera calibra-
tion techniques in order to estimate these parameters, hence
estimating an inverse perspective mapping.
Dubska et al. [34] extract vanishing points that are parallel

and orthogonal to the road in a road-side surveillance camera
image, using the moving trajectory of the detected cars and
Hough line transform algorithm. This can help to automatically
calibrate the camera for traffic monitoring purposes, despite
low accuracy of the Hough transform algorithm in challenging
lighting and noisy conditions.
Authors in [35], proposed a Faster-RCNN model to detect

vehicles and consider car edgelets to extract perpendicular van-
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ishing points to the road to improve the automatic calibration
of the camera.
Song et al. [36], have utilised an SSD object detector

to detect cars and extract spatial features from the content
of bounding boxes using optical flow to track them. They
calculate two vanishing points using the moving trajectory of
vehicles in order to automatically calibrate the camera. Then,
they consider a fixed average length, width and height of cars
to draw 3D bounding boxes.
However, all of the aforementioned calibration methods

assume 1) The road has zero curvature which is not the case
in real-world scenarios and 2) Vanishing points are based
on straight-line roads. i.e. the model does not work on
intersections.
In a different approach, Kim et al. [37], consider 6 and 7

corresponding coordinates in a road-side camera image and
an image with a perpendicular view of the same scene (such
as near-vertical satellite image) to automatically calibrate
the camera. They introduced a revised version of RANSAC
model, called Noisy-RANSAC to efficiently work with at least
6 or 7 corresponding points produced by feature matching
methods. However, the method is not evaluated on real-world
and complex scenarios in which the road is congested and
occluded by various types of road users.
Among the reviewed literature most of the studies have not

investigated various categories of road users such as pedestri-
ans and different types of vehicles that may exist in the scene.
Moreover, there are limited researches addressing full/partial
occlusion challenges in the congested and noisy environment
of urban areas. It is also notable that the performance of the
latest object detection algorithm to date is not evaluated by
the traffic monitoring related researches.
Furthermore, very limited research has been conducted on

short and long-term spatio-temporal video analysis to automat-
ically understand the interaction of vehicles and pedestrians
and their effects on the traffic flow, congestion, hazards, or
accidents.
In this article, we will aim at proving an efficient and

estate-of-the-art traffic monitoring solution to tackle some of
above-mentioned research gaps and weaknesses in congested
urban areas.

3 Methodology
We represent our methodology in four hierarchical subsections.
In section 3.1 as the first contribution, a customised and
highly accurate vehicle and pedestrian detection model will be
introduced. In Section 3.2 and as the second contribution we
elaborate our multi-object and multi-class tracker (MOMCT).
Next, in Section 3.3, a novel auto-calibration technique (named
SG-IPM) is developed. Last but not the least, in section 3.4 we
develop a hybrid methodology for road and traffic environment
modelling which leads to 3D detection and representation of
all vehicles and pedestrians in a road scene using a single
CCTV camera.

Figure 2. The overall structure of the proposed methodology

Figure 2 summarises the overall flowchart of the method-
ology, starting with a 2D camera image and satellite image
as the main inputs which ultimately lead to a 3D road-users
detection and tracking.

3.1 Object Detection and Localisation
According to the reviewed literature, the YOLO family has
been proven to be faster and also very accurate compared to
most of the state-of-the-art object detectors [38].
We hypothesis that recent versions of the YOLO family can

provide a balanced trade-off between the speed and accuracy
of our traffic surveillance application. In this section we
conduct a domain adaptation and transfer learning of YOLOv5.
The Microsoft COCO dataset [39] consists of 80 annotated
categories of the most common indoor and outdoor objects
in daily life. We use pre-trained feature extraction matrices
of YOLOv5 model on COCO dataset as the initial weights to
train our customised model.
Our adapted model is designed to detect 11 categories

of traffic-related objects which also match the MIO-TCD
traffic monitoring dataset [40]. These categories consist of a
pedestrian class and 10 types of vehicles, including articulated
truck, bicycle, bus, car, motorcycle, motorised vehicles, non-
motorised vehicles, pickup truck, single-unit truck and work
van. Because of the different number of classes in two datasets,
the last layers of the model (the output layers) do not have
the same shape to copy. Therefore, these layers will be
initialised with random weights (using 100100 seeds). After
the initialisation process, the entire model will be trained on
the MIO-TCD dataset. We expect this would ultimately lead
to a more accurate and customised model for our application.
As shown in Figure 3 the architecture of modern YOLO

frameworks consists of a backbone, the neck, and the head.
The backbone includes stacked convolutional layers turn-

ing the input into the feature space. In the backbone, the
Cross-Stage Partial network (CSP) [41] conducts shortcut
connections between layers to improve the speed and accuracy
of feature extractors.
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Figure 3. Summarised structure of the dense (single-stage) and sparse (two-stage) object detection architecture, applied to a
road-side surveillance video.

The neck consists of feature enhancers such as Spacial
Pyramid Pulling (SPP) [42], and Path Aggregation Network
(PAN) [43], concatenating the features extracted from initial
layers (closer to the input of the model) with the end layers
(closer to the head of the model) to enhance the semantic and
spacial information and to improve the detection accuracy for
small objects.

The head part of YOLOv5 performs convolutional opera-
tions on the enhanced features to generate outputs (predictions)
with different scales. The count and size of the outputs vary
based on the number of pre-defined multi-scale grid cells,
anchor boxes, and also the number of ground truth classes.
The anchor boxes are determined based on scales of the ex-
isting bounding boxes in the ground truth using the k-means
clustering algorithm. The model optimises Focal-Loss [44]
and Distance-IoU loss [45] functions to classify and localise
the objects, during the training process.

The latest version of YOLOv5 (to the date of this article),
incorporates 4 head outputs with the strides of 8, 16, 32
and 64. The output scale with the stride of 64 is added to
improve the detection accuracy of relatively large objects in
multi-faceted and comprehensive datasets. However, in most
traffic monitoring scenes, including this research, the cameras
are placed at a height of at least 3 metres from the ground
and with a distance of more than 5 metres from the objects of
interest (road users). This means the cameras hardly includes
any extra-large objects that can fill up the entire image plane.

Therefore, we consider 3 different stride scales of 8, 16, 32
for the head part of our model and the 𝑘-means algorithm with
9 cluster centroids, yielding to 3 anchor boxes for each grid-cell.
This means the model can detect 3 objects in each grid cell.
Our preliminary evaluations confirm accuracy improvements
by using the 3 head scales rather than the 4 head scales (more
details in Section 4.1). The model predicts offset of bounding
boxes with respect to corresponding anchor box in each grid
cell. Assuming (𝑥𝑐 , 𝑦𝑐) as the top-left corner of the grid-cell,
ℎ𝑎 and 𝑤𝑎 as the height and width of an anchor box in that grid
cell, a bounding box with the centre (𝑥𝑏 , 𝑦𝑏), height ℎ𝑏 and
width 𝑤𝑏 is calculated by the predicted offset (𝑥𝑜, 𝑦𝑜,𝑤𝑜, ℎ𝑜)

as follows:

𝑥𝑏 = 𝜎(𝑥𝑜) + 𝑥𝑐
𝑦𝑏 = 𝜎(𝑦𝑜) + 𝑦𝑐
𝑤𝑏 = 𝑤𝑎 × 𝑒𝑤𝑜

ℎ𝑏 = ℎ𝑎 × 𝑒ℎ𝑜
(1)

where 𝜎 is the Sigmoid function, normalising the input be-
tween 0 and 1.
Eventually, the model produces a set D for each image

witch contains (𝑥𝑏 , 𝑦𝑏 ,𝑤𝑏 , ℎ𝑏 ,𝔰,c) for each object, where 𝔰 is
objectness confidence score and c is a vector of classification
probabilities with a length equal to the number of classes.
We consider the coordinates of the middle point at the

bottom side of each bounding box as the reference point of
the detected objects. This is the closest contact point of the
vehicles and pedestrians to the ground (the road surface):

(𝑥, �̂�) = (𝑥𝑏 , 𝑦𝑏 +
ℎ𝑏

2
) (2)

3.2 Object Tracking and Moving Trajectory
DeepSORT [46] is a common DNN-based object tracking
algorithm that extracts appearance features to track the de-
tected objects. However, it comes with a comparatively high
computational cost which is a negative point for multi-modal
applications such as our traffic surveillance application.
Therefore, we aim at enhancing the Simple Object Real-time

Tracking (SORT) algorithm [47] by developing a fast tracking
model called multi-object and multi-class tracker (MOMCT),
while maintaining a high level of tracking accuracy.
The SORT algorithm assigns a unique ID to each object

by computing the Intersection over Union (IoU) between
detected bounding boxes in consequent frames of the input
video. However, this process is only applicable to a single
class and each class needs to be dealt with separately. As a
result, in some cases, the object detector assigns a new class to
an object (bounding box) which is not aligned with the SORT
object tracker estimation. In such cases, the tracker sees it as
a new object, assigns a new ID to it and consequently loses
the previous tracking.
To overcome this issue, we integrate a category vector

ć ∈W1×11 for 11 categories of detected objects in the internal
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Figure 4. The hierarchical structure of the proposed feature matching model.

Kalman filter of the SORT tracker. The category vector is the
one-hot encoded representation of the detected class vector c,
in which the highest class probability is shown by 1 and the
rest of the probabilities by 0.
Exploiting the smoothing effect of the Kalman filter would

filter out the bouncing of detected categories through the
sequence of frames. Also, it enables the SORT to calculate
IoU between the bounding boxes of different categories. This
yields a multi-object and multi-category ID assignment.
The state matrix of the new Kalman filter is defined as

follows:

x̀ = [ 𝑥 �̂� 𝑠𝑏 𝑟𝑏 ¤𝑥 ¤𝑦 ¤𝑠 | ć ]𝑇 (3)

where 𝑠𝑏 = 𝑤𝑏 × ℎ𝑏 denotes the scale (area), 𝑟𝑏 is the aspect
ratio, ¤𝑥, ¤𝑦 and ¤𝑠 are the velocities of 𝑥, �̂� and 𝑠𝑏 , respectively.
Similarly, we represent the observation matrix of the revised
Kalman filter as follows:

z̀ = [ 𝑥 �̂� 𝑠𝑏 𝑟𝑏 | ć ]𝑇 (4)

In order to determine the trajectory of objects, we introduce
two sets of 𝑉 and 𝑃 as the tracker-ID of detected vehicles and
pedestrians, respectively.
The trajectory set of each vehicle (𝑣𝑖) and pedestrian (𝑝𝑖)

can be calculated based on temporal image frames as follows:

𝑀𝑣𝑖 = {(𝑥𝑡𝑣𝑖 , �̂�
𝑡
𝑣𝑖
) : ∀𝑡 ∈ 𝑇𝑣𝑖 }

𝑀𝑝𝑖 = {(𝑥𝑡𝑝𝑖 , �̂�
𝑡
𝑝𝑖
) : ∀𝑡 ∈ 𝑇𝑝𝑖 }

(5)

where 𝑇𝑣𝑖 and 𝑇𝑝𝑖 are the sets of frame-IDs of the vehicles 𝑣𝑖
and pedestrians 𝑝𝑖 and (𝑥𝑡 , �̂�𝑡 ) is the location of the object 𝑣𝑖
or 𝑝𝑖 at frame 𝑡.
Finally, moving trajectories of all tracked objects are defined

as the following sets:

𝑀𝑉 = {𝑀𝑣𝑖 : ∀𝑣𝑖 ∈ 𝑉}
𝑀𝑃 = {𝑀𝑝𝑖 : ∀𝑝𝑖 ∈ 𝑃}

(6)

3.3 Camera Auto-calibration
The intuition behind this part of the study is to apply an
automatic IPM camera calibration setup where and when no
information about the camera and mounting specifications are
available. This makes our study applicable for most CCTV
traffic surveillance cameras in city roads and urban areas, as
well as other similar applications, without the requirements of

knowing the camera intrinsic parameters, height and angle of
the camera.
We exploit a top-view satellite image from the same location

of the CCTV camera and develop a hybrid satellite-ground
based inverse perspective mapping (SG-IPM) to automatically
calibrate the surveillance cameras. This is an end-to-end
technique to estimate the planar transformation matrix G as
per Equation 35 in Appendix A. The matrix G is used to
transform the camera perspective image to a bird’s eye view
image.
Let’s assume (𝑥, 𝑦) as a pixel in a digital image container

I :U→ [0,255]3 wereU = [[0;𝑤−1] × [0;ℎ−1]] represents
the range of pixel locations in a 3 channel image, and 𝑤, ℎ are
width and height of the image.
Using ( ˆ ) to denote the perspective space (i.e. camera

view), and, (ˇ) for inverse perspective space, we represent the
surveillance camera image as Î, the satellite image as Ì, and
bird’s eye view image as Ǐ which is calculated by the linear
transformation G : Î → Ǐ.
Since the coordinates of the bird’s eye view image approxi-

mately matches the satellite image coordinates (i.e. (Ì ≈ Ǐ), the
utilisation of the transformation function (𝑥, �̌�) = Λ((𝑥, �̂�),G)
(as defined in Appendix A) would transform the pixel loca-
tions of Î to the Ì. Similarly, G−1 inverts the mapping process.
In other words, (𝑥, �̂�) = Λ((𝑥, �̌�),G−1) transforms the pixel
locations from Ǐ to the Î.
In order to solve the linear equation 35, at least four pairs

of corresponding points in Î and Ì are required. Therefore,
we would need to extract and match similar features pairs
from both images. These feature points should be robust and
invariant to rotation, translation, scale, tilt, and also partial
occlusion in case of high affine variations.
Figure 4 represents the general flowchart of our SG-IPM

technique, which is fully explained in the following sub-
sections, including feature enhancement and feature matching:

3.3.1 Feature Enhancement
Three types of feature enhancement are addressed before
applying the calibration processes:

• Radial distortion correction

• Background removal

• Histogram matching
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Radial Distortion: Some of the road-side cameras have non-
linear radial distortion due to their wide-angle lens which will
affect the accuracy of the calibration process and monitoring
system to estimate the location of the objects.
Such type of noise would also reduce the resemblance

between Î and Ì images, especially, in the case that we want to
find similar feature points.
Examples of the barrel-shaped radial noise are shown in

Figure 5, left column. Similar to a study by Dubská et
al [34], we assume the vehicles traverse between the lanes in a
straight line. We use the vehicles’ trajectory sets to remove
radial distortion noise. For each vehicle 𝑣𝑖 , a polynomial
radial distortion model is applied to the location coordinates
(𝑥𝑣𝑖 , �̂�𝑣𝑖 ) of the vehicle’s trajectory set (𝑀𝑣𝑖 ) as follows:

(𝑥, �̄�) = ((𝑥𝑣𝑖 − 𝑥𝑠) (1+ 𝑘1𝑟2 + 𝑘2𝑟4 + ...),
( �̂�𝑣𝑖 − 𝑦𝑠) (1+ 𝑘1𝑟2 + 𝑘2𝑟4 + ...))

(7)

𝑟 =

√︃
(𝑥𝑣𝑖 − 𝑥𝑠)2 + ( �̂�𝑣𝑖 − 𝑦𝑠)2 (8)

where (𝑥, �̄�) is the corrected location of the vehicle, (𝑥𝑠 , 𝑦𝑠)
denotes the centre of the radial noise, 𝐾 = {𝑘1, 𝑘2, ...} are the
unknown scalar parameters of the model which need to be
estimated, and 𝑟 is the radius of the distortion with respect to
the centre of the image.
A rough estimation of 𝑘1 and 𝑘2 would be sufficient to

remove the major effects of such noise. To this regard, each
point of the moving trajectories would be applied to the Equa-
tion 7 yielding to transformed trajectory set �̄�𝑣𝑖 . Then, the
optimal values of 𝑘1 and 𝑘2 would be achieved by minimising
the sum of squared errors between the best fitting line ℓ to the
𝑀𝑣𝑖 and �̄�𝑣𝑖 as follows:

𝐾 = arg min
𝑘

∑︁
𝑣𝑖 ∈𝑉

∑︁
𝑙 𝑗 ∈�̄�𝑣𝑖

(ℓ.𝑙 𝑗 )2 (9)

where 𝑙 𝑗 is the corrected pixel location of the vehicle 𝑣𝑖
belonging to the transformed moving trajectory set �̄�𝑣𝑖 .
Finally, the optimal parameters will be estimated using

(1+𝜆)-ES evolutionary algorithm with 𝜆 = 8 as discussed
in [34].

Background Extraction: Since Î and Ì images are captured
using two different cameras (ground camera vs. aerial satellite
camera) and in different dates, times, or weather conditions,
the images may seem inconsistent and different. This is mostly
due to the existence of different foreground objects and road
users on each image. This makes it hard to find analogous
features to match.
To cope with that challenge, we extract the background

of image Î by eliminating the moving objects. We apply
an accumulative weighted sum over the intensity value for a
period of n𝑡 (frames) to remove the effect of the temporal pixel
value changes as follows:

B̂𝑡
= (1−𝛼)B̂𝑡−1 + (𝛼 Î𝑡 ) , 1 ≤ 𝑡 ≤ n𝑡 (10)

Figure 5. Eliminating the radial distortion in MIO-TCD
dataset samples [40]. Left column: original images. Right
column: rectified images after barrel distortion removal.

where initially B̂ is the accumulative variable and B̂0 is equal
to the first input frame I0, 𝛼 is the weighted coefficient that
determines the importance of the next incoming frame. Our
experiment shows that 𝛼 = 0.01, and n𝑡 ≈ 70 frames is usually
sufficient to remove the foreground objects in most urban and
city roads with a moderate traffic flow.
Figure 6 shows samples of the background extraction

method applied to various roads and traffic scenarios.

Histogram Matching: Lighting condition variation is another
barrier that makes it hard to find and match similar feature
points between Î and Ì.
We utilise a colour correlation-based histogram matching

[50] which adjusts the hue and luminance of Î and Ì into
the same range. The algorithm can be extended to find a
monotonic mapping between two sets of histograms. The
optimalmonotonic colourmapping 𝐸 is calculated tominimise
the distance between the two sets simultaneously.

𝑑 = arg min
𝐸

∑︁
𝑖=𝑛𝑝

𝑑 (𝐸 (Î𝑔𝑖 ), Ì𝑔𝑖 ) (11)

where Î𝑔 and Ì𝑔 are grey-level images, 𝑛𝑝 is the number of
pixels in each image, 𝐸 is histogram matching function, and
𝑑 (·, ·) is a Euclidean distance metric between two histograms.
Figures 7a and 7b show the results of the background

extraction and histogram matching process, respectively.
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(a) Laidlaw Library CCD original
video footage

(b) The generated Laidlaw Library
background video

(c) GRAM original video footage (d) GRAM background video

(e) UA-DAT original video footage (f) UA-DAT background video

Figure 6. Samples of background extraction on the UK
Leeds Laidlaw Library (Parkinson Building) dataset, GRAM
dataset [48], and UA-DAT dataset [49] .

3.3.2 Feature Matching
To handle the high affine variation between the images, we
adapt the Affine Scale-Invariant Feature Transform (ASIFT)
[51] method. This method generates view samples along
different latitude and longitude angles of the camera. Then it
applies Scale-Invariant Feature Transform (SIFT) [52] algo-
rithm. This makes it invariant to all parameters of the affine
transformation and a good candidate to match the features
between Î𝑔 and Ì𝑔.
However, theremight be some outliers between thematching

features causing inaccurate estimation of the matrix G. To
remove these outliers, we use Random Sample Consensus
(RANSAC) [53], which is an iterative learning algorithm
for parameter estimation. In each iteration, the RANSAC
algorithm randomly samples four corresponding pairs among
all matching points between Î𝑔 and Ì𝑔. Then, it calculates the
G matrix using the collected samples and performs a voting
process on all matching feature-pairs in order to find the best
matching samples.
Considering 𝑙 𝑓 and 𝑙 𝑓 as the locations of matching pairs,

the following criteria can be defined to evaluate the best
candidates:

𝐹𝑛 =

{
1 𝑑 (Λ(𝑙 𝑓 ,G), 𝑙 𝑓 ) < 𝜏z
0 Otherwise

(12)

where 𝐹𝑛 is the result of voting for the 𝑛-th pair, 𝜏z is a distance
threshold to determine whether a pair is an inlier or not, and

(a) Background extraction

(b) The outcome of histogram matching

Figure 7. Histogram matching algorithm applied to the
Leeds University Laidlaw Library (Parkinson Building)
surveillance camera (right column), and the satellite image of
the same location (left column).

𝑑 is the Euclidean distance measure. Consequently, the total
number of inlier votes (ℏ𝑖) for the matrixG in the 𝑖-th iteration
will be calculated as follows:

ℏ𝑖 =

𝜂∑︁
𝑛=1

𝐹𝑛 , 𝑖 ∈ 𝜁 (13)

where 𝜂 is the total number of matching feature-pairs, and 𝜁
is the total number of RANSAC iterations which is defined as
follows:

𝜁 =
log(1− 𝜌)
log(1− 𝜖𝛾) (14)

where 𝜖 is the probability of a pair being inlier (total number
of inliers divided by 𝜂), 𝛾 is the minimum number of random
samples (4 feature-pairs in our setting, which is the least
requirement in order to calculate G matrix), and 𝜌 is the
probability of all 𝜍 sampled pairs being inliers in an iteration.
After the end of the iterations, the G matrix with the highest
vote will be elected as the suitable transformation matrix
between Î𝑔 and Ì𝑔.
Figure 8 represents an example of the feature matching

process applied to a real-world scenario. Figures 8a and 8b
show the results of the ASIFT algorithm and the RANSAC
method, respectively.
Eventually, we apply theGmatrix on coordinates of interest

in Î (such as positions of detected objects (𝑥, �̂�)), to estimate
their corresponding coordinates in Ǐ:

(𝑥, �̌�) = Λ((𝑥, �̂�),G) (15)
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(a) ASIFT feature matching results

(b) RANSAC inlier matches

Figure 8. Feature matching process applied to the Leeds
University Laidlaw Library (Parkinson Building) surveillance
camera (right side) and the satellite image of the same
location (left side).

As it can be visually confirmed, Figure 9 shows a very accurate
result of mapping of the estimated matrix G on Î coordinates.
The resulting image has been projected on the Ì to make the
intersection of overlapping areas more visible, and also easier
for a visual comparison.

3.4 3D Environment Modelling and Traffic Analysis
Automated analysis of traffic scene videos via surveillance
cameras is a non-trivial and complex task. This is mainly due
to the existence of various types of objects such as trees, build-
ings, road users, banners, etc in various sizes and distances.
Occlusion and lighting conditions are additional parameters
that makes it even more complex. In this section, we elaborate
our techniques of providing an abstract visual representation
of the environment, objects of interest, traffic density, and
traffic flow. In order to achieve a 3D bounding box modelling
and representation of the road users, we require to identify
and recognise the following properties for the road users and
the road scene:

• Vehicle’s velocity (𝜗)

• Vehicle’s heading angle (𝜃)

• Road boundary detection

Initially, the estimation process of the vehicle’s velocity (𝜗)
and heading angle (𝜃) is described. Then we apply semantic
segmentation on the satellite image to extract the road’s region
and boundary, and finally, we propose a method to create 3D
bounding boxes.

Figure 9. Overlapping the estimated BEV image Ǐ to the
ground truth satellite image Ì of the same location.

3.4.1 Speed Estimation
Assuming the location of vehicle 𝑣𝑖 in the current time as
𝑙𝑡𝑣𝑖 = (𝑥𝑡𝑣𝑖 , �̌�

𝑡
𝑣𝑖
) and in the previous time as 𝑙𝑡−1𝑣𝑖

= (𝑥𝑡−1𝑣𝑖
, �̌�𝑡−1𝑣𝑖

)
in the trajectory set 𝑀𝑣𝑖 , the velocity can be calculated as
follows:

𝜗𝑣𝑖 =
𝑑 (𝑙𝑡𝑣𝑖 , 𝑙

𝑡−1
𝑣𝑖

)
Δ𝑡

× 𝜄 (16)

where Δ𝑡 is the time difference in seconds, and 𝜄 is the length
of one pixel in meters (pixel-to-meter ratio).
To calculate 𝜄, we consider a well-known measure, or an

standard object, sign, or road marking with a known size in
the scene, such as the width of the 2-lane city roads (which is
7𝑚 in the UK) or the length of white lane markings (which is
e.g. 3𝑚 in Japan) as a real-world distance reference. Dividing
the real-distance reference by the number of the pixels in the
same region of the satellite image, gives us the pixel-to-meter
ratio (𝜄).
Although the integrated Kalman filter of the object tracker in

the perspective image reduces the object localisation noise to
some extent, the SG-IPM method may add up some additional
noise in the bird’s eye view image, which in return leads to
an unstable bird’s eye view mapping and estimations. To
overcome this issue, we have applied a constant acceleration
Kalman filter on the object locations (𝑥, �̌�) which models the
motion of objects. The state matrix of this Kalman filter is
defined as:

x̆ = [ 𝑥 �̌� ¤𝑥 ¤𝑦 ¥𝑥 ¥𝑦 ]𝑇 (17)

where the ¤𝑥 and ¤𝑦 are the velocity and ¥𝑥 and ¥𝑦 are the
accelerations in 𝑥 and �̌� directions, respectively.
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We represent the Kalman transition matrix (Ă) as follows:

Ă =


1 0 𝑡𝑤 0 𝑡2𝑤

2 0
0 1 0 𝑡𝑤 0 𝑡2𝑤

2
0 0 1 0 𝑡𝑤 0
0 0 0 1 0 𝑡𝑤


(18)

where 𝑡𝑤 = 1
fps is the real-world time between the former and

the current frame depending on the camera frame rate (frame
per second, fps). The observation matrix z̆ can be defined as
follows:

z̆ = [ 𝑥 �̌� ]𝑇 (19)

Using the Kalman-based smoothed location (𝑥, �̌�) and the
frame by frame velocity of objects ¤𝑥, the speed of a vehicle
will be calculated (in mph) as follows:

𝜗𝑣𝑖 = ¤𝑥𝑣𝑖 × 𝜄 (20)

where ¤𝑥𝑣𝑖 is the "pixels per second" velocity of the vehicle 𝑣𝑖„
and 𝜄 is the pixel-to-mile ratio. Samples of estimated speeds
(in mph) is shown on top-left corner of the vehicle bounding
boxes in Figure 1, bottom row.
In case of missing observations due to e.g. partial

occlusion, we predict the current location of vehicles using
the process step of the Kalman filter (Ă .x̆) and buffer-
ing the predicted locations up to an arbitrary number of frames.

3.4.2 Angle Estimation
The heading angle of a vehicle can be calculated as follows:

𝜃𝑣𝑖 = 𝜃 (𝑙𝑡𝑣𝑖 , 𝑙
𝑡−1
𝑣𝑖

) = tan−1 (
�̌�𝑡𝑣𝑖 − �̌�

𝑡−1
𝑣𝑖

𝑥𝑡𝑣𝑖 − 𝑥𝑡−1𝑣𝑖

) (21)

The angle estimation is very sensitive to the displacement
of vehicle locations, and even a small noise in localisation can
lead to a significant change in the heading angle. However, in
the real world the heading angle of vehicles would not change
significantly in a very short period of time (e.g. between two
consequent frames).
We introduce a simple yet efficient Angle Bounce Filtering

(ABF) method to restrict sudden erroneous angle changes
between the current and previous angle of the vehicle:

Δ𝜃𝑣𝑖 = 𝜃
𝑡
𝑣𝑖
− 𝜃 𝑡−1𝑣𝑖

(22)

where Δ𝜃𝑣𝑖 is in the range of [−180◦,180◦]. In order to
suppress high rates of the changes, we consider a cosine
weight coefficient (w) as follows:

w =
cos((4𝜋× Δ̃) +1)

2
(23)

where Δ̃ is the normalised value of Δ𝜃𝑣𝑖 within the range of
[0,1]. The coefficient yields to "0" when the Δ𝜃𝑣𝑖 approaches
to ±90◦ to neutralise the sudden angle changes of the vehi-
cle. Similarly, the coefficient yields to "1" when the Δ𝜃𝑣𝑖

Figure 10. Δ𝜃 cosine suppression operation. The darker
zones receive a lower coefficients which in turn suppress any
large and sudden angular changes between two consequent
frames.

approaches to 0◦ or ±180◦ to maintain the natural forward and
backward movement of the vehicle. Figure 10 illustrates the
smoothed values of w by green colour spectrum. The darker
green, the lower the coefficient.
Finally, we rectify the vehicle-angle as follows:

𝜃 𝑡𝑣𝑖 = 𝜃
𝑡−1
𝑣𝑖

+ (w ×Δ𝜃𝑣𝑖 ) (24)

In some cases the moving trajectory may not be available;
for instance, when a vehicle appear on the road-scene for the
first time or some vehicles are stationary (or parked) during
their entire presence in the scene. For such cases the heading
direction of the vehicle cannot be directly estimated as no
prior data is available about the vehicle movement history.
However, we can still calculate the angle of the vehicles by
calculating a perpendicular line from the vehicle position to
the closest boundary of the road. Identifying the border of the
road requires a further road segmentation operation.
Some of the existing deep-learning based studies such

as [54] mainly focus on segmenting satellite imagery which
are captured from a very high altitude and heights comparing
to the height of CCTV surveillance cameras.
Moreover, there are no annotated data available for such

heights to train a deep-learning based road segmentationmodel.
In order to cope with that limitation, we adapt a Seeded Region
Growing method (SRG) [55] on intensity values of the image
Ǐ.
We consider the moving trajectory of vehicles traversing

the road in Ǐ domain (Λ(𝑀𝑣𝑖 ,G) ∀𝑣𝑖 ∈ 𝑉), as initial seeds for
the SRG algorithm. In the first step, the algorithm calculates
the intensity difference between each seed and its adjacent
pixels. Next, the pixels with an intensity distance less than a
threshold 𝜏𝛼, are considered as connected regions to the seeds.
Utilising these pixels as new seeds, the algorithm repeats the
above steps until no more connected regions are found. At
the end of the iterations, the connected regions represent the
segment of the road.
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Figure 11. Road segmentation on the satellite image. The red
lines represent the initial segmentation result extracted from
the SRG method, and the green region is the final
segmentation output after applying the morphological
operations.

Due to a large intensity variations among adjacent pixels
in the road segment (such as white lane markings vs the dark
grey asphalt coatings), there might be some fragmented road
boundary segments as shown in Figure 11 (the regions denoted
by red lines at the centre and around the road).
We apply morphological dilation operations with 3× 3

kernel size, to expand the segmented area and fill these small
gap regions. Also, an erosion operation with the same kernel
size is performed to smooth the road region by removing the
sharp edges and spikes of the road boundaries. Figure 11,
green regions, represent the segmentation results.
The road segmentation process can be done as an offline

procedure before the real-time traffic monitoring operation
starts. The scene need to be monitored until sufficient vehicle
locations (seeds) are detected to segment the entire road region.
Since the initial seeds are moving trajectories of vehicles, the
monitoring time may vary for different scenes depending on
the presence of the vehicles traversing the road. Based on
our experience this may vary from 5 seconds to 5 minutes
depending on the live traffic flow.
In order to calculate the reference heading angle for each

vehicle (𝑣𝑖), we find a point (𝑙r𝑣𝑖 ) on the road border which
has the minimum Euclidean distance to the vehicle’s central
location. This distance is shown by the red dash-line in Figure
12 which is perpendicular to the road border.
We consider a small circle (the blue circle) with negligible

radius 𝔯 centring at 𝑙r𝑣𝑖 . Then, we find locations of two points
(Ψ1 and Ψ2 ), in which the circle intersects the road boundary.
Finally, similar to a derivative operation, the heading angle is
calculated by 𝜃 (Ψ1,Ψ2), which represents the slope of the
red lines at the road boundary, as well as the vehicle heading

Figure 12. Reference angle estimation process with respect
to nearest road boundary. The boundaries are denoted with
green lines, which are extracted by application of the Canny
edge detector on the road segment borders.

angle (Figure 12).

3.4.3 2D to 3D Bounding Box Conversion
In order to determine the occupied space of each object in
Î domain, we convert a 2D bounding box (Figure 13a) to a
cubical 3D bounding box by estimating 8 cube’s corners. The
cube’s floor consists of 4 corner points and corresponds to
a rectangle in the Ǐ domain (Figure 13b the middle shape).
This rectangle indicates the area of the ground plate which is
occupied by the object, and can be addressed with the centre
(𝑥, �̌�), the height ℎ̌𝑏 and the width �̌�𝑏. The ℎ̌𝑏 and �̌�𝑏 are
determined based on prior knowledge about the approximate
height and width of the corresponding object’s category in real
world (i.e. 5.80×2.9 meter for buses in the UK). In order to
have these distances in pixel criterion, we divide them by the
pixel-to-meter ratio (𝜄), as explained in the Speed Estimation
section (3.4.1).
For each vehicle, the rectangle is rotated and alignedwith the

estimated heading angle 𝜃𝑣𝑖 to represent the object’s movement
direction. Then, the four corners of the resulting rectangle are
converted to Î domain using the G−1 matrix and considered
as the corners of the cube’s floor. Afterwards, we add ℎ3𝐷 to
the 𝑦 axis of the floor corners to indicate the 4 points of the
cube’s roof.
The height of the cube for all road users, except the pedes-

trians, is set ℎ3𝐷 = 𝛽× ℎ𝑏 , where 𝛽 = 0.6 is determined by our
experiments as a suitable height coefficient for the detected
bounding boxesin the Î domain. The cube’s height for pedes-
trians is equal to the height of the detected bounding box in
the perspective domain (ℎ3𝐷 = ℎ𝑏).
Figure 13a, 13b, 13c show the hierarchical steps of our

approach from 2D to 3D conversion on Leeds University
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(a) Detected objects in 2D bounding boxes

(b) 2D to 3D bounding box conversion

(c) Final 3D representation

Figure 13. 2D to 3D bounding box conversion process in
four categories of vehicle/truck, pedestrian, bus, and cyclist.

Laidlaw Library surveillance camera footage.

4 Experiments
In this section, we evaluate the performance and accuracy of the
proposed 3D road-users detection model followed by assessing
the efficiency of the proposed environment modelling.

4.1 Performance Evaluation
The majority of modern object detectors are trained and
evaluated on large and common datasets such as Microsoft
Common Objects in Context (Ms-COCO) [39]. The COCO
dataset consists of 886,284 samples of general annotated
objects for 80 categories (include person, animal, appliance,
vehicle, accessory etc.) in 123,287 images. However, none of

them is dedicated to traffic monitoring purposes.
We considered the MIO-TCD dataset [40] which consists

of 648,959 images and 11 traffic-related annotated categories
(including cars, pedestrian, bicycle, bus, three types of trucks,
two types of vans, motorised vehicles, and non-motorised
vehicles) to train and evaluate our models. The dataset has
been collected at different times of the day and different
seasons of the year by thousands of traffic cameras deployed
all over Canada and the United States.
As per Table 1, we also considered two more traffic moni-

toring video-footage including UA-DETRAC [49] and GRAM
Road-Traffic Monitoring (GRAM-RTM) [48] to test our mod-
els under different weather and day/night lighting conditions.
Moreover, we set up our own surveillance camera at one of the
highly interactive intersections of Leeds City, near the Parkin-
son Building at the University of Leeds, to further evaluate the
performance of our model on a real-world scenario consisting
of 940,000 video frames from the live traffic.
As mentioned in the Methodology section (3.1), we adopted

transfer learning to train different architectures of YOLOv5
model on the MIO-TCD dataset. We exploited pre-trained
weights of 80 class COCO dataset as initial weights of our
fine-tuning process.
There are four versions of YOLOv5 which are distinguished

by the number of learning parameters. The “small” with 7.5
million parameters is a lightweight version, “medium” version
(21.8 million), “large” (47.8 million), and “xlarg” version
which has 89 million learnable parameters. We performed
experiments with different number of head modules which
consist of three or four head outputs to classify different sizes
of objects (as described in section 3.1).
In the training phase (Figure 14a), we minimised the loss

function of the adapted YOLOv5, based on a sum of three
loss terms including the "C-IoU loss" as the bounding box
regression loss, "objectness confidence loss", and "binary
cross entropy" as the classification loss.
In order to choose optimal learning-rate and avoid long train-

ing time, we used one-cycle-learning-rate [56]. This gradually
increases the learning rate to a certain value (called warm-up
phase) followed by a decreasing trend to find the minimum
loss, while avoiding local minima. In our experiments, we
found the minimum and maximum learning rates of 0.01 and
0.2 as the optimum values.
Figure 14 illustrates the analytic graphs of the training and

validation processes. As per the classification graphs ( Fig.
14a), the training loss starts decreasing around epoch 35, while
the validation loss starts increasing (Fig. 14b). This is a
sign of over-fitting in which the model starts memorising the
dataset instead of learning generalised features. To avoid the
effects of over-fitting, we choose the optimal weights which
yield the minimum validation loss.
Table 2 compares the performance of the proposedYOLOv5-

based model with 10 other state-of-the-art object detection
method on the challenging dataset of MIO-TCD. Two metrics
of mAP and speed (fps) are investigated.
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Table 1. Specifications of the test datasets used in this research, including various weather conditions, resolutions, frame rates,
and video lengths.

Dataset Weather Length (frame) Resolution fps

UA-DET [49] Sunny, Rainy, Cloudy, Night 140000 960×540 25
GRAM-RTM [48] Sunny, Foggy 40345 1200×720 30
UK Leeds Parkinson Day, Sunset, Night 940000 1920×1080 30

(a) Train

(b) Validation results

Figure 14. Error minimisation graphs of the model in training and validations phases, after 50 epochs.

As can be seen, the adapted YOLOv5-based model has
achieved a considerable increase in mean average precision
comparing to the former standard YOLOv4 algorithm (84.6%
versus 80.4% ). The experiments also proved that 3-head
versions of YOLOv5 provides more efficiency in traffic moni-
toring than the 4-head versions. The lightweight version of
YOLOv5 reaches the highest rate of speed (123 𝑓 𝑝𝑠). While
the model has sacrificed the accuracy by −1.7% in comparison
to the highest rate (84.6%).
The YOLOv5 xLarge and Large, with 3 heads reach the

highest accuracy of 84.6% on the MIO-TCD benchmark
dataset. Although the xLarge model has more parameters to
learn features, the network complexity is greater than what
is required to learn the features in the dataset. This prevents
the accuracy to go beyond 84.6%. Also, it suffers from the
lack of adequate speed to perform in real-time performance.
Whereas the 3-head YOLOv5 Large, has the same 𝑚𝐴𝑃
score, and provides a real-time performance of 36.5 𝑓 𝑝𝑠. This
makes the model more suitable for the cases in which heavy
post-processing procedures are involved.
Table 3 shows the test results of our pioneer detection

model (YOLOv5-Large, 3 head) on UA-DET and GRAM-
RTM datasets with very high precision rates of 99.8% and
99.7%, respectively. The GRAM-RTM dataset only provides
ground truth annotations for one lane of the road. So, we
applied a mask to ignore the non-annotated lanes of the road;
otherwise, our proposed model is capable of detecting vehicles
in both lanes.
Figure 15, top row, shows the results of the detection

algorithm and 3D localisation of the road users. Figure 15, the
bottom row, shows the environment modelling of the scene
as a digital twin of the scene and live traffic information.
Such live information (which can be stored in cloud servers),
would be be very useful for city councils, police, governmental
authorities, traffic policy makers, and even as extra source of
processed data for automated vehicles (AVs) which traverse
around the same zone. Such rich digital twins of the road
condition can significantly along with the ego-vehicles sensory
data can enhance the AVs’ capability in better dealing with
the corner cases and complicated traffic scenarios.
In Figure 15 we are also trying to show the efficiency of the

heading angle estimation and the tracking system in case of
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Table 2. A comparison of mean average precision (mAP) rate between the developed models and 10 other models on MIO-TCD
dataset. The accuracy scores of 3 truck categories (Articulate Truck, Pickup Truck and Single Unit Truck) is averaged and
presented in a one column- "Trucks × 3".

Method Speed (fps) mAP Bicycle Bus Car Motorcycle Motorised
Vehicle

Non-motorised
Vehicle

Pedestrian Work Van Trucks × 3

Faster-RCNN [40] 9 70.0 % 78.3% 95.2% 82.6% 81.1% 52.8% 37.4% 31.3% 73.6% 79.2%
RFCN-ResNet-Ensemble4 [57] - 79.2% 87.3% 97.5% 89.7% 88.2% 62.3% 59.1 % 48.6 % 79.9 % 86.4%

SSD-512 [40] 16 77.3% 78.6% 96.8% 94.0% 82.3% 56.8% 58.8% 43.6% 80.4% 86.4 %
Context ModelA [58] - 77.2% 79.9% 96.8% 93.8% 83.6% 56.4% 58.2% 42.6% 79.6% 86.1%
Adaptive Ensemble [59] - 74.2% 82.2% 95.7% 91.8% 87.3% 60.7% 45.7 % 47.9% 63.8% 80.5%

SSD-300 [40] 16 74.0% 78.3% 95.7% 91.5% 78.9% 51.4% 55.2% 37.3% 75.0% 83.5%
YOLOv2-MIOTCD [40] 18 71.8% 78.6% 95.1% 81.4% 81.4% 51.7% 56.6% 25.0% 76.4% 81.3%
YOLOv2-PascalVOC [40] 18 71.5% 78.4% 95.2% 80.5% 80.9% 52.0% 56.5% 25.7 % 75.7% 80.4 %

YOLOv1 [40] 19 62.7 % 70.0% 91.6% 77.2% 71.4% 44.4% 20.7% 18.1% 69.3% 75.5%
Our Experiments

YOLOv4 24 80.4% 89.2% 95.8% 91.6% 91.5% 58.6% 63.9% 63.4% 79.0% 83.7 %
YOLOv5 Small (3 head) 123.5 82.8% 91.6% 98.3% 95.5% 94.1% 50.5% 65.6% 70.1% 81.8% 87.8 %
YOLOv5 Medium (3 head) 60.60 84.1% 92.4% 98.4% 95.9% 94.3% 51.7% 68.8% 74.8% 83.3% 88.6 %
YOLOv5 Large (3 head) 36.50 84.6% 92.5% 98.7% 95.9% 94.3% 51.7% 70.1% 77.4% 83.8% 88.8%
YOLOv5 xLarge (3 head) 20.16 84.6% 92.7% 98.7% 96.0% 94.1% 51.7% 71.2% 76.2% 83.8% 88.8%
YOLOv5 Large (4 head) 117.6 80.9% 91.2% 97.8% 95.1% 91.7% 48.4% 61.9% 64.3% 80.0% 86.6%
YOLOv5 Medium (4 head) 54.90 82.9% 92.2% 98.4% 95.5% 93.1% 50.0% 66.8% 69.5% 82.1% 88.1%
YOLOv5 Large (4 head) 33.00 83.4% 92.9% 98.4% 95.7% 93.7% 50.6% 68.0% 71.3% 82.6% 88.0%
YOLOv5 xLarge (4 head) 19.20 83.7% 91.8% 98.4% 95.7% 93.5% 50.8% 69.0% 72.2% 83.4% 88.5%

Table 3. Detection performance of our YOLOv5 Large (3
head) model on two auxiliary traffic-related datasets.

Datasets Precision Recall

UA-DET [49] 99.8% 99.7%
GRAM-RTM [48] 99.7% 99.5%

full occlusions. As can be seen, one of the cars in the scene is
taking a U-turn and we have properly identified the heading
angle of the car at frame 82100 (indicated with blur arrow).
This can be compared with its previous angle and position in
frame 82000. Considering the position and the heading angle
of the vehicle at frames 82000 and 82100, the 3D bounding
box of the vehicle is also determined.
As another complicated example in the same scene, one

of the cars is fully occluded by a passing bus at frame 82100
(indicated with a red arrow). However the car has been fully
traced by utilisation of the spatio-temporal information and
tracking data at frame 82000 and beyond.

4.2 Environment Modelling and Traffic Analysis
In order to take the most of the detection and tracking algo-
rithms and to provide smart traffic monitoring analysis, we
defined three possible states for vehicles and pedestrians as
follows:

• Parking: a set P contains all of the vehicles which have
less than one-meter distance in Ǐ domain from the road
border (𝑙r𝑣𝑖 ), and their temporal speeds (𝜗𝑣𝑖 ) have been
close to zero for more than 1 minute.

• Speeding Violation: a setS consists of vehicles in which

their speed (𝜗𝑣𝑖 ) is more than the speed limit of the road
(i.e. 30 mph for Leeds city centre, UK).

• Collision Risk: a set D consists of pedestrians whose
distances from vehicles are less than a meter, and the
vehicles are not in the parking status P.

To analyse the traffic condition, we buffer the count of
tracked vehicles and pedestrians locations during a period of
time (e.g. 6,000 frames) as shown by line graph in Figure 16a.
In order to visualise a long-term spatio-temporal statistical

analysis of traffic flow and interactions between road users,
a heat map representation is created similar to our previous
work in another context for social distancing monitoring [60].
The heat map is defined by the matrix Ȟ𝑡 ∈ R�̌�×ℎ̌ in the
satellite domain, where 𝑡 is the frame-ID number. The
matrix is initially filled with zero to save the last location
of objects using the input image sequences. The heat map
updates in each frame by the function 𝐺 (object) (Ȟ) which
applies a 3 × 3 Gaussian matrix centred at the object’s
location (𝑥, �̌�) on the Ȟ matrix. Finally, we normalise the
heat map intensity values between 0 and 255, in order
to visualise it as a colour-coded heat image. Then a
colour spectrum will be mapped to the stored values in
the Ȟ matrix in which the red-spectrum represents the
higher values, and the blue-spectrum represents the low values.

The heat map of the detected pedestrians is shown by Ȟ(𝑝) ,
which updates over time as follows:

Ȟ𝑡

(𝑝) = 𝐺 (𝑝𝑖) (Ȟ
𝑡−1
(𝑝) ) ∀𝑝𝑖 ∈ 𝑃 (25)

Figure 16b illustrates the developed heat map Ȟ(𝑝)on the
satellite image. The lower range values have been removed for
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(a) Detected cars and bus on frame 82000 (b) Detected cars and bus on frame 82100

(c) Environment mapping result of frame 82000 (d) Environment mapping result of frame 82100

Figure 15. The outputs of adapted 3-head YOLOv5-large algorithm for road-user detection and environment modelling.

better visualisation. This figure provides valuable information
about the pedestrians’ activity. For instance, we can see a
significant number of pedestrians have crossed the dedicated
zebra-crossing shown by the green rectangle. However, in
another region of the road (marked by a red rectangle) many
other pedestrians cross another part of the road where there is
no zebra-crossing. Also, there are a few pedestrians who has
crossed the street directly in front of the bus station.
Similarly, the heat map for detected vehicles is defined as

follows:

Ȟ𝑡

(𝑣) = 𝐺 (𝑣𝑖) (Ȟ
𝑡−1
(𝑣) ) ∀𝑣𝑖 ∈ 𝑉 , 𝑣𝑖 ∉ P (26)

where Ȟ(𝑣) stores the location of moving vehicles only (not
stationary or parked vehicles). This matrix has illustrated
in Figure16c. This heat map represents that more vehicles
are traversing on the left lane of the road comparing to the
opposite direction, on the right lane.
The heat map images can be also mapped to the perspec-

tive space by: Ĥ = Λ(Ȟ,G−1). Figures 16d and 16e are
corresponded maps of Figures 16b and 16c, respectively.
We also investigated the speed violation heat map Ȟ(𝜗) and

the areas in which vehicles violated the speed limit of the road:

Ȟ𝑡

(𝜗) = 𝐺 (𝑣𝑖) (Ȟ
𝑡−1
(𝜗) ) ∀𝑣𝑖 ∈ S (27)

Figure 17a and 17b, illustrates an instance of speed heat
map calculated over the 10,000 selected frames. As can be
seen the speeding violation significantly decreases near the
pedestrian crossing zone, which makes sense. As a very useful
application of our developed model, similar investigations can
be conducted in various parts of city and urban areas, in order
to identify less known or hidden hazardous zones where the
vehicles may breach the traffic rules.
The graph shown in Figure 17c, represents the average

speed of all vehicles in the scene during the selected period of
the monitoring. In each frame, the average speed is calculated
by:

�̄� =

∑
𝜗𝑣𝑖

𝑛𝑣
∀𝑣𝑖 ∈ 𝑉,𝑣𝑖 ∉ P (28)

where 𝑛𝑣 is the number of vehicles that are not in the Parking
state.
In order to identify the congested and crowded spots in the

scene, we can monitor the vehicles e.g. with less than 2m
distances to each other with an average speed of e.g. lower than
5mph. The shorter vehicles’ proximity over a longer period
of time, the larger values will be stored in the congestion
buffer; consequently, a hotter heat map will be generated.
Defining optimum values of distance and speed threshold
requires and intensive analytical and statistical data collection
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(a) Vehicle and pedestrian counts over 6000 video frames. Source: Parkinson building CCTV surveillance camera.

(b) BEV Pedestrian movements heat map (c) BEV vehicle movements heat map

(d) Pedestrian movements heat map- Perspective view (e) Vehicle movements heat map- Perspective view

Figure 16. Spatio-temporal long-term analysis of vehicles and pedestrians’ activity using Parkinson Building surveillance
camera, Leeds, UK

and assessments based on the road type (e.g. highway or a
city road) which is out of the scope of this research.

However, as a general-purpose solution and similar to the
previous heat maps, we defined the congestion heat map Ȟ(C)
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(a) Speed violation heat map- Perspective view

(b) BEV speed violation heat map

(c) Average speed of moving vehicles in the scene

Figure 17. Automated speed monitoring and heat map
analysis based on 10,000 video frames from the Laidlaw
Library surveillance camera, Leeds, UK

as follows:

Ȟ𝑡

(C) = 𝐺 (𝑣𝑖) (Ȟ
𝑡−1
(C) ) ∀𝑣𝑖 ∈ A (29)

whereA is an ID set of vehicles that are in the congested areas.

Figure 18. Heat map representation of congested areas based
on 10,000 live video frames from Woodhouse lane, Leeds
LS2 9JT, UK.

Figure 19. Heat map representation of areas in which
vehicles and pedestrians were too close to each other.
Source/Location: 10,000 live video frames, Woodhouse lane,
Leeds LS2 9JT, UK.

As we can see in Figure 18, there are two regions of congestion,
one before the pedestrian crossing which is probably due to
the red traffic light which stops the vehicles, and also a second
congestion spot at the T-junction (top left side of the scene),
where the vehicles stop and line up before joining the main
road.
Figure 19 shows the pedestrian behaviour’s heat map by

monitoring the pedestrians who are not maintaining a mini-
mum safety distance of 2𝑚 to the passing vehicles. Similarly,
the heat map of the high-risk pedestrians can be updated
according to the following equation:

Ȟ𝑡

(W) = 𝐺 (𝑝𝑖) (Ȟ
𝑡−1
(W) ) ∀𝑝𝑖 ∈ D (30)

The hot area in front of the bus station is more likely caused
by the buses which stop just beside the bus station. The heat
map also shows another very unsafe and risky spot in the same
scene where some of the pedestrians have crossed through the
middle of a complex 3-way intersection. This may have been
caused by careless pedestrians who try to reach the bus stop
or leave the bus stop via a high-risk shortcut.
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All experiments and performance evaluations in this re-
search were conducted on a PC workstation with an Intel
©Core™ i5-9400F processor and an NVIDIA RTX 2080 GPU
with CUDA version 11. All services were performed based on
a unified software using parallel processing for simultaneous
utilisation of all processor’s cores to enhance the execution
performance. Similarly, all image-processing-related calcula-
tions were performed on GPU tensor units to increase speed
and efficiency.
The running time of the whole services is 0.05 𝑚𝑠, except

for the speed of the object detector which can slightly vary
depending on the lighting and complexity of the environment.

5 Conclusion
In this article, we proposed a real-time traffic monitoring
system called Traffic-Net which applies a customised 3-head
YOLOv5 model to detect various categories of vehicles and
pedestrian. A multi-class and multi-object tracker named
MOMCT were also developed for an accurate and continuous
classification, identifications, and localisation of the same
objects over consequent video frames, as well as prediction of
the next position of vehicles in case of missing information.
In order to develop a general-purpose solution applicable on
the majority of traffic surveillance cameras, we introduced
an automatic camera calibration techniques (called SG-IPM)
to estimate real-world positions and distances using a com-
bination of near-perpendicular satellite images and ground
information.
Having the real-world position of the vehicles, a constant

acceleration Kalman filter was applied for smooth speed esti-
mation. Using spatio-temporal moving trajectory information,
the heading angle of vehicles were also calculated. We also in-
troduced the ABF method to remove the angle variation noise
due to occlusion, sensor limitation, or detection imperfection.
These led to 3D bounding box estimation and traffic heat

map modelling and analysis which can help the researchers
and authorities to automatically analyse the road congestion,
high-risk areas, and the pedestrian-vehicle interactions. Ex-
perimental results on the MIO-TCD dataset and a real-world
road-side camera, confirmed the proposed approach well dom-
inates 10 state-of-the-art research work in ten categories of
vehicles and pedestrian detection. Tracking, auto-calibration,
and automated congestion detection with a high level of
accuracy (up to 84.6%) and stability over various lighting
conditions were other outcomes of this research.
As a future study and in order to improve the feature match-

ing process between the camera and satellite images, a neural
network-based feature matching algorithm can be applied
to increase the accuracy. Also, many other strategies (like
evolutionary algorithms, feature engineering, and generative
models) can be used to provide more robust features, to tackle
the matching failures.
Availability of larger datasets can further help to improve

the accuracy of heat maps, to identify high-risk road spots and
further statistical analyses.

Acknowledgement
The research has received funding from the European Commis-
sion Horizon 2020 program under the L3Pilot project, grant
No. 723051 as well as the interACT project from the European
Union’s Horizon 2020 research and innovation program, grant
agreement No. 723395. Responsibility for the information
and views set out in this publication lies entirely with the
authors.

References
1. Nambiar, R., Shroff, R. & Handy, S. Smart cities:
Challenges and opportunities. In 2018 10th Interna-
tional Conference on Communication Systems Networks
(COMSNETS), 243–250, DOI: 10.1109/COMSNETS.
2018.8328204 (2018).

2. Sheng, H., Yao, K. & Goel, S. Surveilling surveillance:
Estimating the prevalence of surveillance cameras with
street view data. arXiv preprint arXiv:2105.01764 DOI:
10.1007/978-3-642-38622-0_32 (2021).

3. Olatunji, I. E. & Cheng, C.-H. Video analytics for
visual surveillance and applications: An overview
and survey. Mach. Learn. Paradigms 475–515, DOI:
10.1007/978-3-030-15628-2_15 (2019).

4. Mondal, A., Dutta, A., Dey, N. & Sen, S. Visual traffic
surveillance: A concise survey. In Frontiers in Artificial
Intelligence and Applications, vol. 323, 32–41, DOI:
10.3233/FAIA200043 (IOS Press, 2020).

5. Poddar, M., Giridhar, M., Prabhu, A. S., Umadevi, V.
et al. Automated trafficmonitoring system using computer
vision. In 2016 International Conference on ICT in
Business Industry & Government (ICTBIG), 1–5, DOI:
10.1109/ICTBIG.2016.7892717 (IEEE, 2016).

6. Hu, W., Tan, T., Wang, L. & Maybank, S. A survey on
visual surveillance of object motion and behaviors. IEEE
Transactions on Syst. Man Cybern. Part C: Appl. Rev. 34,
334–352, DOI: 10.1109/TSMCC.2004.829274 (2004).

7. Yang, W., Fang, B. & Tang, Y. Y. Fast and accurate
vanishing point detection and its application in inverse
perspective mapping of structured road. IEEE Trans-
actions on Syst. Man, Cybern. Syst. 48, 755–766, DOI:
10.1109/TSMC.2016.2616490 (2018).

8. Oliveira, M., Santos, V. & Sappa, A. D. Multimodal
inverse perspective mapping. Inf. Fusion 24, 108–121,
DOI: https://doi.org/10.1016/j.inffus.2014.09.003 (2015).

9. Brunetti, A., Buongiorno, D., Trotta, G. F. & Bevilacqua,
V. Computer vision and deep learning techniques for
pedestrian detection and tracking: A survey. Neurocom-
puting 300, 17–33, DOI: 10.1016/j.neucom.2018.01.092
(2018).

10. Rezaei, M., Terauchi, M. & Klette, R. Robust vehicle de-
tection and distance estimation under challenging lighting

18/21

10.1109/COMSNETS.2018.8328204
10.1109/COMSNETS.2018.8328204
10.1007/978-3-642-38622-0_32
10.1007/978-3-030-15628-2_15
10.3233/FAIA200043
10.1109/ICTBIG.2016.7892717
10.1109/TSMCC.2004.829274
10.1109/TSMC.2016.2616490
https://doi.org/10.1016/j.inffus.2014.09.003
10.1016/j.neucom.2018.01.092


conditions. IEEE Transactions on Intell. Transp. Syst. 16,
2723–2743, DOI: 10.1109/TITS.2015.2421482 (2015).

11. Gawande, U., Hajari, K. & Golhar, Y. Pedestrian detec-
tion and tracking in video surveillance system: Issues,
comprehensive review, and challenges. Recent Trends
Comput. Intell. DOI: 10.5772/intechopen.90810 (2020).

12. Cheung, S.-c. S. & Kamath, C. Robust techniques for
background subtraction in urban traffic video. In Pan-
chanathan, S. & Vasudev, B. (eds.) Visual Communica-
tions and Image Processing 2004, vol. 5308, 881–892,
DOI: 10.1117/12.526886. International Society for Optics
and Photonics (SPIE, 2004).

13. Zhou, J., Gao, D. & Zhang, D. Moving vehicle detection
for automatic traffic monitoring. IEEE Transactions on
Veh. Technol. 56, 51–59, DOI: 10.1109/TVT.2006.883735
(2007).

14. Chintalacheruvu, N., Muthukumar, V. et al. Video based
vehicle detection and its application in intelligent trans-
portation systems. J. transportation technologies 2, 305,
DOI: 10.4236/jtts.2012.24033 (2012).

15. Cheon, M., Lee, W., Yoon, C. & Park, M. Vision-
based vehicle detection system with consideration of the
detecting location. IEEE Transactions on Intell. Transp.
Syst. 13, 1243–1252, DOI: 10.1109/TITS.2012.2188630
(2012).

16. Zou, Z., Shi, Z., Guo, Y. & Ye, J. Object detection in 20
years: A survey. arXiv preprint arXiv:1905.05055 (2019).

17. Jiao, L. et al. A survey of deep learning-based object
detection. IEEE Access 7, 128837–128868, DOI: 10.
1109/ACCESS.2019.2939201 (2019).

18. Liu, W. et al. Ssd: Single shot multibox detector. In
European conference on computer vision, 21–37, DOI:
10.1007/978-3-319-46448-0_2 (Springer, 2016).

19. Arinaldi, A., Pradana, J. A. & Gurusinga, A. A. Detection
and classification of vehicles for traffic video analytics.
Procedia Comput. Sci. 144, 259–268, DOI: https://doi.org/
10.1016/j.procs.2018.10.527 (2018). INNS Conference
on Big Data and Deep Learning.

20. Peppa, M. V. et al. Towards an end-to-end framework of
cctv-based urban traffic volume detection and prediction.
Sensors 21, DOI: 10.3390/s21020629 (2021).

21. Bui, K.-H. N., Yi, H. & Cho, J. A multi-class multi-
movement vehicle counting framework for traffic analysis
in complex areas using cctv systems. Energies 13, DOI:
10.3390/en13082036 (2020).

22. Mandal, V., Mussah, A. R., Jin, P. & Adu-Gyamfi, Y. Arti-
ficial intelligence-enabled traffic monitoring system. Sus-
tainability 12, 9177, DOI: 10.3390/su12219177 (2020).

23. Arnold, E. et al. A survey on 3d object detection methods
for autonomous driving applications. IEEE Transactions
on Intell. Transp. Syst. 20, 3782–3795, DOI: 10.1109/tits.
2019.2892405 (2019).

24. Zhang, Z., Zheng, J., Xu, H. & Wang, X. Vehicle
Detection and Tracking in Complex Traffic Circumstances
with Roadside LiDAR. Transp. Res. Rec. 2673, 62–71,
DOI: 10.1177/0361198119844457 (2019).

25. Zhang, J., Xiao, W., Coifman, B. & Mills, J. P. Vehicle
Tracking and Speed Estimation From Roadside Lidar.
IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 13, 5597–
5608, DOI: 10.1109/JSTARS.2020.3024921 (2020).

26. Song, Y., Yao, J., Ju, Y., Jiang, Y. & Du, K. Automatic de-
tection and classification of road, car, and pedestrian using
binocular cameras in traffic scenes with a common frame-
work. Complexity 2020, DOI: 10.1155/2020/2435793
(2020).

27. Alldieck, T., Bahnsen, C. H. & Moeslund, T. B. Context-
aware fusion of rgb and thermal imagery for traffic moni-
toring. Sensors 16, DOI: 10.3390/s16111947 (2016).

28. Fernandes, D. et al. Point-cloud based 3d object detection
and classification methods for self-driving applications:
A survey and taxonomy. Inf. Fusion 68, 161–191, DOI:
10.1016/j.inffus.2020.11.002 (2021).

29. Zhou, T., Fan, D.-P., Cheng, M.-M., Shen, J. & Shao, L.
Rgb-d salient object detection: A survey. Comput. Vis.
Media 1–33, DOI: 10.1007/s41095-020-0199-z (2021).

30. Laga, H. A survey on deep learning architectures
for image-based depth reconstruction. arXiv preprint
arXiv:1906.06113 (2019).

31. Xie, J., Girshick, R. & Farhadi, A. Deep3d: Fully auto-
matic 2d-to-3d video conversion with deep convolutional
neural networks. In European Conference on Computer
Vision, 842–857, DOI: 10.1007/978-3-319-46493-0_51
(Springer, 2016).

32. Bhoi, A. Monocular depth estimation: A survey. arXiv
preprint arXiv:1901.09402 (2019).

33. Rezaei, M. & Klette, R. Computer vision for driver
assistance. Cham: Springer Int. Publ. 45, DOI: https:
//doi.org/10.1007/978-3-319-50551-0 (2017).

34. Dubská, M., Herout, A., Juránek, R. & Sochor, J. Fully
automatic roadside camera calibration for traffic surveil-
lance. IEEE Transactions on Intell. Transp. Syst. 16,
1162–1171, DOI: 10.1109/TITS.2014.2352854 (2015).

35. Sochor, J., Juránek, R. & Herout, A. Traffic surveillance
camera calibration by 3D model bounding box alignment
for accurate vehicle speed measurement. Comput. Vis.
Image Underst. 161, 87–98, DOI: https://doi.org/10.1016/
j.cviu.2017.05.015 (2017).

36. Song, H. et al. 3d vehicle model-based ptz camera auto-
calibration for smart global village. Sustain. Cities Soc. 46,
101401, DOI: https://doi.org/10.1016/j.scs.2018.12.029
(2019).

37. Kim, Z. Camera calibration from orthogonally projected
coordinates with noisy-ransac. In 2009 Workshop on

19/21

10.1109/TITS.2015.2421482
10.5772/intechopen.90810
10.1117/12.526886
10.1109/TVT.2006.883735
10.4236/jtts.2012.24033
10.1109/TITS.2012.2188630
10.1109/ACCESS.2019.2939201
10.1109/ACCESS.2019.2939201
10.1007/978-3-319-46448-0_2
https://doi.org/10.1016/j.procs.2018.10.527
https://doi.org/10.1016/j.procs.2018.10.527
10.3390/s21020629
10.3390/en13082036
10.3390/su12219177
10.1109/tits.2019.2892405
10.1109/tits.2019.2892405
10.1177/0361198119844457
10.1109/JSTARS.2020.3024921
10.1155/2020/2435793
10.3390/s16111947
10.1016/j.inffus.2020.11.002
10.1007/s41095-020-0199-z
10.1007/978-3-319-46493-0_51
https://doi.org/10.1007/978-3-319-50551-0
https://doi.org/10.1007/978-3-319-50551-0
10.1109/TITS.2014.2352854
https://doi.org/10.1016/j.cviu.2017.05.015
https://doi.org/10.1016/j.cviu.2017.05.015
https://doi.org/10.1016/j.scs.2018.12.029


Applications of Computer Vision (WACV), 1–7, DOI:
10.1109/WACV.2009.5403107 (2009).

38. Jocher, G. et al. ultralytics/yolov5: v5.0 - YOLOv5-P6
1280 models, AWS, Supervise.ly and YouTube integra-
tions, DOI: 10.5281/zenodo.4679653 (2021).

39. Lin, T.-Y. et al. Microsoft coco: Common objects in
context (2015). 1405.0312.

40. Luo, Z. et al. Mio-tcd: A new benchmark dataset for
vehicle classification and localization. IEEE Transactions
on Image Process. 27, 5129–5141, DOI: 10.1109/TIP.
2018.2848705 (2018).

41. Wang, C.-Y. et al. Cspnet: A new backbone that can
enhance learning capability of cnn. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition workshops, 390–391 (2020).

42. Huang, Z. et al. Dc-spp-yolo: Dense connection and
spatial pyramid pooling based yolo for object detection.
Inf. Sci. 522, 241–258, DOI: https://doi.org/10.1016/j.ins.
2020.02.067 (2020).

43. Liu, S., Qi, L., Qin, H., Shi, J. & Jia, J. Path aggregation
network for instance segmentation. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
8759–8768, DOI: 10.1109/CVPR.2018.00913 (2018).

44. Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P.
Focal loss for dense object detection. In 2017 IEEE
International Conference on Computer Vision (ICCV),
2999–3007, DOI: 10.1109/ICCV.2017.324 (2017).

45. Zheng, Z. et al. Distance-iou loss: Faster and better
learning for bounding box regression. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 34,
12993–13000, DOI: https://doi.org/10.1609/aaai.v34i07.
6999 (2020).

46. Wojke, N., Bewley, A. & Paulus, D. Simple online and
realtime tracking with a deep association metric. In 2017
IEEE International Conference on Image Processing
(ICIP), 3645–3649, DOI: 10.1109/ICIP.2017.8296962
(2017).

47. Bewley, A., Ge, Z., Ott, L., Ramos, F. & Upcroft, B.
Simple online and realtime tracking. 2016 IEEE Int.
Conf. on Image Process. (ICIP) DOI: 10.1109/icip.2016.
7533003 (2016).

48. Guerrero-Gomez-Olmedo, R., Lopez-Sastre, R. J.,
Maldonado-Bascon, S. & Fernandez-Caballero, A. Ve-
hicle tracking by simultaneous detection and viewpoint
estimation. In IWINAC 2013, Part II, LNCS 7931, 306–
316, DOI: 10.1007/978-3-642-38622-0_32 (2013).

49. Wen, L. et al. UA-DETRAC: A new benchmark and
protocol for multi-object detection and tracking. Comput.
Vis. Image Underst. DOI: 10.1016/j.cviu.2020.102907
(2020).

50. Niu, H., Lu, Q. & Wang, C. Color correction based on
histogram matching and polynomial regression for image
stitching. In 2018 IEEE 3rd International Conference on
Image, Vision and Computing (ICIVC), 257–261, DOI:
10.1109/ICIVC.2018.8492895 (2018).

51. Yu, G. &Morel, J.-M. Asift: An algorithm for fully affine
invariant comparison. Image Process. On Line 1, 11–38,
DOI: 10.5201/ipol.2011.my-asift (2011).

52. Lowe, D. Object recognition from local scale-invariant
features. InProceedings of the Seventh IEEE International
Conference on Computer Vision, vol. 2, 1150–1157 vol.2,
DOI: 10.1109/ICCV.1999.790410 (1999).

53. Fischler, M.A.&Bolles, R. C. Random sample consensus:
A paradigm for model fitting with applications to image
analysis and automated cartography. Commun. ACM 24,
381–395, DOI: 10.1145/358669.358692 (1981).

54. Wu, M., Zhang, C., Liu, J., Zhou, L. & Li, X. To-
wards accurate high resolution satellite image seman-
tic segmentation. IEEE Access 7, 55609–55619, DOI:
10.1109/access.2019.2913442 (2019).

55. Adams, R. & Bischof, L. Seeded region growing. IEEE
Transactions on pattern analysis machine intelligence 16,
641–647, DOI: 10.1109/34.295913 (1994).

56. Smith, L. N. A disciplined approach to neural net-
work hyper-parameters: Part 1–learning rate, batch
size, momentum, and weight decay. arXiv preprint
arXiv:1803.09820 (2018).

57. Jung, H. et al. Resnet-based vehicle classification and
localization in traffic surveillance systems. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, DOI: 10.1109/CVPRW.
2017.129 (2017).

58. Wang, T., He, X., Su, S. & Guan, Y. Efficient scene
layout aware object detection for traffic surveillance. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, DOI: 10.
1109/CVPRW.2017.128 (2017).

59. Hedeya, M. A., Eid, A. H. & Abdel-Kader, R. F. A
super-learner ensemble of deep networks for vehicle-
type classification. IEEE Access 8, 98266–98280, DOI:
10.1109/ACCESS.2020.2997286 (2020).

60. Rezaei, M. & Azarmi, M. Deepsocial: Social distancing
monitoring and infection risk assessment in covid-19
pandemic. Appl. Sci. 10, 7514, DOI: https://doi.org/10.
3390/app10217514 (2020).

20/21

10.1109/WACV.2009.5403107
10.5281/zenodo.4679653
1405.0312
10.1109/TIP.2018.2848705
10.1109/TIP.2018.2848705
https://doi.org/10.1016/j.ins.2020.02.067
https://doi.org/10.1016/j.ins.2020.02.067
10.1109/CVPR.2018.00913
10.1109/ICCV.2017.324
https://doi.org/10.1609/aaai.v34i07.6999
https://doi.org/10.1609/aaai.v34i07.6999
10.1109/ICIP.2017.8296962
10.1109/icip.2016.7533003
10.1109/icip.2016.7533003
10.1007/978-3-642-38622-0_32
10.1016/j.cviu.2020.102907
10.1109/ICIVC.2018.8492895
10.5201/ipol.2011.my-asift
10.1109/ICCV.1999.790410
10.1145/358669.358692
10.1109/access.2019.2913442
10.1109/34.295913
10.1109/CVPRW.2017.129
10.1109/CVPRW.2017.129
10.1109/CVPRW.2017.128
10.1109/CVPRW.2017.128
10.1109/ACCESS.2020.2997286
https://doi.org/10.3390/app10217514
https://doi.org/10.3390/app10217514


Appendix 1: Camera Calibration and Inverse
Perspective Mapping
Knowing the camera intrinsic and extrinsic parameters, the
actual position of the 3D objects from 2D perspective image
can be estimated using Inverse Perspective Mapping (IPM) as
follows:

[𝑥 𝑦 1]𝑇 = K[R|T] [𝑋𝑤 𝑌𝑤 𝑍𝑤 1]𝑇 (31)

where 𝑥 and 𝑦 are the pixel coordinates of the image, 𝑋𝑤 ,
𝑌𝑤 and 𝑍𝑤 are coordinates of points in real world. K is the
camera intrinsic matrix:

K =


𝑓 ∗ 𝑘𝑥 𝑠 c𝑥 0
0 𝑓 ∗ 𝑘𝑦 c𝑦 0
0 0 1 0

 (32)

where 𝑓 is the focal length of the camera, 𝑘𝑥 and 𝑘𝑦 are the
calibration coefficient values in horizontal and vertical pixel
axis, 𝑠 is the shear coefficient and (c𝑥 ,c𝑦) are the principal
points shifting the optical axis of the image plane.
R is the rotation matrix:

R =


1 0 0 0
0 cos𝜃𝑐 −sin𝜃𝑐 0
0 sin𝜃𝑐 cos𝜃𝑐 0
0 0 0 1

 (33)

where 𝜃𝑐 is the camera angle.
T is the translation matrix:

T =


1 0 0 0
0 1 0 0
0 0 1 − ℎ𝑐

sin 𝜃𝑐
0 0 0 1

 (34)

where ℎ𝑐 is the height of the camera.
These three matrices together K[R|T] are known as projec-

tion matrix G ∈ R3×4, so the transformation equation can be
summarised as [𝑥 𝑦 1]𝑇 = G [𝑋𝑤 𝑌𝑤 𝑍𝑤 1]𝑇 .
Assuming the camera is looking perpendicular to the ground

plane of the scene, the 𝑍𝑤 parameter is removed. A reduction
in the G matrix size, turns it into a planar transformation
matrix G ∈ R3×3 with 𝑔𝑖 𝑗 elements as follows:

𝑥

𝑦

1

 =

𝑔11 𝑔12 𝑔13
𝑔21 𝑔22 𝑔23
𝑔31 𝑔32 𝑔33



𝑋𝑤

𝑌𝑤
1

 (35)

Therefore, for every pixel point (𝑥, 𝑦), the planar transfor-
mation function can be represented as follow:

Λ((𝑥, 𝑦),G) = ( 𝑔11× 𝑥 +𝑔12× 𝑦 +𝑔13
𝑔31× 𝑥 +𝑔32× 𝑦 +𝑔33

,

𝑔21× 𝑥 +𝑔22× 𝑦 +𝑔23
𝑔31× 𝑥 +𝑔32× 𝑦 +𝑔33

)
(36)
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