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Genetic insights into biological mechanisms governing human 

ovarian ageing
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Abstract

Reproductive longevity is critical for fertility and impacts healthy ageing in women1,2, yet insights 

into the underlying biological mechanisms and treatments to preserve it are limited. Here, we 

identify 290 genetic determinants of ovarian ageing, assessed using normal variation in age at 

natural menopause (ANM) in ~200,000 women of European ancestry. These common alleles 

were associated with clinical extremes of ANM; women in the top 1% of genetic susceptibility 

have an equivalent risk of premature ovarian insufficiency to those carrying monogenic FMR1 
premutations3. Identified loci implicate a broad range of DNA damage response (DDR) processes 

and include loss-of-function variants in key DDR genes. Integration with experimental models 

demonstrates that these DDR processes act across the life-course to shape the ovarian reserve 

and its rate of depletion. Furthermore, we demonstrate that experimental manipulation of DDR 

pathways highlighted by human genetics increase fertility and extend reproductive life in 

mice. Causal inference analyses using the identified genetic variants indicates that extending 

reproductive life in women improves bone health and reduces risk of type 2 diabetes, but 

increases risks of hormone-sensitive cancers. These findings provide insight into the mechanisms 
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governing ovarian ageing, when they act across the life-course, and how they might be targeted by 

therapeutic approaches to extend fertility and prevent disease.

Introduction

Over the last 150 years life expectancy has increased from 45 to 85 years4, but the timing 

of reproductive senescence (age at natural menopause (ANM)) has remained relatively 

constant (50-52 years)5. The genetic integrity of oocytes decreases with advancing age6 and 

natural fertility ceases ~10 years before menopause1. More women are choosing to delay 

childbearing to older ages, resulting in increased use of assisted conception techniques7,8. 

Oocyte and ovarian tissue preservation can prolong fertility but is invasive and there is only 

a ~6.5% chance of achieving pregnancy with each mature oocyte thawed, which decreases 

with age9.

ANM is determined by the non-renewable ovarian reserve, which is established during 

fetal development and continuously depleted until reproductive senescence (Extended Data 

Fig. 1). DNA damage response (DDR) is the primary biological pathway that regulates 

reproductive senescence, highlighted by genome-wide association studies (GWAS)10, rare 

single gene disorders that cause Premature Ovarian Insufficiency (POI)11 and animal 

models12. Better understanding of how and when molecular processes influence the 

establishment and decline of ovarian reserve will inform future therapeutic strategies for 

infertility treatment and fertility preservation. To address this, our current study increases 

the number of ANM-associated genetic loci five-fold13 from 56 to 290. We integrate these 

data with experiments in mice to characterize the specific DDR processes that contribute to 

reproductive ageing, providing insights into when they act across the life-course, how they 

might be modified to preserve fertility and the potential consequences for broader health.

Results

Genome-wide array data, imputed to ~13.1 million genetic variants with minor allele 

frequency ≥0.1%, were available in 201,323 women of European ancestry (Extended 

Data Fig. 2, Supplementary Table 1). We identified 290 statistically independent signals 

associated with ANM (P<5x10-8), including six on the X-chromosome which was 

previously untested in large-scale studies (Figure 1, Supplementary Table 2). Effect 

estimates for the 290 signals were consistent between linear and Cox proportional hazard 

models and across strata of the metaanalysis (Extended Data Fig. 3). There was no evidence 

of test statistic inflation due to population structure (LD score intercept=1.02, s.e. 0.03). All 

previously reported signals13 retained genome-wide significance (Figure 1).

Additive, per-allele effect sizes for the 290 signals ranged from ~3.5 weeks to ~74 

weeks (Figure 1, Extended Data Fig. 2 and Supplementary Table 2). Three of these 

variants exhibited non-additive effects (Extended Data Fig. 4 a-d, Supplementary Table 

3 and Supplementary Results). We sought to replicate our 290 signals using independent 

samples from 23andMe, Inc (N=294,828 women). We observed high concordance in effect 

estimates between the datasets (Supplementary Table 2 and Extended Data Fig. 3 g), with 

nearly all variants at least nominally associated with ANM in 23andMe. Eight variants 
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fell below genome-wide significance in a meta-analysis of our discovery with 23andMe 

(Pmax=2.6x10-5), half the number of expected false-positive associations (290*0.05=14.5). 

We next evaluated these loci in 78,317 women of East Asian ancestry. There was broad 

replication, consistent with previous observations14, but substantial heterogeneity of effect 

sizes and allele frequencies (Supplementary Table 2). This was exemplified at the ENTPD1 
locus, where one signal had an effect size ~3 times larger in East Asians (rs1889921), whilst 

a second independent signal ~20kb away had an effect estimate half the size in East Asians 

(rs7087644).

Using additional independent samples from the deCODE study (N=16,556 women), we 

estimated our identified signals cumulatively explained 10.1% of the variance in ANM. 

This compared to an estimate of 12.3% in UK Biobank (UKBB) using weights for the 

290 variants derived from our non-UKBB samples (Supplementary Table 2). The identified 

signals therefore account for 31-38% of the overall genotype-array estimated heritability in 

UKBB (h2 g=32.4%, s.e. 0.8%), compared to 15.7-19.8% for the 56 previously reported 

signals (Extended Data Fig. 4 e).

Common variants act on extremes of ANM

It is unclear where in the population distribution of ANM the influence of common genetic 

variants begins and ends. Our GWAS was restricted to the 99% of women with ANM 

between 40-60 years. ANM before 40 years (POI) is considered a Mendelian disorder, 

but may have a polygenic component. To test which parts of the ANM distribution are 

influenced by common genetic variation, we calculated a polygenic score (PGS) in 108,840 

women in UKBB with the full range of ANM using genetic weights derived from the 

independent non-UKBB component of the meta-analysis (Supplementary Table 2). This was 

coded such that a higher PGS indicates increased susceptibility to later ANM. ANM from 

34 to 61 years had a significant polygenic influence (Figure 2 a). For example, women 

with ANM at 34 years had an average -0.5 SD (95% CI 0.26-0.69, P=1.5x10-5) lower PGS 

than the population mean. We had limited sample size to test outside of these age ranges, 

however there was some evidence for a depletion of a polygenic influence at ages younger 

than 34 years (Figure 2 a). These data suggest that common genetic variants act on clinically 

relevant extremes of ANM, although it remains unclear what fraction of POI cases may be 

polygenic vs monogenic.

Secondly, we evaluated the predictive ability of the PGS. Genetic risk alone proved to 

be a weak predictor (ROC-AUC 0.65 and 0.64 for early menopause (age <45 years) and 

POI respectively) (Figure 2 b and c), however the PGS performed significantly better than 

smoking status which is the most robust epidemiologically associated risk factor (ROC-AUC 

0.58). Adding smoking status to the PGS did not appreciably improve prediction of early 

menopause (ROC-AUC 0.66). Despite low overall discriminative ability, the PGS was able 

to identify individuals at high risk of POI (Figure 2 c). Women at the top 1% of the PGS 

(rescaled such that high PGS indicates increased susceptibility to earlier menopause) had 

equivalent POI risk (PGS OR 4.71 [3.15-7.04] vs 50th centile, P=4.4x10-14) to that reported 

for women with FMR1 premutations, the leading tested monogenic cause of POI (OR~5)3. 
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It is however notable that the top 1% of genetic risk is more prevalent than the FMR1 
premutation carrier rate (1:250).

Functional genes and pathways implicated

We used a combination of in silico fine-mapping and expression quantitative trait (eQTL) 

data to identify putatively functional genes implicated by our genetic association signals 

(Supplementary Table 2). Firstly, 81 of the 290 independent ANM signals were highly 

correlated (minimum r2=0.8) with one or more variants predicted deleterious for gene 

function, implicating 91 genes (Supplementary Table 4). Twelve of these genes harboured 

predicted loss-of-function variants and seven genes (MCM8, EXO1, HELB, C1orf112, 

C19orf57, FANCM and FANCA) contained multiple statistically independent predicted-

deleterious variants (Supplementary Table 4). We extended this analysis using exome 

sequence data from 45,351 women in UKBB. Loss-of-function variants near two highlighted 

genes were associated with ANM (Supplementary Table 5). In aggregate, women carrying 

loss-of-function variants in BRCA2 (N=143) and CHEK2 (N=68) reported ANM 1.54 years 

earlier (95%CI 0.73-2.34, P=6.8x10-5) and 3.49 years later (95%CI 2.36-4.63, P=1x10-13) 

respectively. BRCA1 loss-of-function was the next most significantly associated GWAS-

highlighted gene in these analyses (N=32 LOF carriers, 2.63 years earlier ANM, 95%CI 

1.00-4.26, p=1.1x10-4). Homozygous loss of function variants in BRCA2 were recently 

described as a rare cause of POI15, but we did not identify any such homozygotes for either 

BRCA2, CHEK2 or BRCA1. Notably, identified GWAS signals mapped within 300kb of 

20/74 genes that when disrupted cause primary amenorrhea and/or POI (Supplementary 

Table 6), highlighting the common biological processes shared between normal variation in 

reproductive ageing and clinical extremes.

Next, we integrated publicly available gene expression data across 44 tissue types with 

our GWAS results (Supplementary Table 5). This highlighted expression-linked genes 

at 116 of the 290 loci (Supplementary Tables 2 and 5). Using three computational 

approaches we observed enrichment in hematopoietic stem cells and their progenitors 

(Supplementary Tables 7–12). Biological pathway enrichment analyses using a range of 

approaches, highlighted the importance of DDR processes as the key regulator of ANM 

(Supplementary Tables 13–16). We hypothesise that the shared expression profile in both 

haematopoietic stem cells and oocytes reflects the relative importance of DDR in both cell 

types16. In contrast to puberty timing17, which represents the beginning of reproductive life, 

we observed no enrichment of hypothalamic and pituitary expressed genes, but enrichment 

of genes expressed in the ovary and other reproductive tissues (Supplementary Table 9).

Finally, we attempted to leverage data from multi-tissue co-expression networks to identify 

genes which sit in the centre of these networks and interact with many other genes near 

ANM-associated variants. Such genes are analogous to the “core” genes proposed in the 

omnigenic model of genetic architecture18. This approach identified 250 genes, 47 of which 

were within 300kb of one of the identified 290 loci (Supplementary Tables 17 and 18). A 

notable example is MCM8, implicated directly by two missense variants and co-expressed 

with many genes highlighted by our GWAS (Extended Data Fig. 5).
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ANM genes act across the life-course

Previous analyses highlighted the involvement of DNA repair in the regulation of ovarian 

ageing. This study supports a much broader DDR involvement as well as metabolic 

signaling networks such as PI3K19 with increased resolution of these pathways and when 

in the life-course they might act (Extended Data Fig. 1, Supplementary Results). We 

identify DDR pathways associated with replication stress, Fanconi Anemia pathway, DNA-

protein crosslink repair, R loops (Extended Data Fig. 6), meiotic recombination and 58 

genes implicated in regulation of apoptosis (Supplementary Table 19) providing evidence 

that variation in cell death following DDR is an important mechanism for ANM. This 

includes components and interactors of the central, conserved DDR checkpoint kinases 

ATR-CHEK1 (single stranded DNA) and ATM-CHEK2 (double strand breaks) that integrate 

and determine repair and cellular response from a broad variety of DNA repair pathways 

(Extended Data Fig. 6). The expression patterns across developmental stages in human 

follicles further supports distinct activities across fetal and follicular stages (Extended Data 

Fig. 7, Supplementary Table 20), including TP63, which was predominantly expressed 

during follicular stages, consistent with apoptotic inducing activity in response to DNA 

damage observed in growing oocytes in mouse20–23. These observations are consistent with 

the DDR regulating both the establishment of the ovarian reserve during fetal life and its 

depletion until ANM.

In utero effects and maternal diet

Previous work in mice demonstrated that a maternal obesogenic diet during pregnancy 

decreased ovarian reserve in offspring24. We extend this observation by demonstrating that 

two of our highlighted genes (Dmc1 and Brsk1) are differentially expressed in the offspring 

ovary due to maternal obesity (Supplementary Table 5, Extended Data Fig. 8). Dmc1 is a 

meiosis-specific DNA recombinase that assembles at the site of DSBs and is essential for 

meiotic recombination and gamete formation25. Expression levels of Brsk1 were decreased 

in ovarian tissue of the offspring of obese mice, an effect which appeared to be enhanced 

further when the offspring were additionally exposed to an obesogenic diet from weaning 

(Extended Data Fig. 8). Brsk1 acts as a DNA damage sensor and targets Wee1 and Mapt1 
for phosphorylation, both of which were also up-regulated in our model. Wee1 is highly 

expressed in fetal germ cells, inhibits mitosis and is specifically down-regulated late in 

oogenesis26. The mechanisms linking maternal diet-induced altered expression of these 

genes to reduced ovarian reserve in the offspring remain unclear. However, our findings, in 

addition to observations that low birthweight is associated with menopause27, support the 

hypothesis that DDR mechanisms acting in utero to influence reproductive lifespan may be 

modifiable by maternal exposures.

Extending reproductive life in animals

Our GWAS highlighted loss of function alleles in CHEK2 associated with later ANM. 

Whilst previous work has shown genetic manipulation of DDR genes in animal models 

limits reproductive lifespan, it remains to be tested whether it can also extend it. CHEK2 
plays a crucial role in culling oocytes in mouse mutants defective in meiotic recombination 

or after artificial induction of double-strand breaks22,28,29. In young females, Chek2 
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inactivation can partially rescue oocyte loss and in some mutants, fertility, with high 

levels of non-physiologically induced endogenous and exogenous DNA damage23,28,30,31. 

To better understand the function of the checkpoint kinase pathways in physiological 

reproductive ageing, we used genetically modified Chek1 and Chek2 mice (Figure 3, 

Extended Data Fig. 9-11). Follicular atresia was reduced in Chek2-/- females around 

reproductive senescence (13.5 months). This occurred without a concomitant increase in 

the ovarian reserve in young mice (1.5 months) (Figure 3 a, Extended Data Fig. 9 a-e)28. The 

aged Chek2-/- females showed elevated anti-Müllerian hormone levels (Extended Data Fig. 

9 f) and an increased follicular response to gonadotrophin stimulation (Figure 3 c, Extended 

Data Fig. 9 g) consistent with a larger ovarian reserve at 13.5 months. Fertilization, 

blastocyst formation and litter sizes in naturally-mated aged Chek2-/- females were similar 

to littermate controls (Extended Data Fig. 9 h-j), suggesting that the endogenous damage 

that Chek2 responds to does not compromise the health of offspring or mothers in later 

reproductive life (Extended Data Fig. 9 j, k). Thus, depletion of the ovarian reserve is slowed 

in Chek2-/- females, resulting in improved ovarian function around the time of reproductive 

senescence and suggests a potential therapeutic target for enhancing IVF stimulation through 

short-term apoptotic inhibition.

In contrast to Chek2-/-, Chek1-/- mice are embryonic lethal due to its essential function 

when DNA replication is perturbed as well as during mitosis32. We found that two different 

maternal, germline-specific conditional knockouts of Chek1 (Chek1 cko), one of which also 

leads to defects in prospermatogonia in males33, results in infertility in females due to failure 

during preimplantation embryo development (Extended Data Fig. 10). Chek1 is required for 

prophase I arrest and functions in G2/M checkpoint regulation in murine oocytes23,34 and 

its activator, ATR, is important for meiotic recombination as well as follicle formation35,36. 

An extra copy, ie. three alleles of murine Chek1 (SuperChek1 or sChek1), is reported to 

partially rescue lifespan in ATRSeckel mice, suggesting that CHEK1 becomes rate-limiting 

when cells are under replication stress37. We found that sChek1 on its own increased the 

ovarian reserve from birth as well as later in life (Figure 3 b, Extended Data Fig. 11 

b-f). Large antral follicle counts were also elevated in the aged sChek1 females, compared 

to litter-mate controls, indicating that follicular activity was also increased. Immediately 

prior to the typical age at reproductive senescence, sChek1 females ovulated an increased 

number of mature MII oocytes (11-13 months) (Figure 3 c, Extended Data Fig. 11 g). These 

exhibited increased mRNA expression of Chek1 (Extended Data Fig. 11 a) and had similar 

capacity for forming blastocyst embryos as wild type (Extended Data Fig. 11 i, j). When 

transferred, these embryos gave rise to healthy, fertile pups over two generations (Extended 

Data Fig. 11 k-n). Thus, sChek1 causes a larger ovarian reserve to be established at birth 

and the oocytes appear to maintain their genomic integrity, as confirmed by aneuploidy 

analysis and efficiency of embryogenesis and fertility of pups (Extended Data Fig. 11 

g-n), resulting in enhanced follicular activity and delayed reproductive senescence. We 

speculate that this is due to upregulation of replication-associated DNA repair processes 

during mitosis and meiosis and that repair might be limiting for establishing and maintaining 

the ovarian reserve. Taken together, our data show that modulating key DDR genes can 

extend reproductive lifespan in vivo, generating healthy pups that are fertile over several 
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generations. This can occur either by abolishing DDR checkpoints (Chek2 deletion) or by 

upregulating repair processes (sChek1).

Health consequences of later ANM

We used our identified genetic variants to infer causal relationships, using a 

Mendelian Randomization (MR) framework, between ANM and several health outcomes 

(Supplementary Tables 21–23). Consistent with previous studies2,13, each 1-year 

genetically-mediated later ANM increased the relative risks of several hormone-sensitive 

cancers by up to 5% (Supplementary Table 21). In contrast, we observed beneficial 

effects of genetically-mediated later ANM on bone mineral density, fracture risk and 

type 2 diabetes. Our findings are consistent with evidence from randomised controlled 

trials that oestrogen therapy maintains bone health and protects from type 2 diabetes38,39. 

Furthermore, recent MR studies demonstrate causal associations between sex hormone 

levels and type 2 diabetes40. Trial data in younger women taking HRT suggested no 

increased risk of cardiovascular disease, stroke or all-cause mortality39. In agreement with 

this we found no evidence to support causal associations for ANM with cardiovascular 

disease, lipid levels, Alzheimer’s disease, body mass or longevity (Supplementary Table 

21), all of which have been reported in observational studies41–47. Finally, we evaluated 

putative modifiable determinants of ANM reported by observational studies27. We found 

that genetically instrumented increased alcohol consumption and tobacco smoking were 

associated with earlier ANM (Supplementary Tables 24 and 25). Each additional cigarette 

smoked per day decreased ANM by ~2.5 weeks, whilst women who drank alcohol at the 

maximum recommended limit experienced ~1 year earlier menopause compared to those 

who drank little. Furthermore, genetically instrumented age at menarche was associated with 

~8 weeks earlier ANM per-year earlier menarche.

Collectively our analyses have provided novel insights into the biological processes 

underpinning reproductive ageing in women, how they can be manipulated to extend 

reproductive life, and what the consequence of this might be at a population level. We 

anticipate these findings will greatly inform experimental studies seeking to identify new 

therapies for enhancement of reproductive function and fertility preservation in women.

Online Methods

Information on ethical regulations and approvals for all animal experiments are detailed in 

the corresponding sections below. Within each of the human population studies included in 

the genome-wide analyses (all of which have been previously published), each participant 

provided informed consent and the study protocol was approved by the institutional review 

board at the parent institution.

Phenotype definition

We included women with age at natural menopause (ANM) from age 40 to 60 inclusive. 

ANM was derived from self-reported questionnaire data by each study (Supplementary 

Table 1) and was the age at last naturally occurring menstrual period followed by at least 

12 consecutive months of amenorrhea. Exclusions were women with menopause caused 
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by hysterectomy, bilateral ovariectomy, radiation or chemotherapy, and those using HRT 

before menopause. Within each of the studies, each participant provided written informed 

consent and the study protocol was approved by the institutional review board at the parent 

institution.

Genome-wide association study meta-analysis

A genome-wide meta-analysis of autosomal and chromosome X variants in women of 

European ancestry was carried out on summary statistics from analyses in three strata, 

allowing for the identification of heterogeneity due to different methodology. The three 

strata were (Extended Data Fig. 2): (i) meta-analysis of 1000 Genomes imputed studies; 

(ii) meta-analysis of samples from the Breast Cancer Association Consortium (BCAC: 

http://bcac.ccge.medschl.cam.ac.uk); (iii) UK Biobank GWAS. The overall meta-analysis 

included variants present in at least two of the three strata. All meta-analyses were 

inverse-variance weighted without GC correction and were carried out in METAL (https://

genome.sph.umich.edu/wiki/METALDocumentation). Analysis was conducted by analysts 

and two geographically distinct sites independently and the resulting summary statistics 

were compared for consistency.

The meta-analysis of 1000 Genomes imputed studies included 40 datasets imputed to 1000 

Genomes Phase I version 3 for the autosomes and 29 for chromosome X (Supplementary 

Table 1, Supplementary Notes). Each individual study applied quality control to directly 

genotyped variants and samples prior to imputation (suggested exclusion thresholds for 

variants were Hardy-Weinberg equilibrium P<1×10-5, call rate <95% and minor allele 

frequency (MAF) <1%; suggested exclusions for samples were >5% missing genotypes, 

population outliers, high inbreeding coefficient, heterozygosity outliers, sex mismatches and 

related samples). Each individual study carried out GWAS using a two-tailed additive linear 

regression model adjusted for genetic principal components/relationship matrix depending 

on the software used (Supplementary Table 1), without GC correction. Since all samples 

included were female, chromosome X was analysed as for the autosomes. Once data were 

submitted, each study underwent quality control centrally according to standard protocols 

implemented independently by two analysts. Summary statistics for each study were stored 

centrally. Prior to meta-analysis, genetic variants ids were converted to “chr:position” format 

(position in build 37) and alleles for insertion/deletion polymorphisms were coded as “I/D” 

to ensure consistency across studies. Meta-analysis was carried out including SNPs with 

imputation quality≥0.4 and MAF≥0.001. Variants in at least half of datasets for either 

the autosomes or for chromosome X (as appropriate) were taken forward to the overall 

meta-analysis, resulting in ~10.9 million variants.

GWAS summary statistics for the BCAC data were provided as four datasets, containing 

breast cancer cases and controls, with each genotyped on the iCOGs and OncoArray 

genotyping arrays (Supplementary Table 1). Quality control was applied to directly 

genotyped variants prior to imputation and data were imputed to the HRC r1.1 (2016) 

reference panel. Association analysis and quality control was carried out centrally as for 

the 1000 Genomes imputed studies. Summary statistics from the four BCAC datasets were 

meta-analysed, including variants with imputation quality≥0.4 and MAF≥0.001. Variants in 
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two or more of the four datasets were taken forward to the overall meta-analysis, resulting in 

~14.5 million variants.

UK Biobank genotyped 488,377 participants on two arrays, 49,950 on the UK BiLEVE 

Axiom array (807,411 markers) and 438,427 on the UK Biobank Axiom array (825,927 

markers), which were then imputed using a combined 1000 Genomes Phase 3 and HRC 

reference panel. Details of central genotyping, quality control and imputation are described 

elsewhere48. We included 451,454 individuals identified as European in our analysis. 

Briefly, principal components analyses were used to cluster individuals of White European 

descent (described more fully elsewhere49). We further removed participants who had 

subsequently withdrawn from the study (n=7) and those where their self-reported sex did not 

match their genetic sex (n=348) resulting in 451,099 individuals. GWAS was carried out in 

106,048 women with ANM by applying a linear mixed model in BOLT-LMM50 to adjust 

for population structure and relatedness, also adjusting for study centre and data release. 

Summary statistics taken forward to the overall meta-analyses were for ~16.6 million 

variants with imputation quality ≥0.5 and MAF≥0.001. UK Biobank data were analysed by 

two analysts independently and summary statistics results were compared for consistency.

Genome-wide significance was set at P<5x10-8. Statistical independence was determined 

using a combination of two approaches. Firstly, we used distance-based clumping to select 

the most significantly associated SNP within a 1Mb window. Secondly, we augmented 

this list with secondary signals within these 1Mb windows that were identified through 

approximate conditional analysis implemented in GCTA51. We only considered secondary 

signals that were uncorrelated with other selected signals (r2<0.05) and genome-wide 

significant in both univariate and joint models. 10,000 ancestry matched samples from UK 

Biobank were used in GCTA as an LD reference panel.

Assessing the impact of time to event models on the signals identified

We performed Cox proportional hazards regression for the 290 genome-wide significant 

ANM signals, allowing inclusion in our analyses of women excluded from the definition of 

natural menopause. We used UK Biobank imputed genotype data and performed analyses 

in 379,768 unrelated individuals of European descent (as described previously), of whom 

185,293 were included in our Cox analyses (phenotype definition as described previously27). 

Briefly, Cox proportional hazards regression was run using stset and stcox (Breslow method 

for ties) in Stata v16.0 using age as the time variable, starting at birth (0 years) and ending 

at last age at risk of natural menopause. Natural menopause was set as the event, with 

individuals censored at bilateral oophorectomy and/or hysterectomy, or start of HRT use (if 

ongoing at time of menopause, hysterectomy or oophorectomy). We included the covariates 

genotyping chip and release of genotype data, recruitment centre and the first five genetic 

principal components, which were considered to be constant throughout the time at risk. 

We calculated -1 × natural log(hazard ratio) to allow comparison with effect estimates from 

linear regression from the full meta-analysis and meta-analysis excluding UK Biobank.
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Confirmation of identified signals and variance explained estimates

We sought to confirm our findings by testing the 290 identified loci in an independent 

sample of 294,828 women from 23andMe. Participants provided informed consent and 

participated in the research online, under a protocol approved by the external AAHRPP-

accredited IRB, Ethical & Independent Review Services (E&I Review). Participants were 

included in the analysis on the basis of consent status as checked at the time data 

analyses were initiated.The variant-level data for the 23andMe replication dataset are fully 

disclosed in the manuscript. Individual-level data are not publicly available due participant 

confidentiality, and in accordance with the IRB-approved protocol under which the study 

was conducted. Women’s age at menopause was ascertained across multiple surveys using 

two questions: "About how old were you when you had your last menstrual period? 

(under_30/30_34/45_49/40_44/55+/50_54/35_39/declined/not_sure)" and "How old were 

you when you had your last menstrual period?". As menopause age was ascertained in 

4-year bins we rescaled the effect estimates appropriately to be on the same 1-year scale as 

our discovery analyses. Analyses were performed using a linear model (gaussian family), 

controlling for age (in years), the top 5 genetic principal components and genotyping 

platform.

To assess the relevance of these loci in women of East Asian ancestry, we meta-analysed 

data (total N=78,317 women) from the China Kadoorie Biobank study and Biobank Japan 

(BBJ). A total of 47,140 female participants in BBJ whose age at menopause was available 

were included in the current study. If different ages at menopause were reported in multiple 

visits, we took mean of ages at menopause. We excluded individuals 1) with maximum 

difference more than five years in the reported ages at menopause on multiple visits; 2) 

whose age at recruitment was younger than reported age at menopause; 3) whose age at 

menopause was younger than 40 or older than 60 years, or 4) with medical history of 

hysterectomy, ovariectomy, radiation, chemotherapy and hormone replacement treatment 

before age at menopause. Subjects 1) whose DNA microarray data was not available, 2) with 

low call rate (<0.98), 3) whose genetic data suggested as male, 4) who were genetically 

identical to other subjects or 5) who were outliers from EAS cluster in PCA plot were 

excluded from the analyses. We applied the same quality control for variants as the previous 

literature52. After quality control, remaining variants were phased and subsequently imputed 

onto the reference panel containing the 1000 Genomes Project Phase 3 and around 3,000 

Japanese whole-genome sequence data52. We restricted subsequent analyses to variants with 

rsq >0.3. For an association study of age at menopause, we applied a linear mixed model 

using BOLT-LMMv2.3.4 software correcting for age in years and the top ten genetically 

determined principal components as covariates.

The China Kadoorie Biobank baseline survey was conducted during 2004-2008 in 10 

geographically diverse regions of China (5 rural, 5 urban), with resurveys of approximately 

5% of the cohort at 5-yearly intervals. 302632 women aged 35-74 years were enrolled with 

a mean age at baseline of 51.4 (SD 10.5), of whom 162,929 provided at least one reported 

age at menopause, in response to the questions “Have you had your menopause? If so, age 

of completion of menopause?”, with mean (SD) of 48.2 (4.4) years. Genotyping data was 

available for 31,177 women with values for age at menopause in the range 35-60 years and 
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who had not had prior hysterectomy, oophorectomy, or cancer. Genotyping used custom 

Affymetrix Axiom® arrays with imputation into the 1000 Genomes Phase 3 reference 

using SHAPEIT3 and IMPUTE4 (IMPUTE2 for chrX). Age at menopause was adjusted for 

year-of-birth and year-of-birth-squared, and analyses were carried out separately for each of 

the 10 recruitment regions using BOLT-LMM v2.3.2 followed by inverse-variance-weighted 

fixed effect meta-analysis in METAL. Analyses used CKB data release 15.

The variance explained by our identified signals were estimated in a further independent 

sample of 16,556 women from the Icelandic deCODE study. Of those women, 14,771 were 

chip-typed and 1,785 are imputed 1st and 2nd degree relatives of chip-typed individuals. 

We assessed the aggregate significance of the identified loci by testing how many alleles 

had the same direction of effect using a binomial sign test (null expectation 50%). The 

proportion of variance explained using replication summary statistics provided by deCODE 

(n=16,556). We calculated the variance explained by each variant in deCODE (using the 

formula 2×β2×MAF×(1-MAF)), dividing the sum of the variance explained in total for the 

290 variants by the SE2 of menopause age in deCODE.

We additionally estimated the proportion of variance in ANM explained by the 290 genome-

wide significant signals in UK Biobank by calculating linear regression R2 in 88,829 

unrelated women of European descent (as described previously49) who had menopause age 

recorded. We generated estimates by combining the 290 variants as a genetic risk score with 

the allelic dosage weighted by the effect size from meta-analysis of the 1KG and BCAC 

strata only (Supplementary Table 2). Genotypes were extracted from imputed data and we 

included the covariates genotyping chip and release of genotype data, recruitment centre, 

age and the first five genetic principal components. Genotype-array heritability estimates 

were calculated using REML implemented in BOLT-LMM to provide a denominator for 

proportion of heritability explained.

Assessing deviation from an additive genetic model

A dominance deviation test53 was run for the 290 genome-wide significant ANM signals. 

Briefly, in this test a dominance deviation term representing the heterozygous group (coded 

0, 1 and 0) is fitted jointly with an additive genotype term in the regression model. This 

test determines whether the average trait value carried by the heterozygous group lies 

halfway between the two homozygote groups as expected under an additive model. We used 

best guess genotypes converted from UK Biobank imputed genotype data and performed 

linear regression analysis in Stata v16.0 in 379,768 unrelated individuals of European 

descent (identified as described previously49. We regressed ANM on genotype including the 

covariates genotyping chip and release of genotype data, recruitment centre and the first five 

genetic principal components. We also tested a dominant model, comparing the effect allele 

heterozygotes/homozygote group with other allele homozygotes, and a recessive model, 

comparing effect allele homozygotes with heterozygotes and other allele homozygotes. 

Genetic variants with a P-value for the dominance deviation term that was smaller than 

Bonferonni corrected P=0.05 (P=0.05/290=0.000172) were considered to show evidence of 

non-additive effects.
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Gene burden analyses of UK Biobank exome sequencing data

We carried out gene burden association testing of rare variants in women identified from 

~200K people with exome sequencing data available in the UK Biobank study. We included 

45,351 women with ANM between 18–65 years in our analyses to maximise the sample size 

and ensure inclusion of women with POI who might be expected to be more likely to be 

carriers of rare variants.

Detailed sequencing methodology is provided by Szustakowski et al54. Briefly, exomes were 

captured with the IDT xGen Exome Research Panel v1.0 which targeted 39Mbp of the 

human genome with coverage exceeding on average 20x on 95.6% of sites. The OQFE 

protocol was used for mapping and variant calling to the GRCh38 reference. Variants 

included in our analyses had individual and variant missingness <10%, Hardy Weinberg 

Equilibrium p-value >10-15, minimum read depth of 7 for SNPs and 10 for indels, and at 

least one sample per site passed the allele balance threshold > 15% for SNPs and 20% for 

indels.

Variants in CCDS transcripts were annotated using Variant Effect Predictor55. We identified 

loss-of-function (LoF) variants (stop-gain, frameshift, or abolishing a canonical splice site 

(-2 or +2 bp from exon, excluding the ones in the last exon)) deemed to be high confidence 

by LOFTEE (https://github.com/konradjk/loftee). We conducted gene-burden analyses using 

a SKAT-O test implemented in SAIGE-GENE56 based on variants with MAF<0.001. 

SAIGE-GENE implements a generalized mixed-model region-based association test that 

can account for population stratification and sample relatedness in large-scale analyses. 

We applied an inverse normal rank transformation to ANM prior to analyses and included 

recruitment centre as a covariate. For each gene, we present results for the transcript with 

the smallest SKAT-O p-value. Since the magnitude of effect sizes from SAIGE-GENE are 

not easily interpretable, we calculated the sum of LoF alleles in BRCA1, BRCA2 and 

CHEK2 for each person. We tested each score’s association with ANM by performing 

linear regression in Stata v16.0 in unrelated samples of European descent (identified as 

described previously [PMID: 30423117]) including recruitment centre and the first five 

genetic principal components as covariates.

Identifying putatively functional genes

We used two in silico approaches to prioritise putatively functional genes across our 

highlighted loci. Firstly, To identify variants with functional consequences, we looked up 

variants in r2>0.8 with the signals in Variant Effect Predictor (build 38). We identified 

missense, frameshift, insertion/deletions and stop-gained and splice site disrupting variants, 

which we then classified according to their VEP, PolyPhen and SIFT impact. We considered 

‘high impact’ variants as those classified as high impact by VEP (stop-gained, frameshift 

and splice site disrupting). ‘Medium impact’ variants were missense variants classed as 

moderate impact by VEP, which were either deleterious in SIFT and were at least possibly 

damaging in PolyPhen. ‘Low impact’ variants were missense or inframe insertions/deletions 

classed as moderate impact by VEP and were tolerated and/or benign in PolyPhen. LD was 

calculated using PLINK v1.9 from best guess genotypes for 1000 Genomes Phase 3/HRC 
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imputed variants in ~340,000 unrelated UK Biobank participants of white British ancestry. 

Genetic variant locations were converted from b37 to b38 using UCSC Liftover.

Secondly, we integrated our ANM genome-wide summary statistics with eQTL data using 

Summary Mendelian Randomization (SMR)57. Publicly available expression datasets for 

48 tissues in GTEx v7 and 10 brain regions were downloaded from the SMR website 

(https://cnsgenomics.com/software/smr/#eQTLsummarydata). Whole-blood data in an eQTL 

meta-analysis of 31,684 samples was available from the eQTLGen consortium [https://

www.biorxiv.org/content/10.1101/447367v1] A Bonferroni corrected p-value threshold was 

used in each expression dataset individually and only associations with HEIDI P > 0.01 were 

considered to avoid coincidental overlap due to extended patterns of LD. This resulted 

in a total of 44 (SMR P<7x10-6) significant transcriptions in the brain, 96 in whole 

blood (P<3x10-6) and 732 across all GTEx tissues (SMR P<3.6x10-7). We excluded brain 

and whole blood tissues from the collection of 48 tissues in GTEx as they were better 

represented by the other expression datasets.

Identifying enriched cell and tissue types

We used three approaches to identify cell and tissue types enriched for ANM associated 

variants. DEPICT was run using default settings as described previously58 using GWAS 

summary statistics including all autosomal variants with P-value <1x10-5. The cell-type 

specific expression matrices used as input to DEPICT were generated from individual 

single-cell gene expression datasets (see below). Briefly, each data set was processed by 

first normalizing cells’s gene expression to a common transcript count (10,000 transcript per 

cell) before calculating the average expression of each gene for each cell-type annotation. 

Averaged data was log-transformed (natural log). We computed cell-type specific gene 

expression following using a two-step z-score approach - first we calculated gene-wise 

z-scores (each gene; mean=0, sd=1) to remove the effect of ubiquitous expressed genes, then 

we calculated cell-type-wise z-scores (each cell-type; mean=0, sd=1) on gene-wise z-scores. 

For mouse expression datasets we mapped mouse genes to human orthologs using Ensembl 

(v. 91) keeping only genes with a 1-1 ortholog mapping.

DEPICT analyses were run on two datasets: 1) Tabula Muris (https://tabula-

muris.ds.czbiohub.org/)59, restricted to the fluorescence-activated cell sorting samples. To 

keep the tissue level information in the dataset, we defined cell-type annotations as 

‘tissue cell-types’ by combining the cell-type label (‘cell_ontology_class’ column) with 

the origin tissue of the cell-type (‘tissue’ column). This allowed us to e.g. distinguish 

B-cells originating from fat, spleen and marrow tissue. In total we analyzed 115 cell-type 

annotations from 44,949 cells; 2) Nestorowa et al. human hematopoietic stem and progenitor 

cell differentiation dataset60 was not normalized to a common transcript count because the 

data was pre-normalized by the authors. We defined cell-type annotations as the 12 distinct 

hematopoietic stem and progenitor cell (HSPC) phenotypes reported by the authors (shown 

in their manuscript Figure 3A). The annotations covered 1,483 cells.

Secondly, we additionally performed tissue enrichment analysis using linkage-

disequilibrium (LD) score regression to specifically expressed genes (LDSC-SEG)61. We 

used three datasets available on the LDSC-SEG resource page (https://github.com/bulik/
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ldsc/wiki/Cell-type-specific-analyses), relating to cell and tissue-specific annotations from 

GTEx62, Epigenome Roadmap63 and the “Franke lab”58,64.

Finally, tissue enrichment analyses were performed using ‘Downstreamer’, which is 

described in a separate section below.

Pathway analysis

MAGENTA was used to explore pathway-based associations in the full GWAS data set. 

MAGENTA implements a gene set enrichment analysis (GSEA)-based approach65. We used 

upstream and downstream limits of 110Kb and 40Kb to assign variants to genes, excluded 

the HLA region from the analysis and set the number of permutations to 10,000 for GSEA 

testing, with analysis using 75% and 95% cut-offs. Significance was determined when an 

individual pathway reached FDR<0.05 in either analysis. In total, 3,222 pathways from 

Gene Ontology, PANTHER, KEGG and Ingenuity were tested for enrichment of multiple 

modest associations with ANM.

We additionally performed pathway analyses in ‘Downstreamer’ (described in section 

below) and MAGMA66 v1.08. MAGMA analyses were performed using the full genome-

wide summary statistics, but restricted to variants that were predicted deleterious (i.e non-

synonymous and loss of function). Gene-sets included in the analyses were obtained from 

MsigDB v7.2, which included 12,358 curated gene sets from KEGG, Reactome, BioCarta 

and GO terms consisting of biological processes, cellular components and molecular 

functions.

Downstreamer methodology

In short, Downstreamer identifies genes connected to genes at GWAS loci (core genes) 

through expression and identifies enriched pathways. Downstreamer implements a strategy 

that accounts for LD structure and chromosomal organization, operating in two steps. In 

the first step, gene-level prioritization scores are calculated for the GWAS trait and a null 

distribution. In the second step, the gene-level prioritization scores are associated with the 

co-regulation matrix and pathway annotations. Further details are outlined below.

Downstreamer step 1

Calculation of gene-level prioritization scores (GWAS gene Z-scores): The primary step 

is to convert GWAS summary statistics from p-values per variant to an aggregate p-value 

per gene (gene p-value) while accounting for local LD structure. This aggregate gene level 

p-value represents the GWAS signal potentially attributable to that gene.

First, we applied genomic control to correct for inflation in the GWAS signal. We then 

integrated the procedure from the PASCAL67 method into Downstreamer to aggregate 

variant p-values into a gene p-value while accounting for the LD structure. We aggregated 

all variants within a 25kb window around the start and end of a gene using the non-

Finnish European samples of the 1000 Genomes (1000G) project, Phase 3 to calculate 

LD [26432245]. We calculated these GWAS gene p-values for all 20,327 protein-coding 
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genes (Ensembl release v75). The gene p-values were then converted to Z-scores for use in 

subsequent analysis. These are referred to as GWAS gene Z-scores.

Calculation of gene Z-scores for null GWASs to account for chromosomal organization 
of genes and to calculate empirical p-values: To account for long range effects of 

haplotype structure which results in genes getting a similar GWAS gene Z-score, we use a 

generalized least squares (GLS) regression model for all regressions done in Downstreamer. 

The GLS model takes a correlation matrix that models this gene-gene correlation.

To calculate this correlation matrix we first simulated 10,000 random phenotypes by 

drawing phenotypes from a normal distribution and then associating them to the genotypes 

of the 1000G Phase 3 non-Finnish European samples. We used only overlapping variants 

between the real traits and the permuted GWASs to avoid biases introduced by genotyping 

platforms or imputation. We then calculated the GWAS gene Z-scores for each of the 

10,000 simulated GWAS signals as described above. Next, we calculated the Pearson 

correlations between the GWAS gene Z-scores. As simulated GWAS signals are random 

and independent of each other, any remaining correlation between GWAS gene Z-scores 

reflects the underlying LD patterns and chromosomal organization of genes.

We simulated an additional 10,000 GWASs as described above to empirically determine 

enrichment p-values and, finally, we used an additional 100 simulations to estimate the false 

discovery rate (FDR) of Downstreamer associations.

Downstreamer step 2

Calculation of Z-scores for co-regulation matrix: To calculate core scores, we used 

a previously generated co-regulation matrix that is based on a large multi-tissue gene 

network68. In short, publicly available RNA-seq samples were downloaded from the 

European Nucleotide Archive (https://www.ebi.ac.uk/ena). After QC, 56,435 genes and 

31,499 samples covering a wide range of human cell-types and tissues remained. We 

performed a PCA on this dataset and selected 165 components representing 50% of the 

variation that offered the best prediction of gene function. We then selected the protein 

coding genes and centred and scaled the eigenvectors for these 165 components (mean = 

0, standard deviation = 1) such that each component was given equal weight. The first 

components mostly describe tissue differences68, so this normalization ensures that tissue-

specific-patterns do not disproportionately drive the co-regulation matrix. The co-regulation 

matrix is defined as the Pearson correlation between the genes from the scaled eigenvector 

matrix. The diagonal of the co-regulation matrix was set to zero to avoid the correlation 

with itself having a disproportionate effect on the association to the GWAS gene Z-scores. 

Finally, we converted the Pearson r to Z-scores.

Calculation of Z-scores for pathways and gene sets: To identify pathway and disease 

enrichments, we used the following databases: Human Phenotype Ontology (HPO), Kyoto 

Encyclopaedia of Genes and Genomes (KEGG), Reactome and Gene Ontology (GO) 

Biological Process, Cellular Component and Molecular Function. We have previously 

predicted how much each gene contributes to these gene sets, resulting in a Z-score per 

pathway or term per gene68. We collapsed genes into meta-genes in parallel with the GWAS 
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step, to ensure compatibility with the GWAS gene Z-scores following the same procedure 

as in the GWAS pre-processing. Meta-gene Z-scores were calculated as the Z-score sum 

divided by the square root of the number of genes. Finally, all pathway Z-scores were scaled 

(mean = 0, standard deviation = 1).

Pre-processing of GWAS gene Z-scores and pruning of highly correlated genes: For 

each GWAS, both real and simulated, we carried out rank-based inverse normal 

transformation of GWAS Z-scores to ensure that outliers would not have disproportionate 

weights. Due to limitations in the PASCAL methodology that result in ties at a minimum 

significance level of 1x10-12 for highly significant genes, we used the minimum SNP 

P-value from the GWAS to identify the most significant gene and resolve the tie. We then 

used a linear model to correct for gene length, as longer genes will typically harbour more 

SNPs.

Sometimes, two (or more) genes will be so close to one another that their GWAS gene 

Z-scores are highly correlated, violating the assumptions of the linear model. Thus, genes 

with a Pearson correlation r ≥ 0.8 in the 10,000 GWAS permutations were collapsed into 

‘meta-genes’ and treated as one gene. Meta-gene Z-scores were averaged across the input 

Z-scores. Lastly, the GWAS Z-scores of the meta genes were scaled (mean = 0, standard 

deviation = 1).

GLS model to calculate pathway enrichment and core gene scores: We used a GLS 

regression to associate the GWAS gene Z-scores to the pathway Z-scores and co-regulation 

Z-scores (described below). These two analyses result in the pathway enrichments and core 

gene prioritisations, respectively. We used the gene-gene correlation matrix derived from the 

10,000 permutations as a measure of conditional covariance of the error term (□) in the GLS 

to account for the relationships between genes due to LD and proximity. The pseudo-inverse 

of □ is used as a substitute for □-1

The formula of the GLS is as follows:

β = X
⊤

Ω
−1

X
−1

X
⊤

Ω
−1

y

Where β is the estimated effect size of pathway, term or gene from the co-regulation matrix, 

Ω is the gene-gene correlation matrix, X is the design matrix of real GWAS Z-scores and y 
is the vector of gene Z-scores per pathway, term or gene from the co-regulation matrix. As 

we standardized the predictors, we did not include an intercept in the design matrix and X 
only contains one column with the real GWAS gene Z-scores. We estimated the beta’s for 

the 10,000 random GWASs in the same way and subsequently used them to estimate the 

empirical p-value for β.

Definition of POI and DDR genes

We combined genes implicated in the DDR from a number of sources yielding a total of 778 

genes (Supplementary Table 19)69–71. To identify genes associated with premature ovarian 

insufficiency/primary ovarian insufficiency (ICD-11 GA30.6), we carried out a search 
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in PubMed for premature ovarian insufficiency, primary ovarian insufficiency, premature 

ovarian failure and ovarian dysfunction in humans and reviewed all primary studies 

published in English until 22nd of July, 2020. We included syndromic, non-syndromic, 

sporadic as well as familial single nucleotide variants, insertion/deletions and copy number 

variants (CNVs) and included 114 genetic variants from 139 studies. We did not attempt 

to review the clinical significance of the variants, which ranged from classical POI genes 

to newly identified CNVs in whole-exome sequencing studies. We expanded our search 

to review articles and ClinVar. We uncovered another four genes implicated in Perrault 

Syndrome for which our search terms were not included in the original articles. This gave a 

total of 118 genes. Our search detected all genetic variants entered in ClinVar as pathogenic, 

likely pathogenic or with conflicting interpretations of pathogenicity. We excluded genes 

with variants when no assertion criteria were provided and no published data were available 

for assessment in ClinVar. Two studies of large chromosomal rearrangements as well as 

quantitative trait loci consisting of more than a single genetic variant from GWAS in POI 

populations were excluded resulting in 74 genes (Supplementary Table 6). Gene lists were 

curated independently of the current meta-analysis and genes were only included if there 

was convincing evidence independent of any GWAS study.

Polygenic prediction of early menopause

To evaluate the impact of common variants on clinical extremes of ANM, we first performed 

a GWAS meta-analysis excluding the UK Biobank study (N=95,275). Effect estimates from 

this analysis (Supplementary Table 2) were then used for subsequent polygenic score (PGS) 

construction of ~6.97 million autosomal variants across the genome using LDPRED72. The 

PGS was calculated using PLINK73 v1.90b4.4 in an independent sample of 108,840 women 

with the full phenotypic range of ANM ages from the UK Biobank study, rescaled to have 

a mean of 0 and standard deviation of 1. We then estimated the centile distribution of the 

genetic risk score for all women with a valid ANM (with no lower or upper phenotype 

boundary). Two outcomes were defined: early menopause (EM) defined as ANM < 45 

(N=11,268) vs all other women (N=97,572); and premature ovarian insufficiency (POI), 

defined as ANM < 40 years (N=2,407) vs all other women (N=106,433). Logistic regression 

analyses, adjusting for age, genotype array and 10 genetic principal components, were then 

performed with either EM or POI as the outcome. This was performed 99 times for each 

centile of genetic risk (coded 1) vs the 50th centile of genetic risk (coded 0). To assess the 

relevance of this score to each ANM age group, we estimated the average PGS value by year 

of ANM. For example, we grouped all women with ANM = 47 and estimated the mean and 

standard error of the PGS in this group of women. Our intuition was that any ANM range 

not influenced by common genetic variants would have the population mean PGS (i.e mean 

= 0 and SD = 1). Receiver operating characteristics (ROC) models were performed in Stata 

v14 using the roctab, rocgold and rocreg commands.

Mendelian Randomization analyses

In order to infer causal relationships between ANM and other health related outcomes, we 

performed Mendelian Randomization (MR). The 290 independent ANM signals were used 

as a genetic instrument for later ANM. Where a signal was not present in the outcome 

GWAS, we identified the best HapMap2 proxy with r2>0.5 within 250 kb either side of the 
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signal and its relevant weight was included in our genetic instrument (Supplementary Table 

23). The genetic variants were identified in publicly available GWAS datasets for a range 

of outcomes of interest (Supplementary Table 22). These were used in three methods of 

MR - inverse variance weighted74, MR-EGGER75 and weighted median76. As a sensitivity 

analysis we additionally removed signals that appeared to be outliers. This was achieved 

using the Radial method considering the IVW model77. We also performed MR considering 

the effect of a range of putative modifiable risk factors on ANM as the outcome using the 

same MR models. Genetic instruments were created for the risk factors using independent 

genetic variants with effects estimated in published GWAS (Supplementary Table 25). For 

the risk factors of cigarette exposure and alcohol consumption, the MR was performed with 

a single genetic variant by calculating a Wald ratio for the effect of the variants on ANM 

divided by the effect on the risk factor using mrrobust in Stata v16.0. The effect of the 

genetic variant for alcohol consumption was measured in log(drinks per week) (note that 

drink is a US measure of alcohol consumption equal to 14g pure alcohol, equivalent to 1.75 

UK units). Hence a change from 1 drink to 7 drinks (US maximum recommended per week) 

would be the equivalent of a 1.95 increase in log(drinks per week), which when applied to 

the Wald estimate, gives the respective change in age at menopause.

Expression of candidate genes identified by human GWAS in a mouse model of 

environmentally-induced low ovarian reserve

Generation of mouse model—All animal experiments underwent ethical review by the 

University of Cambridge Animal Welfare and Ethical Review Board and were carried out 

under the UK Home Office Animals (Scientific Procedures) Act (1986, United Kingdom). 

Female C57BL/6J mice were randomized to be fed ad libitum either a standard laboratory 

chow diet (7% simple sugars/3% fat; Special Dietary Services, Witham, UK) or an 

obesogenic diet (10% simple sugars/20% animal lard; Special Diets Services, Witham, UK). 

The obesogenic diet was supplemented with a separate pot of sweetened condensed milk 

(55% simple sugars/8% fat; Nestle UK, Gatwick, UK) available to the animals within the 

cage. A detailed description of the dietary regimen has been published previously78. Female 

mice were placed on the allocated diet six weeks prior to first mating with wild-type males 

on standard chow diet. The first litter was discarded after weaning, and only proven-breeder 

females were used for the experimental protocols. Second matings occurred once females 

on the obesogenic diet had reached at least 10g absolute fat mass, as assessed by time 

domain nuclear resonance imaging (TDNMR) (Minispec Time Domain Nuclear Resonance, 

Bruker Optics). The female mice remained on their allocated diets throughout the breeding, 

pregnancy, and lactation phases. After delivery, each litter was culled to six pups at random 

to standardize their plane of nutrition from postnatal day 3 in all litters. There was no 

significant difference in the pre-culling litter size between obesogenic and control litters. 

Equal sex ratios within the litters were maintained as far as possible. After weaning at day 

21, female offspring were randomly allocated to either the control or the obesogenic diets 

(identical to those used for the dams) and remained on these diets for the duration of the 

study. Bodyweight and food intake were measured weekly. At 12 weeks of age, offspring 

total and fat mass were assessed by weighing and by TDNMR (Minispec Time Domain 

Nuclear Resonance, Bruker Optics) respectively. Following an overnight fast, the female 

offspring were weighed and then culled by CO2 asphyxiation and cervical dislocation. 
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Ovaries were dissected and weighed immediately. One ovary from each animal was snap-

frozen in liquid nitrogen or dry ice, and stored at -80°C, the other was fixed in formalin/

paraldehyde. The fixed ovary was sectioned and subjected to haematoxylin and eosin (H&E) 

staining to ensure equal distribution of estrous stages in each experimental group (data not 

shown). Detailed reproductive and metabolic phenotyping of the female pups has previously 

been published24.

Gene expression analysis—A screen of 35 DNA damage response genes highlighted 

by our previous GWAS on ANM were selected for investigation13 - Brca1, Bre, Brsk1, 

Chd7, Chek2, Dido1, Fbxo18, Helb, Helq, Mcm8, Mlf1ip, Msh5, Msh6, Mycbp, Polg, 

Prim1, Rad51, Rad54l, Rev3l, Uimc1, Apex, Aptx1, Cdk2ap1, Dmc1, Exo1, Fam175a, 

Fanci, Ino80, Kntc1, Papd7, Parl, Parp2, Polr2e, Polr2h and Tlk1. Expression levels 

were measured in whole snap-frozen ovaries. RNA was extracted using a miRNeasy 

mini Kit (Qiagen, Hilden, Germany). The kit was used according to the manufacturer’s 

instructions, with the addition of DNaseI digestion to ensure that the samples were free 

from genomic DNA contamination. The extracted RNA was quantified using a Nanodrop 

spectrophotometer (Nanodrop Technologies, Wilmington, DE, US). cDNA was synthesized 

from 1μg RNA using oligo-dT primers and M-MLV reverse transcriptase. Gene expression 

was quantified via RT-PCR (StepOne Plus machine; Applied Biosystems, Warrington, UK) 

using custom-designed primers (Sigma, Poole, UK) and SYBR green reagents (Applied 

Biosystems, Warrington, UK). Equal efficiency of reverse transcription between all groups 

was confirmed using the housekeeper gene ppia, and absence of gDNA contamination was 

confirmed by quantifying myh6, which was absent in all samples.

Statistical analysis—All data were initially analyzed using a 2-way ANOVA with 

maternal diet and offspring diet as the independent variables. In order to correct for multiple 

hypothesis testing of gene expression levels, p values were transformed to q values to 

take account of the false discovery rates using the p.adjust function in R stats package 

(R Foundation for Statistical Computing, Vienna, Austria). Data are represented as means 

± SEM. Where p values are reported, an alpha level <0.05 was considered statistically 

significant. All data analysis was conducted using the R statistical software package version 

2.14.1 (R Foundation for Statistical Computing, Vienna, Austria). In all cases, n refers to the 

number of litters, and n=8 for all groups. Study power was determined based on effect sizes 

for gene expression differences observed in our previous studies of this model24.

Human oocytes mRNA screen

Research on RNA expression in human eggs was carried out according to the Helsinki II 

declaration and was conducted in accordance with national regulation on research on human 

subjects and material. The research was approved by the Scientific Ethical Committee of the 

Capital Region of Denmark (Videnskabsetisk Komite) in accordance with Danish National 

regulation (H-2-2011-044; extension license amm. Nr. 51307; license holder: Claus Yding 

Andersen and H-1604473; license holder: Eva R. Hoffmann; H-16027088 granted to Marie 

Louise Grøndahl). The full protocols contained permission to conduct mRNA sequencing on 

human eggs. GDPR approval was obtained from the national data agency (SUND-2016-60, 

Eva R Hoffmann and HGH-2016_086 to Marie Louise Grøndahl). All participants provided 
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informed consent according to Danish ethical regulation after receiving written information 

and oral clarification about participation. Participants could withdraw from the study at any 

time. Participants did not receive monetary compensation and their participation was fully 

voluntary and did not affect their fertility treatment.

Single human MII oocytes were collected as described previously79, lysed in-tube and the 

cDNA was amplified according to the manufacturer’s instructions (Takara Bio; mRNA-Seq, 

SMART-Seq v4 ultra low input RNA kit, cat. no. 634894). The quality of individual cDNA 

libraries was verified on an Agilent 2100 Bioanalyzer instrument using a high sensitivity 

DNA kit (Agilent, 5067-4626). The libraries were prepared with 100 pg input using the 

Nextera XT DNA library preparation kit (Illumina, FC-131-1024) and the Nextera XT index 

kit v2 (FC-131-2002) and quantified on a Qubit 3.0 fluorimeter (Thermo Fisher Scientific, 

Q32854). The quality of the final library was verified on the Agilent 2100 Bioanalyzer high 

sensitivity DNA chip and pooled to 4 nM. The 4 nM library pools were denatured and 

loaded according to the recommended NextSeq500 guidelines (Illumina Inc.).

Expression analysis of GWAS genes in human oocytes and granulosa cells at 

various stages of development—We used processed RNA-seq data of Fetal Primordial 

Germ Cells from Li et al (2017, Accession code: GSE86146)80 from 17 human female 

embryos ranging from 5-26 weeks post-fertilisation, and from Zhang et al (2018, Accession 

code GSE107746)81 studies, follicles at 5 different stages of development from fresh ovarian 

tissue from 7 adult donors, separated into oocytes and granulosa cell fractions; in addition to 

our MII Oocytes single-cell RNA-seq dataset (described below).

We transformed the per-cycle base call (BCL) file output from the sequencing run of 11 

human MII oocytes into per-read FASTQ files using the bcl2fastq2 Conversion Software 

v2.19 from Illumina. The samples libraries were multiplexed across four sequencing lanes 

and the FastQ files from each of the four lanes were concatenated to generate one set 

of paired fastq files per sample. We performed sample QC and filtering of reads to 

remove low quality reads, adaptor sequences and low quality bases with trimmomatic82 

version 0.36 in two steps using ILLUMINACLIP:/ /Trimmomatic-0.36/adapters/NexteraPE-

PE.fa:2:30:10 (SLIDINGWINDOW:4:20 CROP:72 HEADCROP:10 MINLEN:40 followed 

by and extra trim of headbases with HEADCROP:10.) Subsequent to filtering, we used 

the remaining paired reads for alignment by hisat283 to the human genome GeneCode 

v.27 release with the paired GenCode v.27 gtf file containing gene annotations using: 

($HISAT2 -p 22 --dta -x.gencode.v27 -1 R1.fastq -2 R2.fastq -S sample.sam) (Pertea et 
al. 2016). The resulting sam files were sorted, indexed and transformed to bam files using 

samtools84. QC measures of aligned reads was generated using picard metrics (https://

slowkow.github.io/picardmetrics) and the CollectRnaSeqMetrics tool from picard tools 

(http://broadinstitute.github.io/picard). We filtered the bam files for mitochondrial reads and 

Stringtie was applied to merge and assemble reference guided transcripts for gene level 

quantifications of raw counts, and transcripts per million (TPM)85. Of the 283 consensus 

genes highlighted by the GWAS (Supplementary Table 5), 258 passed QC and were 

available in the expression dataset. Gene expression levels in TPM were used for further 

analyses as this unit allows efficient comparison of gene expression levels between samples 

from different studies. A pseudo-count of 1 was added to all TPM values and converted to 
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log2 scale before the heatmaps were plotted. Hierarchical clustering by euclidean distance, 

z-score calculation and plotting the heatmap was done using the R package ‘pheatmap’ 

(Kolde R, 2019, v1.0.12). Z-scores are calculated by subtracting the mean of TPM values 

in all samples for a gene and dividing by the standard deviation. Samples with only TPM>5 

were considered for heatmap showing the GWAS genes.

sChek1, Chek1 cKO, and Chek2 mice

Mouse work at the University of Copenhagen (sChek1) was licensed under 

2016-15-0202-00043 by the Danish Animal Experiments Inspectorate (Dyreforsøgstilsynet, 

Denmark). Mouse work at UAB (Chek2) was approved by the UAB and the Catalan 

Ethics Committee for Animal Experimentation (CEEAAH 1091; DAAM6395). Mouse work 

at CCHMC (Chek1 cKO, Ddx4-Cre) was performed according to the guidelines of the 

Institutional Animal Care and Use Committee (protocol no. IACUC2018-0040) approved by 

CCHMC. The Chek1 cKO, Zp3-Cre embryology was conducted at the Institute of Animal 

Physiology and Genetics CAS in Libechov (Czech Republic), abiding by the policies of the 

Expert Committee for the Approval of Projects of Experiments on Animals of the Academy 

of Sciences of the Czech Republic (# 43-2015).

Chek1 cKO (Ddx4-Cre), sChek1, and Chek2 mutant mice were generated previously33,37,86. 

The lines were maintained in C57BL/6-129Sv and inbred C57BL/6-129Sv (sChek1 and 
Chek2) backgrounds respectively. The chek2 mouse is available under accession number 

BRC03481 at the RIKEN Bioresource Centre. The Chek1 cKO Zp3-Cre embryos were 

generated by crossing mice with Zp3-Cre transgene87 to mice with Chek1 allele containing 

LoxP sites88 resulting in mice expressing Cre-recombinase under the control of the 

oocyte specific zona pellucida 3 promotor (Zp3::Cre) to produce Chek1 cKO (Zp3-Cre). 

All experiments were carried out using litter mate controls or with animals of closely 

related parents as controls. The four mutant strains were kept at the University of 

Copenhagen (sChek1), Autonomous University of Barcelona (Chek2), Cincinnati Children’s 

Hospital Medical Center (Chek1 cKO - Ddx4-Cre) and Institute of Animal Physiology 

and Genetics CAS in Libechov, Czech Republic (Chek1 cKO Zp3-Cre). Breeding cages 

were set in a conventional way with strict specific pathogen-free barrier and mice used 

for experiments were kept in individual ventilated cages (IVC). 12h light exposure was 

provided. Temperature, relative humidity and air changes per hour were 22 °C (+/-2 °C), 

55% +/-10 %, and 17 respectively. Food and water were provided ad libitum. Animals 

were genotyped two times, initially upon weaning and again before experimental procedures 

were carried out. Mouse genotyping was performed by PCR analysis using the following 

primers for the Chek1 cKO (Ddx4): F1 (5′-ACC TGC CCG CAA CTC CCT TTC-3’) and 

R2 (5′-TGC AAC AGC TTC AGT TAT TC-3′); for the cKO Chek1(Zp3-Cre): Cre_low 

(5′-TAT TCG GAT CAT CAG CTA-3′), Cre_up (5′-GGT GGG AGA ATG TTA ATC-3′), 

CHK1F1 (5′-ACC TGC CCG CAA CTC CCT TTC-3′), CHK1R1(5′-CCA TGA CTC 

CAA GCA CAG CGA-3′). The sizes of products were 318 bp for wild type and 380 

bp for loxP/loxP transgene. The size of the Zp3-Cre transgene was 139 bp. For sChek1 
the primers were: gsChek1_left “TGT CTT CCC TTC CCT GCT TA”, gsChek1_right1 

“TCC CAA GGG TCA GAG ATC AT” and gsChek1_5’PCR2 “GTA AGC CAG TAT ACA 

CTC CGC TA”. The wild type gene yields a size of 400 bp whereas the transgene is 270 

Ruth et al. Page 21

Nature. Author manuscript; available in PMC 2021 October 14.

 E
urope P

M
C

 F
unders A

uthor M
anuscripts

 E
urope P

M
C

 F
unders A

uthor M
anuscripts



bp. For Chek2, the primers WT1F (5′–GTGTGCGCCACCACTATCCTG–3’), WT2R (5′–

CCCTTGGCCATGTTTCATCTG–3′) and NeoMutR (5′–TCCTCGTGCTTTACGGTATC–

3′) were used to detect the wild type (450 bp) and the mutant (625 bp) alleles in one PCR 

reaction. The Qiagen Taq polymerase PCR kit was used for genotyping (Cat No 201203 / 

201205).

Mouse ovarian histology and follicle count—Ovaries were dissected and placed in 

4% formaldehyde (Chek1 cKO (Ddx4)) & Bouin’s fixative solution (70% saturated picric 

acid solution (Applichem, A2520, 1000), 25% formaldehyde, 5% glacial acetic acid (Merck, 

1.00063.2500)) or 4% formaldehyde for Chek1 cKO (Ddx4-Cre) overnight at 4 °C. The 

ovaries were washed two times with cold PBS for 30 minutes followed by dehydration 

with an increasing concentration of ethanol. Subsequently, the samples were submerged in 

Histo-Clear II (Cat. # HS-202, National Diagnostics) for 30 min. at room temperature. This 

was repeated another two times (three times in total) with fresh Histo-Clear II. Ovaries 

were embedded in paraffin blocks and cut to a thickness of 7 μm (sCHEK1 and Chek2) 

and 6 μm (Chek1 cKO (Ddx4-Cre)) and mounted on poly-L-lysine coated slides. After 

de-paraffinization and rehydration, the slides were stained with PAS-hematoxylin. The tissue 

was imaged using a Zeiss Axio scanner Z.1 and follicles with a visible nucleus were counted 

using the Zen Blue lite software from Zeiss. Primordial follicles contain one layer of flat 

granulosa cells surrounding the oocytes, primary follicles have one layer of cuboid granulosa 

cells. Secondary follicles contain two or more layers of granulosa cells and antral follicles 

are those with one or several cavities (the antrum).

Mouse ovulation induction and oocyte collection—Ovulation was induced by 

injection of 5 IU of PMSG (Prospec; ref HOR-272) followed by 5 IU of hCG (Chorulon 

Vet; ref 422741) after 47 hours. For 11-13, 16 and 24 months old mice, 7.5 IU of each 

hormones were used. 12 hours post-hCG injection, the mice were sacrificed and oviducts 

were dissected under a stereo-microscope to release the cumulus masses into 90 μl drop 

of fertilization medium covered with mineral oil (NordilCell; ref 90142). Oocytes were 

recovered from oviducts by gently tearing swollen ampulla of oviducts to release cumulus 

masses into medium. Recipe of fertilization medium was previously published elsewhere89.

RT-qPCR on mice oocytes—Total RNA from oocytes was isolated with the Arcturus 
PicoPure RNA Isolation Kit from Applied Biosystems following the manufacturer’s 

instructions. Reverse transcription reactions were done with twenty eight nanograms 

of RNA using the Maxima First Strand cDNA Synthesis Kit for RT-qPCR with 
dsDNase (Thermo Fisher Scientific). cDNA was quantified by qPCR with the Applied 
Biosystems 7500 FAST Real-Time PCR System using Power SYBR green PCR 
Master Mix from Thermo Fisher Scientific. The sequences of the primers used 

are the following: Chek1-For: 5’- AAGCCACGAGAATGTAGTGAAA-3’, Chek1-Rev: 

5’- AGCATCTTGTTCAGGCATCC-3’, Actb-For: 5’-CCAACCGTGAAAAGATGACC-3’, 

Actb-Rev: 5’-ACCAGAGGCATACAGGGACA-3’. Values were normalized to the 

expression of Actb housekeeping gene.
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Mouse embryo development in vitro—Fresh pre-thawed frozen sperm from a proven 

fertile C57BL/6 wild-type male was used for in vitro fertilization and poured into a dish 

containing mature MII eggs in fertilization medium. Disappearance of germinal vesicle 

(GV) and polar body extrusion confirmed fertilization. Zygotes were incubated at 5% CO2 

and 37 °C. After incubating zygotes in fertilisation medium for overnight, We transferred 

zygotes to a 60 mm petri dish containing 50 μl KSOM (Chemicon, cat MR-106-D) covered 

by mineral oil(NordilCell; ref 90142). Two separate dishes were prepared for embryos 

from each genotype. The embryos were again incubated at 5% CO2 and 37 °C. The 

developmental stage of embryos was assessed using a stereomicroscope at the equivalent 

of 0.5, 1.5, 2.5, 3.5, 4.4 and 5.5 days post-coitum (dpc). For chek2, where the wild type 

frequency of fertilization was lower than in the the Chek1-cko and sChek1 strains, we used 

young C57BL/6J.Ola.Hsd females to control for the efficiency of IVF (85%).

Mouse ovulation and embryo development (Chek1 cKO, Zp3-Cre)— Chek1 ctrl 

and cKO females were stimulated with 5 IU of PMSG (HOR-272, Prospec) followed by 5 

IU of hCG (Ovitrelle, Merck) after 44 hours. After 18 hours, the females were sacrificed 

using cervical dislocation according to the protocols authorized by the ethics committee, 

and ovulated MII oocytes and zygotes were collected in M2 media (M7167-50ML, Sigma-

Aldrich) by tearing ampulla from oviduct. The oocytes and zygotes in cumulus mass were 

placed into a drop of M2 media supplied with 300 μg/ml hyaluronidase (H4272, Sigma-

Aldrich) to release the cumulus cells. The MII oocytes and zygotes were cultured at 5% CO2 

and 37°C in EmbryoMax® KSOM media (MR-106-D, Sigma-Aldrich) and after 10 hours 

were scored using Leica DMI 6000 microscope. Only zygotes with visible pronuclei were 

left for subsequent culture.

Immunofluorescence analysis of mouse preimplantation embryos (Chek1 

cKO, Zp3-Cre)—The embryos were 3x briefly washed in PBS supplied with 1mg/ml 

poly(vinyl alcohol) and fixed in 3.7% formaldehyde for 45 min. They were permeabilized 

thereafter by 0.5% Triton X-100 in PBS for 45 min. To block unspecific antibody 

binding, the embryos were incubated in 2% normal donkey serum (NDS) for 2 hours. 

The embryos were incubated overnight at 4°C at a dilution 1:200 in primary antibody 

against gH2AX (9718, Cell Signaling Technology). The next day, they were incubated for 

90 min at a dilution 1:100 in Rhodamine (TRITC)-AffiniPure Donkey Anti-Rabbit IgG 

(711-025-152, Jackson Immuno Research). Then they were mounted in ProLong™ Gold 

Antifade Mountant with DAPI (P36941, Invitrogen) with a spacer to uphold the embryonic 

3D structure. The embryos were washed 5x for 8 min in PBS supplied with 1mg/ml bovine 

serum albumin or 0.2% NDS between each steps. The embryos were scanned using a 

confocal microscope (Leica TCS SP5) and Fiii software90 was employed for image analysis.

Mouse embryo transfer—Wild-type female recipient mice (surrogate) were prepared to 

receive embryos by mating them with an infertile male one night before the transfer of 

embryos. Successful preparation of recipient mice for embryo transfer was confirmed by 

checking for the presence of a plug. Two cell-stage (1.5dpc) embryos were transferred into 

a single horn of recipient mice and anaesthesia were maintained during this procedure. Pups 

were born after 19 days of embryo transfer.
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Natural breeding, assessment of health of offspring and fertility in mouse—

To test the natural breeding efficiency, we set cages with one or two adult (2-months or 

12-month-old) control or females with a male of proven fertility. We registered litter sizes 

and dates of delivery for all litters obtained during a period for up to one year.

Mice Serum AMH analysis—Mice of various ages were anesthetized. Blood was 

collected in a plain tube, allowed to clot for one hour at room temperature and then 

centrifuged at 3000 rpm (1500g) for 15 minutes at 4 °C. After centrifugation, supernatant 

(serum) was collected in a 1.5 ml tube and stored at -80 °C. Serum AMH levels were 

determined by using AMH ELISA kit (cat. # AL-113) from Ansh Labs, Webster, TX.

Assessment of the health of the offspring from control and mutant breeding was performed 

on a weekly basis by the personnel of the respective animal facilities following the standard 

health monitoring protocols approved by the Copenhagen or Catalan Ethics Committee for 

Animal Experimentation.

Extended Data

Extended Data Figure 1. Overview of ovarian reserve and follicular activity across reproductive 
life.
a, Key processes involved in follicular activity from fetal development to menopause 

showing the numbers of oocytes at each stage; b, Summary of key biological pathways 

involved in follicular activity and their relationship to stage of reproductive life. Follicles, 

consisting of oocytes and surrounding granulosa cells are formed in utero and maintained 
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as resting primordial follicles in the cortex constituting the ovarian reserve. Follicles are 

sequentially recruited from the ovarian reserve at a rate of several hundred per month in 

childhood, peaking at around 900 per month at ~15 years of age. Following recruitment, 

follicles grow by mitotic division of granulosa cells and expansion of oocyte volume for 

almost 6 months until meiosis is reinitiated at ovulation and the mature oocyte is released 

into the oviduct. Waves of atresia (follicle death) accompany developmental transitions and 

growing follicles are continuously induced to undergo cell death such that, typically, only a 

single follicle matures to ovulate each month. As ovarian reserve declines the rate of follicle 

recruitment decreases, but the preovulatory follicles continue to produce substantial amounts 

of oestrogen, while other important hormones such as anti-Müllerian hormone and inhibin-B 

decline, leading to upregulation of the hypothalamus-pituitary gonadal axis.

Extended Data Figure 2. Overview of performed analyses.
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Extended Data Figure 3. Consistency of effect estimates across analyses methods and strata.
Comparison of effect estimates from: a, Cox proportional hazards regression in UK 

Biobank with linear regression effect estimates from the overall meta-analysis (“Effect 

full metaanalysis”); b, Cox proportional hazards regression in UK Biobank with linear 

regression effect estimates from the meta-analysis excluding UK Biobank (“Effect 

1KG+BCAC”); c, linear regression in UK Biobank with linear regression effect estimates 

from the meta-analysis excluding UK Biobank (“Effect 1KG+BCAC”). Comparison of 

linear regression effect estimates from: d, UK Biobank GWAS vs. the meta-analysis of 1000 

Genomes imputed studies; e, UK Biobank GWAS vs. meta-analysis of samples from the 

Breast Cancer Association Consortium (BCAC); f, meta-analysis of BCAC samples vs. the 

meta-analysis of 1000 Genomes imputed studies; g, 23andMe replication analysis (rescaled) 

vs. overall meta-analysis. HR, hazard ratio from Cox proportional hazards model; r, Pearson 

correlation coefficient; blue line is y=x for reference. Note: P values < 1×10-300 are shown 

as 1×10-300.
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Extended Data Figure 4. Deviation from additive effects and distribution of estimated 
heritability across chromosomes.
a-d, Genome-wide significant signals showing departure from an additive model. We 

tested the identified signals for departure from an additive allelic model. a, rs11668344 

shows no deviation from an additive allelic model; b, rs11670032 and c, rs28416520 

show deviation from the additive allelic model and a recessive effect; and d, rs75770066 

shows a heterozygote effect. The mean and 95% confidence interval around the mean 

estimate are shown for each genotype. The expected mean ANM for the heterozygotes is 

the average of the mean ANM in the homozygote groups. The dashed orange line shows 

the effect estimate by genotype from linear regression based on an additive allelic model. 

Estimated ANM for each genotype was calculated as constant from regression model + 

number alleles × effect estimate from regression model. The dashed grey line indicates the 

additive effect estimate by genotype from a model adjusting for the dominance deviation 

effect of the heterozygote group (solid grey line). All regression models were adjusted for 

centre, genotyping chip and genetic principal components. ANM, age at natural menopause; 

dom dev, dominance deviation. e, The percentage of the total heritability explained that 

was attributable to each chromosome (observed heritability) is compared with the expected 

proportion calculated on the basis of chromosome size. The heritability of ANM was not 

uniformly distributed across chromosomes in proportion to their size. The X-chromosome 

did not explain more heritability than expected given its size, however chromosome 19 

explained 2.36% [1.98-2.75] of the trait variance – greater than the individual contributions 

of nearly all larger chromosomes (weighted average for chromosomes 1-18: 1.7%, s.e 0.2%) 

and ~2.5x more than expected given its size. This was partially attributable to a single 

locus at 19q13 which explained ~0.75% trait variance and where we mapped 6 independent 

signals (Supplementary Table 2). The dashed line shows the mean ratio of expected to 
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observed heritability across all chromosomes. Chromosome size was estimated based on the 

number of genetic variants.

Extended Data Figure 5. Gene co-regulation networks for age at menopause genes with those 
co-regulated with MCM8 highlighted.
a, Gene co-regulation network for genes relating to age at menopause. Nodes indicate genes 

that either in a cis region from the GWAS or have been prioritized by Downstreamer, edges 

indicate a co-regulation relationship with a Z-score >4. Co-regulation is defined as the 

Pearson correlation between genes in a scaled eigenvector matrix derived from a multi-tissue 

gene network68. Cis genes are defined as genes that are within +/-300kb of a GWAS top hit 

for age at menopause. Trans genes are defined as having been prioritized by Downstreamer’s 

co-regulation analysis and are not within +/-300kb of a GWAS top hit. Downstreamer 

prioritizes genes by associating the gene p-value profile of the GWAS (calculated using 

PASCAL67) to the co-regulation profile of each protein coding gene. Only genes where 

this association passes Bonferroni significance are shown as trans genes. Colours of nodes 

indicate the following: Teal indicates Cis genes, Dark Teal indicates Trans genes and Yellow 

indicates genes with a 1st degree relation to MCM8. b, Gene co-regulation network showing 

the genes that have a first degree relationship with MCM8 with a Z-score >4. Width of the 

edge indicates the Z-score of the co-regulation relationship. Colours indicate the same as in 

a, with the exception of Yellow, as all genes indicated have a 1st degree relation to MCM8.
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Extended Data Figure 6. DNA damage response and repair pathways implicated in reproductive 
ageing in humans.
a, Consequences of replication stress annotated with genes involved that were within 300kb 

of the age at natural menopause (ANM) signals; b, Genes involved in downstream DNA 

damage response and repair pathways with those within 300kb of an ANM signal shown 

in blue. A full list of genes involved in DNA damage response and apoptosis annotated 

with genome-wide signals for ANM is provided in Supplementary Table 19. MRN, MRN-
MRE11-RAD50-NBS1 complex; RPA, Replication Protein A including a subunit encoded 

by RPA1; RFC, Replication Factor C including a subunit encoded by RFC1; 9-1-1, RAD9-
HUS1-RAD1 complex.
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Extended Data Figure 7. Cluster plot of expression of consensus genes identified from the 
genome-wide analyses in germ cells across different developmental stages.
Genes were selected from the GWAS signals, based on in silico prioritisation 

(Supplementary Table 5). Of the 283 consensus genes highlighted by the GWAS, 258 passed 

QC and were available in the expression dataset. Gene expression was measured in human 

fetal primordial germ cells80,81, and oocytes and granulosa cells in adult follicles (dataset 

generated in this study). Plot shows Z-scores, calculated by subtracting the mean transcripts 

per million (TPM) in all samples for a gene and dividing by the standard deviation. GC, 

granulosa cell; MII, meiosis II; PGC, primordial germ cell; Wks, weeks.
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Extended Data Figure 8. Relationship between decreased ovarian reserve and gene expression.
Open bar/dot groups – control maternal diet, normal ovarian reserve. Grey bar/dot 

groups: obesogenic maternal diet, reduced ovarian reserve. a, Ovarian follicular reserve 

in young adulthood in wild-type mice. Total follicles/mm3 ovarian tissue at 12 weeks. 

Dots: individual observations. Bar heights and error bars: mean± SEM. n= 8 biologically 

independent animals from different litters in each group. P=0.0091 derived from 2-way 

ANOVA after correction for multiple hypothesis testing. b, Brsk1 expression in the same 

animals, measured using qrtPCR and expressed as average copy number. Dots: individual 
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observations. Bar heights and error bars: mean± SEM. n= 8 biologically independent 

animals from different litters in each group. P=0.0001 derived from 2-way ANOVA after 

correction for multiple hypothesis testing. c, Wee1 expression in the same animals, measured 

using qrtPCR and expressed as average copy number. Dots: individual observations. Bar 

heights and error bars: mean± SEM. n= 8 biologically independent animals from different 

litters in each group. P=0.0256 derived from 2-way ANOVA after correction for multiple 

hypothesis testing. d, Dmc1 expression in the same animals, measured using qrtPCR and 

expressed as average copy number. Dots: individual observations. Bar heights and error bars: 

mean± SEM. n= 8 biologically independent animals from different litters in each group. 

P=0.00001 derived from 2-way ANOVA after correction for multiple hypothesis testing. e, 

Mapt expression in the same animals, measured using qrtPCR and expressed as average 

copy number. Dots: individual observations. Bar heights and error bars: mean± SEM. n= 

8 biologically independent animals from different litters in each group. P=0.0378 derived 

from 2-way ANOVA after correction for multiple hypothesis testing. qrtPCR, quantitative 

reverse transcription polymerase chain reaction; SEM, standard error of mean. *, P<0.05; 

**, P<0.01; ***, P<0.001.
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Extended Data Figure 9. Chek2 deletion increases reproductive lifespan in mouse.
a, Representative images of ovarian sections of 1.5-and 13.5-month-old wild type (WT) 

and Chek2-/- mice stained with PAS-Hematoxylin. Primordial follicles (inset (i)), primary 

follicles (inset (ii)), secondary follicle (white arrow) and antral follicle (black arrow) are 

shown. Scale bar represents 200 μm. b-e, Quantification of the number of follicles (by 

class and total) present in WT and Chek2-/- mice ovaries: b, c, 1.5-month-old; d, e, 13.5-

month-old. The numbers in parentheses correspond to the total number of ovaries analysed. 

f, Serum AMH (ng/ml) in 16-17 months old Chek2-/- mice. The numbers in parentheses 

correspond to the number of mice assessed. g-i, Diagram illustrates the gonadotrophin 

stimulation of 13.5-month old females. Numbers in parentheses show: g, the number of MII 

oocytes retrieved per female; h, the number of MII oocytes fertilized; and i, the number 

of fertilized oocytes assessed for blastocyst formation. j, Litter size of WT and Chek2-/- 

females throughout the reproductive life span. Litter sizes from 9 WT and 5 Chek2-/- 

females are shown. Breeding cages contained one male and one female. Generalized linear 
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model analysis showed maternal age effect, but no effect on genotype on litter sizes. k, 
Image of healthy pups born to 13 month-old Chek2-/- females. b-i, Two sample t and 

Fisher’s exact tests were used to compare WT and Chek2-/- for statistical significance: *, 

P<0.05; **, P<0.025; ***, P<0.001. All P-values are two sided. Error bars indicate standard 

error of mean. Box-and-whisker plots show interquartile range and median (b-g). an, antral 

follicle; hCG, human chorionic gonadotrophin; pMSG, pregnant mare serum gonadotrophin; 

pri, primary follicle; P0, primordial follicle; sec, secondary follicle; WT=wildtype. Mouse 

strain: maintained on a mixed background, C57BL/6 129Sv, accession number BRC03481 at 

the RIKEN Bioresource Centre.
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Extended Data Figure 10. Conditional knockout Chek1 females are infertile due to requirement 
for Chek1 during preimplantation embryo development.
a, Schematic of the conditional-knockout mouse model of Chek1 (Chek1 cKO) in the 

female germline using the Ddx4-Cre. A similar approach was used for Zp3-Cre. b, In the 

ovarian sections stained with haematoxylin and eosin, we found follicles, corpora lutea (CL) 

and oocytes which contain nuclear structures (indicated with arrowheads in the magnified 

right hand panel). These findings suggest that estrus cycles and ovulation followed by 

corpus luteum formation are independent from Chek1 disruption in oocytes in vivo. c, 
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Litter size of Chek1 cKO females. Three females older than 5 weeks age were mated 

with C57BL/6J males. Five independent littermate females (F/+, Tg-/Tg-; F/F, Tg-/Tg-; 

or F/+, Tg+/Tg-) were used as Chek1 controls (ctrl). While Chek1 ctrl females delivered 

normally, Chek1 cKO females delivered no litters (**, Mann Whitney test P=0.0179). 

Thus, these results indicate that CHEK1 is essential in the female germline. d, Litter 

size of Chek1-cKO and controls using the Zp3-Cre during follicular growth. 3 months 

old control (Chek1 F/F; Chek1 ctrl, n=4) and conditional knockout (Chek1 F/F; Chek1 
cKO with Zp3-Cre, n=4) were three-times consecutively mated with wild-type (Chek1+/+) 

males, and the number of live (left) and dead (right) pups was monitored. While Chek1 
ctrl delivered a normal amount of live pups, Chek1 cKO had only a reduced amount of 

perinatally dead pups (Mann-Whitney U Test: ***, P<0.001; **, P<0.01). Numbers in 

parentheses show the number of litters. e, The mean number of all ovulated eggs (the 

sum of MII oocytes and fertilized MII oocytes) per mouse with SEM (Mann Whitney U 

Test, P=0.126). Each data point presents the no. of eggs per mouse. 3-5 months old Chek1 
ctrl (n=3) and Chek1 cKO (n=5) females were mated with wild-type (Chek1+/+) males 

after pMSG + hCG stimulation. The number of ovulated eggs isolated 18 h post hCG 

stimulation and additional 10 h cultured in vitro was scored. The number of mice is shown 

in brackets. f, The proportion of fertilized MII oocytes to all ovulated eggs with a binomial 

confidence interval (*, Fisher’s Exact Test, P=0.012; 95% CI 1.9–6.0; OR: 2.62). Numbers 

in parentheses show the total number of analysed eggs. g, The proportion of embryos 

that developed to blastocysts with binomial confidence interval (***, Fisher’s Exact Test, 

P<0.0001). Fertilized MII oocytes (zygotes) were isolated from pMSG + hCG stimulated 

females 18h post hCG administration and cultured in vitro for 96 hours (~ E3.5) when 

development to blastocyst was scored. Data are pooled from four independent experiments. 

The number of embryos is shown in brackets. h, Fertilized eggs from Chek1 ctrl (n=18) 

and Chek1 cKO (n=13) females were fixed and stained for DNA (DAPI). All fertilized 

eggs from both genotypes showed normal pronuclei formation. The data were pooled from 

two independent experiments. Asterisks mark polar bodies. i, The majority of Chek1 ctrl 

embryos formed blastocyst (g), but Chek1 cKO embryos were arrested mainly in 3-8 cell 

stages. Representative bright-field images are shown. j, Proportion of developmental stages 

2 cell, 3-4 cell and 5-8 cell (**, Cochran-Armitage Trend Test, P=0.0073). Chek1 ctrl and 

Chek1 cKO zygotes were isolated from 13 Chek1 ctrl and 6 Chek1 cKO pMSG + hCG 

stimulated females 18h post hCG administration and cultured in vitro for 49 hours. Embryos 

were fixed and stained for ƔH2AX by immunofluorescence. DNA was visualized by DAPI 

(l). k, Proportion of embryos with genome fragmentation with binomial confidence interval 

(***, Fisher’s Exact Test, P<0.0001). Data are pooled from two independent experiments. 

The number of embryos is shown in brackets. l, Chek1 ctrl and Chek1 cKO zygotes (j,k) 

were fixed and stained for ƔH2AX (magenta) by immunofluorescence. DNA (gray) was 

visualized by DAPI. Arrows indicate genome fragments. Asterisks indicate polar bodies. 

These findings suggest that maternally expressed Chek1 is critical for genome integrity 

protection during first divisions of preimplantation embryos in mice. All P-values are two 

sided. Box-and-whisker plots show interquartile range and median. Strains: C57BL/6-FVB 

mixed background for a-c (Chek1 cKO, Ddx4-Cre); C57BL6-CD1 mixed background 

(Chek1 cKO, Zp3-Cre) for panels d-l.

Ruth et al. Page 36

Nature. Author manuscript; available in PMC 2021 October 14.

 E
urope P

M
C

 F
unders A

uthor M
anuscripts

 E
urope P

M
C

 F
unders A

uthor M
anuscripts



Extended Data Figure 11. Extended reproductive lifespan in females carrying an extra copy of 
Chek1 (sChek1).
a, mRNA expression levels of Chek1 in oocytes, numbers in parentheses show the number 

of mice stimulated for retrieving the oocytes. b, Representative images of ovarian sections 

of 1.5 and 13.5-month-old wild type (WT) and sChek1 mice stained with PAS-hematoxylin. 

Primordial follicles (inset (i)), primary follicles (inset (ii)), secondary follicle (white arrow) 

and antral follicle (black arrow) are shown. Scale bar: 200 μm. c-f, Quantification of 

the number of follicles (by class and total) present in WT and sChek1 littermates: c, d, 

Ruth et al. Page 37

Nature. Author manuscript; available in PMC 2021 October 14.

 E
urope P

M
C

 F
unders A

uthor M
anuscripts

 E
urope P

M
C

 F
unders A

uthor M
anuscripts



1.5-month-old; e, f, 13.5-month-old. The numbers in parentheses correspond to the total 

number of ovaries analysed. g-j, MII oocytes retrieved in response to pMSG and hCG, 

proportion of euploid oocytes, proportion fertilized and proportion developed to blastocysts 

at different ages of WT and sChek1 mice. Numbers in parentheses show: g, the number 

of MII oocytes retrieved per female; h, the number of oocytes assessed for aneuploidy; 

i, the number of MII oocytes fertilized; and j, the number of fertilized oocytes assessed 

for blastocyst development. k, Proportion of live births relative to transferred embryos 

from in vitro fertilized oocytes from aged mice (16 months), the numbers in parenthesis 

show the embryos transferred. l, Photo of healthy pups born to 16-month old sChek1 
females after IVF. m, Litter sizes from F2 females or males from aged sChek1 females 

after IVF treatment in k, compared to females of equivalent ages that were naturally 

breeding. Note that for natural breeding there were two females and one male per breeding 

cage, whereas F2 cages contained a single male and one female. Therefore, litter sizes 

are an underestimate for the IVF-conceived pups. n, Litter sizes of WT and sChek1 
females throughout their reproductive life span. Data are from six breeding cages, three 

for each genotype. Each breeding cage contained one WT male and two females that were 

either WT or sChek1. Generalized linear model analysis showed maternal age effect, but 

no effect on genotype on litter sizes. a-k, Two sample t and Fisher’s exact tests were 

used to compare WT and sChek1 for statistical significance: *, P<0.05; **, P<0.025; 

***, P<0.001. All P-values are two sided. Error bars indicate standard error of mean. 

Box-and-whisker plots show interquartile range and median (c-g, m). an=antral follicle; 

hCG= human chorionic gonadotrophin; IVF=in vitro fertilization; NB=natural breeding; 

F2-f= F2 female; F2-m= F2 male; pMSG=pregnant mare serum gonadotrophin; pri=primary 

follicle; P0=primordial follicle; sec=secondary follicle; WT=wild type. Mouse strain: inbred 

from mixed background C57BL/6 129Sv.
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Data availability

Full genome-wide association summary statistics for the discovery meta-analysis are 

available from the ReproGen website (www.reprogen.org).
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Figure 1. Manhattan plot representing GWAS discovery analysis.
Previously identified loci in purple, novel loci in blue. Plotted variants have P<0.01 with 

P<1x10-300 truncated. Insert: Effect sizes and minor allele frequencies of the loci. LOF, loss 

of function
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Figure 2. Polygenic prediction of age at menopause.
a, Mean polygenic score (PGS; scaled to have mean=0, SD=1) for a given age at natural 

menopause (ANM). Higher PGS indicates later ANM. b, c, Association of each centile of 

PGS vs the 50th with, b, early menopause and, c, premature ovarian insufficiency. Higher 

PGS indicates earlier ANM.
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Figure 3. Genetic manipulation of Chek1 or Chek2 extends reproductive lifespan in mouse 
models.
Numbers of follicles in young and aged, a, Chek2-/- or, b, sChek1 females. Numbers of 

ovaries analysed in parentheses. c, Response to gonadotrophin stimulation of 13.5-month-

old Chek2-/- and sChek1 females assessed by the number of MII oocytes retrieved. Numbers 

of stimulated females in parentheses. Box-and-whisker plots show interquartile range and 

median. Two-sample t and Fisher’s exact tests used for comparisons: *, P<0.05; **, 

P<0.025; ***, P<0.001.
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