
This is a repository copy of Interferon-γ-Producing CD4+ T Cells Drive Monocyte 
Activation in the Bone Marrow During Experimental Leishmania donovani Infection.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/179269/

Version: Published Version

Article:

Romano, Audrey, Brown, Najmeeyah, Ashwin, Helen et al. (7 more authors) (2021) 
Interferon-γ-Producing CD4+ T Cells Drive Monocyte Activation in the Bone Marrow During
Experimental Leishmania donovani Infection. Frontiers in immunology. 700501. ISSN 
1664-3224 

https://doi.org/10.3389/fimmu.2021.700501

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Interferon-g-Producing CD4+ T Cells
Drive Monocyte Activation in the
Bone Marrow During Experimental
Leishmania donovani Infection
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Ly6Chi inflammatory monocytes develop in the bone marrow and migrate to the site of

infection during inflammation. Upon recruitment, Ly6Chi monocytes can differentiate

into dendritic cells or macrophages. According to the tissue environment they can also

acquire different functions. Several studies have described pre-activation of Ly6Chi

monocytes in the bone marrow during parasitic infection, but whether this process

occurs during experimental visceral leishmaniasis and, if so, the mechanisms

contributing to their activation are yet to be established. In wild type C57BL/6 (B6)

mice infected with Leishmania donovani, the number of bone marrow Ly6Chi

monocytes increased over time. Ly6Chi monocytes displayed a highly activated

phenotype from 28 days to 5 months post infection (p.i), with >90% expressing

MHCII and >20% expressing iNOS. In comparison, in B6.Rag2-/- mice <10% of bone

marrow monocytes were MHCII+ at day 28 p.i., an activation deficiency that was

reversed by adoptive transfer of CD4+ T cells. Depletion of CD4+ T cells in B6 mice and

the use of mixed bone marrow chimeras further indicated that monocyte activation

was driven by IFNg produced by CD4+ T cells. In B6.Il10-/- mice, L. donovani infection

induced a faster but transient activation of bone marrow monocytes, which correlated

with the magnitude of CD4+ T cell production of IFNg and resolution of the infection.

Under all of the above conditions, monocyte activation was associated with greater

control of parasite load in the bone marrow. Through reinfection studies in B6.Il10-/-

mice and drug (AmBisome®) treatment of B6 mice, we also show the dependence of

monocyte activation on parasite load. In summary, these data demonstrate that during

L. donovani infection, Ly6Chi monocytes are primed in the bone marrow in a process

driven by CD4+ T cells and whereby IFNg promotes and IL-10 limits monocyte

activation and that the presence of parasites/parasite antigen plays a crucial role in

maintaining bone marrow monocyte activation.
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INTRODUCTION

The bone marrow (BM) is the major site for hematopoiesis in

adult mammals, producing all major cell lineages from a pool of
committed precursors. Ly6Chi monocytes are derived from a

common myeloid progenitor, through intermediates that include

monocyte-dendritic cell progenitors and granulocyte-monocyte

progenitors (1), and with cell fate specified by the transcription

factors PU.1, IRF1 and Klf4 as well as by the action of key

hematopoietic growth factors such as CSF-1 (2). Ly6Chi

monocytes are released into the bloodstream and migrate to

peripheral organs in normal and inflammatory conditions where

they contribute to a wide range of physiological and pathological

processes including innate and adaptive immune responses,

tissue remodeling and tissue repair [reviewed in (3)].

Ly6Chi monocytes are highly plastic and depending on the

environment, they can differentiate into a variety of cells
including macrophages and dendritic cells (DCs) or maintain a

monocyte phenotype (4, 5). It is unclear, however, whether such

terminal differentiation only occurs once in the peripheral tissues

or is initiated earlier during BM residency. For example,

specialized monocyte progenitors have been demonstrated in

the BM and reflect later polarization of monocyte function in the
periphery (6). In addition, Ly6Chimonocytes have the capacity to

respond to microbial stimuli during their development in the BM

before their egress into the peripheral circulation and their

tissue-specific functions are in part pre-programmed (7).

Specifically, infection with Toxoplasma gondii led to the

secretion of interferon-g (IFNg) by NK cells and this cytokine

was responsible for monocyte priming and the development of
regulatory capacity (7, 8). These and other studies (1, 6, 9, 10)

collectively suggest that Ly6Chi monocytes may become

functionally committed prior to their arrival at sites of tissue

inflammation or infection.

Although it is known that Ly6Chi monocytes play an

important role against various intracellular parasites, the extent
to which they contribute to the immune response against

different species of Leishmania is still unclear, with the data

often seemingly contradictory. During L. major infection, Ly6Chi

monocytes have been demonstrated to have a dual role, on the

one hand aggravating during primary infection and on the other

hand being protective during secondary infection (11). This
latter function reflects their ability to facilitate rapid

recruitment of CD4+ T cells at the secondary site of infection

and hence to enhance parasite elimination. Others have

demonstrated, however, that monocyte-derived DCs are

essential for priming protective Th1 response in L. major

infected mice (12). The situation is further complicated in

models of visceral leishmaniasis, where parasites accumulate
predominantly in spleen, liver and BM (13). Monocytes

accumulate in the spleen throughout the course of L. donovani

infection and play a role in tissue remodeling (14). Several

studies have shown that in absence of Ly6Chi monocytes,

B6.Ccr2-/- mice fail to generate an effective early Th1 response

allowing for a rise in tissue parasite burden load. More recently, a
pathogenic role for Ly6Chi monocytes in promoting parasite

survival was demonstrated, a finding supported by the

observation that emergency hematopoiesis during L. donovani

infection leads to the differentiation of Ly6Chi monocytes into

regulatory monocytes in the BM that contribute to parasite

survival (15). Given that the BM acts as a site of infection, T

cells are also recruited in high numbers and we have previously

demonstrated that TNF-dependent CD4+ IFNg+ T cells
accumulate in significant numbers in the BM resulting in

progressive hematopoietic stem cell exhaustion (16) and

erosion of the erythropoietic niche (17). However, the impact

of these highly pathogenic CD4+ T cells on local monocyte

activation has not previously been determined.

In this study, therefore, we used a combination of gene
targeted mice, mixed chimeras, antibody deletion and drug

treatment to explore the mechanisms underpinning BM Ly6Chi

monocyte activation during L. donovani infection, and uncover

its relationship to BM CD4+ T cells, the production of the

cytokines IFNg and IL-10, and parasite load.

MATERIALS AND METHODS

Animals and Infection
B6.CD45.1 (B6.Ptprca) , B6.CD45.2 (B6.Ptprcb) and

B6.CD45.2.Rag2-/- mice used in this study were bred and

maintained under specific-pathogen free (SPF) conditions at

the Biological Services Facility, University of York. BM cells
from mice lacking the Ifngr1 gene (B6.Ifngr1-/-) on a B6

background were obtained from the Jackson Laboratory. All

mice were between 5–8 weeks of age at the start of experimental

work. Mice were infected via the lateral tail vein with 3x107

amastigotes of the Ethiopian strain of L. donovani (LV9). To

assess the impact of drug-induced parasite clearance, mice were
treated once with 10 mg/kg Amphotericin B (AmBisome®) at

day 28 post-infection and killed 72 hours later. Animals were

killed by CO2 asphyxia and cervical dislocation at the time points

specified. Spleen and liver parasite burden was expressed as

Leishman-Donovan units (LDU), where LDU was equal to the

number of parasites/1000 host nuclei multiplied by the organ

weight in milligrams. BM parasite burden was determined by
limiting dilution assay (LDA). Briefly, two-fold serial dilutions in

96-well flat bottom microtiter plates were performed in OMEM

medium supplemented with 20% FCS. The plates were scored

microscopically for growth and the number of parasites in each

tissue was determined from the highest dilution at which

parasites could be grown out after 7–14 days incubation at 26°C.

Cell Extraction
The spleen was mechanically disrupted and incubated in RPMI

with 0.25 mg/ml Collagenase IV and 0.1 mg/ml DNase 1 for

30min at RT. Spleen tissue was then forced through a 70µm

strainer to obtain a single cell suspension. Cell pellets were

resuspended in ACK Lysing buffer (5min at RT) then washed

with RPMI. BM cells from tibias were flushed with a 26g needle

and cold RPMI. To obtain a single cell suspension, cells were run
through a 70µm cell strainer and spun down. Cell pellets were

resuspended in ACK lysing buffer for 5min at RT and washed.

Cells were resuspended in RPMI 1640 medium (Life
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Technologies) supplemented with 10% heat-inactivated FCS,

4 mM L-glutamine, 10 mM HEPES, 100 U/ml penicillin and

100 mg/ml streptomycin and kept on ice. Cells were counted with

trypan blue under a light microscope.

Flow Cytometry and Cell Sorting
For immunolabelling, cells were washed and labelled with LIVE/
DEAD Fixable Dead Cell Stains (Thermo Fisher Scientific) to

exclude dead cells. Cells were incubated with anti-Fc III/II

(CD16/32) receptor Ab (2.4G2), followed by surface staining

with various combination of the following antibodies for 30min

at 4°C in the dark: CD11b (M1/70), Ly6G (1A8); Sca1 (D7),

CD45 (30-F11), CD45.1 (A20), CD45.2 (104), CD3e (145-2C11
and UCHT1), CD4 (RM4-5 and 4SM95), CD8b (H35-17.2),

TCR-b (145-2C11), CD11c (N418), Ly6C (HK1.4), MHC-II

(M5/114.15.2), MerTK (2B10C42), CD40 (XX), CD80 (XX),

CD86 (GL-1), CD64(X54-5/7.1). Staining for CCR2 employed

AlexaFluor 700 anti-CCR2 (475301) and was done prior to

surface staining at 37°C for 20-30min.

In some experiments, cells were stimulated with Brefeldin A
at 10µg/ml alone or in combination with Phorbol-12-myristate-

13-acetate (PMA) (Sigma-Aldrich) and ionomycin (Sigma-

Aldrich) for 4h at 37°C, then fixed and permeabilized with the

eBioscience™ Intracellular Fixation & Permeabilization Buffer

Set according to the manufacturer instructions and stained for

IL-10 (JES5-16E3), NOS2 (CXNFT), TNF (MP6-XT22) and
IFNg (XMG1.2).

All Abs were from eBiosciences, BD Biosciences, Biolegends

or R&D systems. Data were collected using FACSDiva software

on BD LSR Fortessa X-20 (BD Biosciences), and analyzed using

FlowJo software (TreeStar). Forward-scatter and side-scatter

width was employed to exclude cell doublets from analysis.

Cell sorting to > 95% purity was performed on a MoFlo
Astrios (Beckman Coulter).

Mixed Bone Marrow Chimeras and
Adoptive T Cell Transfer
BM cells were purified as described previously. B6.CD45.1

recipient mice were irradiated with 850 rad from an X-ray

source using a two split dose regimen and reconstituted with

106 cells from B6.CD45.1 and B6.Ifngr1-/-.CD45.2 mice admixed

in a 50:50 ratio. Mice were maintained on oral antibiotics for the
first 6 weeks post reconstitution. Mice were infected at 7 weeks of

chimerism and killed 28 days after the infection. For T cell

adoptive transfer, B6.Rag2-/- CD45.2 mice infected for 21 days

received 106 CD4+ or CD8+ T cells isolated from the BM of 28

day-infected B6.CD45.1 mice. Mice were killed 7 days post-

transfer for analysis.

Treatment With Anti-IL10R, Anti-CD4
Monoclonal Antibody
CD4+ T cells were depleted by administering 400 mg of

InViVoMAb anti-mouse CD4 (clone GK1.5) intra-peritoneally,

twice weekly beginning on day 14 post-infection and for 2 weeks.
Control mice were injecting with the same amount and at the

same frequency with InVivoMAb rat IgG2b isotype control

(anti-keyhole limpet hemocyanin; LTF-2). IL-10 signaling was

blocked by injecting 250mg of InVivoMAb anti-mouse IL-10R

(clone 1B1.3A; CD210) intraperitoneally every 3 days for 14 days

starting on day1 post-infection. InViVoMAb rat IgG1 Isotype

control (anti-trinitophenol; TNP6A) was administered to control

mice. All antibodies and isotype controls were purchased from
BioXcell (Lebanon, USA).

Statistical Analysis
Prior to applying appropriate statistical tests, parametric test

assumptions were assessed. Normality of data distribution was

based on Shapiro-Wilks test. Further, due to small sample n, data
skewness and kurtosis were analyzed to confirm or dispute

results from Shapiro-Wilks test. Where data did not comply

with a normal distribution, a Log10-transformation was applied

prior to test application, if that resulted in data normality.

Homogeneity of sample variance was analyzed by F test (2

samples) or by Levene’s test (>2 samples). All groups analyzed
were independent of one another, including data in time courses

as different mice were harvested at each time point. To conform

with the assumption of data continuity, proportional data (%)

were converted by the arcsin conversion prior to test application

as proposed by Sokal and Rohlf (18). Experimental group n refers

to the number of mice per group and are stated in the respective
figure legends. Where unequal sample size occurred, the smallest

n is stated as the power calculation always relies on the smallest

group n.

For two sample tests, Welch’s version of the t test was chosen

for its greater robustness. As a non-parametric alternative, a

Mann-Whitney test was applied. For >2 sample one-way tests,

Welch’s version of the ANOVA was chosen for its greater
robustness under minor departure from variance homogeneity.

Alternatively, Brown-Forsythe’s version of the ANOVA was

chosen where also mild to moderate data skewness was

observed. As post hoc multiple comparison test, we used

Dunnett’s T3 test. As a non-parametric alternative, the

Kruskal-Wallis test was chosen. As a post hoc test, we used
Dunn’s MCT test. For non-parametric two-way factorial design

analysis, we used the ‘t2wat’ function from the ‘WRS2’ package

in R (19) which used trimmed means for greater robustness. As a

post-hoc multiple comparison test, we used the ‘emmeans’

function from the ‘emmeans’ package in R (20), which makes

use of estimated marginal means (EMM). Applied tests are stated

together with cited p-values and the respective figure legends
along with other statistics. Statistical significance was set as a =

0.05. Statistical power was retro-assessed by using the ‘pwr.t.test’

and ‘pwr.t2n.test’ functions from the ‘pwr’ package for 2 sample

comparisons (21), the ‘pwr.1way’ function for >2 sample one-

way comparisons and the ‘pwr.2way’ function for two-way

factorial analysis, both from the ‘pwr2’ package for R (22).
All statistical tests were applied either in GraphPad PRISM

v.9.1.0 or in R v.4.1.0 using RStudio v. 1.4.1717. In addition to the

previously cited ‘WRS2’, emmenas’, ‘pwr’ and ‘pwr2’ packages,

the following R packages were used: ‘readxl’ (23), ‘xlsx’ (24), ‘rlist’

(25), ‘janitor’ (26), ‘rstatix’ (27), ‘car’ (28), ‘moments’ (29),

‘reshape2’ (30), ‘effectsize’ (31) and ‘tidyverse’ (32).
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RESULTS

Inflammatory Monocytes Are Primed in
the BM of B6 but Not B6.Rag2-/- Mice
During L. donovani Infection
The activation of monocytes in the BM during infection has yet

to be explored in the context of L. donovani infection. In contrast

to infection of immunocompetent B6 mice, infection in

B6.Rag2-/- mice was characterized by delayed hepato-

splenomegaly and unchecked parasite growth in spleen, liver
and BM over a 5 month period (Figures 1A–C). Inflammatory

monocytes (iMo), defined as CD45+CD11b+Ly6G-Ly6ChiCCR2+

cells (Figure 1D), decreased in number early after infection, as

noted by others (15), but then transiently increased in number in

the BM of B6 mice being ~2-fold higher in absolute number at 28

day p.i compared to day 0 and ~3.5 fold increased compared to
d4. In contrast in B6.Rag2-/- mice, no early decline in absolute

monocyte numbers was noted early after infection and a

transient ~2 fold increase was observed at d28 (Figure 1E). To

determine whether these iMo were found in a primed state, we

analysed expression of MHCII and iNOS (7) over the course of

infection. MHCII expression was low in both strains of mice for

the first 14 days p.i. and increased from d28 p.i., with marked
differences between B6 and B6.Rag2-/- mice (Figures 1F, G). In

B6 mice, MHCII was abundant on almost all BM monocytes

from d28 p.i. onwards whereas in B6.Rag2-/- mice, only 20% of

monocytes expressed MHCII at later time points, with statistical

difference reached at day 28, day 56 and day 152 (p<0.0001)

between B6 and B6.Rag2-/- mice. This lack of activation in
immunodeficient mice was even more evident when measuring

intracellular iNOS (Figure 1H). These data suggest that iMo are

primed in the BM during L. donovani infection and that adaptive

immunity is required to drive this response. Furthermore, as

infection is controlled in B6 mice, the extent of BM monocyte

activation as measured by iNOS generation wanes, despite
maintenance of high MHCII expression.

CD4+ T Cells Are the Main Producers of
IFNg and Drive BM Monocyte Activation in
an IFNg-Dependent Manner
IFNg has been described as a key cytokine controlling monocyte

activation. To identify probable sources of IFNg in the BM of L.
donovani-infected mice, we stimulated BM leucocytes at different

times p.i. with PMA and Ionomycin. Approximately 60-70% of

CD4+ T cells had the capacity to produce IFNg at d28 and these

cells persisted to 8wks p.i [(16) and Figure 2A]. In contrast,

~ 30% of CD8+T cells were capable of producing IFNg at d28 p.i.
and this frequency declined thereafter. No IL-10 production was

observed by either CD4+ or CD8+ BM T cells under these
stimulation conditions (Figure 2A). CD4+ T cells represented

~75% of all IFNg+ cells in the BM of B6 mice at d28 (p < 0.0001)

Figure 2B). Of note, the expansion of IFNg-producing CD4+ T

cells preceded that of MHCII expression on iMo (Figure 2C),

suggesting a causal relationship. To address this directly, we used

an adoptive transfer model in B6.Rag2-/- recipients (Figure 2D).
Adoptively-transferred CD4+ isolated from d28-infected B6 mice

retained their capacity to produce IFNg in B6.Rag2-/- hosts

(Figure 2E) and induced MHCII expression on recipient BM

iMo as shown by the significant increase in MHCII expression in

infected B6.Rag2-/-mice receiving CD4+ T cells vs infected

B6.Rag2-/- mice (p < 0.0001) (Figures 2F, G). In contrast,

CD8+ T cells produced less IFNg after adoptive transfer and no
significant differences were found between the percentage of

MHCII+ iMo cells in infected B6.Rag2-/- mice receiving CD8+ T

cells vs infected B6.Rag2-/- (Figures 2E–G). Importantly, transfer

of CD4+ T cells into a naïve B6.Rag2-/- mice did not lead to BM

iMo activation, ruling out an effect due to homeostatic T cell

expansion (Figure S1) and demonstrating a requirement for
cognate antigen recognition in vivo. The origin of CD4+ T cells

(naïve versus d28 infected B6 mice) did not change the outcome

of the experiments (Figure S1).

To independently confirm the role of CD4+ T cells in iMo

activation, we used the alternate approach of depleting CD4+ T

cells from immunocompetent mice. We depleted CD4+ cells in
infected B6 mice from day 14 p.i to d28 p.i. with anti-CD4

depleting antibody, the time frame over which iMO MHCII

expression increases (Figure 2C). After CD4+ T cell depletion,

the frequency of total BM cells producing IFNg in the BM,

measured directly ex vivo, was reduced by approximately 70%

(0.8% vs 2.8% in anti-CD4 treated vs. control mice (p=0.0079);

Figure 3A). Although depletion was incomplete, we observed a
reduction in MHCII expression in iMo reflected in both the

percentage of MHCII+ cells, (p=0.0027 and p=0.0036

respectively) (Figures 3B, C) and in median fluorescent

intensity of expression (Figure 3D). Of note, parasite load in

the BM of the mice treated with anti-CD4 mAb was increased

compared to control mice, (p=0.0082) (Figure 3E), indicating
that the reduction in CD4+ T cells and presumably IFNg
production had a significant impact on host resistance to

L. donovani. This is supported by the observation of a

significant decrease of parasite number in the BM of adoptively

transferred B6.Rag2-/- mice as compared to their control

(Figure S2).

Finally, in order to verify that BM iMo respond directly to
IFNg, we used a mixed chimera model. Irradiated B6.CD45.1

mice were reconstituted with B6.CD45.1 and B6.Ifngr1-/-.CD45.2

BM cells in a 1:1 ratio (Figure S3A). At day 28 p.i, CD45.1+ (wild

type) but not CD45.2+ (Ifngr1-/-) iMo were primed in the BM, as

determined by expression of MHCII (p=0.0079; Figures 3F, G).

Ifngr1-/- iMo also produced minimal levels of NOS2 and TNF
compared to wild type iMo in these IFNg-sufficient mixed

chimeras (Figure 3H). As expected, Ifngr1-/- and wild type

CD4+ T cells produced equivalent amount of IFNg in the BM

(Figure S3B). Collectively, these data indicate that BM CD4+ T

cells produce IFNg and that IFNg signaling on BM iMo is

necessary to induce their activation in L. donovani infected mice.

IL-10 Inhibits iMo Activation and Restrains
Parasite Elimination
Having demonstrated the main pathway related to iMO
activation in the BM of L. donovani-infected mice, we next

wished to determine whether this was constrained in any way

by regulatory cytokine production. Although IL-10 has been long
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FIGURE 1 | Monocytes are activated during L. donovani infection in B6 but not in B6.Rag2-/- mice. (A, B) Weight (left panel) and Leishman Donovan Unit (right

panel) in the spleen (A) and liver (B) of B6 mice and B6.Rag2-/- at different time point during the course of the infection. Two-way factorial analysis applied to LDUs in

(A, B): Spleen P=0.001, Liver P=0.001; statistical power: Spleen 94%, Liver 99%; n≥7; post hoc test EMM: statistical difference reached in spleen and liver at day 56

and day 152 (P<0.0001; ****). (C) Parasite load per one million cells in the bone marrow measured by limiting dilution assay. Two-way factorial analysis applied:

P=0.09; statistical power: 32.3%; n≥3; post hoc test EMM: statistical difference reached at day 152 (P<0.0001;****). (D) Gating strategy to identify Ly6C monocytes

in BM. (E) Absolute number of iMo cells per femur. Two-way factorial analysis applied: P=0.165; statistical power: 98.5%; n≥7; post hoc test EMM: statistical

difference reached at day 28, day 56 and day 152 (*; P=0.014, P=0.036 and P=0.046), respectively. (F, G) MHCII expression on BM Ly6C+CCR2+ cells shown as

percentage (F) and as representative flow histogram plots (G) in B6 and B6.Rag2-/- mice during the course of the infection. Two-way factorial analysis applied in (F):

P=0.001; statistical power: 99%; n=4; post hoc test EMM: statistical difference reached at day 28, day 56 and 152 (P<0.0001; ****). (H) iNOS and MHCII expression

on Ly6C+CCR2+ monocytes. Data are derived from analysis of 8 to 10 individual mice (4 to 5/experiment) of each strain at each time point pooled from two

independent experiments and are shown as mean ± SD. Data in (G, H) are representative plots, including lower and upper range of MHCII expression at day 14. In

(A–F) median with 95% CI is shown.
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implicated as a negative regulator of macrophage activation in

multiple other settings (33), its role in iMO activation is not

known. As BMCD4+ T cells did not produce demonstrable IL-10

after in vitro restimulation (Figure 2A), we used B6.Il10-/- mice
to evaluate the possible role of IL-10 in regulating IFNg-mediated

iMO activation (Figure 4). B6.Il10-/- mice have previously been

shown to be resistant to L. donovani infection in terms of liver

and spleen parasite loads (34). In BM, B6.Il10-/- mice had

reduced parasite load at all time points measured (Figure 4A)

and at d56 parasites were undetectable in the BM of B6.Il10-/-

mice when measured by LDA. We then measured iMO
activation by MHCII and iNOS expression. At d14 p.i.,

18.9% ± 11.2 of iMo in B6.Il10-/- mice were NOS2+ compared

to 0.85% ± 1.54 in B6 mice (p=0.0077; Figure 4F). Similarly,

98.5% ± 6.0 of iMo in B6.Il10-/- mice expressed MHCII

compared to 42.85% ± 12.73 in B6 mice (p<0.0001;

Figure 4E). MHCII MFI was also significantly increased in
B6.Il10-/- mice (p=0.0003; Figure 4D). Together, these data

indicate a more rapid kinetic for iMo activation in the absence

of IL-10 (Figures 4B–F). Nevertheless, at d28 p.i., iMO

activation for iNOS production was similar in the presence or

absence of IL-10 (22.7 ± 15.0 vs. 19.8 ± 13.4, respectively;

p=0.989) as was MHCII expression (97.8 ± 2.7 vs. 90.5 ± 10.6;

p=0.522; Figure 4E, F). Surprisingly, whereas iMo activation was
sustained in wild type mice at d56 p.i., it was reduced at this later

time point in IL-10-deficient mice, as determined by frequency of

A B

D

E F G

C

FIGURE 2 | CD4+ T cells are the main producers of IFNg in the bone marrow of B6 mice and contribute to local monocyte activation. (A) Dot plot indicating

representative expression of IL-10 and IFNg by CD3+CD4+ T cells at different time points p.i. Cells were stimulated with PMA/Ionomycin. (B) Percentage of CD4+ T

cells expressing IFNg. Welch’s t test applied: P<0.0001 (****); 95% CI: 38.89 – 51.63; statistical power: 100%; n≥4. (C) IFNg expression by BM CD4+ T cells and

MHCII expression on Ly6C+CCR2+ monocytes. Data was normalized by subtraction of d0 mean after arcsin conversion, respectively. (D) Protocol for adoptive

transfer of T cells. (E) Cytokine production by adoptively transferred BM CD4+ or CD8+ T cells 1 week post transfer into recipient L. donovani-infected B6.Rag2-/-

mice. Cells were stimulated with PMA/Ionomycin. (F, G) MHCII expression on Ly6C+CCR2+ monocytes in the BM of the mice one week post adoptive T cell transfer,

shown as histogram plots (F) and percentage (G). Data are derived from analysis of 3 to 4 individual mice of each strain per group and are shown as mean ± SD.

Data are pooled from 2 independent experiment. Brown-Forsythe ANOVA applied in (G) without group B6.wt NA: P<0.0001 (****); statistical power: 100%; n≥4; post

hoc test Dunnett’s T3, the different pairwise comparisons are shown in Table S1. Data in (E, F) are representative plots.
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MHCII+ cells (94.7 ± 6.0 vs. 40.0 ± 13.9; p<0.0001; Figure 4E). In

contrast, iNOS production declined at a similar rate in both B6
mice and IL-10-deficient mice (8.0 ± 5.1 vs. 1.5 ± 5.1%

respectively; p=0.73; Figure 4F).

As parasites were no longer detectable at d56 p.i in B6.Il10-/-

mice (Figure 4A), we hypothesized that the presence of parasites

may be necessary to maintain iMo activation status, providing an

antigen depot to allow continued stimulation of IFN-producing
CD4+ T cells. To test this hypothesis, we measured the level of

IFNg production by CD4+ T cells at d14 and d56 p.i in the BM of

B6 and B6.Il10-/- mice (Figures 4G–J). At d14 p.i., CD4+ T cells

from B6.Il10-/- mice showed a trend towards greater IFNg
production compared to B6 mice after both polyclonal

stimulation (Figures 4G, H) and more strikingly directly
ex vivo (Figures 4I, J). In contrast, at d56 p.i., this situation

was reversed, again more strikingly with direct ex vivo

measurement of IFNg (p=0.0003 and p=0.0032, respectively)

(Figures 4H, J). These data suggest that IL-10 initially restrains

iMo activation, but that at later time points, IL-10 may indirectly

contribute to sustaining the level of iMo activation via

maintenance of parasite load and ongoing effector CD4+ T cell
IFNg production.

To confirm whether early IL-10 restrains iMo activation, we

used the alternate approach of blocking IL-10 signaling in B6

mice by administration of anti-IL-10 receptor antibody for 14

days, starting at day 1 p.i. (Figure 4K). Blockade of IL-10

signaling led to a decrease in parasite load in the BM, as
expected from the results observed in B6.Il10-/- mice although

not significantly (p=0.0717) (Figure 4A), as well as an increase

in iMo activation, as measured by MHCII expression

(Figures 4L, M).

The Presence of Parasites in the BM
Contributes to iMo Activation
To determine whether parasite load/and or antigen availability

plays a role in determining the level of iMo activation, we re-

infected B6.Il10-/-mice at d56 p.i., a time at which they had cleared

their primary infection (Figure 5A). One day post-re-infection,
Leishmania parasites were detected in the BM of re-infected mice

(p=0.006; Figure 5B). Strikingly, BM iMo from these re-infected

mice were highly activated, returning to levels of MHCII

expression seen at d14 p.i. (B6.wt vs. B6.il10-/- RI (P=0.0006)

and B6.il10-/- vs. B6.il10-/- RI (P=0.0002)) (Figures 5C–E).

We then conducted the reciprocal experiment, using the anti-

leishmanial drug AmBisome® to clear parasite load prematurely
in day 28-infected B6 mice. Treatment with Ambisome® for 3

days reduced BM parasite load to less than 10 parasites/106 cells

(p<0.0001; Figure 5F) and the level of activated iMo was reduced

significantly, as determined by a reduction in the frequency of

MHCII+ cells (99.37% ± 0.61 reduced to 71.73% ± 4.63 in control

A B D E

F G H

C

FIGURE 3 | Monocytes respond to IFN-g produced by CD4+ T. (A–E) At day 14 p.i, B6.wt mice were injected with an anti-CD4 depleting antibody or a control

antibody for 14 days. All the data shown correspond to BM results. (A) Ex vivo IFNg produced in the BM. Mann-Whitney test applied: P=0.0079 (**); 95% CI:

-8.496 – -2.435; statistical power: 96.3%; n=5. Histogram and bar graph representing the expression (B) and percentage (C) respectively, of MHCII on

Ly6C+CCR2+ monocytes. Welch’s t test applied in (C): P=0.0027 (**); 95% CI: -26.26 – -8.97; statistical power: 99.2%; n=5. (D) MFI of MHCII and CD80 on the

Ly6C+CCR2+ monocytes. Welch’s t test applied in (D): P=0.0036 (**); 95% CI: -1053 – -290.5; statistical power: 99.2%; n=5. (E) Parasite burden measured in

infected B6 at d28 by limiting dilution assay. Welch’s t test applied in (E): P=0.0082 (**); 95% CI: 0.275 – 1.346; statistical power: 86.3%; n=5. (F–H) Naïve lethally

irradiated B6.CD45.1 recipient mice received a 50:50 of BM cells from B6.CD45.1 and B6.Ifngr1-/- CD45.2 mice. Subsequently infected with 3x107 L. donovani

amastigotes for 28 days. (F, G) At day 28, the level of activation of Ly6C+CCR2+ monocytes cells was determined based on the level of expression of MHCII. Mann-

Whitney test applied in G: P=0.0079 (**); 95% CI: -12838 – -8928; statistical power: 100%; n=5. Data are the pool of 5 mice/group/experiment. Mean +/- SD is

shown. (H) Dot plot representative of the production of NOS2 and TNF by CD45.1 or CD45.2 Ly6C+CCR2+ monocytes in the BM.
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FIGURE 4 | Absence of IL-10 changes the kinetics of monocyte activation in the BM. B6 and B6.Il10-/- mice were infected with L.donovani amastioges in the tail vein for

14, 28 and 56 days. Data from the BM are shown (A–G). (A) Parasites burden in the bone marrow determined by limiting dilution assay at the indicated time point. Two-

way ANOVA applied on log10 transformed data: P<0.0001; statistical power: 11.9%%; n≥6; post hoc test Šıd́ák’s MCT: statistical difference reached at day 28 and day

56 (P<0.0001; ****). (B) Dot plot representative of nos2 and MHCII expression by Ly6C+CCR2+ monocytes. (C–F) Histogram (C), bar graph showing MFI (D), percentage

of MHCII (E) and percentage of nos2 (F) on BM Ly6C+CCR2+ monocytes. Two-way factorial analysis applied in (E): P=0.001; statistical power: 8.2%; n≥3; post hoc test

EMM: statistical difference reached at day 14 and day 56 (P<0.0001; ****); and two-way factorial analysis applied in (F): P=0.013; statistical power: 6.1%; n≥4; post hoc

test EMM: statistical difference reached at day 14 (P<0.0077; **). (G, I) Production of IFN-g and TNF by CD4+ T cells in the BM at the different time point post-infection

and (H, J) percentage of IFN-g produced by CD4+ T cells after PMA-Ionomycin-BFA stimulation for 4h (G, H) and ex vivo (BFA stimulation only, (I, J). Brown-Forsythe

ANOVA applied in (H): P<0.0001; statistical power: 43.8%; n≥4; post hoc test Dunnett’s T3: statistical difference reached at day 56 (P=0.0003; ***); 95% CI: 8.16 –

30.46; and Brown-Forsythe ANOVA applied in (J): P=0.0002; statistical power: 47.5%; n≥4; post hoc test Dunnett’s T3: statistical difference reached at day 56

(P=0.0032; **); 95% CI: 4.99 – 24.47. (K–M) B6 mice infected with L. donovani were injected with an anti-IL-10 depleting antibody or the isotype control for 14 days

starting 1 day prior to the infection (K) Parasite load determined by limiting dilution assay in the BM at day 14 p.i. Welch’s t test applied: P=0.0717; 95% CI: -1.86 –

0.115; statistical power: 13.9%; n=5. (L) Percentage and (M) MFI of MHCII expressed on Ly6C+CCR2+ monocytes. Brown-Forsythe ANOVA applied in (L): P<0.0001;

statistical power: 100%; n≥3; post hoc test Dunnett’s T3: statistical difference reached in NA vs. aIL10R (P<0.0001;****; 95% CI: -79.79 – -53.75) and CLT vs. aIL10R

(P<0.0001; ****; 95% CI: -67.77 – -49.41); and Brown-Forsythe ANOVA applied in (M): P=0.0009; statistical power: 100%; n≥3; post hoc test Dunnett’s T3: statistical

difference reached in NA vs. aIL10R (P<0.0034; **; 95% CI: -4367 – -1169) and CLT vs. aIL10R (P<0.0034; **; 95% CI: -4361 – -1175). For (A–J), data are derived from

analysis of 6 to 7 individual mice (2 to 4/experiment) of each strain at each time point pooled from two independent experiments and are shown as mean ± SD. Data in

(B, C, G) and I are representative plots. For (K–M), data are the pool of 5 mice/group/time point. Mean ± SD is shown. Experiment was performed once. In (A, D–F)

median with 95% CI is shown. For (H, J) statistical details are found in Table S1.
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vs drug-treated mice; p<0.0001; Figure 5G) and a reduction in

MFI for MHCII (3619 ± 1360 to 616.3 ± 90.2 in control vs drug-

treated mice; Figure 5H). Thus, forced early reduction in
parasite load is accompanied by reduced iMo activation in IL-

10-sufficient B6 mice.

Collectively, these data suggest a model whereby parasite load

in the BM is an essential driver of CD4+IFNg+ T cell-dependent

iMo activation, and that IL-10 serves to regulate this pathway via

its capacity to regulate macrophage leishmanicidal activity.

DISCUSSION

Our data extend a previous study of BM monocytes that also

demonstrated an elevation of MHCII expression on Ly6Chi iMo

in the BM early during L. donovani infection (15) by conducting

analysis into the chronic period of infection and though analysis

of the mechanisms responsible for this finding. Notably, we

demonstrate that the change seen in B6 mice in terms of MHCII

expression is a direct consequence of IFNg-signaling and in turn

that this IFNg is produced predominately by CD4+ T cells and

opposed by IL-10.
Through independent experimental approaches using gene

targeted mice and mAb blockade, we have provided evidence

that IL-10 impacts on the activation status of BM monocytes

during L. donovani infection. Although IL-10 production by

splenic CD25- Foxp3- CD4+ T cells has been reported to correlate

with disease progression in experimental VL (35, 36), in the BMwe
found no evidence that CD4+ (or CD8+) T cells produced

appreciably levels of IL-10 over 8 weeks course of infection

(Figure 2A). This finding is in accord with the notion that the

CD4+Tcell population recruited to theBMduring infectionmaybe

selected for IFNg production (16). In the absence of IL-10

production by T cells, other cellular sources are therefore

implicated. In spleen and liver, these have been shown to include
NK cells (37) and CD11chi conventional dendritic cells (36) in

addition to macrophages and monocytes themselves (38–41).

Furthermore, innate activation of B cells to produce IL-10 has

A B D

E F G H

C

FIGURE 5 | The presence of L. donovani parasites in the BM is necessary to maintain monocyte activation. (A–E) B6.Il10-/- mice were re-infected (RI) at d56 with

3x107 L. donovani amastigotes and killed 1 day post re-infection. (A) Experimental strategy. (B) Parasite load per one million cells determined by limiting dilution

assay in the BM at day 56 or 1 day post RI. Mann-Whitney test applied: P=0.006 (**); 95% CI: 87.73 – 200; statistical power: 100%; n=7. (C) Percentage of MHCII

on Ly6C+CCR2+ monocytes in the BM. Brown-Forsythe ANOVA applied only to day 56 data: P=0.0019; statistical power: 99.5%; n≥3; post hoc test Dunnett’s T3:

statistical difference reached in B6.wt vs. B6.il10-/- (P=0.0073; **); 95% CI: 5.06 – 44.58) and B6.il10-/- vs. B6.il10-/- RI (P=0.0024; **); 95% CI: -51.32 – -12.13).

(D) Level of MHCII expressed by the BM Ly6C+CCR2+ monocytes represented on histogram. (E) MFI of MHCII on Ly6C+CCR2+ monocytes in the BM of the

indicated mice. Brown-Forsythe ANOVA applied only to day 56 data: P=0.0019; statistical power: 26.7%; n≥3; post hoc test Dunnett’s T3: statistical difference

reached in B6.wt vs. B6.il10-/- RI (P=0.0006; ***); 95% CI: -4297 – -1310) and B6.il10-/- vs. B6.il10-/- RI (P=0.0002: ***); 95% CI: -5099 – -2266). (F–H) B6 mice

infected for 28 days were treated with 10mg/kg of Ambisome®. Data were collected 3 days post-treatment. (F) Parasite load measured by limiting dilution assay in

the BM. Welch’s t test applied in (F) P<0.0001; ****; 95% CI: -3.31 – -1.67; statistical power: 100%; n≥6. Percentage (G) and MFI (H) of MHCII expressed on

Ly6C+CCR2+ monocytes. Brown-Forsythe ANOVA applied in (G): P<0.0001; statistical power: 100%; n≥3; post hoc test Dunnett’s T3: statistical difference reached in all

pairs (P<0.0001; ****); and Kruskal-Wallis test applied in (H): P=0.0002; statistical power: 100%; n≥3; post hoc test Dunn’s MCT in Na+Amb vs. Inf (P=0.0071; **). In (A–E),

data are from 3 to 5 mice per group/experiment. Experiments were performed twice and pooled data are shown. In (F–H), data were derived from 3 to 4 mice/group.

Mean ± SD is shown except in A Median with 95% CI is shown.
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been demonstrated in the context of L. donovani infection (42) and

plasma cells producing IL-10 have been implicated in directing

myeloid cell differentiation under homeostatic conditions (43).

Further investigation with for example IL-10 transcriptional

reporter mice will be required to confirm the identity of the IL-

10-producing cells in theBMofL. donovani-infectedmice and their
relative roles in regulating monocyte activation.

In this study, we did not aim to directly assess the role of iMo

in disease outcome, a subject that has been studied by others.

Satoskar and colleagues have previously reported that iMo were

associated with enhanced parasite loads in the spleen of B6 mice

and that these iMo showed an activation profile biased at the
transcriptional level towards arginase production. In contrast,

iMo in the liver of these L. donovani-infected mice where more

biased towards iNOS production (44). Paradoxically, blockade of

iMo ingress to the spleen and liver using a CCR2 antagonist led

to improved host resistance in both tissues, suggesting that

phenotypic characteristics measured in vitro may not always
reflect in vivo function. In contrast, another study using CCR2-

deficient mice failed to demonstrate a role for iMo in host

resistance and hepatic granuloma formation (45). We have not

directly measured arginase in BM iMO in this study, but iNOS

production was clearly elevated throughout the course of

infection through a IFNg-dependent pathway, most likely

involving STAT1 signaling (44). Whilst this study also showed
that iMO in the peritoneal cavity could efficiently phagocytose

L. donovani amatigotes, they did not show that this directly

occurred at the major sites of infection. Abidin et al. (15)

demonstrated that alterations in myelopoiesis led to the

generation of regulatory iMO that suppress protective

immunity and these monocytes were identified to be
parasitized in the BM. Phenotypic changes in MHCII and

Ly6C expression suggested exposure to IFNg, in keeping with

our direct demonstration of a role for IFNgR signalling, but also

up-regulation of galectin-3, associated with alternate activation

(46). Further studies will be necessary to identify if changes in

monocyte activation affects anti-leishmanial immunity in other

sites of infection such as the spleen and the liver.
Our data also provide an in vivo example of the intimate

relationship between immune activation and parasite load.

Although IL-10 deficiency leads to a rapid acceleration and

augmentation of monocyte activation, this is transient and by

d56 post infection, monocyte activation in B6.Il10-/- mice has

returned to a homeostatic baseline. One explanation for this
apparently paradoxical observation is that maintenance of

monocyte activation and local IFNg production is dependent

upon the presence of parasites in the BM environment, a

suggestion borne out by experimentation. Thus, reduction of

parasite load by drug treatment rapidly reduced expression of

MHCII on BMmonocytes whereas reinfection of previously cured

B6.Il10-/- mice with L. donovani led to a rapid increase in BM
monocyte MHCII expression. Similarly, adoptive transfer of CD4+

T cells from infected mice into naïve recipient hosts does not lead

to monocyte activation, indicating a need for parasites to trigger

this response in BMmonocytes. The lack of monocyte activation in

the BM of infected B6.Rag2-/-mice suggests that parasites alone are

not sufficient for such activation. Rather, IFNg-producing CD4+ T
cells and Leishmania are both required to induce this response.

Currently, we cannot distinguish between a model in which

parasite antigens contribute to CD4+ T cell activation through

cognate pathways of antigen presentation or one in which parasites

induce bystander CD4+ T cell activation through innate (e.g. TLR)
signaling pathways. Alternatively, parasites and or their products

may directly stimulate monocytes through similar engagement

of pattern recognition receptors, though this itself is insufficient

to drive MHCII and iNOS expression in the absence of T cell-

derived IFNg. Nevertheless, our data clearly demonstrate the

importance of parasite load as a parameter influencing local
immunoregulatory pathways.

Whilst the kinetics of induction ofMHCII expression following

T cell activation was expected based on the known role of IFNg in
the transcriptional regulationofMHCII expressiononmyeloidcells

(47), the rapid change seen after pathogen clearance with

AmBisome® in terms of both the frequency of MHCII+ BM
monocytes and the abundance of MHCII was surprising. One

explanation for a reduced frequency of MHCII+ monocytes is

that MHCIIhi iMo are released from the BM as a consequence of

a change in the balance of retention/egress signals (48) and that

newly produced monocytes fail to become activated. CXCL12, the

ligand for the main retention receptor CXCR4, is produced locally

by BM and splenic stromal cells but expression is reduced at the
mRNA and protein level in these tissues as well as in the BM

following L. donovani infection (17, 49–51). In contrast, the

monocyte attracting chemokines CCL2, CCL7 and CCL8 remain

highly expressed in spleen (51) and splenic CCL2 mRNA

accumulation remains elevated even after AmBisome® treatment

(52). Alternatively, the more marked reduction in MFI for MHCII
on BMmonocytes is suggestive of cell intrinsic changes in protein

expression. E3 ubiquitin ligases of theMARCH family play a role in

regulating cell surface expression of a variety ofmembrane proteins

(53). Of note, MARCH1 plays a central role in IL-10-mediated

post translational regulation of surface MHCII expression in

human monocytes and other myeloid cells (54, 55), in addition to

regulating monocyte differentiation (56). Additional studies would
be needed to further dissect this novel aspect of monocyte MHCII

expression following parasite clearance.

In summary, we have demonstrated that BM monocyte

activation is a prominent feature of L. donovani infection in

mice and reflects the outcome of an intricate balance between

IFNg, IL-10 and parasite load. Little is currently known about the
role of BM monocytes in the progression of human VL and

during the response of patients to therapy. The studies outlined

here, together with the relative ease and safety with which bone

marrow aspirates can be obtained from VL patients, provide a

foundation to explore in more detail this aspect of myeloid cell

function during human VL.
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