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ABSTRACT 13 

When faced with an imminent collision threat, human vehicle drivers respond with braking in 14 

a manner which is stereotypical, yet modulated in complex ways by many factors, including 15 

the specific traffic situation and past driver eye movements. A computational model 16 

capturing these phenomena would have high applied value, for example in virtual vehicle 17 

safety testing methods, but existing models are either simplistic or not sufficiently validated. 18 

This paper extends an existing quantitative driver model for initiation and modulation of pre-19 

crash brake response, to handle off-road glance behavior. The resulting models are fitted to 20 

time-series data from real-world naturalistic rear-end crashes and near-crashes. A stringent 21 

parameterization and model selection procedure is presented, based on particle swarm 22 



optimization and maximum likelihood estimation. A major contribution of this paper is the 23 

resulting first-ever fit of a computational model of human braking to real near-crash and 24 

crash behavior data. The model selection results also permit novel conclusions regarding 25 

behavior and accident causation: Firstly, the results indicate that drivers have partial visual 26 

looming perception during off-road glances; that is, evidence for braking is collected, albeit 27 

at a slower pace, while the driver is looking away from the forward roadway. Secondly, the 28 

results suggest that an important causation factor in crashes without off-road glances may be 29 

a reduced responsiveness to visual looming, possibly associated with cognitive driver state 30 

(e.g., drowsiness or erroneous driver expectations). It is also demonstrated that a model 31 

parameterized on less-critical data, such as near-crashes, may also accurately reproduce 32 

driver behavior in highly critical situations, such as crashes. 33 

Keywords: Driver behavior, driver model, glances, brake response, naturalistic data, PSO 34 

1. INTRODUCTION 35 

With an increasing range of advanced driver assistance systems (ADAS) becoming standard 36 

in new vehicles, there is a growing need of comprehensive assessment methods to evaluate 37 

the road safety of these systems. The use of virtual environments to evaluate driving safety is 38 

gaining popularity; consequently, validated, representative computational models of driver 39 

behavior in response to warnings and upcoming threats are becoming a necessity (see, for 40 

example, Bärgman, Boda, & Dozza, 2017; Page et al., 2015). During the past decades, 41 

numerous models describing the driver’s steering and/or braking control in various traffic 42 

situations have emerged (see reviews by Markkula, Benderius, Wolff, & Wahde, 2012; 43 

Plöchl & Edelmann, 2007). These models are useful for performing virtual simulations for 44 

road safety benefit analysis (Bärgman et al., 2017; Kusano and Gabler, 2012). However, most 45 

mathematical models of driver avoidance response are simplistic, based on a scenario-46 



independent distribution of reaction times and predetermined intervention profiles, and 47 

typically assume that drivers will keep their eyes on the road (see, for example, the review of 48 

brake reaction times by Green, 2000). Since off-road glances are an inherent part of everyday 49 

driving, that assumption makes the models less realistic. Meanwhile, the National Highway 50 

Traffic Safety Administration (NHTSA) and other traffic authorities are imposing regulations 51 

restricting the placement of secondary tasks (Driver Focus-Telematics Working Group, 2006; 52 

Japan Automobile Manufacturers Association Inc., 2004; National Highway Traffic Safety 53 

Administration, 2016; The Commision of European Communities, 2008), as there are strong 54 

concerns that distractions from hand-held devices and in-vehicle displays will increase off-55 

road glances and compromise safety. Furthermore, recent studies of naturalistic driving data 56 

from crashes and near-crashes suggest that the driver reaction is dependent on scenario 57 

kinematics (Markkula, 2014; Markkula et al., 2016), rather than being a fixed, scenario-58 

independent, property of the driver (e.g., Kusano and Gabler, 2012). 59 

To explain scenario-dependence, many authors have suggested that drivers decide on their 60 

avoidance actions based on perceptual cues such as visual looming, which is the optical size 61 

and expansion of a forward vehicle on the retina (Fajen, 2005; Flach et al., 2004; Lee, 1976; 62 

Markkula et al., 2016). Visual perception thresholds have also been used to determine 63 

detection of a forward threat in the modeling of driver control in near-crash situations (Kiefer 64 

et al., 2005). However, based on neuroscientific models of perceptual decision making and 65 

sensorimotor control, Markkula and colleagues (Markkula, 2014; Markkula et al., 2016) 66 

proposed that a driver’s braking initiation is triggered, not exceeding a perceptual threshold, 67 

but rather by the accumulation of noisy perceptual evidence over time (best described by a 68 

non-deterministic model; Gold and Shadlen, 2007). Further, braking control also depends on 69 

the prediction of sensory consequences of primitive, open-loop, motor actions (Crapse and 70 

Sommer, 2008; Giszter, 2015; Markkula et al., 2018). 71 



Based on the computational framework by Markkula and colleagues (Markkula, 2014; 72 

Markkula et al., 2018), a kinematics-dependent model quantifying pre-crash brake initiation 73 

and control has been proposed and applied to critical lead vehicle scenarios (Svärd et al., 74 

2017). The model uses the accumulation of looming prediction error as the basis for the 75 

driver’s braking response. Looming is quantified as in Equation (1), 76 

 𝜏−1 =  �̇�𝜃 , (1) 77 

where 𝜃 is the optical size (width) of the lead vehicle on the driver’s retina. Although Svärd 78 

et al. (2017) demonstrate that the model’s brake initiation and ramp-up reproduce several 79 

qualitative trends observed in naturalistic crashes and near-crashes, the model has not yet 80 

been thoroughly parameterized and validated against such data. 81 

Similar to most other perception based driver models, the model described by Svärd et al. 82 

(2017) is limited by the assumption that all perceptual input is disregarded during off-road 83 

glances. Studies have shown, however, that peripheral vision plays an important role in 84 

driving (Lamble et al., 1999; Land and Horwood, 1995; Lappi et al., 2017; Robertshaw and 85 

Wilkie, 2008; Summala et al., 1996; Wolfe et al., 2017). In fact, drivers are able to brake in 86 

response to an approaching lead vehicle, even when their gaze is constantly directed towards 87 

a secondary task, as demonstrated in the forced peripheral vision driving paradigm 88 

experiments performed by Summala, Lamble, & Laakso (1998) and Lamble et al. (1999). 89 

However, since a relation between long duration off-road glances and increased crash risk has 90 

been demonstrated (Horrey and Wickens, 2007; Klauer et al., 2014; Victor et al., 2014), it 91 

would be beneficial to be able to model how, and to what extent, limited perceptual input 92 

influences driver brake response.  93 

In this paper, the brake response model from Svärd et al. (2017) is extended to handle some 94 

accumulation of perceptual input during off-road glances. This is systematically done in two 95 



studies. The first study presents and compares four high-complexity models and is followed 96 

by a second study, reducing the complexity of the models presented in Study 1. A stringent 97 

parameterization of all model alternatives is accomplished using maximum likelihood 98 

estimation (MLE) on real-world naturalistic crashes and near-crashes, which are highly 99 

complex and more difficult to analyze than data collected in controlled studies (Carsten et al., 100 

2013). Moreover, formal model selection is used to determine the benefit of the different 101 

mechanisms for handling driver off-road glances. All model alternatives are fitted to data 102 

from real-world crashes and near-crashes present in the second Strategic Highway Research 103 

Program Naturalistic Driving Study (SHRP2) (described in Victor et al., 2014).  104 

2. GENERAL METHOD 105 

Svärd et al. (2017) describe a quantitative driver model for initiation and modulation of pre-106 

crash brake response and apply it to critical lead vehicle scenarios. This paper describes the 107 

results from two consecutive studies, which extend that model by accounting for driver off-108 

road glances and fitting the extended models to real-world naturalistic crashes and near-109 

crashes. In Study 1, presented in Section 3, four high-complexity model variants (that is, 110 

models with a high number of free parameters) are defined (see Section 3.1) and fitted on a 111 

crash dataset (see Section 3.2). Study 2, presented in Section 4, uses the findings from Study 112 

1 to reduce the complexity of the models by setting a subset of the parameters to constant 113 

values. Four reduced-complexity model variants are introduced (see Section 4.1) and fitted on 114 

four (partially) overlapping datasets consisting of both crashes and near-crashes (see Section 115 

4.2). Since the studies are closely coupled, the discussion of the results will not be 116 

individually presented, but is combined into a general discussion in Section 5. 117 



This section gives a brief summary of the 2017-model by Svärd et al. (see Section 2.1; see the 118 

original publication for details) and the general data handling (see Section 2.2) and parameter 119 

fitting methods (see Section 2.3) used in the two studies. 120 

2.1 Model description 121 

The model used in Svärd et al. (2017) is built on the computational framework developed by 122 

Markkula and colleagues (Markkula, 2014; Markkula et al., 2018). The model’s brake 123 

initiation and modulation are based on four main principles of the framework: 124 

- Braking is performed incrementally (i.e., in steps, in a series of “motor primitives”). 125 

- Brake initiation time is determined by the noisy accumulation of perceptual evidence 126 

for and against braking. The main evidence is the discrepancy between actual and 127 

predicted looming in terms of 𝜏−1(𝑡), the looming prediction error 𝜀(𝑡); see Equation 128 

(1) for the definition of  𝜏−1(𝑡). 129 

- The amplitude of the brake adjustments is proportional to the looming prediction error 130 

at the time of brake adjustment initiation. 131 

- After each incremental brake adjustment, the driver predicts how the looming will 132 

decrease as a result. 133 

Once the accumulated evidence reaches a specific threshold, the driver issues a brake 134 

adjustment aimed at resolving the situation at hand. At each adjustment, the looming 135 

prediction error that is fed back to the accumulator is updated. This continues until either the 136 

critical situation is resolved, the maximum braking capacity of the vehicle is reached or a 137 

collision occurs. Figure 1 illustrates the principles of the model. 138 



 139 

Figure 1 Schematic representation of the model described by Svärd et al. (2017), extended 140 

with a leakage factor in the accumulator. 141 

As noted, in addition to the looming prediction error with a noise component, the 142 

accumulated evidence includes other factors that may influence the driver’s brake response.  143 

2.1.1 Brake initiation 144 

The total accumulated evidence for the need of braking is denoted A(t). When this quantity 145 

reaches a specific threshold (set to 1 in this paper), a brake adjustment is initiated and the 146 

accumulated evidence is reset to a value 𝐴𝑟. Mathematically, evidence accumulation can be 147 

defined as in Equation (2), 148 

𝑑𝐴(𝑡)𝑑𝑡 = 𝐾 ∙  𝜀(𝑡) −  𝑀 − 𝐶 ∙ 𝐴(𝑡) + 𝑣(𝑡), (2) 149 

where K, M, and C are the free parameters gain, gating and leakage, respectively. The 150 

function 𝑣(𝑡) is the Gaussian zero-mean white noise at time t with a standard deviation  151 

 𝜎√Δ𝑡 for a model simulation time step of Δ𝑡. 152 

The gain K is a proportional constant determining the impact of the looming prediction error 153 

on the accumulated evidence (a higher K will lead to more rapid accumulation); the gating M 154 

effectively defines the minimum prediction error (or the minimum 𝜏−1(𝑡), if the currently 155 



predicted looming is zero) required for evidence accumulation to commence. As described in 156 

(Markkula, 2014; Svärd et al., 2017), M may be thought of as the sum of all non-looming 157 

evidence for or against braking, which to some extent can be seen as a general expectancy of 158 

an upcoming need of braking. This is likely to include a wide range of situational factors, for 159 

example, general factors such as road type or traffic density, or discrete events: if the lead 160 

vehicle is far ahead and its brake lights activate, this might increase expectancy for braking, 161 

while if subsequently the lead vehicle turn indicators also activate (to signal that the lead 162 

vehicle will change lane), the expectancy might again decrease. Modelling these factors 163 

explicitly is beyond the scope of this paper, and M can thus be thought of as representing an 164 

average level of expectancy across the modelled events.  165 

In contrast with Svärd et al. (2017), we have also chosen to introduce a leakage term C 166 

corresponding to the decay in the accumulated evidence over time, permitting some of the 167 

evidence to “leak out”. This type of assumption is common in evidence accumulation models 168 

of decision making, and serves the purpose of truncating or “forgetting” outdated evidence 169 

(Usher & McClelland, 2001; Nunes & Gurney, 2016). Intuitively, if during car following 170  𝜏−1(𝑡) briefly increases and then falls back to zero again, we wouldn’t expect this episode to 171 

still be reflected in the value of 𝐴(𝑡) a minute or hour later.  172 

2.1.2 Brake modulation 173 

Each brake adjustment is determined by a piecewise linear function 𝐺(𝑡), which is scaled by 174 

the looming prediction error 𝜀(𝑡) and a free brake gain parameter k. The total brake pedal 175 

signal 𝐶(𝑡) is the sum of all prior brake adjustments. At each brake adjustment, the future 176 

looming input is predicted to take the shape of a piecewise linear function 𝐻(𝑡), which is 177 

equal to 1 for a duration 𝛥𝑇𝑝0, and then linearly decays to zero for a duration 𝛥𝑇𝑝1. Both 178 𝛥𝑇𝑝0 and 𝛥𝑇𝑝1 are free model parameters. Based on the looming prediction error and the sum 179 



of all prior predictions, a total looming prediction signal 𝑃𝑝1(𝑡) is calculated and fed back to 180 

the accumulator. 181 

2.2 Data 182 

To ensure that the model reflects real-world driver behavior, it was parameterized based on 183 

naturalistic data from real-world crashes and near-crashes collected in the SHRP2 naturalistic 184 

driving study (Transportation Research Board of the National Academy of Sciences, 2013). 185 

The dataset presented in Victor et al. (2014) was used (Transportation Research Board of the 186 

National Academy of Sciences, 2013), consisting of 46 crashes and 211 near-crashes 187 

categorized as rear-end (lead vehicle) situations (corresponding to scenarios 22–26 in the 188 

typology by Najm, Smith, & Yanagisawa, 2007). 189 

2.2.1 Target scenario and dataset selection 190 

Data from real-world naturalistic crashes and near-crashes are highly variable, even when 191 

comparing events annotated as the same kind of scenario (e.g., rear-end). Hence, not all 46 192 

crashes and 211 near-crashes were suitable for analysis in this paper. To facilitate the data 193 

selection, a target scenario that the driver model should be tailored to, was defined. The target 194 

scenario consists of rear-end situations on public roads (i.e., not parking lots or similar), 195 

without extreme driver states or visibility conditions. Moreover, road infrastructure should 196 

not be an obvious cause of lead vehicle braking expectancy. The main evasive maneuver 197 

performed by the driver should be braking (i.e., not steering), and it should be clear whether 198 

the pre-crash deceleration was the result of a driver intervention or the collision. Finally, all 199 

relevant signals should be available and of good enough quality. See Appendix A for more 200 

details regarding data selection. 201 

The data selection process resulted in 13 crashes and 39 near-crashes (more near-crashes 202 

were available, but not necessary to create the final datasets). In the first study (the high-203 



complexity models study), the 13 crashes were used for parameter fitting, while the fitting in 204 

the second study (the reduced-complexity models study) was performed on datasets which 205 

included progressively more and more near-crashes, with a decreasing level of severity 206 

(increasing minimum time-to-collision, TTC). Starting out with the crash dataset from the 207 

first study, an additional 39 near-crashes were appended in three increments of 13 near-208 

crashes each, resulting in the following four datasets used for parameter fitting in Study 2: 209 

1. Dataset 13c: 13 crashes. (13 critical events.) 210 

2. Dataset 13c+13nc: 13 crashes and the 13 most severe near-crashes. (26 critical 211 

events.) 212 

3. Dataset 13c+26nc: 13 crashes and the 26 most severe near-crashes. (39 critical 213 

events.) 214 

4. Dataset 13c+39nc: 13 crashes and the 39 most severe near-crashes. (52 critical 215 

events.) 216 

The critical events composing the datasets had a total of 49 distinct drivers, with a relatively 217 

equal gender distribution (58 % male and 42 % female). The average driver age was 218 

approximately 30 years and the drivers had had their driving licenses for, on average, at least 219 

nine years. The driver demographics was relatively equal for all datasets, with the exception 220 

of dataset 13c (the crashes only dataset). Dataset 13c had a higher proportion of female 221 

drivers (62 %) and a lower average age (20–24 years), when compared to the full set of 222 

drivers. 223 

2.2.2. Data preparation 224 

The final selection of cases resulted in a total dataset of 52 rear-end events: 13 crashes and 39 225 

near-crashes. All events were originally 20 s long, with the crash taking place at around 15 s. 226 

Since the aim was to capture the driver’s evasive braking behavior, not any potential speed 227 



reduction in advance of the actual critical event, only the last seconds before the crash/near-228 

crash were of interest for the parameter fitting. The start of the event was defined to be the 229 

last moment in time before the point of collision (for crashes) or the minimum TTC (for near-230 

crashes), when the looming reached a minimum threshold value at the limit of human 231 

detection. The chosen threshold was �̇� = 0.0036 rad/s, suggested by Morando, Victor, & 232 

Dozza (2016) based on studies of visual perception thresholds by Summala, Lamble and 233 

Laakso (Lamble et al., 1999; Summala et al., 1998). Setting the detection threshold at �̇� 234 

rather than at 𝜏−1 lowers its sensitivity to environmental conditions (Morando et al., 2016), 235 

an advantage since our dataset consists of real-world naturalistic data. 236 

The driver’s evasive brake maneuver was removed from all cases, since it otherwise would 237 

have interfered with the situation’s kinematics and hence influenced the brake response of the 238 

model if the model braked later than the human driver. As a result, the kinematics following 239 

the human driver’s evasive braking was extrapolated from the previous kinematics in the 240 

event, assuming that the vehicle continued at a constant speed. The evasive maneuver 241 

removal process is described by Bärgman et al. (2017). Bärgman et al. (2017) and Victor et 242 

al. (2014) also describe in detail the process used to extract looming and reliable speed 243 

information from the original data. The used manual looming annotation method has been 244 

validated by Bärgman et al. (2013). Since the looming was computed using the derivative of 245 

a manually measured signal, noise could be a problem in cases with a high relative speed and 246 

a large distance to the vehicle ahead. The looming signal of the cases studied in this 247 

publication were manually examined to reduce the risk of issues related to noise. 248 

One limitation of the available SHRP2 dataset is the lack of a brake pedal signal for most 249 

cases. Therefore, the brake initiation time and brake jerk were estimated by fitting the 250 

acceleration signal to a piecewise linear model, similar to what was done by Markkula et al. 251 

(2016). The model assumes a constant acceleration 𝑎0 from the event start until a point in 252 



time 𝑡𝐵, which is defined as the brake initiation time. Starting at time 𝑡𝐵, the model linearly 253 

decays with a jerk 𝑗𝐵 until a final level of minimum acceleration a1 is reached. To correctly 254 

estimate the brake jerk in the reference cases (original recorded data) and in the model 255 

responses (simulations), the endpoint for the piecewise linear model fit was restricted to a 256 

point in time after the acceleration reached its minimum, but before it started to increase 257 

again. In crashes, the acceleration has a natural endpoint at the time of collision or at the start 258 

of evasive steering after the braking. On the other hand, in near-crashes finding the 259 

appropriate endpoint is more complex. Markkula et al.'s 2016 analysis of near-crashes used 260 

the point of minimum TTC + 0.5 s as the endpoint for the linear fitting since drivers generally 261 

maintained the minimum acceleration for that long. This works well for the recorded data 262 

(reference events), but some model responses may not have reached their minimum 263 

acceleration by that point. Therefore, an additional condition was used: If a level of 95 % of 264 

the minimum acceleration was not reached at minimum TTC + 0.5 s, the endpoint would be 265 

set at the subsequent point in time when the acceleration reached 0.95 % of the minimum 266 

acceleration, for the first time. See Figure 2 for examples of the piecewise linear model fit for 267 

a set of crashes and near-crashes. Note that since the jerk signal was not computed directly 268 

from the acceleration signal, but estimated using the piecewise linear model which was 269 

continuous over the relevant interval (the brake maneuver), signal noise was not an issue.  270 



(a) 

 

(b) 

 

(c) (d) 

 

 
 

Figure 2 Examples of looming profiles (green line) and piecewise linear model fitting (black 271 

line) of the acceleration signal (dashed gray line) for different types of events: (a) Crash 272 

without off-road glances, (b) near-crash without off-road glances, (c) crash with an off-road 273 

glance and (d) near-crash with an off-road glance. The gray areas illustrate timing and 274 

duration of the driver’s glance off-road.  275 

2.3 Parameter fitting 276 

Finding suitable parameter values for non-differentiable driver models with many free 277 

parameters (such as, in particular, the high-complexity models in this paper) can be a 278 

complex task. Because of the high-dimensional search space, full grid-search, random search, 279 

and similar methods to find the optimal parameter values are inefficient and time-consuming. 280 

In addition, the optimization problem is required to be differentiable to use classic 281 



optimization procedures, such as gradient descent-based methods. Instead, a population based 282 

stochastic optimization method (PSO) was used to find a parameter set that maximizes the 283 

model fitness against the reference data. This metaheuristic method is suitable for searching 284 

very large solution spaces, though it cannot guarantee global optimality (Van Den Bergh and 285 

Engelbrecht, 2006; for details about PSO, see, e.g., Wahde, 2008, or Zhang et al., 2015). 286 

Here, brake model fitness is defined in a maximum likelihood sense—due to the stochastic 287 

nature of the model. The likelihood of a parameter set is estimated based on the results of 288 

Monte Carlo simulations. 289 

2.3.1 PSO implementation 290 

Initialization: The PSO was initialized with four particles per parameter (recommended 291 

population size for high PSO performance is usually 10–40 particles; Engelbrecht, 2007; 292 

Wahde, 2008), and each particle position was defined by randomly initialized parameter 293 

values (one value per parameter). See Table 1 for the initialization range for each parameter, 294 

which also define the feasible values for each parameter. Based on some initial tests, the 295 

ranges were selected to be narrow enough to minimize the parameter search space and keep 296 

the optimal values inside the feasible parameter ranges. The velocity of each particle was 297 

randomly initialized from a uniform distribution bounded on one side by the value of the 298 

particle position’s upper limit and on the other by the negated value of the upper boundary, 299 

which is a simplification of the initialization procedure described for the standard PSO 300 

algorithm by Zhang et al. (2015). 301 

Parameter  M 𝝈𝟐 𝑨𝒓 k 𝜟𝑻𝒑𝟎 𝜟𝑻𝒑𝟏 K C 

Initialization. range [0 8] [0 1] [0 1] [0 10] [0 3.5] [0.05 4.5] [1 40] [0 1] 

Table 1 Initialization ranges and boundaries for the free model parameters. 302 

Fitness calculation: In each iteration k of the PSO algorithm, each reference event i was 303 

simulated with 1000 Monte Carlo simulations for each potential parameter set ℙ𝑗,𝑘, where j is 304 



the particle number. Because of the noise term in the accumulator, each simulation resulted in 305 

a different model response. A piecewise linear function was fitted to the resulting 306 

acceleration profile from each simulation to determine the jerk level 𝑗𝐵,𝑖 and brake initiation 307 

time 𝑡𝐵,𝑖 for each event i (as described in Section 2.2.2). The resulting (𝑡𝐵,𝑖, 𝑗𝐵,𝑖)-values were 308 

then used to generate a two-dimensional probability distribution using Gaussian Kernel 309 

Density Estimation (KDE), in order to estimate the likelihood of the reference values 310 (𝑡𝐵,𝑖, 𝑗𝐵,𝑖) of event i, given the current parameter set, denoted ℓ(𝑡𝐵,𝑖,𝑟𝑒𝑓, 𝑗𝐵,𝑖,𝑟𝑒𝑓|ℙ𝑗,𝑘). In other 311 

words, the likelihood that the brake response from the actual event i was generated by the 312 

driver model with parameter set ℙ𝑗,𝑘 was estimated. If a simulation returned a non-response 313 

from the model (i.e., it did not perform evasive braking), the contribution to the KDE was set 314 

to 0. Note that this means that the model was also fitted to the ratio of responses and non-315 

responses in the dataset. 316 

The Gaussian kernels used to generate the KDE were chosen so that the ratio of their standard 317 

deviations was approximately twice that of the ratio of the spread between 𝑗𝐵,𝑟𝑒𝑓 and 𝑡𝐵,𝑟𝑒𝑓, 318 

see Equation (3). 319 

𝜎𝑗𝑏𝜎𝑡𝑏 = 2 ⋅ max𝑖 𝑗𝐵,𝑖,𝑟𝑒𝑓−min𝑖 𝑗𝐵,𝑖,𝑟𝑒𝑓max𝑖 𝑡𝐵,𝑖,𝑟𝑒𝑓−min𝑖 𝑡𝐵,𝑖,𝑟𝑒𝑓 , (3) 320 

This choice resulted in a kernel width of 3 in the 𝑗𝐵 dimension and 3/128 in the 𝑡𝐵 dimension. 321 

This scaling was necessary, not only due to their different orders of magnitudes, but also to 322 

prioritize a good fit of the brake onset timing over that of the jerk level during the 323 

optimization process. The reason for the prioritization was that brake initiation may be less 324 

dependent than the brake jerk on the chosen vehicle dynamics in the simulation, and, 325 

therefore, less sensitive to modeling errors (in, for example, the brake system model). 326 



The total log-likelihood for the parameter set ℙ𝑗,𝑘 was then calculated as the sum of the log-327 

likelihoods for all N reference events, according to Equation (4), 328 

log ℒ(ℙj,k) = ∑ log ℓ(𝑡𝐵,𝑖,𝑟𝑒𝑓, 𝑗𝐵,𝑖,𝑟𝑒𝑓|ℙ𝑗,𝑘)𝑁𝑖=1 . (4) 329 

To compensate for potential outliers that may contribute to an unnecessarily high value on the 330 

accumulator noise variance parameter 𝜎2, an additional outlier compensation term pv and a 331 

corresponding weighting factor ρ were introduced. For each particle, the total log-likelihood 332 

was calculated according to Equation (5): 333 

log ℒ(ℙj,k) = ∑ log( 𝜌 ∙ ℓ(𝑡𝐵,𝑖,𝑟𝑒𝑓, 𝑗𝐵,𝑖,𝑟𝑒𝑓|ℙ𝑗,𝑘) + (1 − 𝜌)𝑝𝑣𝑁𝑖=1 ), (5) 334 

where 𝑝𝜈 =  
1𝑡𝐵,𝑚𝑎𝑥 𝑗𝐵,𝑚𝑎𝑥  . The latest possible brake initiation time and maximum brake jerk 335 

in the simulated model are denoted by and 𝑡𝐵,𝑚𝑎𝑥 and 𝑗𝐵,𝑚𝑎𝑥, respectively. Thus, in practice, 336 

the model fitness is a mix of a KDE distribution and a uniform distribution. The value of the 337 

weighting factor 𝜌 was chosen to minimize the variance 𝜎2 of the accumulator noise without 338 

noticeably reducing the log-likelihood of the optimal parameter sets in preliminary tests with 339 

different 𝜌 values (see Appendix B). 340 

Position and velocity update: The velocity and position of each parameter in each particle 341 

were updated in each time step according to the method described by Shi and Eberhart (1998) 342 

and Wahde (2008); the cognitive and social components were both set to two. A linearly 343 

decaying inertia weight was used to gradually change the particle behavior from exploratory 344 

in the beginning to exploitative towards the end (its value ranged from 1.4 in the first 345 

iteration to 0.4 in the last). In addition, the particle velocity was restricted to maintain 346 

coherence among the particles. 347 

3. STUDY 1: FITTING HIGH-COMPLEXITY MODELS 348 



As with most other quantitative driver model concepts, the model in Svärd et al. (2017) 349 

assumes either that drivers keep their gaze on-road at all times or that there is no perceptual 350 

input influencing the driver behavior during off-road glances. There is, however, compelling 351 

evidence suggesting that drivers do make use of peripheral vision in driving. The aim of this 352 

study is to extend Svärd et al.'s model to accommodate drivers’ glance behavior and 353 

parameterize it using complex naturalistic real-world crash and near-crash data. This study is 354 

the first step in investigating the effect of new concepts on the off-road glance behavior 355 

model’s performance and parameter values. Clearly, introducing more free parameters to an 356 

already complex model will result in very high complexity, which may lead to poor model 357 

generalization. The results will be used in Study 2 (see Section 4), whose goal is reducing the 358 

model complexity without sacrificing performance. 359 

3.1 Model variants 360 

Experiments show that the driver’s brake reaction in lead vehicle situations is delayed when 361 

the driver is looking off-road during the critical event (Lamble et al., 1999; Summala et al., 362 

1998). Therefore, it can by hypothesized that drivers’ behavior is less influenced by looming 363 

while they are looking away from the road (cf. Markkula, 2014), and introducing a scaling of 364 

the acquired evidence during off-road glances could lead to better model performance. This 365 

effect may be modelled in a parameter for partial looming perception during off-road glances 366 

(see below). Moreover, the mechanisms causing crashes when the drivers’ gaze is directed 367 

off-road in the pre-crash phase may be different from the mechanisms causing crashes when 368 

the driver gaze remains on-road throughout. In eyes-on-road situations, for example, the 369 

cognitive driver state (e.g. drowsiness; see Ratcliff and Van Dongen, 2011) may influence the 370 

effective responsiveness to looming (Markkula et al., 2016).  Cognitive driver state effects 371 

include effects due to (a) expectation inaccuracies, or (b) reduction in responsiveness due to 372 

sleep deprivation but exclude effects due to eye-closures or other loss of perceptual input. 373 



One way to capture these cognitive driver state differences in a driver model would be to let 374 

the looming responsiveness depend on driver state, by using different values of the gain 375 

parameter for eyes-on-road and eyes-off-road events (see below). In this study, the model 376 

described in Svärd et al., (2017) is extended using the concepts above, and the hypothesis that 377 

some of the already-accumulated evidence may decay over time. 378 

The model by Svärd et al., (2017), henceforth called the base model, consists of seven free 379 

parameters. Based on this model, four high-complexity (i.e., with a high number of free 380 

model parameters) model variants were defined by introducing different combinations of the 381 

following parameters: 382 

1. An off-road glance looming weight parameter w, accounting for partial looming 383 

perception during off-road glances (for the parameter fitting initialized in the range 384 

[0,1]). This will permit brake responses to occur very quickly after an off-road glance, 385 

since the driver accumulates evidence also when directing their gaze off-road. 386 

2. Different looming prediction error gains, 𝐾𝑜𝑛 and 𝐾𝑜𝑓𝑓, depending on whether the 387 

gaze was on- or off-road during the event (for the parameter fitting initialized in the 388 

range [1,40]). This parameter aims to capture the differences in the underlying 389 

mechanisms for on- and off-road glances in critical situations, by assuming that the 390 

cognitive driver states may influence the driver responsiveness to looming in on-road 391 

critical situations (leading to a delayed braking response).  392 

3. Leakage C, as explained in Section 2.1, which will help the model to not be overly 393 

sensitive to previous looming variations. Practically it is a decrease of the looming 394 

over time. 395 

The following are descriptions of the created model variants: 396 



Model BW (Base model extended with looming Weight): The base model was extended only 397 

with a looming weight parameter that accounts for the partial looming perception during off-398 

road glances. This model variant has eight free parameters. 399 

Model BWG (Base model extended with looming Weight and multiple Gains): Model BW 400 

was extended to include multiple looming prediction error gains, depending on whether the 401 

driver performs any off-road glance during the critical event. This model variant has nine free 402 

parameters. 403 

Model BWL (Base model extended with looming Weight and Leakage): Model BW extended 404 

to include leakage. This model variant has nine free parameters. 405 

Model BWGL (Base model extended with looming Weight, multiple Gains and Leakage): 406 

Model BWG extended to include leakage. This model variant has ten free parameters. 407 

3.2 Results 408 

The base model and its high-complexity variants (BW, BWG, BWL and BWGL) were fitted 409 

on dataset 13c, containing only crashes. All five were run with 250 PSO iterations, 1000 410 

Monte Carlo simulations, and a 𝜌 value of 0.9 to compensate for outliers (see Appendix B for 411 

details about the 𝜌-value selection). The parameter fitting procedure was repeated once for 412 

each modelto verify that the parameter values remained in the same range as in the first run. 413 

The performances of the model variants were compared using the Akaike Information 414 

Criterion with a correction for small sample sizes (AICc), which is a measure that balances 415 

goodness of fit and model complexity (Hurvich and Tsai, 1989; Sugiura, 1978). Within a set 416 

of candidate models, the preferred model is the one with the minimum AICc value. The 417 

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) were also 418 

calculated, and they essentially agreed with the AICc. (To reduce the complexity of this 419 

paper, the values of these criteria are not presented or further discussed.) The optimal 420 



parameter values and the corresponding AICc and log-likelihood values from both rounds of 421 

fitting are presented in Table 2. 422 

Model PSO 

run 

AICc 𝐥𝐨𝐠 𝓛 M 𝝈𝟐 𝑨𝒓 k 𝜟𝑻𝒑𝟎 𝜟𝑻𝒑𝟏 K* 𝑲𝒐𝒏* 𝑲𝒐𝒇𝒇* w C 

Base 1st 153.69 -58.64 5.77 0.96 0.96 1.34 1.12 3.23 32.88  0 0 

2nd 151.06 -57.33 3.72 1.00 0.9 1.36 1.01 0.78 23.91  0 0 

BW 1st 142.19 -45.10 0,12 0.12 0.98 1.55 3.33 2.485 2.72  0.70 0 

2nd 145.06 -46.53 2.27 0.73 0.98 1.60 0.57 1.93 7.88  0.67 0 

BWG 1st 163.72 -42.86 2.12 0.95 0.78 1.54 0.03 4.30  7.38 20.33 0.16 0 

2nd 165.31 -43.66 2.37 0.97 0.95 1.37 3.40 2.60  7.29 20.14 0.19 0 

BWL 1st 170.79 -46.40 3.15 0.93 0.91 1.47 3.42 2.75 16.69  0.32 0.42 

2nd 169.60 -45.80 9.17 0.97 0.34 1.77 0.9 3.88 2.68  0.80 0.87 

BWGL 1st 225.76 -47.88 6.86 0.63 0.07 2.35 1.25 4.05  39.13 26.84 0.61 0.23 

2nd 224.53 -47.26 6.18 0.45 0.45 2.35 2.67 1.60  36.62 25.28 0.61 0.15 

*) The model variants have either one gain parameter K, or two separate gain parameters 𝐾𝑜𝑛 423 

and 𝐾𝑜𝑓𝑓. 424 

Table 2 Optimal parameter values and corresponding AICc values for the base model and its 425 

variants (model BW, BWG, BWL and BWGL). The models were fitted twice; the first results 426 

are in the upper row and the second results are in the lower row. Gray values were fixed 427 

during the parameter fitting (i.e., not optimized). The bold AICc values are the lowest in all 428 

compared models. 429 

As can be observed in Table 2, most parameter values were relatively consistent for the 430 

different parameter fittings. The only model variant outperforming the base model in terms of 431 

AICc was BW, extending the base model with a weighting parameter w for partial looming 432 

perception during off-road glances. All model variants had a lower total log-likelihood value 433 

than the base model; due to their high complexity, models BWG, BWL, and BWGL were 434 

penalized in the AICc calculation to reduce the risk of poor model generalization. 435 

4. STUDY 2: FITTING REDUCED-COMPLEXITY MODELS 436 



A review of the model fitting results for the high-complexity models analyzed in Study 1 437 

reveals that some of the parameters take on very similar values in most of the model variants. 438 

This consistency indicates that these parameters may not vary much between drivers and/or 439 

situations and could thus be set to constant values, improving generalizability without 440 

compromising model performance markedly. A further motivation for reducing model 441 

complexity this way is that, because of the high number of parameters, only one of the model 442 

variants in Study 1 performed better than the base model (in terms of AICc). 443 

The aim of this study is to reduce the complexity of the models from Study 1 while keeping 444 

their ability to account for off-road glances and then to fit the reduced-complexity model 445 

variants to both crash and near-crash data (as described in Section 2.2.1). Further analyses 446 

were also carried out to study how the model’s parameter values vary between combinations 447 

of datasets and modeling alternatives, and to identify specific critical events where one or 448 

more models align poorly with the observed human behavior. 449 

4.1 Model variants 450 

Parameters from Study 1 whose values were relatively unchanged across model variants were 451 

set to constant values to reduce model complexity. As a first step, we decided to set the reset 452 

value 𝐴𝑟 to 1 (the value found in several of the optimal parameter sets from Study 1; see 453 

Table 2), so that the accumulation of evidence was not reset at the time of brake intervention. 454 

To account for a realistic reduction in evidence accumulation over time, a leakage component 455 

was included in all model variants. The leakage parameter was fixed to 0.25 s, in line with 456 

typical information decay timescales observed in primate cortex (Murray et al., 2014). 457 

Notably, this value is in the same range as the optimal values found when fitting models 458 

BWL and BWGL in Study 1 (ranging from 0.15 to 0.87). Three additional parameters were 459 



set to fixed values, based on the optimal values from the high-complexity model fitting: 𝑘 =460  1.3, 𝛥𝑇𝑝0 = 1.5 and 𝛥𝑇𝑝1 = 1.5. 461 

As a final step in the model complexity reduction, the off-road glance looming weight 462 

parameter was fixed at 𝑤 =  0 for two of the model variants (BLrc and BGLrc, defined 463 

below). This step is equivalent to removing the effect of partial looming perception during 464 

off-road glances, treating it the same way as in the base model (i.e., assuming no looming is 465 

accumulated while looking away). 466 

To summarize, the parameter fixations resulted in the following four reduced-complexity 467 

model variants: 468 

Model BLrc (Base model extended with Leakage, reduced-complexity): The base model 469 

extended with a fixed leakage parameter, 𝐶 =  0.25. This model variant has three free 470 

parameters. 471 

Model BGLrc (Base model extended with multiple Gains and Leakage, reduced-complexity):  472 

Model variant BLrc extended to include different looming prediction error gains depending on 473 

whether the driver performs any off-road glance during the critical event. This model variant 474 

has four free parameters. 475 

Model BWLrc (Base model extended with looming Weight and Leakage, reduced-complexity): 476 

Model variant BLrc extended with a looming weight parameter that accounts for partial 477 

looming perception during off-road glances. This model variant has four free parameters. 478 

Model BWGLrc (Base model extended with looming Weight, multiple Gains and Leakage, 479 

reduced-complexity): Model variant BWLrc extended to include different looming prediction 480 

error gains depending on whether the driver performs any off-road glance during the critical 481 

event. This model variant has five free parameters. 482 



4.2 Results 483 

The reduced-complexity model variants (BLrc, BGLrc, BWLrc and BWGLrc) were 484 

parameterized on the four datasets described in Section 2.2.1. That is, each variant started out 485 

with the crash-only dataset and passed to datasets progressively including more near-crashes 486 

of lower criticality (longer minimum TTC). All PSO cycles were initially run with 250 487 

iterations, then rerun with 500 or 750 iterations (depending on model complexity and dataset 488 

size) if convergence was not established. Details about the convergence analysis are 489 

presented in Appendix C. The optimal parameter values, the corresponding total log-490 

likelihood, and the AICc value for each reduced-complexity model variant are presented in 491 

Table 3. 492 

Dataset Model AICc 𝐥𝐨𝐠 𝓛 M 𝝈𝟐 K* 𝑲𝒐𝒏* 𝑲𝒐𝒇𝒇* w 

13c  

BLrc 123.80 -57.57 2.28 0.99 14.43  0 

BGLrc 109.85 -48.43 0.01 0.15  2.34 18.14 0 

BWLrc 109.11 -48.05 3.17 0.86 15.37  0.33 

BWGLrc 104.82 -43.12 0.22 0.39  3.01 18.63 0.04 

13c+13nc 

BLrc 263.23 -127.28 0.87 0.80 8.61  0 

BGLrc 259.61 -123.30 0.09 0.48  3.38 6.24 0 

BWLrc 222.82 -104.91 0.45 0.13 6.09  0.36 

BWGLrc 228.78 -105.10 0.27 0.12  6.79 6.52 0.31 

13c+26nc 

BLrc 390.40 -190.87 0.01 0.54 4.64  0 

BGLrc 386.75 -186.87 0.02 0.53  2.11 8.58 0 

BWLrc 347.39 -167.19 0.78 0.25 8.42  0.35 

BWGLrc 356.48 -168.95 1.54 0.45  10.63 10.72 0.35 

13c+39nc 

BLrc 569.46 -280.39 0.00 0.25 5.50  0 

BGLrc 568.03 -277.51 0.17 0.53  3.45 8.42 0 

BWLrc 509.42 -248.21 0.35 0.18 6.26  0.31 

BWGLrc 514.71 -248.07 0.32 0.13  5.97 5.5 0.38 

*) The model variants have either one gain parameter K, or two separate gain parameters 𝐾𝑜𝑛 493 

and 𝐾𝑜𝑓𝑓. 494 



Table 3 Optimal parameter values and corresponding AICc values for all reduced-complexity 495 

model variants (BLrc, BGLrc, BWLrc, and BWGLrc). Gray parameter values were fixed (i.e., 496 

not optimized). Minimum AICc and maximum log-likelihood values among the compared 497 

model variants are marked in bold. 498 

In Table 3, it can be observed that model BWLrc has the best performance in terms of AICc 499 

across all datasets, except dataset 13c (crashes only), where model BWGLrc is preferred. 500 

Overall, model variants BWLrc and BWGLrc have similar performances and parameter 501 

values. Models BLrc and BGLrc are also similar to each other, although their performances are 502 

somewhat poorer. Another important observation is that the gain parameters 𝐾𝑜𝑛 and 𝐾𝑜𝑓𝑓 503 

take on values very close to each other for the most complex model variant with separate 504 

gains for eyes-on-road and eyes-off-road events (BWGLrc). The parameter similarity is more 505 

pronounced for the larger datasets. 506 

The gating parameter M converges to very small values on datasets 13c+26nc and 13c+39nc, 507 

stopping at the boundary of the feasible set for model variants BLrc and BGLrc. This may 508 

indicate that the optimal value is below the previously defined lower limit. Re-fitting with a 509 

lower boundary value, however, showed that even if the gating value goes below zero, the 510 

total model log-likelihood (and thus the AICc) does not change markedly. 511 

4.2.1 Events with good overall model fit 512 

59 % of all model responses had individual log-likelihoods greater than -4.5, corresponding 513 

to reasonably good fits (most of the Monte Carlo simulations had a brake initiation time and 514 

brake jerk that were close to the observed values in the reference event—approximately 50 % 515 

of the simulations were within +/- 0.6 s for brake initiation time and +/- 4.6 m/s3 for brake 516 

jerk). Figure 3 shows the model response plots for some of these events, when applying 517 

BWLrc (the variant with the lowest AICc) on three crashes and three near-crashes. The figure 518 



shows events in which the drivers were glancing off-road as well as events in which the 519 

drivers had their gaze on-road the whole time. For these illustrated events, the individual log-520 

likelihood levels range from -3.6 to -2.0 for the crashes and from -3.3 to -1.8 for the near-521 

crashes. Each panel is divided into two plots: 522 

Upper plot: The uppermost plot shows the acceleration (dashed dark gray line) and looming 523 

(𝜏−1; green line) of the reference event (for the looming signal, the evasive maneuver was 524 

first removed), as a function of time. The black solid line with circle-markers is the piecewise 525 

linear model fitted to the reference acceleration, which represents the acceleration behavior 526 

that the model is trying to reproduce. The blue lines with cross-markers depict the model 527 

responses from all Monte Carlo simulations, when the model (with optimal parameter 528 

settings) is applied to the reference event. Some plots also have a gray area behind the curves, 529 

illustrating that the driver is performing an off-road glance during that time interval. 530 

Lower plot: The lower plot is a density plot of the distribution of (𝑡𝐵, 𝑗𝐵) values for all Monte 531 

Carlo simulations. The (𝑡𝐵, 𝑗𝐵) space is divided into bins of equal size (0.2 s in the 𝑡𝐵 532 

dimension and  3 m/s3 in the 𝑗𝐵 dimension). The number of Monte Carlo simulations in each 533 

bin is color-coded according to the color bar to the right of the density plot. The reference 534 

value, (𝑡𝐵,𝑟𝑒𝑓, 𝑗𝐵,𝑟𝑒𝑓), is marked with a green cross. 535 
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Figure 3 Examples of events with good model performance. In each panel, the original and 536 

piecewise linear fitted acceleration from the reference event and the piecewise linear fitted 537 

acceleration from the model responses are shown in the upper graph, together with the 538 



looming curve. The lower graph shows the distribution of of (𝑡𝐵, 𝑗𝐵) values from all Monte 539 

Carlo simulations, as well as the (𝑡𝐵,𝑟𝑒𝑓, 𝑗𝐵,𝑟𝑒𝑓) value. Panels (a) & (b): Crashes without an 540 

off-road glance; Panel (c): Crash with an off-road glance; Panel (d): Near-crash without an 541 

off-road glance; Panels (e) & (f): Near-crashes with an off-road glance. 542 

4.2.2 Effects of the progressive inclusion of less critical events 543 

The influence of the dataset was further studied by, for all datasets, comparing the 544 

distributions of (𝑡𝐵, 𝑗,𝐵) values relative to the (𝑡𝐵,𝑟𝑒𝑓, 𝑗𝐵,𝑟𝑒𝑓) values from the reference 545 

events—that is, the distributions of (𝑡𝐵 − 𝑡𝐵,𝑟𝑒𝑓) and (𝑗𝐵 − 𝑗𝐵,𝑟𝑒𝑓). For this analysis, model 546 

BWLrc, the model with the lowest AICc, was applied to all datasets (i.e., 13c, 13c+13nc, 547 

13c+26nc and 13c+39nc), with the optimal parameter setting from fitting to dataset 13c+39nc 548 

(i.e., the largest dataset). 549 

Including fewer severe near-crashes in consecutive datasets resulted in relatively minor 550 

changes in the optimal parameter values for each model variant, in particular for the larger 551 

datasets (see Table 3). Panel (a) in Figure 4 shows the cumulative distribution function (CDF) 552 

of the relative tB values; Panel (b) shows the corresponding CDF for the relative 𝑗𝐵 values. It 553 

can be observed that the shape and position of CDFs are essentially constant across the 554 

datasets. 555 
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Figure 4 Cumulative distribution functions of relative (𝑡𝐵, 𝑗,𝐵) values resulting from applying 556 

model BWLrc, using the parameterization on dataset 13c+39c, on each of the datasets in the 557 

study (i.e., 13c, 13c+13nc, 13c+26nc and 13c+39nc). The distributions are based on 1000 558 

Monte Carlo simulations per event. The black dashed lines represent the reference value +/- 559 

0.5 standard deviations. Panel (a): Distribution of (𝑡𝐵 − 𝑡𝐵,𝑟𝑒𝑓) values; Panel (b): Distribution 560 

of (𝑗𝐵 − 𝑗𝐵,𝑟𝑒𝑓)-values. 561 

The quality of the model predictions can also be quantified by studying Figure 4. For brake 562 

initiation, 74 % of the simulated data from all reduced-complexity model variants falls within 563 

+/- 0.6 s of the reference driver brake initiation time. This value corresponds to +/- 0.5 564 

standard deviations of the reference brake response times (𝑡𝐵,𝑟𝑒𝑓). The brake jerk prediction 565 

is somewhat poorer, with 37 % falling within +/- 4.6 m/s3 of the reference—corresponding to 566 

+/- 0.5 standard deviations of the reference brake jerk (𝑗𝐵,𝑟𝑒𝑓). A poorer estimate of brake 567 

jerk compared to brake initiation is to be expected, since a good 𝑡𝐵 fit was prioritized over the 568 𝑗𝐵 fit in the likelihood calculations: see Equation (3). 569 

4.2.3 Model limitations for specific types of events 570 



The driver model variants are parameterized to perform well, in general, on a set of critical 571 

events with highly variable kinematics. Nonetheless, the variants might capture some driver 572 

behaviors better than others, because the model mechanics may be more suited for specific 573 

kinds of situations. To analyze how the individual critical events contributed to the model fit, 574 

the log-likelihood value for each event was studied for the complete set of parameter 575 

optimizations of reduced-complexity models (i.e., 16 optimizations: models BLrc, BGLrc, 576 

BWLrc and BWGLrc on each of the datasets 13c, 13c+13nc, 13c+26nc and 13c+39nc). For 577 

most critical events, the log-likelihood values were similar across all datasets, but it was 578 

possible to distinguish between two main types of low-likelihood groups:  579 

Events with low log-likelihood values (< -8.5) across all model variants: Seven of the near-580 

crash events, but none of the crashes, had a low performance for all model variants and 581 

datasets. In two of the events, the drivers had their gaze on-road, and in the five others the 582 

drivers had their gaze directed off-road at some point during the event. See Figure 5 for two 583 

near-crash examples. 584 

(a) (b) 

 
 

Figure 5 Examples of two near-crash events with poor model performance in terms of log-585 

likelihood. In each panel, the original and piecewise linear fitted acceleration from the 586 

reference event and the piecewise linear fitted acceleration from the model responses are 587 



shown in the upper graph, together with the looming curve. The lower graph shows the 588 

distribution of of (𝑡𝐵, 𝑗𝐵) values from all Monte Carlo simulations, as well as the (𝑡𝐵,𝑟𝑒𝑓, 589 𝑗𝐵,𝑟𝑒𝑓) value. Panel (a): Model response to a near-crash event without off-road glances, using 590 

model BLrc; Panel (b): Model response to a near-crash event with an off-road glance, using 591 

model BWGLrc. 592 

Events with low log-likelihood values for model variants BLrc and BGLrc, but not for model 593 

variants BWLrc and BWGLrc: Four events had a low log-likelihood value for models BLrc and 594 

BGLrc, but not for models BWLrc and BWGLrc. The drivers were glancing off-road 595 

immediately prior to the critical situation, resulting in either a crash (two events) or a near-596 

crash (two events). See Figure 6 for a comparison of the distribution of 𝑡𝐵 and 𝑗𝐵 values for 597 

models BLrc and BWLrc on one of the crash events. 598 
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Figure 6 Examples of a crash event with different model performances, in terms of log-599 

likelihood, depending on the applied model variant. In each panel, the original and piecewise 600 

linear fitted acceleration from the reference event and the piecewise linear fitted acceleration 601 

from the model responses are shown in the upper graph, together with the looming curve. The 602 

lower graph shows the distribution of of (𝑡𝐵, 𝑗𝐵) values from all Monte Carlo simulations, as 603 



well as the (𝑡𝐵,𝑟𝑒𝑓, 𝑗𝐵,𝑟𝑒𝑓) value. Panel (a): Model response using model BLrc, showing a poor 604 

model fit; Panel (b): Model response using model BWGLrc, illustrating a more accurate 605 

model fit. 606 

5. GENERAL DISCUSSION 607 

The two studies in this paper extend the non-deterministic driver model for brake onset and 608 

control presented by Svärd et al. (2017) to account for off-road glance behavior. The model 609 

performances of four model alternatives of high complexity were analyzed in Study 1; Study 610 

2 reduced the model complexity and achieved models with good performance, fully 611 

parameterized on real-world naturalistic crash and near-crash data, with fewer parameters 612 

than the original base model. 613 

5.1 Partial looming perception during off-road glances increases model performance  614 

The base model and the high-complexity model variants were parameterized only on the 615 

crash dataset (not the near-crash dataset), with the main aim of comparing the effects of 616 

including different aspects of the driver’s glance behavior in the model. Model performance 617 

analyses (in terms of AICc) indicated that including partial looming perception during off-618 

road glances was beneficial. Thus, it seems reasonable to conclude that drivers do collect 619 

information during off-road glances, presumably using their peripheral vision—as suggested 620 

in several previous studies (e.g., Lamble et al., 1999; Lappi, Rinkkala, & Pekkanen, 2017; 621 

Heikki Summala, Nieminen, & Punto, 1996; Wolfe, Dobres, Rosenholtz, & Reimer, 2017; 622 

Wolfe, Sawyer, Kosovicheva, Reimer, & Rosenholtz, 2019). In fact, there is conflicting 623 

evidence whether the retinal periphery is less able to detect collisions or react to looming. 624 

Studies by Li & Laurent (2001) and Stoffregen & Riccio (1990) indicate that (radial) looming 625 

perception is independent of retinal eccentricity. Further, Kim (2013) concluded that the 626 

peripheral retinal areas are actually more efficient than the center of the retina at judging 627 



impending collisions and controlling braking. However, the few studies on peripheral 628 

collision detection that have been performed in a vehicle setting, when the driver is not 629 

looking forward towards the roadway, showed delayed brake initiation timing with increased 630 

eccentricity (Burns et al., 2000; Lamble et al., 1999; Summala et al., 1998; Svärd et al., 631 

2020). This finding indicates a sensitivity decrease for perceptual input processed by the 632 

peripheral vision system. This paper is further evidence of such sensitivity decrease. As far as 633 

we are aware, this paper is the first to demonstrate this phenomenon using real-world 634 

naturalistic crashes and near-crashes. 635 

The benefits of including a partial looming perception parameter in the driver model could 636 

also be observed in the analysis of individual critical events with low log-likelihood values. 637 

Some of these events had a much higher log-likelihood when model variants including this 638 

parameter (i.e., BWLrc and BWGLrc) were applied, compared to the model variants without 639 

it. The events were characterized by a late off-road glance, with the evasive braking 640 

maneuver occurring soon after the redirection of gaze. A high off-road gain 𝐾𝑜𝑓𝑓 (or K, if the 641 

variant had only one gain) could possibly compensate for a missing partial looming 642 

perception parameter, but at the price of poor model performance for other types of events. 643 

5.2 Cognitive driver state causes reduced looming responsiveness for crashes, but not for 644 

near-crashes 645 

The introduction of different gain factors for eyes-on-road and eyes-off-road events was 646 

motivated by the hypothesis that the mechanisms causing a situation to become critical 647 

depend on the cognitive driver state, as discussed by Victor et al. (2014). For example, the 648 

factors driving style (e.g., aggressive driving) and driver impairment (e.g., driver drowsiness) 649 

have been related to crash risk (Dingus et al., 2016). In fact, a mismatch between driver 650 

expectations and the upcoming situation may cause critical situations even in eyes-on-road 651 



events (Engström et al., 2018). However, in the eyes-off-road events, it is mainly the timing 652 

of the off-road-glance that causes the situation to become critical (Markkula et al., 2016; 653 

Victor et al., 2014). Thus, the cognitive driver state may cause a reduced responsiveness to 654 

looming input while looking on-road, which, in the models in this paper, can be reflected by a 655 

lower gain 𝐾𝑜𝑛.  656 

Here, the gain K is used to make the distinction between eyes-on-road and eyes-off-road 657 

events in terms of, the potentially erroneous, driver expectations (which are different for on-658 

road and off-road events), since it directly relates to the responsiveness to looming by scaling 659 

the looming prediction error. However, the gating M, which together with the gain K 660 

determines the minimum predicted looming error required to initiate evidence accumulation, 661 

may also be seen as a general expectancy for the upcoming need of braking. In all model 662 

variants in this paper, the total driver expectancy is modeled by the gain and gating factors 663 

together. 664 

In the current studies, model variants with different on- and off-road gains showed better 665 

performance on the crash dataset (in terms of both log-likelihood and AICc) than those with a 666 

single gain parameter—in line with the above hypothesis. Yet, this difference was not 667 

observed for the datasets including near-crashes. On these datasets (i.e., datasets 13c+13nc, 668 

13+26nc and 13c+39nc), the model variants with two gains (𝐾𝑜𝑛 and 𝐾𝑜𝑓𝑓) performed only 669 

slightly better, in terms of AICc, than the corresponding variants with only a single gain 670 

parameter (K). In addition, the gain values 𝐾𝑜𝑛 and 𝐾𝑜𝑓𝑓 for the most complex model variant 671 

(BWGLrc) turned out to be similar, in particular for the largest dataset. These observations 672 

indicate that there is no effect of cognitive driver state on perception responsiveness in near-673 

crashes. One reason for this may be that the driver succeeds in resolving the critical situation, 674 

which indicates that drivers in near-crash scenarios may be more attentive (i.e., in another 675 

driver state) than drivers in crash scenarios. 676 



5.3 Parameterization on complex real-world naturalistic crashes and near-crashes results 677 

in reasonably good model fits 678 

A parameterization method based on PSO and MLE was proposed and applied to a number of 679 

non-deterministic driver models of different degrees of complexity. The method proved to be 680 

a useful tool for parameter fitting on highly complex naturalistic data. The model 681 

parameterizations resulted in reasonably good fits to the original data, in terms of brake 682 

initiation time and brake jerk (approximately 74 % of the brake initiation times were within 683 

+/- 0.6 s and 37 % of the estimated brake jerks were within +/- 4.6 m/s3 from the human 684 

driver reference values). It is notable that we were able to achieve this level of performance 685 

on naturalistic real-world crash and near-crash data (as real-world data is inherently more 686 

noisy). Achieving the same results, using a full grid search method, for example, would not 687 

have been computationally feasible. 688 

To decrease the risk of overfitting to the data, models with a low number of free parameters 689 

are preferable. For this reason the reduced-complexity models were introduced in Study 2; 690 

they have fewer parameters (3–5) than the high-complexity models in Study 1 (8–10 691 

parameters). As a result, the models were easier to analyze and resulted in a smaller search 692 

space for parameter fitting: it was easier to reach convergence and the parameter optimization 693 

required less computational capacity. However, if parameters that vary greatly for different 694 

drivers and/or situations are set to constant values, there is a risk of poorer model 695 

generalization (underfitting). Examples of poor model performance due to over- and 696 

underfitting are given in Awad & Janson (1998), and the issues are also discussed by Lever, 697 

Krzywinski, & Altman (2016). In the AICc analysis of the high- and reduced-complexity 698 

model variants on the crash dataset (dataset 13c), improved performance was observed for the 699 

reduced-complexity model variants. However, only the reduced-complexity model with the 700 

highest number of parameters had a better log-likelihood value than the high-complexity 701 



models. Together, these results indicate that the high-complexity models may overfit to the 702 

crash dataset, while the reduced-complexity models probably provide more opportunity for 703 

generalization when applied to new data (a desirable characteristic). The challenge is to find a 704 

driver model that is simple, yet close enough to the perceptual, cognitive, and motor 705 

mechanisms that are actually in play in critical situations. The chances of obtaining a model 706 

that generalizes well beyond the immediate dataset it was fitted to are maximized when the 707 

model captures biologically-plausible mechanisms. This affords future model improvements 708 

to be made both while we discover things about the brain mechanisms and while we get more 709 

data. 710 

5.4 Models parameterized on less critical data are also able to reproduce driver behavior in 711 

more critical situations 712 

Including fewer severe near-crashes in the datasets resulted in relatively minor changes in the 713 

optimal parameter values for each individual model variant, in particular for the larger 714 

datasets. The number of crashes in naturalistic datasets are low compared to the number of 715 

near-crashes, so it would be beneficial to be able to use less-critical data to parameterize 716 

driver models intended for highly critical situations (like the models in the current work) in 717 

order to draw conclusions about how driver behavior influences crash risk—for example in 718 

simulations for safety benefit estimations. 719 

Analyzing data from the 100-car naturalistic driving study, Guo, Klauer, Hankey, & Dingus 720 

(2010) showed that using near-crashes as surrogates for crashes provides a benefit when the 721 

amount of crash data is too low for the desired analysis. However, the authors point out that 722 

using near-crashes leads to a consistently underestimated crash risk. Later studies conclude 723 

that near-crashes are suitable as crash surrogates when studying collision risk, but it may be 724 

more challenging to use them to study crash severity (Tarko, 2018; see also the review by 725 



Zheng, Ismail, & Meng, 2014). Thus, it may be expected that driver models fitted to near-726 

crashes predict too-early driver interventions. Nonetheless, when studying model fit in terms 727 

of error distributions in the 𝑡𝐵 and 𝑗𝐵 dimensions, no obvious differences were found between 728 

the fit to crashes only and a mix of crashes and near-crashes, suggesting that a model 729 

parameterized on a less-critical dataset, at least in this case, successfully manages to 730 

reproduce the driver behavior even in more critical datasets to a reasonable extent. Our 731 

tentative conclusion from this data is that it is possible to use near-crashes for fitting to 732 

crashes, but that this would have to be confirmed in future studies. 733 

However, due to the high variability in crash causation mechanisms and driver responses, the 734 

presented models are not suitable for analyzing driver behavior in all types of lead vehicle 735 

events. For a subset of the events in the analysis, all model variants performed poorly, 736 

indicating that there are still some mechanisms that are not captured by the models and/or 737 

parameterization method.  Although somewhat speculative because of the small subset of 738 

events, the following observations can be made and are included to guide development of 739 

future models: 740 

 A major cause of poor performance was too-weak braking generated by the driver model 741 

(i.e., the human driver in the reference event braked harder). In the eyes-off-road events, the 742 

model braked later than the human driver, while it braked too early in the eyes-on-road events 743 

(with the exception of one event out of seven).  Common factors for the eyes-off road events 744 

were low looming and a long off-road glance. This caused the looming evidence to 745 

accumulate at a slower pace than in other events in the dataset, leading to a braking maneuver 746 

that was later and weaker than the reference maneuver performed by the human driver. In 747 

contrast, for the two eyes-on-road events, the initial looming was larger than for most other 748 

events in the dataset, causing the driver model to brake earlier than the human driver. 749 

Furthermore, it could be observed that in many of the events with too weak estimated brake 750 



jerk, the driver model responded to an early looming accumulation by issuing several 751 

individual brake adjustments spread out over time. Each individual brake adjustment could, 752 

however, have a strong jerk, matching that of the human driver. Nonetheless, the estimated 753 

mean brake jerk, from brake initiation until maximum brake power is reached (i.e., the 754 

estimated 𝑗𝐵), would be low because of the fitting to a piecewise linear model. The poor 755 

model performance for these events may thus be partly an effect of the parameterization 756 

method. A better performance might be achieved by calculating the brake jerk in several 757 

steps instead of one. That is, fitting a more advanced piecewise linear model to the 758 

acceleration signal. Further work to study these suggestions is recommended. 759 

5.5 Limitations and future work 760 

This work was based on real-world naturalistic crashes and near-crashes from the SHRP2 761 

database, which contained only a limited number of crash and near-crash events suitable for 762 

the specific analysis and model parameterization performed here. Thus, the parameter fittings 763 

in this paper were performed on datasets containing few crashes (n=13), where all crashes 764 

fulfilled the requirements of the target scenario (described in Section 2.2.1). The models 765 

fitted to the naturalistic data in this paper target specific crash mechanisms, and consequently, 766 

it should not be fitted to events that have different crash causation mechanisms (as the models 767 

are not designed to handle those). Examples of such mechanisms—thus reasons for event 768 

exclusion—are obvious driver drowsiness (i.e., easily spotted from video review) and driver 769 

expectancy due to infrastructure. In particular, fitting the models in this paper to critical 770 

events where the driver behavior is much influenced by expectancy would probably result in 771 

unreasonably high noise and gating values. This would result in a poor model fit on the 772 

crashes that matched the target scenario. To better understand the model limitations, more 773 

research is needed on the underlying factors and/or biological processes contributing to the 774 



parameter values in the current models (in particular, research on understanding the 775 

mechanisms related to the gating and leakage components). 776 

A small dataset, particularly in combination with high-complexity models, may result in poor 777 

model generalization. To reduce this deficiency, near-crashes were appended to the dataset 778 

and lower-complexity models were also created. However, due to limited data available and 779 

limited computational capacity, the largest dataset consisted of only 52 critical events. 780 

Accepting this limitation gave us the possibility of making several rounds of calculations 781 

where nine different model variants could be compared on four different datasets. The results 782 

indicate that including more near-crash events is likely to have little effect. 783 

Moreover, the data in this study were collected in the United States and it is unclear whether 784 

the driver behavior could be generalized to other countries as well (in particular to developing 785 

countries with a different traffic pattern). In order to apply the model to, for example, safety 786 

benefit analysis, it should be re-parameterized on suitable data for the geocultural area of 787 

interest. It would also be reasonable to include age as a factor in the model, since younger 788 

drivers have been shown to have different glance patterns and different brake reactions than 789 

older drivers, possibly partially a result of this group of drivers more often being engaged in 790 

visual-manual secondary tasks (such as texting on the phone) at the time of an incident 791 

(Klauer et al., 2014; National Highway Traffic Safety Administration, 2020, 2012). This 792 

paper describes a method for parameterization, generalizable to any naturalistic dataset. The 793 

method could also be applied to parameterize other non-deterministic driver models which 794 

require the solution of a non-differentiable optimization problem. 795 

Parameterized and validated computational driver models of the type described in this paper 796 

(using real-world naturalistic driving data for parameter fitting) are an essential part of 797 

realistic virtual vehicle safety testing. Not only is there an increasing need of models aimed to 798 



evaluate the road safety of advanced driver assistance systems, such as forward collision 799 

warning systems (FCW) (see, e.g., Bärgman et al., 2017; Page et al., 2015), but 800 

computational driver behavior models may also be an important part of assessing the safety 801 

of automated driving systems (level 1–3) and driver comfort systems such as automatic cruise 802 

control (ACC) (Bianchi Piccinini et al., 2020). Consequently, models for other crash 803 

scenarios (e.g., intersection and run-off-road) should preferably also be fitted using 804 

naturalistic driving data.  805 

6. CONCLUSIONS 806 

This paper extends a driver model for brake onset and control to handle driver off-road 807 

glances and, for the first time, manages to fit a computational model to real-world naturalistic 808 

crash and near-crash data. A PSO- and MLE- based method was used to fit several model 809 

variants to real-world naturalistic crashes and near-crashes, and compare them using a 810 

structured model selection approach. The applied method is computationally efficient and 811 

permits parameter fitting of a non-deterministic model (i.e., including noise) with a large 812 

number of parameters. It was found that the best performing model variant is less complex 813 

than the original model, with only four free parameters: gain K, gating M, accumulator noise 814 

variance 𝜎2, and off-road glance looming weight w. The success of this reduced-complexity 815 

variant was probably due to the stringent model selection process that allowed model 816 

complexity to be reduced without compromising performance. 817 

From the results in this paper, it was established that including partial looming perception 818 

during off-road glances, corresponding to 30–40 % of the actual looming input, improved 819 

model fit and AICc. Thus it appears that drivers collect evidence for braking during off-road 820 

glances using the peripheral vision system, although they have less perceptual sensitivity than 821 

during on-road glances. 822 



Moreover, we found evidence that some cognitive driver states (e.g., drowsiness or 823 

expectations that the situation will resolve itself without intervention) may cause a reduced 824 

responsiveness to looming. Thus driver state may be an important factor in determining of 825 

why crashes sometimes occur even when drivers keep their eyes on the road. This finding 826 

fills an important gap in the existing analyses of naturalistic crashes. However, reduced 827 

looming responsiveness does not seem to be a factor in near-crashes that occur while drivers 828 

have their eyes on the road. 829 

Validated computational driver models is a critical part in virtual testing of vehicle safety 830 

systems (e.g. FCW), as well as in virtual assessment of comfort (e.g. ACC) and automated 831 

driving systems. The results from the reduced-complexity models in this paper, fitted to both 832 

crash and near-crash data, indicate that it is possible to reproduce driver behavior in critical 833 

situations using models parameterized on less-critical events. However, a somewhat poorer 834 

performance was observed for specific kinds of events, in which the model brake response 835 

was weaker than that of the human driver. To overcome this limitation, a more advanced 836 

method for calculating the brake jerk could be used, and the model could be separately 837 

parameterized on a dataset containing more events of this kind. 838 
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Appendix A – DATA SELECTION 854 

A.1 Selection of crashes 855 

The data in the original SHRP2 dataset were analyzed and reduced to only contain critical 856 

events matching the requirements of the target scenario, described in Section 2.2.1. The 857 

selection of crash events was done in two parts: (1) Signal based selection, and (2) video and 858 

description based selection, as follows: 859 

Signal based selection: The signal based selection part ensured the availability of good 860 

quality data in terms of longitudinal kinematics and annotated looming, that is, all signals 861 

required by the driver model should exist and be complete (15 events did not fulfill this and 862 

were hence excluded). In addition, the following types of events were excluded: 863 

- Events where it was not possible to separate the driver actions from the situation 864 

kinematics, for example, events where it was not clear whether the pre-crash 865 

deceleration was the result of driver intervention or the collision (three events 866 

excluded). 867 

- Events where the difference between the piecewise linear acceleration fit and the 868 

original acceleration before the collision deviated too much (one event excluded). 869 



- Events where the driver looked on-road for the entire event, but did not perform an 870 

evasive maneuver (one event excluded). 871 

In total, 26 of the 46 rear-end crashes remained after the signal based selection. 872 

Video and description based selection: In the video and description based selection process, 873 

the remaining 26 crashes were analyzed by looking at the forward view from the windshield 874 

mounted camera, and by reading the written description of the scenario made by the 875 

annotators. The following types of events were excluded: 876 

- Events where the forward view through the windshield was not clear enough to expect 877 

a good quality looming annotation to be possible, for example as a result of a too 878 

blurry video image caused by night time rain (three events excluded). 879 

- Events with noticeable evasive steering from the driver before the evasive brake 880 

maneuver (two events excluded). 881 

- Events where the lead vehicle had an open trailer attached (one event excluded). 882 

- Events where the driver was described as sleepy in the annotated event description 883 

(one event excluded).  884 

- Events with extremely low speed, typically parking lot situations (two events 885 

excluded). 886 

- Events with possible issues with driver expectancy, for example expectations caused 887 

by a red light coming up in front (four events excluded). 888 

In total, after the data selection, 13 good quality crashes (of the type targeted by the driver 889 

models in this paper) remained for the parameter fitting. 890 

A.2 Selection of near-crashes 891 



The much higher amount of near-crashes than crashes in the original dataset warranted 892 

another method for determining inclusion or exclusion of events, than the rather time 893 

consuming procedure used for the crash dataset. First, all near-crashes with bad or missing 894 

(relevant) signals were discarded, as well as the near-crashes happening at very low speeds (< 895 

20 km/h at the moment when the driver was performing evasive braking). The remaining 896 

near-crashes were analyzed by visual inspection of the signals and forward video streams, 897 

excluding some cases with issues such as poor data quality, very bad visibility, events with 898 

evasive steering maneuvers, cut-in/out scenarios, and events where the lead vehicle was not a 899 

passenger car, in a similar manner to what was done for the crash dataset. All remaining near-900 

crashes were ordered in terms of severity, where the severity of a near-crash was judged 901 

based on the minimum TTC during the event (this also corresponds to the highest looming). 902 

After this exclusion process, the 39 most severe good-quality near-crashes were selected for 903 

the parameter fitting (limited to this amount to keep a good balance between the number of 904 

crashes and near-crashes in the datasets, and to make the dataset size suitable for the 905 

parameterization method, given the available computational capacity). 906 

Appendix B – SELECTION OF A SUITABLE 𝝆-VALUE FOR OUTLIER 907 

COMPENSATION 908 

To identify a suitable value for the 𝜌 parameter in Equation (5), handling the outlier 909 

compensation part of the likelihood calculations, ten full PSO cycles (250 iterations with 910 

1000 Monte Carlo simulations in each) were performed on the most complex model variant 911 

(model variant BWGL, 10 free parameters), with different 𝜌-values. Since only a small part 912 

of the data can be assumed to be outliers, the ρ-values were sampled more densely closer to 913 𝜌 = 1. Figure B-1 shows the obtained values of the accumulator noise variance parameter 914 𝜎2 across these samples of 𝜌, each sample color scaled according to the corresponding total 915 

likelihood of the parameterized model. It can be observed that 𝜌-values above 0.8 and below 916 



1 all generate noise values in the same region, all with a fairly high log-likelihood. For the 917 

remainder of the analysis, the 𝜌-value corresponding to the lowest 𝜎2 and highest log-918 

likelihood was chosen, i.e. 𝜌 =  0.9. 919 

 920 

Figure B-1 Optimal values of the accumulator noise variance parameter 𝜎2 as a function of 921 𝜌-value. The corresponding log-likelihood value for the optimal parameter set is illustrated 922 

by the marker color, where dark red represents a low log-likelihood value and light green 923 

represents a high log-likelihood value. The analysis was made on model variant BWGL (10 924 

free parameters). 925 

Appendix C – CONVERGENCE OF PARAMETER VALUES 926 

Since PSO in general does not guarantee convergence in a fixed number of iterations, the 927 

parameter value convergence was analyzed after each full PSO cycle. Convergence was 928 

assumed to be reached when all except a few particles agreed on a specific parameter value. 929 

That is, when the distribution of the Monte Carlo simulations peaked around the same value 930 

for almost all particles towards the final iterations in the PSO cycle. Since a few particles 931 

were still allowed to peak at other values, the convergence was analyzed by calculating the 932 

median absolute deviation (MAD) (see e.g. Leys, Ley, Klein, Bernard, & Licata (2013) for 933 

each parameter. MAD is a measure of data variability that is robust to outliers and should be 934 

close to 0 for the model to have converged. Eventually, it was found that the PSO algorithm 935 



reached convergence in the parameter fitting of all model variants. See Figure C-1 for an 936 

example of MAD and optimal parameter value as a function of PSO iterations for all 937 

parameters in model BWLrc, parameterized on dataset 13c+39nc. For illustrational purposes, 938 

Figure C-2 shows the corresponding histogram of values of the parameter for input weight 939 

during off road glance (w) for each separate particle, for the last 75 iterations in the PSO 940 

cycle (out of 750). It can be observed that all particle histograms agree on the same value, but 941 

that, for example, particles 2, 6 and 16 have a slightly wider spread of values compared to the 942 

other particles. 943 

 944 

Figure C-1 Median absolute deviations (colored) and optimal parameter values (black) as a 945 

function of PSO iteration for the parameters in model BWLrc. 946 



 947 

 948 

Figure C-2 Histograms, per particle, of the off-road glance looming weight parameter (w) 949 

values for the last 75 iterations in the PSO cycle. 950 
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