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ABSTRACT

Container-based sanitation (CBS) is increasingly used to provide safely managed sanitation in low-income urban settlements.

However, questions remain around the viability of scaling up the technology, partly because it relies on regular emptying and

servicing of containers by a CBS provider. This paper investigates mechanisms by which this process can be achieved efficiently.

Three separate collection strategies are evaluated for their routing efficiencies as CBS goes to scale. An open-source route optim-

isation solver determines the constituent driving andwalking distances necessary for each strategy and has been applied in areas

of Cape Town, Cap-Haïtien, Lima and Nairobi. The results indicate that with fewer users (e.g. 50) transfer station models offer the

shortest driving routes. However, these do require users to carry their containers (e.g. up to 170 m when stations are 100 m

apart). As the number of users increases (e.g. to 5,000), visiting individual houses from a neighbourhood depot offers increasingly

efficient driving distances. Overall, however, the results suggest that economies in collection distances for scaled CBS will be

largely conditional on greater vehicle capacity (rather than any particular provision strategy). This highlights the importance of

road access throughout low-income urban settlements in providing a viable CBS service at scale.
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HIGHLIGHTS

• Container-based sanitation is a form of road-based faecal sludge management.

• Efficient routing of collection vehicles is critical for enabling scaled CBS.

• This modelling evaluates three existing provision strategies using Google-OR tools.

• Transfer stations and depots within neighbourhoods can reduce the required driving.

• However, enlarged vehicle capacity offers greatest reductions in collection routing.
INTRODUCTION

The emergence of SARS-CoV-2 has exacerbated a global sanitation crisis. Over a quarter of the world’s popu-

lation lacks access to household-level systems that safely contain and treat excreta (WHO & UNICEF 2019).
Approximately 2.8% of total global deaths can be attributed to inadequate water sanitation and hygiene
(WASH; Prüss-Ustün et al. 2019). With over a billion people required to leave their households to meet their sani-

tation needs, the emergence of SARS-CoV-2 has highlighted concerns around shared toilets (Caruso & Freeman
2020). These concerns already include evidence demonstrating such communal facilities exacerbate security
issues for women (Corburn & Hildebrand 2015; Caruso et al. 2017).

Despite these fears, the use of shared facilities has expanded in urban areas across many less-developed regions
in recent years (Shiras et al. 2018; Foggitt et al. 2019). This expansion looks set to continue with an extra 2.3 bil-
lion people expected to live in these environments by 2050 (UNDESA 2018). On-grid sanitation solutions (e.g.
household sewers) are not expanding rapidly enough to meet this demand (Öberg et al. 2020).
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Over the last decade, container-based sanitation (CBS) has emerged as a potential off-grid technology to
combat the challenge of safely managing excreta for the world’s growing urban population (Mackinnon et al.
2018). CBS involves the containment of faeces within sealable containers (typically separating urine and

faeces) which are then collected from individual households and transported to a waste processing site to be trea-
ted (Tilmans et al. 2015). The flexibility of such systems can have benefits in impoverished urban communities
with high levels of flood risk and low rates of land ownership (Scott et al. 2015).

Any sustainable provision of CBS relies on a series of tasks being regularly performed by a ‘CBS provider’ (e.g. a

social enterprise, a non-governmental organisation, municipality, etc.). Together these processes are referred to as
the CBS service chain, of which Figure 1 gives the constituent ‘operational’ procedures (i.e. from containment
through to the re-use of waste). There are numerous potential barriers to building a viable CBS service chain, ran-

ging from the health concerns over hand-held transfer of waste containers (Mackinnon et al. 2018) to the
favourability of market conditions for any re-use products (Mikhael et al. 2017). This typifies the broader discus-
sion on the sustainability of sanitation systems, where the complexity of interacting factors in determining long-

term viability of WASH infrastructure has been recognised (Lundin et al. 1999; Iribarnegaray et al. 2015;
Hashemi 2020). The sustainability of off-grid sanitation systems, particularly when resource recovery is an objec-
tive, is dependent on viability along the entirety of the service chain (Silveti & Andersson 2019).

While in no way dismissing the breadth of challenges faced when building (and expanding) a sustainable CBS
service chain, this paper focuses on only one component – the ability of CBS providers to efficiently navigate the
road networks of neighbourhoods they serve as their service goes to scale.

This is a critical issue for CBS providers because regular neighbourhood visits are necessary for the safe and

hygienic collection of waste. This reflects wider recognition in the literature that the operational efficiency of
transport arrangements is a major barrier for road-based faecal sludge management (FSM) systems (Kennedy-
Walker et al. 2016; Balasubramanya et al. 2017). It is worth noting also that regular visits by a CBS provider

are beneficial for fostering positive relationships with the community being served (Moya et al. 2019).
This research paper examines the routing efficiencies available from three practised provision strategies across

four neighbourhoods where CBS is currently being employed. This entails using a hypothetical, scenario-based

approach which, with the technology’s acknowledged role in achieving the Sustainable Development Goals
(World Bank Group 2019), offers useful critique of CBS’s robustness to scaling sustainably.
METHOD

This research evaluates the routing efficiencies achieved by different CBS provision strategies under multiple

usage projections in four separate neighbourhoods. A description of the different case study areas will be followed
by a discussion of how the CBS strategies will be characterised and evaluated.

Study sites

The Container-Based Sanitation Alliance (CBSA) has members providing a CBS service in six cities. Three of
these cities were selected to be included in this study (providing wide geographic spread). A fourth, Cape
Town, was also included as host of one of the largest existing CBS projects. This paper focuses on a neighbour-

hood within each city: (i) BM Section in Cape Town; (ii) Fosen Michel in Cap-Haïtien; (iii) Pamplona Alta in
Lima and (iv) Mukuru in Nairobi. Their layouts are given in Figure 2.

Several criteria were used to identify these neighbourhoods. First, they are all primarily formed of low-income
urban settlements with poor sanitation provision. Second, Fosen Michel, Pamplona Alta and Mukuru all have an

existing CBS service provided by different social enterprises (SOIL, x-runner and Sanergy, respectively) who are
looking to expand their service in the most efficient way possible. CBS is also provided in BM Section, but from
Figure 1 | Components of the ‘back-end’ CBS service chain (with the spatial context of each).
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Figure 2 | Maps showing the study areas within the neighbourhoods of (a) Pamplona Alta, Lima, (b) Fosen Michel, Cap-Haïtien,
(c) Mukuru, Nairobi and (d) BM Section, Cape Town. The entrance/exit points, transfer stations and depots are hypothetical (see
the ‘Model construction’ section).
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the local City of Cape Town municipality. Third, there are identifiable geographical features giving a clear defi-
nition of neighbourhood boundaries. For example, Fosen Michel is on a spur of land between the Rivière Mapou

and the coast, while Pamplona Alta fills a single steep-sided valley. Likewise, Mukuru lies between the Ngong
river and a railway line. BM Section is located within the Khayelitsha Township and is bounded by Govan
Mbeki Road, R2 national highway and the Kuils River. Apart from Pamplona Alta, the neighbourhoods lie in
flat basins with little topographical variation.
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Strategy characterisation

A CBS provision strategy is defined as the mechanism by which organisations providing a CBS service choose to

navigate a neighbourhood to visit their customers and ensure a safely managed sanitation service. Any strategy is
typically based on a combination of mechanised and pedestrian journeys. Through liaison with different CBS
organisations, three separate strategies were identified for evaluation as part of this research. These will be
described here.

1. Strategy A: This is based on an approach that has been used by SOIL in Fosen Michel. CBS collectors enter a
neighbourhood with a mechanised collection vehicle, before taking the shortest route along the road network

to the closest point to a CBS household. The housing density of neighbourhoods using CBS typically results in
limited road access. The CBS operator then walks to the CBS user’s household or compound and collects the
filled CBS container (simultaneously dropping off a clean one). The CBS collector returns to the collection

vehicle to deposit this waste and drive onwards. This process continues until all CBS users have been visited,
whereupon the collection vehicle exits the neighbourhood and returns to a treatment site.

2. Strategy B: This is informed by Sanergy’s approach in Mukuru and is very similar to Strategy A, except in this

case all collection operations are based out of a neighbourhood depot. A household service is offered in the
same way, but collection routes all begin and end at the depot. Collated waste is then removed for treatment by
a separate transport process. A key variable for this strategy is the location of the depot within the
neighbourhood.

3. Strategy C: This is based on an approach used by Sanima in Pamplona Alta. All CBS users walk with their own
filled containers from their households to the nearest transfer station (in reality, these locations can range from
being a layby to a container ‘vending machine’). In practice, CBS users have been known to produce 1.12 kg of

faecal waste per user per week (Tilmans et al. 2015). Having entered the neighbourhood with mechanised col-
lection vehicles, CBS collection operatives meet users at these points and exchange filled containers for fresh
ones. Users return home with fresh containers, while CBS operatives move to the next transfer station. The

implications of users carrying filled containers over these distances are discussed in the ‘Discussion’ section.
A key variable for this strategy is the number (or spatial density) of transfer stations across a neighbourhood.

The routing efficiencies of each of these strategies will vary with the number of CBS users being served. There-
fore, each was evaluated with 10, 20, 30, 50, 70, 100, 250, 500, 1,000, 3,000 and 5,000 CBS users in each
neighbourhood.

Unless otherwise stated, all strategies will assume a capacity of the collection vehicle of 50 CBS containers –

this is the approximate capacity of a converted tuk-tuk (which are commonly used for this purpose).
Model construction

To ensure a robust examination, all characterisations of CBS provision strategies must be informed and applied in

a uniform manner across the four locations. In these locations, as in many areas where CBS might be considered
most appropriate (i.e. low-income urban environments), there is typically limited spatial data for informing neigh-
bourhood topology. Moreover, any methodology developed as part of this research will be most useful to

organisations looking to apply it in such contexts. Therefore, adopting a minimal data approach and using
open-source tools were deemed pragmatic methodological decisions (and has precedent in work carried out in
similar environments (Schoebitz et al. 2017; Grippa et al. 2018)). The limitations of this approach are highlighted

in the ‘Discussion’ section.
As such, each neighbourhood domain was characterised by only: (i) a primary road network and (ii) the

location of household structures within the area. The road network was obtained from Open Street Map
(OSM). The location of buildings was identified using point clouds (i.e. one point per structure) inferred from

visual inspection of building footprints using ESRI’s World Imagery (Clarity) layer1.
Hypothetical sets of CBS users within each neighbourhood were created through random sampling of the

building point clouds. The smaller the number of users, the greater the spatial variance between each set (e.g.

the spatial variance between two sets of 10 users was higher than two sets of 1,000 users). To mitigate the
1 (https://www.arcgis.com/home/item.html?id¼ab399b847323487dba26809bf11ea91a).
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influence of this, multiple sets were used at each level of CBS usage, with 50 random sets for usage up to 100 CBS
users; 25 sets for 250 and 500 users; and 10 sets when users were 1,000 or more.

Each road layout informed a network model. These networks were built with NetworkX (an established

Python network analysis package) (Hagberg et al. 2008) with roads represented as edges. As shown in Figure 3,
the nodes in these networks were stopping points, transfer stations and depots (depending on the strategy being
evaluated). In each case, an implementation of the weighted Dijkstra algorithm (Dijkstra 1959) was then used to
construct a distance matrix, M. This is a square matrix (symmetric around the lead diagonal) where Mij is the

distance between nodes i and j (rounded to the nearest integer).
All three strategies were optimised as ‘capacitated vehicle routing problems’ (CVRPs; Ralphs et al. 2003) using

the Operational Research tools suite from Google (Google-OR Tools)2. Google-OR Tools is an open-source soft-

ware suite with an established heuristic solver for route optimisation problems (Zhang et al. 2020; Zhao et al.
2020). The representation of each strategy within this framework will now be briefly described (Python scripts
for each are given in the additional information).

1. Strategy A: All stopping points (i.e. points on the road network closest to the CBS user) were represented as

nodes in the network (and a row within matrix M).
2. Strategy B: The depot node was the start and finish point for the network. To understand how routing efficien-

cies might rely on the location of this depot, four hypothetical locations were evaluated for each

neighbourhood, with approximately one in each quadrant of each neighbourhood (see Figure 2 for their
placement).

3. Strategy C: Each transfer station represented a node on the network graph (and a row in matrixM). Each node
had a load characteristic, equal to the sum of the CBS users using that transfer station. In order to fully under-

stand the impacts of this transfer station model, different densities of transfer station have been evaluated in
each neighbourhood. Hypothetical transfer stations are either approximately 100, 200, 300, 500 and 1,000 m
apart (see Figure 2).

Broadly, in each case, the solver attempts to minimise the longest route in the series journeys required to visit

all nodes in the graph when vehicles have a limited capacity. This research uses the default solver with the first
solution obtained with a path-cheapest-arc approach (i.e. iteratively extending the route to the closest node) and
the commonly used ‘guided local’ search method, which avoids producing routes that are shorter than all those

nearby but not the global minimum. Solutions were found using Cranfield University’s Delta High Performance
Computing cluster with a single chunk of 16 CPUs, each with a minimum 8 GB of memory (and 16 parallel mess-
age passing interface processes). In each case, the solver had a limit of 300 s.

By providing the total driving distance required, the optimisation exercise provides one of the two key metrics

used in evaluating the CBS strategies. The other metric is the total walking distance required (by either the CBS
Figure 3 | A conceptual example of each CBS provision strategy (with numbered arrows indicating mechanised routes).

2 https://developers.google.com/optimization/).
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collector or the CBS users) for the strategy to function. This research assumes that all pedestrian journeys are the
shortest linear path between two points. The appropriateness of this assumption has been discussed in a variety of
WASH contexts (Ho et al. 2014; Nygren et al. 2016), but because of a lack of data on paths and access routes

within these low-income urban settlements, this was deemed a pragmatic methodological decision.
RESULTS

Results for Strategy A

Figure 4(a) and 4(b) demonstrates how the requisite driving and walking distances under Strategy A evolve as the
number of CBS users increase across the four case study neighbourhoods. These walking and driving distances

are all completed by CBS employees (see the ‘Model construction’ section for a description of Strategy A). It
should be noted that the BM Section plot is limited to 3,000 users by the structures identified from satellite ima-
gery (see the ‘Model construction’ section).

Figure 4(a) illustrates Pamplona Alta has highest driving distances, followed by those for Fosen Michel and
Mukuru (which are very similar) and then the BM Section (which are significantly smaller). A capacity of 50
CBS units is reflective of a tuk-tuk (a three-wheel vehicle often used in neighbourhood CBS collection), although
this would be context-specific. As the capacity of the collection vehicle increases, the relative order of the four

neighbourhoods remains the same, although the overall distance magnitudes are much smaller.
Figure 4(b) illustrates how the total walking distance rises with increased CBS usage. The linearity of these

plots is driven by the uniformly random spread of hypothetical CBS users across each neighbourhood. Here,

the differences between the neighbourhoods are much smaller (Pamplona Alta and Mukuru are nearly identical
as the number of users increases).

Together, the two figures give an informative measure on the accessibility of each neighbourhood. For example,

BM Section’s lower driving distances coupled with higher walking distances results from both (i) the smaller
neighbourhood area and (ii) the lack of penetrative road infrastructure (see Figure 2). On the other hand, Pam-
plona Alta has the highest driving distances, but its walking distances are similar to Fosen Michel and Mukuru.
Again, this is because of two compounding factors. The first is the slightly larger neighbourhood area. The second

is the serpentine road network (necessitated by local topography) which inhibits the ability of collection vehicles
to traverse the neighbourhood.

Results for Strategy B

Figure 5 presents the results for Strategy B (with collection vehicles having a capacity of 50 CBS units). The figure

gives an envelope for each neighbourhood which covers the extent of four separate curves (one for each of the
hypothetical depots shown in Figure 2). Therefore, each neighbourhood’s envelope demonstrates the range in
required travel distance for different depot locations.
Figure 4 | Comparing the total driving and walking distances required by Strategy A to serve all four case study locations.
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Figure 5 | Comparing increased CBS usage with the range in driving distances required to implement Strategy B.
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The four envelopes follow the same shapes seen in Figure 4(a) for Strategy A, with Pamplona Alta consistently
producing the longest distances and BM Section the smallest. However, across all four neighbourhoods, the

envelopes give shorter distances than those seen for Strategy A. While this suggests that a CBS provision strategy
with an internal depot improves efficiencies, it should be recognised that this model does not account for the
removal of waste from the neighbourhood (as this is dependent on the CBS provider’s trucking availability).

In all four areas, the range in optimised travel distance increases with the number of hypothetical CBS users.

This indicates that the location of a provider’s depot becomes increasingly important as the number of users
increase. Figure 5 suggests that, when there are 3,000 users in the BM Section neighbourhood, the location of
depot can reduce total travelling distance by over 30%. However, there are also differences in the envelopes’

spread, suggesting that the road network influences how important depot location can become. As a result,
the figure suggests that the location of a depot is more important in Fosen Michel than it is in Mukuru. This
could be because of the denser road network (see Figure 2) allowing greater variation in neighbourhood

routes. However, it is worth noting that the variation seen for the small BM Section (with the lowest road density)
remains relatively large. It is hypothesised that this is because the elongated neighbourhood shape makes the
most southerly depot particularly inefficient.
Figure 6 | Comparing the evolution in average and maximum walking distances for CBS users necessitated by Strategy C as
transfer stations become more sparse.
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Results for Strategy C

Figures 6 and 7 give the results for Strategy C.

Figure 6 illustrates how the average and maximum walking distances (for all potential users identified in the
four neighbourhoods) evolve as transfer station density reduces. As one would expect, the average distance
rises steadily as the distance between transfer stations increases. With the stations approximately 1,000 m
apart (which equates to three transfer stations in each neighbourhood), the average walking distance can

range between 180 m (in BM Section) and 320 m (in Fosen Michel) – the implications of this are discussed
later in the ‘Discussion’ section.

Intriguingly, the maximum walking distances in all four neighbourhoods inflect as the distance between

stations rises. This suggests that there is a transfer station density that optimises the balance between (i) the
number of stations required and (ii) the furthest a CBS user needs to travel with a full CBS container. For
Fosen Michel, Pamplona Alta and Mukuru, Figure 6 suggests that this occurs when the stations are approximately

200 m apart. For the BM Section, this distance is 300 m. It is also worth noting that the BM Section has the high-
est maximum walking distance (of the four neighbourhoods) when transfer stations are 100 m apart, yet the
lowest maximum when they are 1,000 m apart. This reiterates how the density and layout of the road network
is critical in determining efficiency of CBS provision strategies.

Figure 7 compares the average distance between transfer stations with the required collection driving distance
for different levels of CBS usage. The figure demonstrates that reducing the density of transfer stations has varying
effects across the different neighbourhoods. Broadly, driving distances do not necessarily correlate with density of

transfer stations.
For example, Figure 7(a) indicates that the driving distances in the BM Section typically increase when transfer

stations go from being 100–200 m apart (i.e. when the number of stations in the neighbourhood reduces). It is

hypothesised that the single road circuit serving the southern half of the neighbourhood homogenises routes.
This, coupled with the slightly longer gap between stations, increases the requisite distances. However, these
Figure 7 | Comparing the distance between transfer stations and the consequent driving distance required to serve varying
numbers of CBS users in (a) BM Section, (b) Fosen Michel, (c) Pamplona Alta and (d) Mukuru. (Note: the split y-axes are all linear,
this is to aid clarity of the relationships for different numbers of CBS users).
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reduce as transfer station spacing increases further to 300 and 500 m. This is because the reduced station density
now means that the southerly road circuit is not being circumnavigated as frequently. Interestingly, travel dis-
tances increase again as the station spacing increases further. This results from the necessary repeat visits to

the three transfer stations, two of which are in the southerly end of the neighbourhood (furthest from the exit).
In the other neighbourhoods, this evolution in required driving distance (as transfer station spacing increases)

is different. In Fosen Michel, there appears to be an ‘optimal’ transfer station spacing of 200 m. It is hypothesised
that this occurs because this station density offers the best balance between (i) minimising the intricacy of routes

around the dense road network (which occurs with lower spacing) and (ii) minimising the need for repeat trips
(which occurs with higher spacing). From 300 m upwards, Fosen Michel sees a steady decline in the required
driving distances.

In Pamplona Alta, there appears to be a similar ‘optimal’ transfer station density at 300 m. It is conjectured that
this is higher because of the more convoluted road network. It is interesting to note that, particularly at higher
rates of CBS usage, there is little difference in driving distance when transfer stations are 100 or 500 m apart.

In Mukuru, there appears to be no ‘optimal point’, possibly because road density varies significantly across the
neighbourhood.

More broadly, it can be seen that the relationships shown in Figure 7 all become more acute as usage increases

(in other words, optimal transfer station densities have a greater impact when there are more CBS users). How-
ever, it should also be recognised that, across all four neighbourhoods, there is not a substantial reduction in
requisite driving distances as transfer station spacing increases from 100 to 1,000 m. This highlights a crucial lim-
iting factor – the capacity of the collection vehicle. The small collection capacity assumed here (approximately

that of a tuk-tuk) means that many repeat trips are needed to serve individual transfer stations. This diminishes
the routing efficiencies one might expect from a more ‘centralised’ approach to CBS service provision (i.e. having
fewer stations). The implications of these observations are discussed in the ‘Discussion’ section.

Finally, it should be noted that, at certain levels of CBS usage and station density, this strategy encounters a
problem around transfer station ‘demand stacking’. In other words, the number of CBS containers at a single
transfer station fills the majority of a collection vehicle’s capacity. The routing solver does not allow for the

remaining capacity to be filled by a fraction of the units at another station. Therefore, the model sees a higher
proportion of vehicles exiting the neighbourhood without their load nearing capacity (and in some cases, this pre-
vents a solution). This phenomenon affects all four neighbourhoods when there are 500 hypothetical users (at
higher numbers, the need for return trips mitigates the issue). Therefore, a pragmatic methodological decision

was required – for the affected scenarios (i.e. 500 users for Strategy C across all neighbourhoods), the overall col-
lection capacity was expanded by 20% through additional vehicle trips. In practice, this problem could be
mitigated by collection vehicles being filled by partial loads at other transfer stations (although this could

become a complex organisational problem). This would be a real-world issue for a transfer station provision strat-
egy as CBS goes to scale.

Comparison of strategies

It is also important to understand the statistical significance of the comparative differences between the three
strategies as CBS usage increases. To do this, several different statistical metrics have been employed to evaluate

the sets of scenario (as described in the ‘Model construction’ section).
In all four locations, Strategy B consistently produces lower driving distances than those for Strategy A. This

can be demonstrated using a series of independent two-tailed t-tests to compare the arithmetic means from Strat-
egies A and B. With 70 users, Strategy B produces statistically significant (i.e. P , 0.05) smaller driving distances

of over 3.6% in BM Section (t ¼ 4.8, df ¼ 98, P, 0.01), 7.5% in Fosen Michel (t ¼ 9.9, df ¼ 98, P , 0.01), 4.1% in
Pamplona Alta (t ¼ 4.1, df ¼ 98, P, 0.01) and 11.8% in Mukuru (t ¼ 10.1, df ¼ 98, P, 0.01). With 3,000 CBS
users, Strategy B produces even greater improvements over Strategy A, with the statistically significant differences

rising to 11.8% (t-stat ¼ 36.5, df ¼ 18, P , 0.01), 19.2% (t-stat ¼ 83.2, df ¼ 18, P, 0.01), 13.1% (t-stat ¼ 26.4,
df ¼ 18, P, 0.01) and 20.2% (t-stat ¼ 58.7, df ¼ 18, P, 0.01), respectively. The t-stats are much higher for the
3,000 user sets, highlighting the greater differences between Strategies A and B at higher CBS usage. Various

Analysis of Various (ANOVA) tests were also used to understand the significance of the various locations of
depot under Strategy B (and observations made on Figure 5). The resultant P values decreased from between
0.08 and 0.76 for 10 users (the range is across the four locations) to under 0.0002 for 100 users and less than

0.0001 for 3,000 users. This demonstrates the increasing statistical significance of the depot location as the
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number of users increases. It should be noted, however, that the distance required to transfer CBS units from the
depot out of the neighbourhood and onwards to a treatment site has not been considered here.

When comparing Strategy C and Strategy A, the picture is a little more complex. This is partly because they put

different burdens on the CBS provider and the CBS user. While Strategy A is a household service, Figure 6 details
how Strategy C puts burden on CBS users by requiring they walk with a container filled with waste to a transfer
station. Given the random spatial spread of CBS users across the multiple sets (see the ‘Model Construction’ sec-
tion), the walking distances are normally distributed. Therefore, when transfer stations are 100 m apart in each of

the four locations, approximately 84%of CBS userswould have to carry their wastemore than 20 m.However, only
2% of users will need to carry their waste more than 89 m (this value is 114 m in BM section because of the sparse
road network). Conversely, when stations are 1,000 m apart in FosenMichel, approximately 98% of CBS users will

need to carry their waste more than 92 m (comparedwith 60 m inNairobi and 29 m in BMSection). Any burden of
this type could have implications on the accessibility of such a provision strategy – there is wide recognition that
sanitation systems in low-income environments can discriminate unfairly based on gender (Stevenson et al.
2012; Sommer et al. 2014; Chandra et al. 2015) or disability (Wrisdale et al. 2017; Mactaggart et al. 2018). Further-
more, such strategiesmay raise questions around the comfort and dignity afforded to CBS users. These issues are of
critical importance and would need appropriate consideration before implementation of a CBS provision strategy

based on transfer stations.
However, Strategy C generally produces shorter driving distances than Strategy A – particularly up to 250 CBS

users. Given the non-normal distributions involved, the Mann–Whitney test (a non-parametric alternative of the
independent t-test) was used to establish statistical significance between the arithmetic means for both strategies.

With 100 users in the BM Section, the difference was 48% (U ¼ 68, n1 ¼ n2 ¼ 50, P, 0.01) with a 100 m transfer
spacing and 60% (U ¼ 200, n1 ¼ n2 ¼ 50, P , 0.01) with a 1,000 m spacing. With 100 users in Pamplona Alta, the
difference was 30% (U¼ 0, n1¼ n2¼ 50, P, 0.01) with a 100 m transfer spacing and 60% (U ¼ 0, n1 ¼ n2 ¼ 50,

P, 0.01) with a 1,000 m spacing. Fosen Michel and Mukuru saw similar trends at 100 users (see additional infor-
mation for full data). With 3,000 users in BM Section, the difference between Strategies A and C reduces slightly –
although Strategy C remains at least 43% (U ¼ 0, n1 ¼ n2 ¼ 10, P, 0.01) shorter. This trend is also seen in Fosen

Michel, with 5,000 users being served by transfer stations 100 m only being 11% (U ¼ 0, n1 ¼ n2 ¼ 10, P, 0.01)
shorter than providing a household service. In fact, the equivalent scenario in Pamplona Alta and Mukuru (i.e.
5,000 users, 100 m station spacing) leads to greater distances than providing a household service – by 9.5%
(U ¼ 0, n1 ¼ n2 ¼ 10, P, 0.01) and 12.6% (U ¼ 0, n1 ¼ n2 ¼ 10, P , 0.01) respectively. This is caused by

repeat trips to transfer stations and highlights the importance of their location, particularly with lower station spa-
cing and higher CBS usage (reinforcing the findings of Kennedy-Walker et al. (2014)).
DISCUSSION

The results presented in the ‘Results’ section have broader implication for CBS and road-based FSM provision

strategies.
For example, the results across all three strategies emphasise the dependency of CBS provision on the capacity of

the collection vehicles. Figures 4(a) and 5 demonstrate that, with a collection capacity of 50 (approximately that of a

tuk-tuk), there appears to be limited benefit from economies of scale (in terms of routing distances) with the differ-
ent household provision strategies. Similarly, evenwhen neighbourhoods were sparsely served by transfer stations,
the results demonstrate that the number of return trips make reductions in driving distance minimal (although, as
Russel et al. (2015) highlighted, such a strategy may well cause users shame associated with the self-transfer of

waste). Other strategy metrics, such as time taken or scheduling, could offer an alternative viewpoint on service
characteristics. Another key consideration would be a strategy’s potential health impacts on users and CBS oper-
atives (Bischel et al. 2019). Despite this, the results here suggest that economies of scale in the requisite routing for

CBS provision will be largely conditional on greater collection capacity (rather than any particular provision strat-
egy). However, it is worth noting that this study has focused on a component of the whole CBS service chain (see
Figure 2) and there may well be other economies of scale in other processes.

Increasing collection capacity will require larger vehicles to navigate urban informal settlements, areas that are
typically characterised by a dense urban fabric with narrow access routes that evolve with time (Hassan 2012;
Jones 2019). This raises questions about the ability of CBS provision strategies to scale efficiently without appro-

priate road access and reflects longstanding concerns about off-grid sanitation more generally (Henry Yongsheng
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& Jun 2006; Foppen & Kansiime 2009). While limited accessibility to a settlement may be an argument for CBS,
such conditions also constrain the ability of the service to scale efficiently. Furthermore, while improving acces-
sibility may improve CBS scaling potential, it could then become more appropriate to deliver an alternative form

of sanitation such as high-quality on-site latrines or septic tanks.
The introduced methodology does allow for further evaluation on this problem of access. In evaluating Strategy

B, four hypothetical depot locations were evaluated for each neighbourhood. Figure 5 demonstrates how the differ-
ent locations influence the total driving distance necessary to serve all households. Figure 8 demonstrates how

Depots 1, 2 and 3 influence the roads used in Fosen Michel when there are 100 CBS users spread across the neigh-
bourhood. As might be expected, the figure illustrates the high usage around the northern areas which have less
road infrastructure (so repeat journeys to serve users are more frequent). Interestingly however, Figure 8 also

shows large similarities in road usage across the four depots. Those routes offering the shortest distance between
different areas of the neighbourhood see much heavier use. This observation has several implications.

First, it highlights an inherent fragility of road-based FSM systems. If one of these frequently used routes were to

be blocked (for example, by flooding or development), there would be a disproportionate effect on the efficiency
of the CBS provision service. Second, ensuring viability of CBS at scale will be dependent on both (i) the location
of service infrastructure (depots, transfer stations, etc.) and (ii) maintaining access through key routes within a

neighbourhood. Interestingly, this raises the possibility of treating access around road-based FSM as analogous
to that of flow around traditional, sewered sanitation systems. There is extensive literature on the statistical pre-
diction (and consequence) of conveyance degradation through traditional sewer networks (Mohammadi et al.
2019; Dong et al. 2020). If CBS is to scale up, similar methods may be necessary to understand the impact of

fluctuations in road access. While this research paper introduces a methodology (scripts given in supporting
DOI) by which the criticality of different routes can be identified, evaluating consequences of failure is beyond
its scope. Separately, results such as those in Figure 8 could raise interesting arguments around efficiency of

road-based FSM and ‘reblocking’ (i.e. the clearance of land to change the topology of a neighbourhood),
which in recent years has become increasingly common, if contentious, urban planning strategy for low-
income environments (Brelsford et al. 2018; Brelsford Martin & Bettencourt 2019; Kiefer & Ranganathan 2020).

Finally, it is worth recognising that this research has developed a methodology bounded by a neighbourhood’s
extents. However, typical CBS service chains (see Figure 2) typically necessitate filled waste containers to be
transported to an external treatment centre (this is the case in all four neighbourhoods studied here). While ser-
vice efficiencies within the neighbourhood remain important, they could be overshadowed by this process if a

treatment centre is well beyond city limits. Investigating this problem would require a wider methodological
scope and could be an interesting area for further study.
Figure 8 | Demonstrating the spread of road usage by collection vehicles (for 100 CBS users) when based out of (a) Depot 1,
(b) Depot 2 and (c) Depot 3.
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Limitations of methodology

The methodology presented here relies on a hypothetical scenario basis to inform wider discussion about the effi-

ciencies of CBS provision strategies. While the strategies are based on practical examples, the feasibility of
scenarios (placement of transfer stations, depots, etc.) being physically implemented was beyond the scope of
this research paper.

However, several methodological decisions should be acknowledged for their potential impact on the results.

Firstly, the model relies on OSM for the road network. The limited accuracy of OSM road networks in such
environments has been highlighted in the literature (Bakibinga et al. 2019), with access potentially evolving
over time or with season. For instance, it is known that a northern area of Fosen Michel was demolished in

late 2020 (there is no data available yet on access changes). However, there remains strong precedent for
using OSM for low-income and unplanned urban environments (Biswas et al. 2018; Branchet et al. 2019). Similar
limitations exist for the representation of the buildings (which were manually identified from satellite imagery),

compounded by the fact that the method cannot account for the different functions of each structure (household,
business, storage, etc.) or those with multiple storeys. However, the neighbourhood point clouds give a reason-
able representation of building density within a neighbourhood and given the absence of other data, this
approach was deemed a pragmatic methodological decision.

Secondly, the model has assumed the neighbourhood to be a flat plane, with efficiency determined solely by
distance travelled. This is a reasonable approximation in BM Section, Fosen Michel and Mukuru. However,
parts of Pamplona Alta sit on very steep slopes, which will influence efficiencies of vehicles moving around

the neighbourhood. Alongside this, steep slopes make assuming the shortest linear distance as the walking
route unrealistic (access in Pamplona Alta often relies on informal stairways). However, the purpose of this
work is to demonstrate the use of an open-source method (requiring minimal data input) for evaluating the effi-

ciencies of different CBS provision strategies and incorporating topographical effects into the underlying distance
matrices adds significant complexity and computational requirement.

Finally, the strategies have been evaluated on a single metric – the requisite travel distance (on foot and by

vehicle). This has precedent in other route optimisation exercises for FSM (Kennedy-Walker et al. 2014). How-
ever, another metric (such as time or topographical height gain) may yield different conclusions. For instance,
strategies using sparser transfer stations will reduce ‘start-stopping’ delays and therefore might take less time
and use less fuel, despite overall travel distances being higher. Furthermore, a time-based evaluation could

bring in consideration of different filling rates for containers, which could mean CBS users not all needing the
same frequency of servicing. This study has not considered the viability of the infrastructure needed to support
each CBS provision strategy (e.g. depots, transfer stations, etc.). The installation of infrastructure for urban sani-

tation in impoverished areas has been known to be problematic (Holm et al. 2021). Any installation is likely to be
driven by land availability rather than resultant routing efficiencies – as discussed in Bosompem et al. (2016) for
the installation of transfer stations in Kumasi. These various other evaluation metrics (along with full cost–benefit

analyses) is an area for further work (Russel et al. 2019), possibly using costing data from the ‘Climate and Costs
in Urban Sanitation’ project (Sainati et al. 2020).
CONCLUSION

This research paper has introduced a methodology using an open-source routing solver within a minimal data
requirement for evaluating the routing efficiencies of different CBS provision strategies. Using a hypothetical
scenario-based approach, three separate strategies were shown to have varying efficiencies at different levels of

CBS usage in neighbourhoods in Cape Town, Cap-Haïtien, Lima and Nairobi. This approach, while providing
insight into the efficiencies of different existing CBS provision strategies, should be properly contextualised by
recognising the wide range of factors that determine the sustainability of any sanitation service (Bhagwan

et al. 2019).
A household-based service (named Strategy A) was shown, in the main, to require the largest travel distances by

the CBS collection vehicles. Having a depot within the neighbourhood reduces these distances. As CBS users

increased, the location of this depot become increasingly important to a greater (e.g. Fosen Michel and BM Sec-
tion) and lesser (e.g. Mukuru) degree. Provision strategies using transfer stations were also evaluated. These had
the greatest routing efficiencies at low CBS usage. However, with greater numbers of users, more repeat trips to

individual transfer stations were necessary, which meant less benefit from this more centralised approach.
aponline.com/h2open/article-pdf/4/1/216/942055/h2oj0040216.pdf
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More broadly, the modelling highlights several key considerations with regards to the routing necessary for
delivering CBS at scale. First, no single CBS provision strategy offers a universal solution, as there is clear depen-
dency on the road layout within the served community. Second, routing efficiencies of any particular strategy

evolve with the number of people using the service. Third, the results illustrate the importance of increased col-
lection vehicle capacity in achieving operational economies as CBS usage scales-up. This underscores the need
for reliable road access around low-income urban environments where road-based approaches are being con-
sidered as long-term solutions for sanitation provision. In linking the viability of a scaled CBS service with the

characteristics of a neighbourhood’s road network, this paper highlights the importance for integrated urban
planning to better incorporate sanitation provision.
ACKNOWLEDGEMENT

The authors gratefully acknowledge the ESRC/GCRF for funding this research through the ‘Scaling-up Off-grid
Sanitation’ (SOS) project (ES/T007877/1).
ADDITIONAL INFORMATION

The scripts used for pre-processing and each CBS strategy, spatial data (location of depots, transfer stations, build-
ings) and primary results are given at the following: https://doi.org/10.17862/cranfield.rd.14495961
DATA AVAILABILITY STATEMENT

All relevant data are available from an online repository or repositories (https://doi.org/10.17862/cranfield.rd.
14495961.v1).
REFERENCES

Bakibinga, P., Kabaria, C., Kyobutungi, C., Manyara, A., Mbaya, N., Mohammed, S., Njeri, A., Azam, I., Iqbal, R., Mazaffar, S.,
Rizvi, N., Rizvi, T., ur Rehman, H., Shifat Ahmed, S. A. K., Alam, O., Khan, A. Z., Rahman, O., Yusuf, R., Odubanjo, D.,
Ayobola, M., Fayehun, F., Omigbodun, A., Owoaje, E., Taiwo, O., Diggle, P., Aujla, N., Chen, Y.-F., Gill, P., Griffiths, F.,
Harris, B., Madan, J., Lilford, R. J., Oyobode, O. R., Pitidis, V., Porto de Albequerque, J., Sartori, J., Taylor, C., Ulbrich, P.,
Uthman, O., Watson, S. I. & Yeboah, G. 2019 A protocol for a multi-site, spatially-referenced household survey in slum
settings: methods for access, sampling frame construction, sampling, and field data collection. BMC Medical Research
Methodology 19 (1), 109. doi:10.1186/s12874-019-0732-x.

Balasubramanya, S., Evans, B., Ahmed, R., Habib, A., Asad, N. S. M., Rahman, M., Hasan, M., Dey, D., Miller, C.-V., Rao, K. C.
& Fernando, S. 2017 Take it away: the need for designing fecal sludge disposal services for single-pit latrines. Journal of
Water Sanitation and Hygiene for Development 7 (1), 121–128. doi:10.2166/washdev.2017.073.

Bhagwan, J. N., Pillay, S. & Koné, D. 2019 Sanitation game changing: paradigm shift from end-of-pipe to off-grid solutions.
Water Practice and Technology 14 (3), 497–506. doi:10.2166/wpt.2019.059.

Bischel, H. N., Caduff, L., Schindelholz, S., Kohn, T. & Julian, T. R. 2019 Health risks for sanitation service workers along a
container-based urine collection system and resource recovery value chain. Environmental Science and Technology 53
(12), 7055–7067. doi:10.1021/acs.est.9b01092.

Biswas, R., Arya, K. & Deshpande, S. 2018 Sanitation planning for squatter settlements as urban water management in Mumbai.
Urban Water Journal 15 (5), 469–477. doi:10.1080/1573062X.2018.1509100.

Bosompem, C., Stemn, E. & Fei-Baffoe, B. 2016 Multi-criteria GIS-based siting of transfer station for municipal solid waste: the
case of Kumasi Metropolitan Area, Ghana. Waste Management and Research 34 (10), 1054–1063. doi:10.1177/
0734242X16658363.

Branchet, P., Ariza Castro, N., Fenet, H., Gomez, E., Courant, F., Sebag, D., Gardon, J., Jourdan, C., Ngounou Ngatchag, B.,
Kengneh, I., Cadot, E. & Gonzaleza, C. 2019 Anthropic impacts on Sub-Saharan urban water resources through their
pharmaceutical contamination (Yaoundé Center Region, Cameroon). Science of the Total Environment. 660, 886–898.
doi:10.1016/j.scitotenv.2018.12.256.

Brelsford, C., Martin, T., Hand, J. & Bettencourt, L. M. A. 2018 Toward cities without slums: topology and the spatial evolution
of neighborhoods. Science Advances 4 (8), 1–9. doi:10.1126/sciadv.aar4644.

Brelsford, C., Martin, T. & Bettencourt, L. M. A. 2019 Optimal reblocking as a practical tool for neighborhood development.
Environment and Planning B: Urban Analytics and City Science 46 (2), 303–321. doi:10.1177/2399808317712715.

Caruso, B. A. & Freeman, M. C. 2020 Shared sanitation and the spread of COVID-19: risks and next steps. The Lancet Planetary
Health 4 (5), e173. doi:10.1016/S2542-5196(20)30086-3.
aponline.com/h2open/article-pdf/4/1/216/942055/h2oj0040216.pdf

https://doi.org/10.17862/cranfield.rd.14495961
https://doi.org/10.17862/cranfield.rd.14495961
https://doi.org/10.17862/cranfield.rd.14495961.v1
https://doi.org/10.17862/cranfield.rd.14495961.v1
https://doi.org/10.17862/cranfield.rd.14495961.v1
http://dx.doi.org/10.1186/s12874-019-0732-x
http://dx.doi.org/10.1186/s12874-019-0732-x
http://dx.doi.org/10.2166/washdev.2017.073
http://dx.doi.org/10.2166/wpt.2019.059
http://dx.doi.org/10.1021/acs.est.9b01092
http://dx.doi.org/10.1021/acs.est.9b01092
http://dx.doi.org/10.1080/1573062X.2018.1509100
http://dx.doi.org/10.1177/0734242X16658363
http://dx.doi.org/10.1177/0734242X16658363
http://dx.doi.org/10.1016/j.scitotenv.2018.12.256
http://dx.doi.org/10.1016/j.scitotenv.2018.12.256
http://dx.doi.org/10.1126/sciadv.aar4644
http://dx.doi.org/10.1126/sciadv.aar4644
http://dx.doi.org/10.1177/2399808317712715
http://dx.doi.org/10.1016/S2542-5196(20)30086-3


H2Open Journal Vol 4 No 1, 229

Downloaded from http://iw
by guest
on 14 October 2021
Caruso, B. A., Clasen, T. F., Hadley, C., Yount, K. M., Haardörfer, R., Rout, M., Dasmohapatra, M. & Cooper, H. L. F. 2017
Understanding and defining sanitation insecurity: women’s gendered experiences of urination, defecation and
menstruation in rural Odisha, India. BMJ Global Health 2 (4). doi:10.1136/bmjgh-2017-000414.

Chandra, K., Hulland, K. R. S., Caruso, B. A., Swain, R., Freeman, M. C., Panigrahi, P. & Dreibelbis, R. 2015 Social science &
medicine sanitation-related psychosocial stress: a grounded theory study of women across the life-course in Odisha, India.
Social Science & Medicine. 139, 80–89. doi:10.1016/j.socscimed.2015.06.031.

Corburn, J. & Hildebrand, C. 2015 Slum sanitation and the social determinants of women’s health in Nairobi, Kenya. Journal of
Environmental and Public Health, 1–6. doi:10.1155/2015/209505.

Dijkstra, E. W. 1959 A note on two problems in connexion with graphs. Numerische Mathematik 271, 269–271.
Dong, S., Wang, H., Mostafizi, A. & Song, X. 2020 A network-of-networks percolation analysis of cascading failures in spatially

co-located road-sewer infrastructure networks. Physica A 538 (122971), 1–16. doi:10.1016/j.physa.2019.122971.
Foggitt, E., Cawood, S., Evans, B. & Acheampong, P. 2019 Experiences of shared sanitation – towards a better understanding of

access, exclusion and ‘toilet mobility’ in low-income urban areas. Journal of Water Sanitation and Hygiene for
Development 9 (3), 581–590. doi:10.2166/washdev.2019.025.

Foppen, J. W. & Kansiime, F. 2009 SCUSA: Integrated approaches and strategies to address the sanitation crisis in unsewered
slum areas in African mega-cities. Reviews in Environmental Science and Biotechnology 8 (4), 305–311. doi:10.1007/
s11157-009-9174-y.

Grippa, T., Georganos, S., Zarougui, S., Bognounou, P., Diboulo, E., Forget, Y., Lennert, M., Vanhuysse, S., Mboga, N. & Wolff,
E. 2018 Mapping urban land use at street block level using OpenStreetMap, remote sensing data, and spatial metrics.
ISPRS International Journal of Geo-Information 7 (7). doi:10.3390/ijgi7070246.

Hagberg, A. A., Schult, D. A. & Swart, P. J. 2008 Exploring network structure, dynamics, and function using NetworkX. In:
Proceedings of the 7th Python in Science Conference (Varoquaux, G., Vaught, T. & Millman, J., eds). Pasadena, CA, USA,
pp. 11–15.

Hashemi, S. 2020 Sanitation sustainability index: a pilot approach to develop a community-based indicator for evaluating
sustainability of sanitation systems. Sustainability (Switzerland) 12 (17). doi:10.3390/SU12176937.

Hassan, G. F. 2012 Regeneration as an approach for the development of informal settlements in Cairo metropolitan. Alexandria
Engineering Journal 51 (3), 229–239. doi:10.1016/j.aej.2012.02.003.

Henry, R. K., Yongsheng, Z. & Jun, D. 2006 Municipal solid waste management challenges in developing countries – Kenyan
case study. Waste Management 26 (1), 92–100. doi:10.1016/j.wasman.2005.03.007.

Ho, J. C., Russel, K. C. & Davis, J. 2014 The challenge of global water access monitoring: evaluating straight-line distance versus
self-reported travel time among rural households in Mozambique. Journal of Water and Health 12 (1), 173–183. doi:10.
2166/wh.2013.042.

Holm, R. H., Chunga, B. A., Mallory, A., Hutchings, P. & Parker, A. 2021 A qualitative study of NIMBYism for waste in smaller
urban areas of a low-income country, Mzuzu, Malawi. Environmental Health Insights 15. doi:10.1177/
1178630220984147.

Iribarnegaray, M. A., Gatto D’Andrea, M. L., Rodriguez-Alvarez, M. S., Hernández, M. E., Brannstrom, C. & Seghezzo, L. 2015
From indicators to policies: open sustainability assessment in the water and sanitation sector. Sustainability (Switzerland)
7 (11), 14537–14557. doi:10.3390/su71114537.

Jones, P. 2019 The shaping of form and structure in informal settlements: a case study of order and rules in Lebak Siliwangi,
Bandung, Indonesia. Journal of Regional and City Planning 30 (1), 43–61. doi:10.5614/jpwk.2019.30.1.4.

Kennedy-Walker, R., Holderness, T., Alderson, D., Evans, B. & Barr, S. 2014 Network modelling for road-based faecal sludge
management. Proceedings of the Institution of Civil Engineers: Municipal Engineer 167 (3), 157–165. doi:10.1680/muen.
13.00021.

Kennedy-Walker, R., Holderness, T., Alderson, D., Amezaga, J. M. & Paterson, C. A. 2016 Optimisation and costing of faecal
sludge management options for Lusaka’s informal settlements. Environmental Science: Water Research and Technology
2 (1), 97–106. doi:10.1039/c5ew00179j.

Kiefer, K. & Ranganathan, M. 2020 The politics of participation in Cape Town’s slum upgrading: the role of productive tension.
Journal of Planning Education and Research 40 (3), 263–277. doi:10.1177/0739456X18761119.

Lundin, M., Molander, S. & Morrison, G. M. 1999 A set of indicators for the assessment of temporal variations in the
sustainability of sanitary systems. Water Science and Technology 39 (5), 235–242. doi:10.2166/wst.1999.0244.

Mackinnon, E., Campos, L. C., Sawant, N., Ciric, L., Parikh, P. & Bohnert, K. 2018 Exploring exposure risk and safe
management of container-based sanitation systems: a case study from Kenya. Waterlines 37 (4), 280–306. doi:10.3362/
1756-3488.00016.

Mactaggart, I., Schmidt, W., Bostoen, K., Chunga, J., Danquah, L., Halder, A. K., Jolly, S. P., Polack, S., Rahman, M., Snel, M.,
Kuper, H. & Biran, A. 2018 Access to water and sanitation among people with disabilities: results from cross-sectional
surveys in Bangladesh, Cameroon, India and Malawi. BMJ Open 8 (e020077), 1–13. doi:10.1136/bmjopen-2017-020077.

Mikhael, G., Shepard, J. & Stevens, C. 2017 The World Can’t Wait for Sewers: Advancing Container-Based Sanitation
Businesses as a Viable Answer to the Global Sanitation Crisis. Available from: https://www.wsup.com/content/uploads/
2017/08/Clean-Team-whitepaper.pdf.

Mohammadi, M. M., Najafi, M., Kaushal, V., Serajiantehrani, R., Saslehabadi, N. & Ashoori, T. 2019 Sewer pipes condition
prediction models: a state-of-the-art review. Infrastructures 4 (64), 1–16. doi:10.3390/infrastructures4040064.
aponline.com/h2open/article-pdf/4/1/216/942055/h2oj0040216.pdf

http://dx.doi.org/10.1136/bmjgh-2017-000414
http://dx.doi.org/10.1136/bmjgh-2017-000414
http://dx.doi.org/10.1016/j.socscimed.2015.06.031
http://dx.doi.org/10.1016/j.socscimed.2015.06.031
http://dx.doi.org/10.1155/2015/209505
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1016/j.physa.2019.122971
http://dx.doi.org/10.1016/j.physa.2019.122971
http://dx.doi.org/10.2166/washdev.2019.025
http://dx.doi.org/10.2166/washdev.2019.025
http://dx.doi.org/10.1007/s11157-009-9174-y
http://dx.doi.org/10.1007/s11157-009-9174-y
http://dx.doi.org/10.3390/ijgi7070246
http://dx.doi.org/10.3390/SU12176937
http://dx.doi.org/10.3390/SU12176937
http://dx.doi.org/10.1016/j.aej.2012.02.003
http://dx.doi.org/10.1016/j.wasman.2005.03.007
http://dx.doi.org/10.1016/j.wasman.2005.03.007
http://dx.doi.org/10.2166/wh.2013.042
http://dx.doi.org/10.2166/wh.2013.042
http://dx.doi.org/10.1177/1178630220984147
http://dx.doi.org/10.1177/1178630220984147
http://dx.doi.org/10.3390/su71114537
http://dx.doi.org/10.5614/jpwk.2019.30.1.4
http://dx.doi.org/10.5614/jpwk.2019.30.1.4
http://dx.doi.org/10.1680/muen.13.00021
http://dx.doi.org/10.1680/muen.13.00021
http://dx.doi.org/10.1039/c5ew00179j
http://dx.doi.org/10.1039/c5ew00179j
http://dx.doi.org/10.1177/0739456X18761119
http://dx.doi.org/10.2166/wst.1999.0244
http://dx.doi.org/10.2166/wst.1999.0244
http://dx.doi.org/10.3362/1756-3488.00016
http://dx.doi.org/10.3362/1756-3488.00016
http://dx.doi.org/10.1136/bmjopen-2017-020077
http://dx.doi.org/10.1136/bmjopen-2017-020077
https://www.wsup.com/content/uploads/2017/08/Clean-Team-whitepaper.pdf
https://www.wsup.com/content/uploads/2017/08/Clean-Team-whitepaper.pdf
https://www.wsup.com/content/uploads/2017/08/Clean-Team-whitepaper.pdf
http://dx.doi.org/10.3390/infrastructures4040064
http://dx.doi.org/10.3390/infrastructures4040064


H2Open Journal Vol 4 No 1, 230

Downloaded from http://iw
by guest
on 14 October 2021
Moya, B., Sakrabani, R. & Parker, A. 2019 Realizing the circular economy for sanitation: assessing enabling conditions and
barriers to the commercialization of human excreta derived fertilizer in Haiti and Kenya. Sustainability (Switzerland)
11 (11). doi:10.3390/su11113154.

Nygren, B. L., O’Reilly, C. E., Rajasingham, A., Omore, R., Ombok, M., Awuor, A. O., Jaron, P., Moke, F., Vulule, J., Laserson,
K., Farag, T. H., Nasrin, D., Nataro, J. P., Kotloff, K. L., Levine, M. M., Derado, G., Ayers, T. L., Lash, R. R., Breiman, R. F.
& Mintz, E. D. 2016 The relationship between distance to water source and moderate-to-severe diarrhea in the global
enterics multi-center study in Kenya, 2008–2011. American Journal of Tropical Medicine and Hygiene 94 (5), 1143–1149.
doi:10.4269/ajtmh.15-0393.

Öberg, G., Metson, G. S., Kuwayama, Y. & Conrad, S. A. 2020 Conventional sewer systems are too time-consuming, costly and
inflexible to meet the challenges of the 21st century. Sustainability (Switzerland) 12 (16). doi:10.3390/su12166518.

Prüss-Ustün, A., Wolf, J., Bartram, J., Clasen, T., Cumming, O., Freeman, M. C., Gordon, B., Hunter, P. R., Medlicott, K. &
Johnston, R. 2019 Burden of disease from inadequate water, sanitation and hygiene for selected adverse health outcomes:
an updated analysis with a focus on low- and middle-income countries. International Journal of Hygiene and
Environmental Health 222 (5), 765–777. doi:10.1016/j.ijheh.2019.05.004.

Ralphs, T., Kopman, L., Pulleyblank, W. & Trotter, L. 2003 On the capacitated vehicle routing problem. Mathematical
Programming, Series B 94, 343–359. doi:10.1007/s10107-002-0323-0.

Russel, K., Tilmans, S., Kramer, S., Sklar, R., Tillias, D. & Davis, J. 2015 User perceptions of and willingness to pay for
household container-based sanitation services: experience from Cap Haitien, Haiti. Environment and Urbanization 27 (2),
525–540. doi:10.1177/0956247815596522.

Russel, K. C., Hughes, K., Roach, M., Auerbach, D., Foote, A., Kramer, S. & Briceño, R. 2019 Taking container-based sanitation
to scale: opportunities and challenges. Frontiers in Environmental Science 7, 1–7. doi:10.3389/fenvs.2019.00190.

Sainati, T., Zakaria, F., Locatelli, G., Sleigh, P. A. & Evans, B. 2020 Understanding the costs of urban sanitation: towards a
standard costing model. Journal of Water Sanitation and Hygiene for Development 10 (4), 642–658. doi:10.2166/washdev.
2020.093.

Schoebitz, L., Bischoff, F., Lohri, C. R., Niwagaba, C. B., Siber, R. & Strande, L. 2017 GIS analysis and optimisation of faecal
sludge logistics at City-Wide Scale in Kampala, Uganda. Sustainability (Switzerland) 9 (2). doi:10.3390/su9020194.

Scott, P., Cotton, A. & Sohail, M. 2015 Using tenure to build a ‘sanitation cityscape’: narrowing decisions for targeted sanitation
interventions. Environment and Urbanization 27 (2), 389–406. doi:10.1177/0956247815569415.

Shiras, T., Cumming, O., Brown, J., Muneme, B., Nala, R. & Dreibelbis, R. 2018 Shared sanitation management and the role of
social capital: findings from an urban sanitation intervention in Maputo, Mozambique. International Journal of
Environmental Research and Public Health 15 (10), 1–13. doi:10.3390/ijerph15102222.

Silveti, D. & Andersson, K. 2019 Challenges of governing off-grid ‘productive’ sanitation in peri-urban areas: comparison of case
studies in Bolivia and South Africa. Sustainability (Switzerland) 11 (12). doi:10.3390/SU11123468.

Sommer, M., Ferron, S., Cavill, S. & House, S. 2014 Violence, gender and WASH: spurring action on a complex, under-
documented and sensitive topic. Environment and Urbanization 27 (1), 105–116. doi:10.1177/0956247814564528.

Stevenson, E. G. J., Greene, L. E., Maes, K. C., Ambelu, A., Alemu, Y., Rheingans, R. & Hadley, C. 2012 Social science &
medicine water insecurity in 3 dimensions: an anthropological perspective on water and women’s psychosocial distress in
Ethiopia. Social Science & Medicine 75 (2), 392–400. doi:10.1016/j.socscimed.2012.03.022.

Tilmans, S., Russel, K., Sklar, R., Page, L. N., Kramer, S. & Davis, J. 2015 Container-based sanitation: assessing costs and
effectiveness of excreta management in Cap Haitien, Haiti. Environment and Urbanization 27 (1), 89–104. doi:10.1177/
0956247815572746.

UNDESA 2018 World Urbanization Prospects, Demographic Research. Available from: https://population.un.org/wup/
Publications/Files/WUP2018-Report.pdf.

WHO and UNICEF 2019 Progress on household drinking water, sanitation and hygiene 2000-2017. Special focus on
inequalities, Launch version July 12 Main Report Progress on Drinking Water, Sanitation and Hygiene.

World Bank Group 2019 Evaluating the Potential of Container Based Sanitation. Washington, DC. Available from: https://
openknowledge.worldbank.org/bitstream/handle/10986/31292/134664-WP-P165603-W.pdf?sequence¼1&isAllowed¼y.

Wrisdale, L., Mokoena, M. M., Mudau, L. S. & Geere, J.-A. 2017 Factors that impact on access to water and sanitation for older
adults and people with disability in rural South Africa: an occupational justice perspective. Journal of Occupational
Science 24 (3), 259–279. doi:10.1080/14427591.2017.1338190.

Zhang, K., He, F., Zhang, Z., Lin, X. & Li, M. 2020 Multi-vehicle routing problems with soft time windows: a multi-agent
reinforcement learning approach. Transportation Research Part C: Emerging Technologies 121, 102861. doi:10.1016/j.trc.
2020.102861.

Zhao, J., Mao, M., Zhao, X. & Zou, J. 2020 A hybrid of deep reinforcement learning and local search for the vehicle routing
problems. IEEE Transactions on Intelligent Transportation Systems, 1–11. doi:10.1109/tits.2020.3003163.

First received 9 July 2021; accepted in revised form 3 September 2021. Available online 17 September 2021
aponline.com/h2open/article-pdf/4/1/216/942055/h2oj0040216.pdf

http://dx.doi.org/10.3390/su11113154
http://dx.doi.org/10.3390/su11113154
http://dx.doi.org/10.4269/ajtmh.15-0393
http://dx.doi.org/10.4269/ajtmh.15-0393
http://dx.doi.org/10.3390/su12166518
http://dx.doi.org/10.3390/su12166518
http://dx.doi.org/10.1016/j.ijheh.2019.05.004
http://dx.doi.org/10.1016/j.ijheh.2019.05.004
http://dx.doi.org/10.1007/s10107-002-0323-0
http://dx.doi.org/10.1177/0956247815596522
http://dx.doi.org/10.1177/0956247815596522
http://dx.doi.org/10.3389/fenvs.2019.00190
http://dx.doi.org/10.3389/fenvs.2019.00190
http://dx.doi.org/10.2166/washdev.2020.093
http://dx.doi.org/10.2166/washdev.2020.093
http://dx.doi.org/10.3390/su9020194
http://dx.doi.org/10.3390/su9020194
http://dx.doi.org/10.1177/0956247815569415
http://dx.doi.org/10.1177/0956247815569415
http://dx.doi.org/10.3390/ijerph15102222
http://dx.doi.org/10.3390/ijerph15102222
http://dx.doi.org/10.3390/SU11123468
http://dx.doi.org/10.3390/SU11123468
http://dx.doi.org/10.1177/0956247814564528
http://dx.doi.org/10.1177/0956247814564528
http://dx.doi.org/10.1016/j.socscimed.2012.03.022
http://dx.doi.org/10.1016/j.socscimed.2012.03.022
http://dx.doi.org/10.1016/j.socscimed.2012.03.022
http://dx.doi.org/10.1177/0956247815572746
http://dx.doi.org/10.1177/0956247815572746
https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf
https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf
https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf
https://openknowledge.worldbank.org/bitstream/handle/10986/31292/134664-WP-P165603-W.pdf?sequence=1%26isAllowed=y
https://openknowledge.worldbank.org/bitstream/handle/10986/31292/134664-WP-P165603-W.pdf?sequence=1%26isAllowed=y
https://openknowledge.worldbank.org/bitstream/handle/10986/31292/134664-WP-P165603-W.pdf?sequence=1%26isAllowed=y
https://openknowledge.worldbank.org/bitstream/handle/10986/31292/134664-WP-P165603-W.pdf?sequence=1%26isAllowed=y
https://openknowledge.worldbank.org/bitstream/handle/10986/31292/134664-WP-P165603-W.pdf?sequence=1%26isAllowed=y
http://dx.doi.org/10.1080/14427591.2017.1338190
http://dx.doi.org/10.1080/14427591.2017.1338190
http://dx.doi.org/10.1016/j.trc.2020.102861
http://dx.doi.org/10.1016/j.trc.2020.102861
http://dx.doi.org/10.1109/tits.2020.3003163
http://dx.doi.org/10.1109/tits.2020.3003163

	An evaluation of different provision strategies for scaled-up container-based sanitation
	INTRODUCTION
	METHOD
	Study sites
	Strategy characterisation
	Model construction

	RESULTS
	Results for Strategy A
	Results for Strategy B
	Results for Strategy C
	Comparison of strategies

	DISCUSSION
	Limitations of methodology

	CONCLUSION
	ACKNOWLEDGEMENT
	ADDITIONAL INFORMATION
	DATA AVAILABILITY STATEMENT
	REFERENCES


