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Abstract. 

Engineering efficiency is paramount for the introduction of novel systems and formats of 

analysis. This work extends an accessible and efficient analysis platform by combining the 

kinematic equilibrium approach of limit analysis with the single degree of freedom nature of a 

hinge-controlled masonry arch to perform dynamic modelling of applied two-dimensional 

acceleration vectors. Utilizing ideal conditions, minimum work-paths are formulated to describe 

the work required to drive the arch to collapse. Then assuming conservative work allows the 

formation of a spatial description of kinetic energy, and ultimately the establishment of the time 

domain for constant 2D accelerations. A dynamic time incremental analysis structure is then 

formulated based upon the assumption of constant acceleration for each time step. This dynamic 

model propagates the centroid displacement and kinetic energy through an applied acceleration 

sequence. Lastly, the dynamic model under ideal conditions is tested for validity through half-

cycle collapse domain benchmark and the conservation of energy. 

Keywords: Near-Real Time Analysis, Dynamic Analysis, Seismic Analysis, KCLC, masonry 
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1 INTRODUCTION 

In the modern era of structural design and analysis, where labor dominates cost, efficiency is of 

the upmost importance for the success of any structural system. This condition of efficiency 

becomes even more prominent with the introduction (or reintroduction) of novel structural 

systems that do not align themselves with the standard foundations of modern engineering. This 

need for efficiency in a new structural system is further exacerbated by the lack of practitioners 

familiar with the costs of its actual construction. The further the system deviates from the 

accepted standards of steel, reinforced concrete, and timber, the more challenging that 

introduction becomes. 

The argument has been made that the masonry arch has the potential to be an advantageous 

structural system for modern structural design and construction through the technique termed 

Reinforced Stability Based Design (RSBD) (Stockdale, 2016). The principle idea of this design 

methodology is to isolate the compressive and tensile components of the system such that the 

reinforcement is only active after initiation of a controlled mechanism. Then by defining failure 

as the onset of the mechanism, safety can be quantitatively designed into the structure through 

the reinforcement. In this manner, material strengths becomes a secondary consideration, 

generalized element-based structural health monitoring systems can be established with no 

significant calibration delays, and the proven longevity of structural masonry can be capitalized 

upon (Stockdale, 2012; Angelillo, 2014; Tralli, Alessandri and Milani, 2014). Unfortunately, the 

analysis of the masonry arch does not fit into the linear elastic model that provides the 

foundation for modern engineering, and thus any chance of success depends upon the 

development of its own efficient and accessible model. 

The theoretical introduction of RSBD also transitions the focus from assessment to control. By 

controlling the mechanism, the focus of evaluation no longer pivots around the assumption of the 

four-hinged mechanism or the attempt to establish the minimum condition. Rather the analysis 

can be directly applied to the defined condition. This formulated the novel approach to the static 

stability analysis of masonry arches through the development of a first-order assessment strategy 

and the Kinematic Collapse Load Calculator (KCLC) (Stockdale et al., 2018; Stockdale and 

Milani, 2019). Both tools were developed from and for the structural design and analysis of 

hinge-controlled masonry arches. They utilize a kinematic equilibrium approach of limit analysis 

(LA) to calculate the load magnitude and hinge reaction values that establish equilibrium of a 

defined kinematic state. This is achieved by incorporating the loading condition into the standard 

equilibrium problem (i.e. the sum of forces and moments) as a variable. The solution set is then 

evaluated against the kinematic boundary conditions to establish admissibility.  

This simple analysis structure and the KCLC have proven to be quite adaptable as well. The first 

adaptation was the incorporation of any drawn arch geometry (Stockdale and Milani, 2018). 

Then through the validation process with experimental results, non-ideal mechanisms resulting 

from the inclusion of static friction, the tensile capacity compensation requirements for 

establishing rigid elements between hinges, and the decomposition of gravity to model the tilting 

plane were incorporated (Stockdale, Sarhosis and Milani, 2019b). Static motion of the kinematic 



system was added to address an experimentally observed finite hinge stiffness (Stockdale, 

Sarhosis and Milani, 2019a). The inclusion static motion revealed that under constant horizontal 

acceleration the arch maintains a kinematically admissible condition as it propagates towards 

collapse.  

Maintaining kinematic equilibrium through the static propagation of the kinematic condition 

generates a minimum work. Assuming energy conservation releases the path dependence of this 

work. This generates the potential to directly expand the static analysis structure into a dynamic 

modelling one for the SDOF system.  

The objective of this work is to develop and validate the work-path approach for the dynamic 

modelling of hinge-controlled masonry arches subjected to two-dimensional acceleration 

profiles. First, a brief overview of existing dynamic analysis strategies is presented in Section 2. 

Section 3 details the work-path and time-domain formulation for horizontal accelerations. 

Section 4 expands the analysis, work-path development and time-domain formulation to non-

horizontal accelerations. Then through the assumption of constant acceleration per time step, the 

analysis procedure for motion and energy propagation are developed in Section 5. Section 6 then 

provides an initial validation of the approach through a combination of Oppenheim’s half-cycle 

collapse and the conservation of kinetic energy (Oppenheim, 1992). Section 7 concludes this 

work. 

2 SEISMIC MODELLING STRATEGIES 

For the analysis of masonry arches as a whole there does exist a significant amount of research  

and experimental investigations aimed at the assessment of existing structures (Hendry, 1998; 

Tralli, Alessandri and Milani, 2014; Sarhosis, Santis and de Felice, 2016). As with all modern 

analyses, the dynamic analysis of masonry arches can be divided into two primary categories: 

analytical and numerical. The numerical approaches are further divided into two main categories: 

a) non-linear finite element method (FEM); and b) the distinct (or discrete) element method 

(DEM). The discontinuous nature of masonry prohibits modelling in the elastic continuum, thus 

requiring the non-linear analysis (Dimitri and Tornabene, 2015). The non-linear FEM approach 

has been successfully applied in dynamic cases, but it requires a high level of expertise to 

employ and is computationally expensive (Fanning et al., 2005; Pelà, Aprile and Benedetti, 

2009, 2013; Gaetani et al., 2017). DEM originated to address rock engineering where continuity 

is absent and it has been successful at simulating the dynamic behavior of masonry structures as 

well (De Lorenzis, DeJong and Ochsendorf, 2007; DeJong, 2009; Dimitri, De Lorenzis and 

Zavarise, 2011; DeJong and Dimitrakopoulos, 2014; Dimitri and Tornabene, 2015; Sarhosis et 

al., 2016). Like its non-linear FEM counterpart, DEM requires a high level of expertise and 

computational costs. 

The analytical approaches used for the seismic analysis of masonry arches are known as limit 

analysis (LA). These LA approaches are also divided in two with the upper and lower bound 

theorems. Lower bound of LA defines stability by establishing the existence of a thrust line that 

lies entirely within the arch boundary. This thrust line analysis arises from Hooke’s hanging 



chain analogy and was solidified by Heyman’s safe theorem (Heyman, 1969). Being bound by 

stability, the lower bound theorem has been utilized to impose static horizontal testing through 

tilting plane analysis, but is not structured for dynamic conditions (Huerta, 2005; DeJong, 2009). 

The upper bound theorem is also known as the kinematic theorem and it states that an arch will 

fail if a kinematically admissible mechanism exists that produces positive or zero work from 

external forces. Traditionally, this approach applies equivalent horizontal accelerations combined 

with an iterative approach to the principles of virtual work (for static analyses) to determine 

collapse, or virtual powers (for dynamic analyses) to define dynamic conditions (Oppenheim, 

1992; Gilbert and Melbourne, 1994; Clemente, 1998). In the context of validations, DeJong’s 
(DeJong, 2009) lower bound tilting plane analysis was found in good agreement with the upper 

bound results from both Clemente (Clemente, 1998) and Oppenheim (Oppenheim, 1992). 

Additionally, the kinematic theorem has been validated for lateral loading both numerically and 

experimentally (Ochsendorf, 2002; De Luca, Giordano and Mele, 2004; Alexakis and Makris, 

2014; Dimitri and Tornabene, 2015; Stockdale, Sarhosis and Milani, 2019b). 

The kinematic theorem is structured around the kinematic condition. This directly connects the 

analysis to the existence of a motion state. In fact, the four-hinged arch is by definition a single 

degree of freedom (SDOF) system. Beginning with the four-hinged mechanism, Oppenheim 

(Oppenheim, 1992) was able to formulate the exact equations of motion for this condition and 

use them to study the overturning of an arch during the first half cycle of motion due to a step 

impulse. This model was expanded by De Lorenzis et al. (De Lorenzis, DeJong and Ochsendorf, 

2007) through the introduction of Housner’s (Housner, 1963) assumptions on impact for single 

rocking blocks to the four-hinged arch model. Applying the same step impulse as Oppenheim 

(Oppenheim, 1992), De Lorenzis et al. (De Lorenzis, DeJong and Ochsendorf, 2007) both 

identified the second boundary associated with the collapse of the second half cycle and that it is 

the governing condition. This model was further expanded by Kollár and Ther (Kollár and Ther, 

2019) by removing the four-hinge limitation and evaluating the mutli-degree of freedom motions 

that can exist in systems without hinge control.  

Where existing strategies directly develop the equations of motion, use virtual powers or rely on 

complex FE or DEM analysis structures, this research utilizes the path independence of 

conservative work to define the change in position and kinetic energy for constant accelerations. 

By incrementing this process through the time step of an acceleration sequence, the dynamic 

description of a hinged-controlled arch is obtained. 

3 WORK-PATH AND TIME DOMAIN FOR HORIZONTAL ACCELERATIONS 

The dynamic analysis procedure is developed by establishing a time-displacement relationship 

for a defined mechanism-acceleration pair through the path independence of conservative work.  

This begins with combining kinematic equilibrium analysis and the SDOF motion of a four-

hinged arch to generate a work-path. From the work path a spatial kinetic energy equation is 

obtained and then utilized to establish a time displacement relationship. 



3.1 KINEMATIC EQUILIBRIUM 

Kinematic equilibrium analysis is the standard equilibrium evaluation of statics but applied to a 

kinematic condition through the incorporation of a loading variable required to establish the 

defined condition. For each analysis, the equilibrium equation sets are established in matrix form [𝐵𝐶]{𝑟} = {𝑞}           (1) 

so the solutions to the reaction and loading variables, r, can be easily obtained by multiplying the 

inverse on the balance matrix, BC, with the constants vector, q {𝑟} = [𝐵𝐶]−1{𝑞}          (2) 

Therefore, the equilibrium evaluation is only dependent on the boundary conditions of the 

kinematic condition and the loading geometry. For instance, consider the kinematic arch loaded 

with a leftward horizontal acceleration of magnitude λag as shown in Figure 1. By defining rigid 

elements between hinges, the acceleration forces can be applied through force equivalence at the 

centroid of each element. Then summing the moments about hinges H1, H2 and H3 for elements 

one, two and three respectively generates 

[𝐵𝐶] =
[  
   
   
 −100000000

010000000

10−∆𝑦2,1−100000

0−1∆𝑥1,2010000

00010∆𝑦3,2−100

00001∆𝑥2,30−10

00000010∆𝑦3,4

00000001−∆𝑥3,4

𝑓𝑔10−𝑓𝑔1∆𝑦𝐶𝑀1,1𝑓𝑔20𝑓𝑔2∆𝑦2,𝐶𝑀2𝑓𝑔30𝑓𝑔3∆𝑦3,𝐶𝑀3 ]  
   
   
 
 (3) 

and {𝑞} = [0 𝑓𝑔1 −𝑓𝑔1∆𝑥1,𝐶𝑀1 0 𝑓𝑔2 𝑓𝑔2∆𝑥2,𝐶𝑀2 0 𝑓𝑔3 −𝑓𝑔3∆𝑥3,𝐶𝑀3]𝑇  (4) 

for  {𝑟} = [ℎ1 𝑣1 ℎ2 𝑣2 ℎ3 𝑣3 ℎ4 𝑣4 𝜆𝑎]𝑇      (5)  



 

Figure 1. Kinematic equilibrium condition for leftward horizontal acceleration condition 

For Eqns. 3 and 4, the subscripts of the vertical lever arms, Δy, and the horizontal lever arms, Δx, 

denote the hinges or center of mass locations used (i.e. Δy3,4 is (y3 – y4) and Δx2,CM2 is (x2 – xCM2), 

ect.), and fgj is the gravitational force of the jth element. In Eqn. 5, hi and vi are the horizontal and 

vertical reactions at the ith hinge respectively, and lastly, λa is the collapse load multiplier (in 

units of gravity, g) for the horizontal acceleration.  

3.2 SDOF DEFORMATION 

The hinge-controlled masonry arch can be described with three rigid elements connected by four 

pins with a motion bound by the rotation of the pins (see Figure 2). For a given rotation α1 at H1 

(see Figure 2 for identifying lengths and angles), the rotation at H4 is 𝛼4 = cos−1 (𝑙12𝑙34 [cos(𝜃12 + 𝛼1) − cos(𝜃12)] + cos(𝜃43)) − 𝜃43     (6) 

From the rotations of α1 and α4, the translations of hinges H2 and H3 are known and the polar 

change, γ23, of length l23 can be determined 𝛾23 = 𝜃′23 − 𝜃23          (7) 

This allows the rotations of the intermittent hinges H2 and H3 to be calculated by 𝛼2 = 𝛼1 + 𝛾23           (8) 

and 𝛼3 = 𝛼4 + 𝛾23           (9) 

respectively.  



 

Figure 2. Rigid pin-connected length representation of the four-hinged arch mechanism in the (a) undeformed state and (b) after 

a deformation 

3.3 KINEMATIC EQUILIBRIUM OF STATIC DEFORMATIONS 

A custom KCLC was designed to incorporate the defined SDOF motion through the inclusion of 

a slider that defines the rotation angle of α1. As with the hinge adjustment sliders, the equation 

set is evaluated for each adjustment to the rotation value. Figure 3 shows this custom KCLC with 

imposed α1 rotations of 0°, 4°, 8°, and 12° imposed on the given arch-hinge-load-configuration. 

Note that the center of mass (CM) and the center of area (CA) are provided in addition to the 

collapse multiplier, hinge reactions and rotation values. This is to account for potential non-

uniform block masses. 

From the deformation sequence shown in Figure 3 there exists an admissible kinematic 

equilibrium condition through 11° of rotation at H1. This deformation results in a capacity 

reduction of the collapse multiplier until the loss of admissibility.  Also note the propagation of 

the CM is mapped for the deformation. 



 

Figure 3. Custom KCLC with added hinge motion panel and centroid data display with applied α1 rotations of (a) 0°, (b) 4°, (c) 

8° and (d) 12° 

3.4 EQUIVALENT SYSTEMS 

For the imposed deformation sequence shown in Figure 3, the block, element, and full arch 

centroid positions were recorded for α1 rotations between 0° and 12° with constant Δα1 of 0.1°. 

Through parametric plotting simplifications to the description of motion can be formulated. This 

allows the given condition of motion to be represented by single point translations and rotations. 

3.4.1 Single Point Translations 

Figure 4 shows this deformation path for the CM and a polynomial fit to the motion. The 

polynomial fit generates a simple deformation equation for the single point translation 𝑦 = 𝐴1𝑥2 + 𝐴2𝑥 + 𝐴3         (10) 

with the constants Ai identified in Figure 4 for the condition shown in Figure 3. 



 

Figure 4. Parametric plot of the CM deformation path as a function of α1 and 2nd order polynomial fit 

3.4.2 Single Point Rotations 

Point rotations must also be considered to account for the two-dimensional out of plane effects of 

motion being represented by a single point. These rotations are accounted for by the polar angles 

between the full arch centroid and the centroid of each of the rigid elements. Conservation of 

mass binds this relationship. Figure 5 shows the resulting rotation angles versus horizontal CM 

displacement for each element of the arch-hinge configuration in Fig. 3. Polynomial fits reveal 

reasonable representation by 𝜃 = 𝐵1𝑥2 + 𝐵2𝑥 + 𝐵3         (11) 

for each element. The constants Bi, of Eqn. 11 are shown in Figure 5. 

 

Figure 5. Parametric plots of the lever arm rotation angles versus horizontal CM displacement and the polynomial fits 



3.5 WORK PATH AND POTENTIAL ENERGY 

The path independence of conservative work allows the use of the single point representation of 

mass and motion to establish work-paths related to the actual geometry of the hinge-controlled 

arch system. Figure 6 shows the acceleration force versus horizontal CM displacement for the 

single point. The out of plane contributions to work are obtained from considering the torque 

applied to the single point from each element’s centroid and the rotation of the massless lever 
arms. Figure 7 shows the torque-rotation plots for each element. Also note that the sum of the 

torques maintains zero through the deformation sequence confirming equilibrium. 

 

Figure 6. Parametric plot of acceleration force versus horizontal CM displacement and best fir polynomial 

 

Figure 7. Parametric plot of the element induced torque at CM versus the respective lever arm rotation angles 



The total work can be expressed as the sum of translational and rotational components  𝑊 = ∫𝐹𝑑𝑥 + ∫ 𝜏𝐸1𝑑𝜃𝐸1 + ∫ 𝜏𝐸2𝑑𝜃𝐸2 + ∫ 𝜏𝐸3𝑑𝜃𝐸3      (12) 

and integrating the force-displacement plot and torque rotation plots generates the work paths 

seen in Figure 8. The change in potential energy ∆𝑃𝐸 = 𝑚𝑇𝑔∆𝑦          (13) 

is also plotted in Figure 8. The work required to drive the arch to collapse is greater than the 

change in potential energy as a total and for the translational work alone. The excess translational 

work is the result of maintaining a thrust condition that supports the defined mechanism.   

 

Figure 8. Parametric plot of minimum work and potential energy versus horizontal CM displacement with polynomial fit 

A polynomial fit evaluation reveals that the work path is reasonably represented by 𝑊𝑚𝑖𝑛(𝑥) = 𝐶1𝑥4 + 𝐶2𝑥3 + 𝐶3𝑥2 + 𝐶4𝑥 + 𝐶5      (14) 

where the constants Ci are shown in Figure 8. 

3.6 KINETIC ENERGY 

The work path, Wmin (see Figure 8) represents the work required to maintain kinematic 

equilibrium along the path to collapse. An applied acceleration force, Fapp, in excess of the static 

limit, Fmin, results in the system’s transition from stable to mechanical. Rigid elements and ideal 

hinges then require the excess energy added to the system after exceeding the stable limit be in 

the form of work, Wapp, and any of this added work in excess of that required must be 

transformed into kinetic energy ∆𝐾𝐸 = 𝑊𝑎𝑝𝑝 − 𝑊𝑟𝑒𝑞            (15) 

The required work, Wreq, to travel from the initial position x1 to a final position x is 𝑊𝑟𝑒𝑞 = 𝑊𝑚𝑖𝑛(𝑥) − 𝑊𝑚𝑖𝑛(𝑥1)        (16) 



If the initial kinetic energy, KEI, is known, then with Eqns. 15 and 16 a spatial description of the 

final kinetic energy is obtained 𝐾𝐸𝑓(𝑥) = 𝐾𝐸1 + 𝐹𝑎𝑝𝑝(𝑥 − 𝑥1) − 𝑊𝑚𝑖𝑛(𝑥) + 𝑊𝑚𝑖𝑛(𝑥1)     (17) 

3.7 TIME DOMAIN 

Kinetic energy can also be expressed in terms of translational and rotational velocities 𝐾𝐸 = 12 𝑚𝑇𝒗2 + 12 𝐼𝐸1𝜔𝐸12 + 12 𝐼𝐸2𝜔𝐸22 + 12 𝐼𝐸3𝜔𝐸32       (18) 

In Eqn 18, v is the velocity vector, ωEj and IEj are the lever arm angular velocity and moment of 

inertia for the jth element respectively. The velocity vector decomposes to 𝒗 = 𝑑𝒓𝑑𝑡 = 𝑑𝑥𝑑𝑡 + 𝑑𝑦𝑑𝑡           (19) 

and the angular velocities can be expressed as  𝜔 = 𝑑𝜃𝑑𝑡             (20) 

Taking the time derivatives of Eqns. 10 and 11, and utilizing Eqns. 17 through 20 generates the 

expression of the final kinetic energy  𝐾𝐸𝑓(𝑥) = 12 [𝑚𝑇 (1 + 12 𝐴1𝑥 + 𝐴2)2 + ∑ 𝑚𝐸𝑗𝑙𝐸𝑖2 (12 𝐵1,𝐸𝑗𝑥 + 𝐵2,𝐸𝑗)23𝑖=1 ] (𝑑𝑥𝑑𝑡)2
  (21) 

where mEj and lEj are the jth elements mass and lever arm and the constants B1,Ej and B2,Ej are 

obtained from Eqn. 10 and Figure 5. The spatial description of kinetic energy, Eqn. 19, allows 

the isolation of variables in Eqn. 21 and the relationship between time and displacement is 

formed 𝑡 − 𝑡0 = ∫𝐻(𝑥) 𝑑𝑥          (22) 

where 

𝐻(𝑥) = √𝑚𝑇(1+12𝐴1𝑥+𝐴2)2+∑ 𝑚𝐸𝑖𝑙𝐸𝑖2 (12𝐵1,𝐸𝑖𝑥+𝐵2,𝐸𝑖)23𝑖=12𝐾𝐸𝑓(𝑥)       (23) 

Figure 9 shows a plot of Eqn. 23 and the numeric evaluation area for Eqn. 22 with an applied 

acceleration of 1.14λa. The initial time and kinetic energy are set to zero. 



 

Figure 9. H(x) versus horizontal CM displacement and integration area. 

Figure 10 shows the solution to Eqn. 22 and establishes the relationship between horizontal 

position and time. Applying a polynomial fit to the time-displacement curve reveals 𝑥(𝑡) =  𝐷1𝑡4 + 𝐷2𝑡3 + 𝐷3𝑡2 + 𝐷4𝑡 + 𝐷5       (24) 

as a reasonable representation. The values of constants Di are shown in the Fig. 10. Therefore, if 

the initial position and kinetic energy are known, the final displacement and kinetic energy can 

be calculated for the duration of a given acceleration. 

 

Figure 10. Horizontal CM position versus time with 4th
 degree polynomial fit. 

4 NON-HORIZONTAL ACCELERATIONS 

The expansion of the work-path approach to incorporate non-horizontal accelerations begins 

with the inclusion of a polar acceleration angle, θa, to the constant acceleration, λag, and the 

construction of the equation set. Decomposing the acceleration multiplier produces 



𝜆𝑥 = 𝜆𝑎 cos(𝜃𝑎)          (25) 

and 𝜆𝑦 = 𝜆𝑎 sin(𝜃𝑎)           (26) 

For a defined acceleration angle, the balance condition for the same arch-hinge condition as 

shown in Figure 1 becomes 

[𝐵𝐶] =
[  
   
   
 −100000000

010000000

10∆𝑦2,1−100000

0−1∆𝑥1,2010000

00010∆𝑦3,2−100

00001−∆𝑥2,30−10

00000010∆𝑦3,4

00000001−∆𝑥3,4

𝑓𝑎𝑥1𝑓𝑎𝑦1𝑓𝑎𝑥1∆𝑦𝐶𝑀1,1 − 𝑓𝑎𝑦1∆𝑥1,𝐶𝑀1𝑓𝑎𝑥2𝑓𝑎𝑦2𝑓𝑎𝑥2∆𝑦𝐶𝑀2,2 − 𝑓𝑎𝑦2∆𝑥2,𝐶𝑀2𝑓𝑎𝑥3𝑓𝑎𝑦3𝑓𝑎𝑥3∆𝑦3,𝐶𝑀3 + 𝑓𝑎𝑦2∆𝑥3,𝐶𝑀3]  
   
   
 
   (27) 

The reaction and constants vectors, Eqns. 4 and 5, are unchanged for evaluating equilibrium 

(Eqn. 2).  

4.1 LIMIT LINE 

In order to establish the limits of acceleration angles and mechanization, polar and cartesian plots 

of the collapse multiplier versus direction angle for the undeformed arch-hinge set shown in 

Figure 3 were developed (see Figure 11). For both plots a full 360° rotation was evaluated at 1° 

intervals with no admissibility evaluation. From the cartesian plot the limits of admissible angles 

(positive λa) are clearly identified as 87.5° through 267.5°. From the polar plot a limit line is 

established and interestingly the negative multipliers exactly overlay the same line. This limit 

line creates the boundary condition of mechanism formation from 2D accelerations applied to the 

given mechanism. 

 

Figure 11. (a) Polar and (c) cartesian plots of the collapse multiplier versus acceleration vector angle 



4.1.1 Limit Line and Static Deformations 

Figure 12 shows the limit line plots for α1 deformations of 0°, 4°, 8° and 12° applied to the arch-

hinge condition in Figure 3. Interestingly, the deformation of the arch causes the limit line to 

pivot towards vertical about the point 1 at 90°. Additionally, the loss of admissibility at 12° is 

identified by the limit line crossing the vertical origin. The pivot point is a shift from gravity’s 

inclusion in the constants vector. 

 

Figure 12. Acceleration limit lines for α1 deformations of 0°, 4°, 8° and 12° 

4.2 WORK PATH 

The inclusion of a vertical force introduces a vertical component of work 𝑊𝑎𝑝𝑝 = ∫𝐹𝑥𝑑𝑥 + ∫ 𝐹𝑦𝑑𝑦         (28) 

but utilizing Eqn. 11 and its derivative with respect to x allows the work to be rewritten in terms 

of x 𝑊 = ∫[𝐹𝑥 + 𝐹𝑦 (12 𝐵1𝑥 + 𝐵2)] 𝑑𝑥        (29) 

Figure 13 shows the calculated minimum work paths for various acceleration angles within the 

established limits. From this figure it can be seen that the required work decreases with the angle. 



In terms of cartesian coordinates, the more negative the vertical component of acceleration the 

greater the required work. In fact, for the angle of 90°, the multiplier is 1.0 and the translational 

work required to carry the arch to collapse is identical to the change in potential energy (see 

Figure 14). This translational equivalence provides a validation of the established work-path 

calculation. The rotational work transitions from working against the motion to working with the 

motion as the acceleration angle approaches positive vertical (see Figure 14). Figure 1This 

rotational work transformation results in the required work being less than the change in 

potential energy for acceleration angles between 90° and 97° for the arch-hinge set under 

evaluation (see Figure 13). Additionally, Eqn. 14 holds with varying constants for all work paths 

evaluated. 

 

Figure 13. Parametric plots of minimum work versus horizontal displacement for different acceleration vector angles, θa 



 

Figure 14. Parametric Plots of the minimum (a) translational and (b) rotational work for various acceleration angles 

4.3 KINETIC ENERGY AND TIME DOMAIN 

With the inclusion of the vertical component of acceleration, the final displacement based kinetic 

energy equations becomes  𝐾𝐸𝑓(𝑥) = 𝐾𝐸1 + 𝐹𝑥(𝑥 − 𝑥1) + 𝐹𝑦 [12𝐵1(𝑥2 − 𝑥12) − 𝐵2(𝑥 − 𝑥1)] − 𝑊𝑚𝑖𝑛(𝑥) + 𝑊𝑚𝑖𝑛(𝑥1)   (30) 

Therefore, the time domain equations (Eqns. 22 and 23) hold. Additionally, since Eqn. 14 holds 

for acceleration vector angles within the limits, the time-displacement equation (Eqn. 24) and the 

procedure of obtaining its constants holds. Consequently, a simple methodology is established 

for evaluating the onset of a defined mechanism and obtaining the resulting time-displacement 

domain for any constant 2D acceleration.  

5 DYNAMIC ANALYSIS PROCEDURE 

Consider an undeformed and stable arch subjected to a time dependent acceleration sequence 

which crosses the limit line at time t1. Assuming constant acceleration, allows the formulation of 

the kinetic energy equation (Eqn. 28) and the time-displacement equation (Eqn. 24). At time t2 

the acceleration changes. Applying t2-t1 to Eqn. 24 establishes the displacement x2 at t2. Having 

the displacement then allows the kinetic energy at time t2 to be calculated with Eqn. 30. Then the 

final position and kinetic energy from the first acceleration become the initial conditions for the 



second acceleration value. In this manner, the arch can be dynamically propagated forward in 

time. 

5.1 KINEMATIC CONDITION AND THE LIMIT LINE 

If at time t2 the displacement of the arch exceeds the admissible deformation limit established 

through kinematic equilibrium, then the arch has collapsed. Otherwise, the arch is in a kinematic 

state. In this kinematic state, the effects of the second acceleration value between t2 and t3 depend 

on the limit line. Acceleration vectors that exceed the limit line will increase kinetic energy and 

consequently the rate of deformation towards collapse. Accelerations less than the limit line 

result in the developed kinetic energy being spent to propagate the arch forward. If zero kinetic 

energy is reached within the kinematic state, then the motion and work are reversed. 

5.2 FORWARD FACING MOTION 

Establishing the H(x) function (Eqn. 23) for obtaining the time domain (Eqn. 22) requires a 

positive non-zero kinetic energy. Reversing motion and releasing the stored energy generates a 

negative kinetic energy with respect to Eqn. 30. Therefore, the motion must be considered as 

forward facing which is achieved by the absolute value of the negative limits of the kinetic 

energy equation (Eqn. 30).  

5.3 CROSSING THE ORIGIN AND THE COEFFICIENT OF RESTITUTION 

With the reversal of motion from insufficient acceleration to cause collapse the arch is 

propagated towards its undeformed condition. When that condition is reached an impact at the 

mechanical joints will occur if the kinetic energy is greater than zero. The impact will result in a 

dissipation of energy for a finite duration of time. The Coefficient of Restitution (COR) is the 

standard parameter to define energy loss from one of three models known as kinematic, kinetic 

and energetic (Ahmad, Ismail and Mat, 2016). Newton’s kinematic model 𝐶𝑂𝑅 = 𝐾𝐸𝑓𝐾𝐸𝑖            (31) 

directly aligns itself with the work-path model considered here. Establishing an accurate COR 

for a specific condition is outside the current scope of work, but the incremental structure of the 

dynamic analysis model allows the impact to be isolated by timesteps and the COR applied. The 

importance is that a COR can be easily controlled in the transition between the two hinge sets 

that define motion. 

If sufficient kinetic energy exists and the impact is not plastic (i.e. COR = 0), then the hinge 

positions switch joint limits and the reversed mechanism is established. The limit line, 

deformation path and minimum work-path are switched to the new mechanism. The reduced 

kinetic energy and next acceleration vector are set and the evaluation continues. 



5.4 COMBINING CONDITIONS 

The dynamic propagation procedure of the hinge-controlled masonry arch generates two 

deformation paths. Each deformation path has two directions of motion for a total of four 

forward facing motion conditions. Lastly, the kinematic condition has three boundary conditions: 

two that indicate collapse and the stable state where impact occurs. Figure 15 shows the 

combination of these conditions into a flowchart that represents the dynamic analysis procedure. 

For each time step in the defined acceleration sequence the limit line is established and used to 

evaluate the work condition. The established condition with the existing kinetic energy and 

position generate a final position and kinetic energy. The reversal of kinetic energy switches the 

motion direction. Crossing the origin triggers the COR and switches the hinge set. This process 

is repeated until the end of the acceleration sequence or a maximum allowed displacement is 

reached. 

 

Figure 15. Flowchart of the dynamic analysis procedure. 

6 HALF CYCLE COLLAPSE AND CONSERVATION OF ENERGY 

The developed dynamic modelling procedure was formulated from the principles of energy 

conservation, equivalent systems through parametric plotting, and the path independence of 

conservative work. The equivalent systems were directly defined through the centroid 

calculations for fixed rotations of hinge H1. These centroid deformations established deformation 

paths and subsequently work-paths. The minimum work-paths were validated by the equivalence 

of work and potential energy for vertical acceleration and the zero net torque for all 

kinematically admissible equilibrium conditions. Therefore, the final validations for the analysis 



structure are Oppenheim’s half-cycle collapse line benchmark and the conservation of energy 

(Oppenheim, 1992).  

The Oppenheim arch geometry and the hinge reversal from fixed mechanical joints is shown in 

Figure 16 (Oppenheim, 1992). These two configurations establish the dynamic model for the 

arch.  

 

Figure 16. Oppenheim arch geometry with the (a) original hinge geometry and (b) the hinge reversal from defined joints 

Figure 17 shows a graphical display created to monitor the propagation of a dynamic sequence. 

This graphical display consists of the arch represented in element form, the acceleration limit 

tracker, the CM position tracker and the applied acceleration sequence. The arch plot shows the 

arches geometric condition through the dynamic sequence. The acceleration limit tracker 

identifies the applied acceleration and kinematic condition at each time step. For the limit lines 

and applied acceleration, red indicates a condition promoting collapse and blue a condition 

promoting recovery.  



 

Figure 17. Dynamic monitoring display at time zero for a two-step pulse 

Figure 18 shows three examples of the motion conditions through the propagation of the 

horizontal two-step pulse. First, the acceleration and kinematic motion are both propagating 

towards collapse, then the acceleration drops below the limit line and the net-work is against 

collapse. Lastly in Fig. 18 both motion and acceleration are driving the arch towards its original 

configuration. If the deformation of the arch reaches or exceeds the limit established through 

kinematic admissibility, then the arch geometry and CM tracker both turn red and the evaluation 

is stopped. Figure 19 shows this failure condition for a two-step pulse in excess of recovery. 

 

  



 

Figure 18. Dynamic propagation of the two-step pulse with (a) acceleration and motion propagating towards collapse, (b) 

acceleration working towards recovery, and (c) motion and acceleration towards recovery 



 

Figure 19. Identified collapse in the dynamic propagation 

6.1 HALF CYCLE COLLAPSE 

For the half-cycle collapse evaluation, the Oppenheim two-step acceleration pulse was applied 

(Oppenheim, 1992). For each acceleration amplitude, the pulse time was continually increased 

by 0.02 seconds until a collapse was obtained (see Figure 19). The resulting half-cycle failure 

domains from the described work-path approach and Oppenheim’s original results are shown in 

Figure 20. This comparison of results show an increase in static capacity from the upper bound 

limit of the work-path approach and a small decrease in the recoverable impulse duration. 

Nonetheless, the behavior of the arche’s half-cycle failure is captured by the work-path approach 

and with more conservative impulse duration limits.  

 

Figure 20. Half-cycle failure domain comparison for the two-step pulse analysis of the Oppenheim arch (Oppenheim, 1992) 



Repeating the half-cycle collapse evaluation with constant vertical accelerations generates the 

failure domains shown in Figure 21.  The inclusion of the vertical acceleration has the expected 

effect of changing the static limit of its horizontal counterpart. Additionally, the behavior of the 

half-cycle failure is maintained for all the shown conditions minus the vertical acceleration of 

0.9g. As previously discussed, this strong vertical acceleration has the effect of reversing the 

rotational work and minimizing the window of recovery for weak horizontal pulses. This 

phenomenon is consistent with the observations of the work paths shown in Figure 14 and 

diminishes as the horizontal acceleration’s magnitude increases.  

 

Figure 21. Half-cycle failure domains for various vertical accelerations with a horizontal pulse 

6.2 CONSERVATION OF ENERGY 

Conservation of energy was evaluated by the application of a 0.55g magnitude acceleration with 

various vector angles for 0.5 seconds and then removed. The arch was set in free motion for the 

remaining duration of the 20 second sequence with perfectly elastic impacts (i.e. COR = 1) and 

instantaneous mechanism switches. The timesteps were set at 0.02 seconds. 

The limit line for rightward motion in Figure 17 identifies the vector angle limits for 

mechanization from a 0.55g magnitude acceleration as −17° ≤ 𝜃𝑎 ≤ 65°, and thus acceleration 

angles between -10° and 50° were selected for evaluation. For each evaluation the horizontal CM 

displacement and kinetic energy were recorded at each timestep. Figure 22 shows examples of 

the displacement and kinetic energy plots for the first ten seconds with applied acceleration 

angles of -10°, 0° and 10°. From this figure the application of the acceleration and the periodic 

nature of free motion are observed with two distinct half-cycles corresponding to the two 

mechanism geometries. Additionally, the displacements and kinetic energies are out phase as 

expected. 



 

Figure 22. Horizontal CM displacement and kinetic energy versus time for applied acceleration pulse 

Figure 23 shows the percentage of energy loss between the first and last cycle of recorded 

motion for each acceleration angle tested. The average energy loss was 4.4% over the 20 second 

evaluation for all the tests and the loss of energy never exceeded 10% for any single analysis. 

Therefore, it can be reasonably argued that energy is conserved for the ideal conditions.  

 

Figure 23. Kinematic energy loss versus applied acceleration angle for a 0.55*g magnitude acceleration applied for 0.5 seconds 

Lastly, Figure 24 shows the peak displacement, the time of peak displacement, and the maximum 

kinetic energy for each of the applied acceleration angles. From each of these plots, the 

sensitivity of the arches response to the acceleration vector angle is clear and the vector angle of 

20° is identified as the most kinematically significant angle for the single pulse applied to the 

given arch-hinge configuration. 



 

Figure 24. Maximum horizontal CM position, time of maximum displacement, and maximum kinetic energy versus applied 

acceleration angle for a 0.55*g magnitude acceleration applied for 0.5 seconds 

7 CONCLUSIONS 

Engineering efficiency is paramount for the introduction of novel systems and formats of 

analysis. The fundamentals of the masonry arch have the potential to create an advantageous 

structural system for modern structural design and construction. This work extends an accessible 

and efficient analysis platform built off of the kinematic equilibrium approach to LA and the 

SDOF nature of a hinge-controlled arch to the dynamic modelling of applied two-dimensional 

acceleration vectors. Utilizing ideal conditions, the work path and ultimately the time domain 

were established for applied 2D accelerations and used to formulate the dynamic time 

incremental analysis structure based upon the assumption of constant acceleration for each time 

step. The time domain and kinetic energy equations were then coupled with the finite set of 

motions and impacts to establish the modelling structure. 

The dynamic modelling structure was then evaluated for its half cycle collapse and conservation 

of energy. From the tests, the behavior of the analyzed arch was validated for ideal conditions. 

Additionally, the sensitivities of the accelerations angle are clearly identified for the geometric 

condition. 

With the inclusion of the dynamic state, the foundation for a complete and comprehensive 

analysis structure has been formulated for hinge-controlled masonry arches. This brings the 

utilization of structural masonry one step closer to implementaion. The focus must now turn to 

experimental testing and the incorporation of non-ideal conditions. 
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