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implementations of graph algorithms in GP 2, an experimental programming language
based on graph transformation rules which aims to facilitate program analysis and
verification. We focus on two classes of rule-based graph programs: graph reduction
programs which check some graph property, and programs using a depth-first search

Keywords: to test some property or perform an operation such as producing a 2-colouring or a
Graph transformation topological sorting. Programs of the first type run in linear time without any constraints on
Rooted graph programs input graphs while programs of the second type require input graphs of bounded degree to
Linear-time algorithms run in linear time. Essential for achieving the linear time complexity are so-called rooted
Graph reduction rules in GP 2, which, in many situations, can be matched in constant time. For each of our

Depth-first search programs, we prove both correctness and complexity, and also give empirical evidence for

their runtime.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Rule-based graph transformation was established as a research field in the 1970s and has since then been the subject
of countless articles. While many of these contributions have a theoretical nature (see the monograph [1] for a recent
overview), there has also been work on languages and tools for executing and analysing graph transformation systems.

Languages based on graph transformation rules include AGG [2], GReAT [3], GROOVE [4,5], GrGen.Net [6,5], Henshin
[7,5] and PORGY [8]. This paper focuses on GP2 [9], an experimental graph programming language which aims to facilitate
formal reasoning on programs. The language has a simple formal semantics and is computationally complete in that every
computable function on graphs can be programmed [10]. Research on graph programs has provided, for example, Hoare-
calculi for program verification [11-14] and a static analysis for confluence checking [15].

A challenge for the design and implementation of graph transformation languages is to narrow the performance gap
between imperative and rule-based graph programming. The bottleneck for achieving fast graph transformation is the cost
of graph matching. In general, matching the left-hand graph L of a rule within a host graph G requires time size(G)size(l)
which is polynomial since L is fixed. (We denote by size(X) the number of nodes and edges in a graph X.) As a consequence,
linear-time imperative graph algorithms may be slowed down to polynomial time when they are recast as rule-based graph
programs.
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To mitigate this problem, GP2 supports rooted graph transformation which was first proposed by Dorr [16]. The idea is
to distinguish certain nodes as roots and to match roots in rules with roots in host graphs. Then only the neighbourhood of
host graph roots needs to be searched for matches, allowing, under mild conditions, to match rules in constant time. In [17],
fast rules were identified as a class of rooted rules that can be applied in constant time if host graphs have a bounded node
degree and contain a bounded number of roots.

The condition of a bounded number of host graph roots can be satisfied by requiring input graphs with a bounded
number of roots and using in loops only rules that do not increase the number of roots. This simply means that no such
rule must have more roots in its right-hand side than in its left-hand side. (A refined condition which we need for the
binary DAG program in Subsection 3.3 considers the “root balance” of all rules in a loop body simultaneously.) In this paper,
we assume that input graphs are unrooted, and our programs make sure that host graphs contain at most two roots at
runtime.

The condition that host graphs must have a bounded node degree depends on the application domain of a program. For
example, traffic networks or digital circuits can be considered as graphs of bounded degree.

The first linear-time graph problem implemented by a GP2 program with fast rules was 2-colouring. In [17,18] it is
shown that this program colours connected graphs of bounded degree in linear time. The compiled program even matches
the speed of Sedgewick’s textbook C program [19] on grid graphs of up to 100,000 nodes. Since then, the compiler has re-
ceived some major improvements, in particular relating to the runtime graph data structure used by the compiled programs
[20], which has allowed us to achieve linear time worst-case performance for a wider class of programs than was previously
possible, in some cases even on input graph classes of unbounded degree.

In this paper, we continue to provide evidence that rooted graph programs can rival the time complexity of graph
algorithms in conventional programming languages. We present five case studies the first three of which are based on
graph reduction programs for recognising cycle graphs, trees, and binary DAGs. The other two case studies are based on
programs using depth-first search to check connectedness resp. produce a topological sorting of an acyclic graph. Each of
these problems is solvable in linear time with algorithms in imperative languages. For each problem, we present a GP2
program with (mainly) fast rules, show its correctness, and prove its linear time complexity. For the last two problems, we
need to assume that input graphs have a bounded node degree. We also give empirical evidence for the linear runtime by
presenting benchmark results for graphs of up to around 500,000 nodes in various graph classes.

This paper is a revised and significantly extended version of [21], which was written before the improvements to the
GP2 runtime system. We now have improved graph reduction programs which recognise cycle graphs, trees and binary
DAGs in linear time among arbitrary input graphs, without the restriction of bounded node degrees. In contrast, all programs
in [21] require input graphs of bounded node degree. We present the recognition programs together with new proofs of
correctness and complexity. We also present an improved version of the topological sorting program of [21] and revisit
the 2-colouring program of Bak and Plump [18], giving more rigorous analyses. The topological sorting program has been
re-worked so that it doubles as a program for checking acyclicity. In addition, we present and analyse for the first time a
linear-time reduction program for cycle graphs and a linear-time program for checking connectedness based on depth-first
search.

Finally, it is worth noting that rooted rules per se are not a blueprint for imitating algorithms in imperative languages.
This is because GP2 intentionally does not provide access to the graph data structure of its implementation. Imperative
graph algorithms often exploit their access to the graph data structure, for example to quickly traverse the main node list
in an adjacency list implementation. In contrast, finding all nodes with graph transformation rules is costly because for
each rule application, the matching algorithm may have to re-visit many nodes that have been visited in previous rule
applications. A related issue is that in imperative algorithms, data structures such as stacks, priority queues, etc. can be
efficiently implemented by directly accessing the graph data structure. However, using a language such as GP2 requires to
encode data structures within host graphs, which can be difficult.

2. The graph programming language GP 2

This section introduces GP 2, a non-deterministic language based on graph-transformation rules, first defined in [9]. An
up-to-date version of the syntax of GP2 can be found in [22]. The language is implemented by a compiler generating C
code [18,20], and the source code is available on GitHub.?

2.1. Graphs and rules

GP2 programs transform input graphs into output graphs (Fig. 1), where graphs are directed and may contain parallel
edges and loops. Both nodes and edges are labelled.

We first give a generic definition of graphs which we later specialise into definitions of rule graphs and host graphs,
respectively.

2 https://github.com/UoYCS-plasma/GP2.
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Fig. 1. GP2 computational model.
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Fig. 2. GP2 subtype hierarchy.

Definition 2.1 (Graph). Let £ be a set of labels. A graph over L is a system (V,E,s,t,[,m), where V and E are finite sets
of nodes (or vertices) and edges, s: E— V and t: E — V are source and target functions for edges, [: V — L is the partial
node labelling function, and m: E — L is the (total) edge labelling function.

A graph is totally labelled if | is a total function. Unlabelled nodes will only occur in the interfaces of rules and are used
to relabel nodes. There is no need to relabel edges as they can always be deleted and reinserted with different labels.

Both nodes and edges are labelled with list expressions consisting of integers and character strings. This includes the
empty list as a special case; by convention, we draw such items in pictures without labels. Fig. A.40 in Appendix A defines
the labels that may occur in the graphs contained in rules. (In the following sections, however, we only need labels that are
variables of the most general type 1ist.)

We obtain the class of rule graphs by replacing the label set £ of Definition 2.1 with the set Label of rule graph labels.
Moreover, the class of host graphs consists of all totally labelled graphs over the set HostLabel of host graph labels as defined
by the grammar in Fig. A.41.

Labels are of type 1ist, atom, int, string or char, where atom is the union of int and string, and list is
the type of a list of atoms. Lists of length one are equated with their entries and similarly strings of length one are equated
with their entries. As a consequence, every expression of category Atom, Integer, String or Char as defined by the grammar
in Fig. A.40 can be considered as a list expression. The subtype hierarchy of GP 2 is shown in Fig. 2.

The concatenation of two lists x and y is written x:y (not to be confused with Haskell’s colon operator which adds an
element to the beginning of a list). Character strings are enclosed in double quotes.

Besides carrying expressions, nodes and edges can be marked red, green or blue. In addition, nodes can be marked grey
and edges can be dashed. For example, rule push in Fig. 18 contains red and grey nodes and unmarked edges. Nodes
and edges in rules can also be marked magenta, which allows the mark to be bound to any mark at the point of rule
instantiation. Marks are convenient, among other things, to record visited items during a graph traversal and to encode
auxiliary structures in graphs. The programs in the following sections use marks extensively.

The principal programming construct in GP2 are conditional graph transformation rules labelled with expressions. For
example, the rule up in Fig. 23 has three formal parameters of type 1ist, a left-hand graph and a right-hand graph which
are specified graphically, and a textual condition starting with the keyword where. The small numbers attached to nodes
are identifiers, all other text in the graphs consists of labels. The formal definition of rules makes use of the following subset
of list expressions, which specifies what expressions may occur in the left-hand graph of a rule.

Definition 2.2 (Simple expression). A list expression e is simple if (1) e contains no arithmetic, degree or length operators
(with the possible exception of a unary minus preceding a sequence of digits), (2) e contains at most one occurrence of a
list variable, and (3) each occurrence of a string expression in e contains at most one occurrence of a string variable.

We call a label simple if its list expression is simple. We can now define GP 2’s conditional graph transformation rules.

Definition 2.3 (Rule). A rule (L < K — R, c) consists of totally labelled rule graphs L and R, a graph K consisting of unla-
belled nodes only, where Vg C V; and Vg C Vg, and a condition ¢ according to the grammar of Fig. A.42. We require that
all labels in L are simple and that all variables occurring in R also occur in L. In addition, all variables occurring in ¢ must
also occur in L.
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When a rule is declared, such as up in Fig. 23, graph K is implicitly represented by the node identifiers in L and
R (which much coincide). Nodes without identifiers in L are to be deleted and nodes without identifiers in R are to be
created.

The constraint that all variables in R must also occur in L ensures that for a given match of L in a host graph, applying
the rule produces a unique graph (up to isomorphism). Similarly, the evaluation of the condition ¢ has a unique result if all
its variables occur in L.

Next we introduce premorphisms which locate a rule’s left-hand graph in a host graph.

Definition 2.4 (Premorphism). Given graphs L and G, a premorphism g: L — G consists of two functions gy : V; — V¢ and
ge: E; — E¢ that preserve sources and targets, that is, S o gg =gy oSy and tg o gg = gy ot].

We also need to introduce assignments, which instantiate variables in labels with host graph values of the same type.

Definition 2.5 (Assignment). An assignment is a family of mappings @ = (@x)xeLals,cy where ap: LVar — HostList,
oa: AVar — HostAtom, «p: IVar — Hostlnteger, os: SVar — HostString, and o¢: CVar — HostChar. We may omit the sub-
scripts of these mappings as exactly one of them is applicable to a given variable.

Given a expression e € List, an assignment « and a premorphism g: L — G, the instance of e with respect to g and « is
obtained by (1) replacing each variable x with «(x), (2) replacing each node identifier n with gy (n), and (3) evaluating the
resulting expression according to the meaning of the operators in the grammar of Fig. A.40. The result is an expression in
HostList which we denote by e$:“.

For example, if e =x:1:x/2 and a(x) =3 then e¥% =3:1:1 (note that ‘[’ is integer division). If e = indeg(1)+
outdeg(1) then e&% is the sum of the indegree of gy (1) in G and the outdegree of gy (1) in G.

The evaluation of a condition ¢ with respect to g and « proceeds analogously to the evaluation of list expressions but
results in a value c&% which is either ‘true’ or ‘false’. For example, if ¢ = int(w) or edge(1,2) and a(w) = 1:2 then
c&% = true if and only if there is an edge in G from gy (1) to gv(2) (because int(w)8* = false).

Definition 2.6 (Compatibility). A premorphism g: L — G and an assignment « are compatible if for all nodes and edges u in
L, (1) if the label of u is an expression e € List, then the label of g(u) is e$:“, and (2) if the label of u has the form em with
e € List and m € Mark, then the label of g(u) has the form e$“m’ with m’ € HostMark such that m # any implies m =m’.

Now consider a rule (L < K — R, c), a premorphism g: L — G and an assignment « such that g and « are compatible.
Then the instance of R with respect to g and «, denoted by R$:“, is obtained from R by (1) replacing each label e € List
with e$* and (2) replacing each label em, where e € List and m € HostMark, with e&-“m.

Definition 2.7 (Rule application). A rule r = (L < K — R, c) is applied to a host graph G as follows:

1. Find an injective premorphism g: L — G and an assignment « such that g and « are compatible.
2. Check that g satisfies the dangling condition: no node in gy (V; — Vi) is incident to an edge in E¢ — gg(EL).
3. Check that ¢ = true.
4, Construct a host graph H from G as follows:
(a) Remove all edges in g¢(E;) and all nodes in gy (V) — gy (Vk), obtaining a subgraph D of G.
(b) Vy=Vp+ (Vg —Vg) and Ey = Ep + ER.
(c) For each edge e € Ep, sy(e) = sp(e). For each edge e € Eg, sy(e) = sg(e) if sg(e) € Vg — Vi, otherwise sy(e) =
gy (sr(e)). Targets are defined analogously.
(d) For each node v € Vp — gy (Vg), Iy(v) =Ip(v). For each node v € gy (Vg) with gy (V) = v, ly(v) =gz« (V). For
each node v e Vg — Vi, Ig(v) =lgea (V).
(e) For each edge e € Ep, my(e) =mp(e). For each edge e € Eg, my(e) = mpe.a(e).

We write G = ¢ H to express that H results from G by applying r with match g.

Alternatively, rule application can be defined as a two-stage process in which first the rule (L <~ K — R, c) is instantiated
to (L&Y <« K — R8%, &%) which is a conditional rule in the double-pushout approach with relabelling [23]. In the second
stage, the instantiated rule is applied to the host graph by constructing two suitable pushouts in the category of partially
labelled graphs. See [22] for details.

2.2. Programs

The grammar in Fig. 3 gives the abstract syntax of GP2 programs. A program consists of declarations of conditional rules
and procedures, and exactly one declaration of a main command sequence. The category RuleId refers to declarations of

4
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Prog ;= Decl {Decl}
Decl = RuleDecl | ProcDecl | MainDecl
ProcDecl ;= Procld ‘=’ [ [ LocalDecl ‘' ] ComSeq
LocalDecl ;= (RuleDecl | ProcDecl) {LocalDecl}
MainDecl := Main ‘=" ComSeq
ComSeq = Com {';’ Com}
Com = RuleSetCall | ProcCall
| 1f ComSeq then ComSeq [else ComSeq]
| try ComSeq [then ComSeq] [else ComSeq]
| ComSeq ‘!’ | ComSeq or ComSeq
| " ComSeq ‘) | break | skip | fail
RuleSetCall = Ruleld | /{’ [Ruleld {*; Ruleld}] ‘}’
ProcCall :=  Procld
Fig. 3. Abstract syntax of GP2 programs.
GP2 Program Input Graph
C Binary Output
GP 2-to-C GCC Execute E—
Program Graph

Fig. 4. GP 2-to-C compiler.

conditional rules in RuleDecl (whose syntax is omitted). Procedures must be non-recursive, they can be seen as macros
with local declarations.

We now describe GP2’s main control constructs. The call of a rule set {r1,...,r,} non-deterministically applies one of
the rules whose left-hand graph matches a subgraph of the host graph such that the dangling condition and the rule’s
application condition are satisfied. The call fails if none of the rules is applicable to the host graph.

The command if C then P else Q is executed on a host graph G by first executing C on a copy of G. If this results in
a graph, P is executed on the original graph G; otherwise, if C fails, Q is executed on G. The try command has a similar
effect, except that P is executed on the result of C’s execution.

The loop command P! executes the body P repeatedly until it fails. When this is the case, P! terminates with the graph
on which the body was entered for the last time. The break command inside a loop terminates that loop and transfers
control to the command following the loop.

In general, the execution of a program on a host graph may result in different graphs, fail, or diverge. This is formally
defined in Appendix B.

2.3. The GP2-to-C compiler

GP2’s primary implementation is a GP2-to-C compiler, and all our complexity assumptions are compatible with this
implementation. The original GP2 compiler is described in detail by Bak’s thesis [22], and recent modifications are described
in [20]. These modifications are important for two reasons. The first is that there have been significant changes to the
compiler’s generated code and runtime system which enable us to write reduction programs in GP 2 that are linear time on
graph classes of unbounded degree, which has not been possible before. The second important change is to the theoretical
model (and implementation) of root nodes and morphisms, requiring morphisms to reflect rootedness as well as preserving
it. We assume that all morphisms in this paper are rootedness reflecting.

As shown in Fig. 4 (which is a refined version of Fig. 1), GP2 programs are first compiled to C programs using the GP 2-
to-C compiler implementation, which are in turn compiled by GCC to a platform dependent executable. This executable then
reads an input graph from disk and executes the program, with one of four possible outcomes:

1. the program produces an output graph;

2. the program evaluates to fail;

3. the program encounters a runtime error;
4. the program diverges (does not terminate).

In this paper, we ignore runtime errors such as division by zero in a label operation, or the physical memory of the
machine being exhausted.

GP2 programs are graphically visualised throughout this paper. We now look at an example program which computes
the transitive closure of a graph (Fig. 5). The concrete syntax for the program is available on GitHub.?

The generated C code for this GP2 program:

3 https://gist.github.com/GrahamCampbell/c429491366119c898c9d1b5ad0459ab1.
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Main = link!

link(a,b,x,y,z:1list)

00 - T30

where not edge 1,3)

Fig. 5. GP2 program transitive-closure.

Procedure Description Complexity
alreadyMatched Test if the given item has been matched in the host graph. o(1)
clearMatched Clear the is matched flag for a given item. o(1)
setMatched Set the is matched flag for a given item. o)
firstHostNode Fetch the first node in the host graph. o(1)
nextHostNode Given a node, fetch the next node in the host graph. o(1)
firstHostRootNode Fetch the first root node in the host graph. o(1)
nextHostRootNode Given a root node, fetch the next root node in the host graph. o(1)
firstInEdge Given a node, fetch the first incoming edge. o(1)
nextInEdge Given a node and an edge, fetch the next incoming edge. o(1)
firstOutEdge Given a node, fetch the first outgoing edge. o(1)
nextOutEdge Given a node and an edge, fetch the next outgoing edge. o(1)
getInDegree Given a node, fetch its incoming degree. o)
getOutDegree Given a node, fetch its outgoing degree. o(1)
getMark Given a node or edge, fetch its mark. o(1)
isRooted Given a node, determine if it is rooted. o(1)
getSource Given an edge, fetch the source node. o(1)
getTarget Given an edge, fetch the target node. o(1)
parseInputGraph Parse and load the input graph into memory: the host graph. 0 (n)
printHostGraph Write the current host graph state as output. 0 (n)

Fig. 6. Runtime complexity assumptions.

1. reads and parses the input host graph;
2. applies the 1ink rule as long as possible;
3. returns the resulting host graph as output.

Looking at what it means to apply the 1ink rule as long as possible, we attempt to find a match satisfying the applica-
tion condition, and if we find one, we apply the rule, adding a fresh edge. We repeat this (zero or more times) until we can
no longer find a suitable match. Finding a match involves first finding a suitable node, then finding a suitable outgoing edge
to a suitable node, and then another suitable outgoing edge to a suitable node, and then checking the application condition.
We call this the matching algorithm. This is described in general by Bak [22] in his thesis, and updates to the algorithm are
defined in [21].

We conclude this subsection by stressing that the GP2-to-C compiler does not attempt to avoid program failure or to
generate more than one output graph. This would require backtracking which is only used in the rule matching algorithm
and in the implementation of rule sets (a rule set only fails if none of its rules can be matched). The compiler has been
deliberately designed not to backtrack in program execution, which is necessary for achieving the fast run times of this

paper.
2.4. Reasoning about time complexity

When analysing the time complexity of programs, we assume that these are fixed. This is customary in algorithm analysis
where programs are fixed and running time is measured in terms of input size [24,25]. In our setting, the input size is the
size of a host graph, which we define to be the total number of nodes and edges. We call the search plan [26] of a rule the
procedure generated to compute a match satisfying the application condition, if one exists. For details we refer to [22,20].

Fig. 6 shows the complexity of various low-level runtime operations used by the search plans of rules generated by the
GP 2 compiler, where n is the size of the current host graph.

Throughout the paper, we provide empirical evidence of the time complexity of programs, which includes the time
needed to read, parse, and load the input graph into memory, and also the time needed to write the output graph, but
not the time spent compiling the program. This evidence supports our complexity proofs and also gives confidence in the
accuracy of Fig. 6. Formal complexity analysis of those operations is beyond the scope of this paper, and all our complexity
results are relative to these basic complexities.

When we discuss the time complexity of programs, we will do this by reasoning about the complexity of the generated
code. When considering the complexity of rule applications, it suffices to only reason about the complexity of finding a
match because all the programs in this paper satisfy the assumption of the following lemma.

Lemma 2.8 (Constant time application). Once a match has been found for a rule that does not modify labels, other than perhaps
introducing a host graph label or changing marks, only constant time is needed to complete the process of building the result graph.
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Proof. Given a match of a rule (L < K — R, c) satisfying the dangling condition and the application condition, removing
the edges in g(L) and the nodes in g(L) — g(K) can be accomplished in time proportional to the size of L which is a
constant. Similarly, the addition of nodes and edges takes time proportional to the size of R — K which is also a constant.
Finally, relabelling is a constant-time operation if there are no repeated string or list variables in R. There are at most |V]|
nodes to be relabelled, so the execution time is proportional to |V|, a constant. O

When analysing the programs of this paper, by a step we mean a completed or failed rule application, the break opera-
tion, or the fail operation. While break and f£ail always finish in constant time, completed and failed rule applications
can often be shown to require only constant time by the specific properties of our rules (see below) and the preconditions
of some of our programs such as a bounded node degree in input graphs.

2.5. Rooted programs

The bottleneck for efficiently implementing algorithms in a language based on graph transformation rules is the cost
of graph matching. In general, to match the left-hand graph L of a rule within a host graph G requires time polynomial
in the size of L [17,18]. As a consequence, linear-time graph algorithms in imperative languages may be slowed down to
polynomial time when they are recast as rule-based programs.

To speed up matching, GP2 supports rooted graph transformation where graphs in rules and host graphs are equipped
with so-called root nodes. Roots in rules must match roots in the host graph so that matches are restricted to the neigh-
bourhood of the host graph’s roots. We draw root nodes using double circles. For example, in the rule prune of Fig. 18, the
node labelled y in the left-hand side and the single node in the right-hand side are roots.

A conditional rule (L = R, c) is fast if (1) each node in L is undirectedly reachable from some root, (2) neither L nor R
contain repeated occurrences of list, string or atom variables, and (3) the condition ¢ contains neither an edge predicate
nor a test e;=e, or e1!=e,; where both e; and e, contain a list, string or atom variable.

Conditions (2) and (3) will be satisfied by all rules occurring in the following sections; in particular, we neither use the
edge predicate nor the equality tests. For example, the rules prune and push in Fig. 18 are fast rules. Condition (1) is
violated by rules like init and match (see is-cycle, is-tree, or is-connected). Nevertheless, we will show that
these rules can be matched efficiently because they consist of a single node on the left-hand side.

Theorem 2.9 (Fast rule matching [17,18]). Rooted graph matching can be implemented to run in constant time for fast rules, provided
there are upper bounds on the maximal node degree and the number of roots in host graphs. In particular, the GP2-to-C compiler
produces programs that match fast rooted rules in constant time under the above conditions.

The left-hand side and interface of a rule together with application conditions determine the search plan at compile-
time. Theorem 2.9 gives a sufficient condition for a constant time search plan given some assumptions about the input
graph class including bounded degree. This approach is central to Section 4, however, it is too coarse to obtain sharp
bounds on complexity in general. This is why we must argue directly about matching complexity of some rules, determined
by the search plan and the complexity of the operations as given in Fig. 6. In particular, in Section 3, we wish to show
complexity results with input graph classes not necessarily of bounded degree.

3. Fast reduction programs

The aim of this section is to demonstrate that GP2 can recognise various graph classes in linear time, by means of simple
reduction specifications. As discussed in the previous sections, this is possible because GP2 makes root nodes available
to the programmer. We do not know of any other rule-based graph programming languages that can claim linear time
complexity for such tasks.

As well as providing proofs of complexity, we back-up our assumptions by timing the actual execution times of the
programs produced by the GP2-to-C compiler on various graph classes (Figs. 7, 8, 9, 10, 11, 12, 13 and 14). The concrete
syntax for all the programs in this section is available on GitHub.*

For the purposes of Section 3 only, we define:

Definition 3.1 (Input graph). An input graph is an arbitrarily labelled GP2 host graph such that:
1. every node is marked grey;

2. there are no root nodes;
3. there are no marked edges.

4 https://gist.github.com/GrahamCampbell/102eb8ec101ba87f6040ec2e9f3323a2.
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Fig. 7. Discrete graph. Fig. 8. Grid graph. Fig. 9. Binary tree.
Fig. 10. Star graph. Fig. 11. Cycle graph. Fig. 12. Sun graph.
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Fig. 13. Grid chain. Fig. 14. Linked list.

3.1. Recognising cycle graphs

The class of cycle graphs, up to labelling, consists of the graph containing one node and one edge, and graphs containing
n nodes, connected by a directed cycle, for all n > 2. It is reasonably straightforward to specify this class using reduction
rules, yielding a GP2 program (Fig. 15) which, given an input graph G, fails if and only if G it is not a cycle graph.

Notice that, while the number of rule applications is only linear in the size of input graph, the program need not
terminate in linear time, due to the fact that the time needed to find a match for each rule application need not be bounded,
as we discussed in Subsection 2.5. One of the novelties of GP2 is its adoption of root nodes, which are implemented with
pointers into the graph data structure. Using root nodes, we are able to direct the matching algorithm to only consider a
constant size subgraph of the input, giving us a program that is genuinely linear time (Fig. 16).

Even though this program is simple, we will prove its correctness and complexity now, to give a flavour of the style of
such proofs, in preparation for the later proofs. By total correctness of a program with respect to a specification, we mean
that on all graphs satisfying the input description, the program terminates with output satisfying the output description.

We must start by showing, by induction on derivation length, that the reduction rules red2 and red3 reduce a rooted
cycle graph to a 1-cycle, and no rooted input graphs, where by a rooted cycle graph, we mean a cycle graph with exactly one
of the nodes a root, and similarly for a rooted input graph.

Lemma 3.2 (Cycle reduction). Applying red2 and red3 to a non-empty rooted input graph G will terminate after |V¢| — 1 steps,
yielding a rooted 1-cycle graph if and only if G is a rooted cycle graph, and otherwise will yield a non-empty rooted input graph
which is not a rooted cycle graph.

Proof. Since both rules are size-reducing, reducing the number of nodes by 1, and require at least 2 nodes to be applicable,
we have termination after |V¢| — 1 steps.

For closedness, suppose first that G is a rooted cycle graph with n nodes. Then the application of either one of the rules
has the effect of transforming G into a rooted cycle graph with n — 1 nodes, if n > 1 and if n =1 the rules aren’t applicable.

If G is not a rooted cycle graph, then either the root node lies in a connected component that is a cycle graph, and the
application of one of the rules has the effect of reduction that connected component only, leaving the other components
alone, or there is only one connected component and it is not a cycle graph due to an additional edge present. Suppose that
extra edge is a loop, then red2 must not be applicable due to the dangling condition, and if that extra edge is a proper
edge, then red3 is either not applicable because the loop is on the root node, or red3 is applicable and preserves the
additional edge, so preserves the fact that the graph is not a rooted cycle graph. O

Theorem 3.3 (Correctness of is-cycle). The program is-cycle (Fig. 16) is totally correct with respect to the specification:

Input: An input graph.
Output:  Fail if and only if the input is not a cycle graph.
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Main = Reduce; Check
Reduce = {red3, red2}!; redl
Check = if match then fail

redl (a,x:1list) match(x:1list)
O - ORNO,
red2(a,b,x,y:1list) red3(a,b,x,y,z:1list)

GO - @ OO0 - @0

Fig. 15. GP2 program is-cycle-slow.

Main = init; Reduce; Check
Reduce = {red3, red2}!; redl
Check = if match then fail

init (x:1ist) redl (a,x:1list) match (x:1list)
-0 - 0-0
red2 ( a b,x,y:1list) red3(a,b,x,y,z:1list)

0 @ 666 - 00

Fig. 16. GP2 program is-cycle.

Proof. Termination follows from Lemma 3.2. It remains to show partial correctness. Suppose the input graph empty, then
init will not be applicable, and the program will terminate with fail. It remains to analyze the case where the input
graph is non-empty. Clearly, init will always be applicable, and will have the effect of rooting exactly one of the nodes of
the graph, producing a rooted input graph which is a rooted cycle graph if and only if the original input graph was a cycle
graph.

What happens next is that red3 and red2 are applied as long as possible. We know by Lemma 3.2 that the result
of this computation will be a rooted 1-cycle if the input graph was a cycle graph, and some non-empty non-cycle graph
otherwise. In the first case, red1 will be applied, deleting the graph, and then match will not be applicable, so the program
succeeds (with the empty graph as output). Otherwise, either it is the case that red1l is applicable and then match is too,
so the program fails, or red1 is not applicable, so the program fails. O

Lemma 3.4 (Complexity of init). init terminates in constant time on an input graph G.

Proof. The search plan will iterate all nodes in G looking for the first grey unrooted node. Testing if a node is unrooted and
grey takes only constant time (Table 6: isRooted, getMark). Since every node in an input graph is unrooted and grey, the
search will stop at the first node, or fail in constant time if G is empty. O

Lemma 3.5 (Complexity of Reduce). Reduce terminates in linear time with respect to the number of nodes in a rooted input graph
G.

Proof. First, we must argue that redl, red2 and red3 each take only constant time to either evaluate to £ail or produce
a result graph. Then by Lemma 3.2, we know that {red3, red2}! runs for only a linear number of steps, and each takes
only constant time. So Reduce must take only linear time, since it involves executing {red3, red2}! followed by red1.

The rule red1l is the simplest to analyze. The search plan will look for a root node, and find the first one in constant
time, and check that it is grey in constant time, which it is (Table 6: firstHostRootNode, getMark). Next, it will check
the incoming and outcoming degrees are both one in constant time (Table 6: get InDegree, getOutDegree). If they are
not, then the node is rejected and the search plan looks for another root node and determines there are no more in constant
time, and matching fails. If the degrees are correct, next the search plan grabs the first outgoing edge in constant time and
checks if it is unmarked and a loop (by comparing the source and target) in constant time (Table 6: firstOutEdge,
getMark, getSource, getTarget). If it is not, then matching fails as before. Otherwise, matching succeeds.

For red2, the search plan first looks at the root nodes in exactly the same way as for redil, with the same degree
checking and rejection handling. The first difference occurs when the search plan looks at the first outgoing edge. It instead
checks the edge is proper, also in constant time. It then checks, in constant time, that the target node is grey, unrooted, and
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Fig. 17. Measured performance of is-cycle. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

has incoming and outgoing degree one. If it is not, the root node is rejected, as before. Otherwise, the first outgoing edge
of the new node is grabbed in constant time and checking that it is unmarked and has the root node as a target occurs
in constant time. If it is not, then we must look for a new root node (Table 6: nextHostRootNode), as before, which
necessarily fails, and we stop in constant time.

The rule red3 will turn out to be constant time also, due to the important decision to make the non-interface node
the root node. Correctness would not have been impacted had we made a different node in the left-hand side graph the
root, but matching complexity would have been impacted! Initially, the search plan proceeds as in red1l, again, finding a
grey root with incoming and outgoing degree one. Next, the search plan grabs the first outgoing edge in constant time and
checks it is unmarked and proper in constant time, and that the target node is grey and unrooted. If this fails, then we
bailout, as usual, having to look for another root node which fails in constant time. If successful, we then due the dual for
the incoming edge of the root node in constant time (Table 6: firstInEdge). O

Lemma 3.6 (Complexity of Check). Check terminates in constant time on an rooted input graph G.

Proof. The search plan will iterate all nodes in G looking for the first grey unrooted node (Table 6: firstHostNode,
nextHostNode, getMark, isRooted). Testing if a node is unrooted and grey takes only constant time. The search plan
will only consider at most 2 nodes. There are three cases to consider. The first case is that the first node we consider is
what we want, and we stop. The second case is that the first node we consider is a root node and there are no other nodes,
so we stop. The final case is that the first node we consider is a root, and then the second node is the one we are looking
for. O

Theorem 3.7 (Complexity of is-cycle). The program is-cycle (Fig. 16) terminates in linear time with respect to the size of its
input.

Proof. Due to Lemma 3.4 init takes only constant time to either evaluate to fail, which stops the whole program, or
evaluate to a rooted input graph. Next, by Lemma 3.5 Reduce takes linear time in the number of nodes, either evaluating to
fail, which stops the whole program, or evaluates to a rooted input graph (Lemma 3.2). Finally, fail takes only constant
time by Lemma 3.6. O

Finally, we have collected empirical timing results for is-cycle, supporting our claim that the program runs in linear
time, even on graph classes that do not have bounded degree (Fig. 17).

3.2. Recognising trees

A tree is a graph containing a node from which there is a unique directed path to each node in the graph. It is easy
to see that it is possible to generate the class of all unlabelled trees by inductively adding new leaf nodes to the discrete
graph of size one, thus the class can be specified by graph reduction. The question of linear time recognition of trees was
partially solved by Campbell in 2019, producing a GP2 program to recognise trees in linear time, given the input class has
only bounded degree [27]. In this subsection we improve on this result, removing the bounded degree restriction.

Intuitively, our new program (Fig. 18) works by pushing a special root node to the bottom of a branch, and then prunes,
repeating the process as long as possible. If we start with a tree and run this until we cannot do it anymore, we must be
left with a single root node (Figs. 19 and 20).

10
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Main = init; Reduce!; Check
Reduce = try prune else (push; verify)
Check = if {match, loop} then fail
init (x:1list) prune (a,x,y:1list)

@C

where indeg (1

push(a,x,y:1list) verify(x:1list)

60 o0 @ ©

where indeg (1

match (x:1list) loop (a,x:1list)

-

Fig. 18. GP2 program is-tree.
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Fig. 19. Example tree reduction.

Fig. 20. Example forest reduction. Fig. 21. Example reduction with cycle.

Notice that we have used both grey and blue node colours. This is necessary in order to ensure termination. Consider an
input graph that is not a tree, say it contains a 2-cycle (Fig. 21). Then, we would have otherwise been able to push the root
node round and round forever! Leaving a trail of blue nodes behind us as we push prevents this from happening.

In order to prove correctness and complexity, we must first show some intermediate results. Using the fact that an
equivalent characterisation of a tree is a non-empty connected graph without undirected cycles such that every node has
at most one incoming edge, we can show that our reduction procedure preserves the property of either being a tree or
not being a tree. The additional verify rule is needed to make sure that we stay within linear time complexity, even on
graphs of unbounded degree.

Definition 3.8 (Live graph). A live graph (for the purposes of this subsection) is any graph that can be derived from an input
graph by applying init followed by zero or more applications of push or prune in any order, where these rules are given
in Fig. 18.

Lemma 3.9 (Live graph properties). Live graphs have exactly one blue root node, every other node either grey or blue, and all edges
unmarked.

Proof. The only rule that can change the number of root nodes is init. Now, init is always applied to a graph with
no root nodes, so necessarily must increase the number of root nodes by exactly one. No rules have marked edges in their
RHSs, and similarly, have only grey and blue nodes in their RHSs. O

Lemma 3.10 (Tree reduction). Reduce is a refinement of {push, prune}. Thatis, if G = requce H, then there must either be a
direct derivation G = pusn H or G = prune H. Moreover, G is a tree if and only if H is.

Proof. For the first part, the observation to make is that the verify rule does not modify graphs. Its only purpose is to
possibly evaluate to fail. So, the result then followings from the definition of try.

For the second part, it suffices to show that prune and push preserve the property of being a (non-)tree. Clearly push
does not modify the structure of graphs, so we just need to analyse prune, which has the effect of deleting an edge and

11
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its target only when the target has no other incident edges. If G is a tree, then H is also a tree, since all we have done is
deleted a leaf node. If G is not a tree, then H must also not be a tree, since if G was disconnected, H must be too, and if G
has any undirected cycles, then they cannot have passed through the deleted node due to the condition on other incident
edges, so H has the same undirected cycles as G, and if G node with incoming degree at least 2, then so must H since the
incoming degree of all the remaining nodes in H is the same as in G and the deleted node had only incoming degree 1. O

Definition 3.11 (Blue paths and cycles). A blue path (cycle) is a path (cycle) in a graph with all nodes blue. The length of a blue
path (cycle) is the number of edges.

Lemma 3.12 (Live graph blue paths). Given a live graph, then:

(P1) There is a unique blue node with incoming degree zero, and all other blue nodes have incoming degree one;
(P2) There are no blue cycles, only blue paths;
(P3) All maximal blue paths start from the incoming degree zero node and end at the root node.

Proof. First, note together with Lemma 3.9, this means there is exactly one maximal blue path in each live graph (the
maximum blue path), otherwise, there would either be a blue cycle or a node with incoming degree of at least 2. Now, to
show the properties, we will proceed by induction on derivation length.

Let I be an arbitrary input graph and [ =;ni+ G. I and G are the two base cases we must check. By definition, I satisfies
the properties. To see that G does, note that all nodes in G must be grey and unrooted apart from one blue root node with
incoming degree 0, due to the application condition of init.

Suppose now that we have I =init G =}, H with H satisfying the properties by inductive hypothesis. We now
consider the two possible cases for the successor graph to H. By Lemma 3.10, we have either H =pyune M or H =usn M.

In the first case, M is exactly H but with the bottom of the maximal path deleted and the new bottom node rooted.
There is necessarily no blue child of the new root in M, since this would contradict the uniqueness of the original maximal
path in H. Since the incoming degree of every remaining node is left unchanged, we conclude that all of the properties
hold, as required.

In the second case, M is exactly H but with the bottom of the maximal path extended along an existing edge to an
existing previously grey node, becoming the unique blue root in M. Suppose by contradiction that this root had a blue
child, then once again this contradicts the uniqueness of the maximal path on H. Since the incoming degree of every node
is unchanged and the application condition of verify ensures our replacement root has incoming degree at most 1, then
we conclude that all of the properties hold, as required. O

Lemma 3.13 (Live tree reduction). Given a live tree G, then either G is a single blue root node, or Reduce is applicable.

Proof. Suppose G is a live tree. Then by Lemma 3.9, it has a blue root node. If this is the only node G, then G must
necessarily be discrete: G is a single isolated blue root node. Alternatively, if G has more than one node, then either this
root node has outgoing degree 0 or not. We must analyze these two cases.

If the root has no outgoing edges, then it must have incoming degree 1 since G is a tree with at least 2 nodes. But then
by Lemma 3.12, there must be a blue node above it, so prune must be applicable. Thus, Reduce is applicable, as required.

If the root has at least one outgoing edge, then by Lemma 3.12, all of the nodes below it are grey, so push must be
applicable. Then, since the result is a tree, due to Lemma 3.10, we know that verify is always applicable, since all nodes
in a tree of incoming degree at most 1. Thus, Reduce is applicable, as required. O

Lemma 3.14 (Intermediate termination and complexity result). Call the entire application of init or Reduce a single computation
step, let G be an input graph with n nodes, and define P to be the program init; Reduce!. Then P terminates after at most
max(1,2(n — 1)) steps on G.

Proof. Define the weight w(G) of G to be 2g + b where g is the number of grey nodes in G and b the number of blue
nodes in G.

From an input graph G, we either have G = ini+ fail, or G =;inic H, where H is a live graph. In the first case, the
program has terminated after 1 step, and we're done. In the second case, we have performed one step to derive H, and
next we can proceed to apply Reduce as long as possible. By Lemma 3.10, Reduce has the same effect as applying either
prune or push. Both of these decrease the weight of the graph by exactly 1, and can only be applied to graphs of at least
weight 2, so Reduce can be applied at most 2n — 3 times.

Thus P, terminates after 1 step on input graphs of weight less than 2, and otherwise terminates in 14+ (2n—3)=2(n—1)
steps, as required. O

Lemma 3.15 (Correctness of Check). Check evaluates to fail on any graph G if and only if G has size strictly greater than one.

12
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Proof. {match, loop} passes if and only if G has at least two nodes, or a loop, which happens exactly when the size of
G is at least two. The result then follows from the fact that Check fails if and only if {match, loop} passes. O

Theorem 3.16 (Correctness of is-tree). The program is-tree (Fig. 18) is totally correct with respect to the specification:

Input: An input graph.
Output:  Fail if and only if the input is not a tree.

Proof. Termination follows from Lemma 3.14. To see partial correctness, let G be an input graph. We break down our proof
into two cases.

First, suppose G is empty. Then init evaluates to fail, and thus Main evaluates to fail, as required.

Next, suppose G is non-empty and not a tree. Then, if init evaluates to fail (such as because G is empty), then
Main evaluates to fail, as required. Otherwise, init must have evaluated to a live graph, then by Lemma 3.10, Reduce!
will evaluate to a non-tree, which is non-empty by Lemma 3.9. Finally, by Lemma 3.15, the subprogram if Check then
fail must evaluate to £ail, since it was fed a graph of size at least 2.

Finally, suppose G is a tree. Then init is necessarily applicable, producing a live tree. By Lemmas 3.10 and 3.13, Re-
duce! produces a graph of size 1, so by Lemma 3.15, the subprogram if Check then fail must not evaluate to fail,
as required. O

Recall from Lemma 2.8 that all rules that do not modify labels have constant time application, once a match has been
found. All rules of is-tree satisfy this condition, so in our remaining proofs, we omit reasoning about application com-
plexity, only discussing matching time complexity.

Lemma 3.17 (Complexity of init). init terminates in linear time with respect to the number of nodes in an input graph G.

Proof. The search plan will iterate all the nodes in G looking for the first unrooted grey node with incoming degree 0.
Testing if a node is unrooted, grey and has incoming degree 0 is only constant time, so matching takes linear time in the
worst case, to either find a match satisfying the application conditions or determine there is no such match. O

Lemma 3.18 (Complexity of Reduce). Reduce terminates in constant time on a live graph G.

Proof. First, the program will try to find a match for prune. If it succeeds, there is no more time needed for matching.
Otherwise, it will next try to find a match for push. If it succeeds, the only other matching code to run is that of verify
on the result H of applying push to G.

When trying to find a match for prune in G, first we identify the root in the rule LHS with the root in G (which exists
by Lemma 3.9), in constant time. We then check the root is blue in constant time, which it will be by Lemma 3.9. Next, we
check that the root has outgoing degree 0 and incoming degree 1 in constant time. If it doesn’t, then we must look for a
second root node in G, which doesn’t exist by Lemma 3.9. We detect this in constant time, then fail. Otherwise, the root
necessarily has a proper incoming edge. The program will check the edge is unmarked, in constant time (and it will be by
Lemma 3.9) and checks that the source node is blue, in constant time (which it will be by Lemma 3.12. We have now found
a match (or not) in constant time.

When trying to find a match for push in G, first we identify the root in the rule LHS with the root in G (which exists
by Lemma 3.9), in constant time. We then check the root is blue, in constant time, which it will be by Lemma 3.9. Next,
we check the root has outgoing degree a least 1, in constant time. If it doesn’t, then we must look for a second root node
in G, which doesn't exist by Lemma 3.9. We detect this in constant time, then fail. Otherwise, by Lemma 3.12, the first
outgoing edge we consider must be proper and unmarked. After verifying this, in constant time, we then look at the target
node, and check it is grey, in constant time. We have now found a match (or not) in constant time.

Finally, when trying to find a match for verify in H. We identify the root in the LHS of the rule with the root in H
which exists and is blue by the definition of push and the fact that H was the result of applying push to a live graph which
had exactly one root by Lemma 3.9. We can now check the root is blue and has incoming degree at most 1 in constant
time. If this fails, then we look for another root, and once again, don'’t find one, in constant time. O

Lemma 3.19 (Complexity of Check). Check terminates in constant time on a live graph G.

Proof. The matching time of {match, loop} is the sum of the matching time of match and match given that match
was not applicable, which tells us there are no proper edges.

For match, we just match the first non-root of G, in constant time. If there are fewer than two nodes, then we fail, in
constant time.

For 1loop, matching only ever happens if there is at most one node in G, and so clearly, we can check for the presence
of a looped edge in constant time.

Thus, Check terminates in constant time, as required. O

13
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Fig. 22. Measured performance of is-tree.

Theorem 3.20 (Complexity of is-tree). The program is-tree (Fig. 18) terminates in linear time with respect to the size of its
input.

Proof. Let G be the input graph. Due to Lemma 3.17 we have that init takes only linear time with respect to the number
of nodes in G, and it is only applied once, from the definition of the program. By Lemma 3.18 we have that Reduce takes
only constant time and by Lemma 3.14 is applied only a linear number of times with respect to the number of nodes in
G. Finally, by Lemma 3.19 we have that Check takes only constant time. Thus is-tree terminates in linear time with
respect to the size of G because we have shown the stronger statement that Main terminates in linear time with respect
to the number of nodes in G. O

Just as with the is-cycle program, we have collected empirical timing results for is-tree, supporting our claim that
the program runs in linear time, even on graph classes that do not have bounded degree (Fig. 22).

Finally, we conjecture it is possible to implement this program without needing to use blue nodes, since termination
follows from the application conditions preventing the root node from entering a cycle in a graph, which is the only way in
which the program may not terminate. We have omitted this program due to the correctness argument being much more
fiddly, and the time complexity (and runtime performance) no better.

3.3. Recognising binary DAGs

Recall that a directed acyclic graph (DAG) is a graph containing no directed cycles. A DAG is binary if each of its nodes has
an outgoing degree of at most two. In this subsection, we present a GP2 program (Fig. 23) that can recognise binary DAGs
in linear time.

The program works by finding an incoming degree zero node, then removing it and its edges, if it has the outgoing edges
one would expect. This process can be repeated until the entire graph has been deleted, if we have a binary DAG as input
(Fig. 24). Otherwise, the program necessarily encounters a situation in which reduction cannot continue, and evaluates to
fail (Fig. 25). Termination is ensured by dashing edges we have visited when searching for an incoming degree zero node.

As with the tree recognition program, we show correctness and complexity, including empirical timing results (Fig. 26).

Definition 3.21 (Live graph). A live graph (for the purposes of this subsection) is any graph that appears as an intermediate
host graph in the process of executing is-bin-dag on an input graph. Moreover, call a live graph:

1. unrooted if it has no root nodes;

2. grey-rooted if it has exactly one grey root node;
3. white-rooted if it has exactly one unmarked root node.’

Lemma 3.22 (Live graph properties). Let G be a live graph. Then:

1. G is either unrooted, grey-rooted, or white-rooted.
2. All nodes are grey apart from possibly the root node and all edges are either unmarked or dashed.

5 Unmarked nodes are depicted as white nodes.
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Main = (init; Reduce!; Guard)!; Check

Reduce = up!; try Delete else set_flag

Delete = {dell, dell d, del2l, del2l d, del22, del22 d, del0}
Guard = if flag then break

Check = if flag then fail

init(x:1list) up(a,x,y:1list)

e 00 - 00

where outdeg(1l)<3
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Fig. 23. GP2 program is-bin-dag.

= = = = = = P
init del22 dell delo init delo

Fig. 24. Example tree reduction.

Fig. 25. Example cycle reduction.
3. Each node has at most two incoming dashed edges and at most one outgoing dashed edge.

Proof. First, we check that any input graph G satisfies all three properties. This is easy to see since G must be an unrooted
graph with all nodes grey and all edges unmarked, so all of the three conditions are satisfied. Next, we analyse what
happens to the procedure init; Reduce!; Guard. To show that (init; Reduce!; Guard)(G) is either fail or
an unrooted live graph if G is an unrooted live graph, it is sufficient to show the result by induction on the number of
iterations of Reduce since Check does not modify the host graph and the input graph is unrooted.

It is clear that Go = init(G) is either fail or G but with one node turned into a grey root node. We claim that
(Reduce !)(Gp) is either an unrooted live graph or a white-rooted live graph. To see this, we argue by induction on the
number of iterations, showing that G;11 = (Reduce!)(G;) is either fail or a graph satisfying the 3 properties of the
lemma, and that if it is fail, then G;;q must additionally be either unrooted or white-rooted. G; = (up!)(G;) must
satisfy the 3 properties since up’s application condition prevents the 3rd property from being violated, leaving behind a
grey-rooted graph. Next, try Delete else set_flag(G}) clearly either must be the same graph only with the grey
root either deleted or unmarked so the conditions are satisfied, as required. Finally, let H = (init; Reduce!)(G). Then
Guard(H) is either H or fail. O
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Fig. 26. Measured performance of is-bin-dag.
Lemma 3.23 (Reduce is structure preserving). Given a live graph G and G = reguce H, then G is a binary DAG if and only if H is.

Proof. We can totally ignore the rootedness and colour of nodes, and the marks of edges for the purposes of this proof,
since the same program that operates ignoring everything in this way is certainly compatible, just need not terminate. Since
init, up, set_flag and £lag do not modify the graph structure, then all we need to check is that the 7 remaining rules
(ignoring the rootedness, colours, and labels) each individually preserve being a binary DAG and not being a binary DAG,
and this is enough to show the result. It is clear that they preserve being a binary DAG, since all of the rules only delete
nodes and edges.

To see that delo preserves not being a binary DAG is easy, since deleting an isolated node is safe (the remaining
connected component is not a binary DAG). Looking at del1, if the input G is not a binary DAG and the rule is applicable,
then the dangling condition ensures that the root node has no incoming edges and only one outgoing edge. Now, if G is not
a binary DAG then either it has a directed cycle, or a node with outdegree at least 3. The matched root node must not lie
on said cycle, nor does it have such outdegree, so removal of the node with its single outgoing edge must leave the directed
cycle in place and also the node with outdegree at least 3. The argument for the remaining rules is almost identical. O

Lemma 3.24 (Termination of is-bin-dag). On every input graph G, the program is-bin-dag terminates in O(size(G)) steps.

Proof. Given any host graph G, let ug(G) be the number of unrooted grey nodes in G, g(G) be the number of grey nodes
in G, and ue(G) be the number of unmarked edges in G. Define #G = ug(G) + g(G) + ue(G). Then

0 <#G <2 x |V¢| + |Ec| <2 x size(G). (1)

By inspection of the rules in is-bin-dag, we have

G =r> H implies #H = #G — 1forr € {init, up, set_flag} (2)
and
G = Himplies #H <#G — 1. (3)
Delete

Claim. On every host graph G, the loop Reduce ! terminates after at most 2 x size(G) successful executions of Reduce.

Proof. By (2), the inner loop up! terminates as each application of up decreases the #-value which cannot get nega-
tive. Moreover, by (2) and (3), the command try Delete else set_ flag either decreases the #-value (if Delete or
set_flag is applied) or terminates the loop (if both Delete and set flag fail). As the #-value cannot get negative, it
follows that Reduce! must terminate. The number of successful executions of Reduce is at most 2 x size(G) because by
(3) and (2), both Delete and set_ flag decrease the #-value, and 0 <#G <2 x size(G) by (1). O

We now show that on every live graph G, (init; Reduce!; Guard) ! terminates in O(size(G)) steps. This finishes
the proof as the execution of Check requires at most two steps.

By (2) and (3), each application of init decreases the #-value and none of the rules in Reduce or Guard increases
the #-value. Hence each successful execution of the loop body decreases the #-value. Together with the Claim and (1), this
implies that the loop terminates after at most 2 x size(G) successful executions of its body.
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Hence, in total, both init and flag are applied at most 2 x size(G) times. In addition, there may be one failed
application of init or one execution of break.

By (2), (3) and (1), the rules up and set_ flag and the rule set Delete are each applied at most 2 x size(G) times
in total. Each application of Delete involves up to six failed applications of rules from the set. Also, there are at most
2 x size(G) 4+ 1 failed applications of up because, by the Claim, there are at most 2 x size(G) successful executions of
Reduce. By the same argument, there are at most 2 x size(G) + 1 failed applications of both set flag and Delete. Each
failed application Delete amounts to seven failed rule applications.

Thus, altogether, the loop (init; Reduce!; Guard) ! terminates in a number of steps that is linear in size(G)). O

Theorem 3.25 (Correctness of 1 s-bin-dag). The program is-bin-dag(Fig. 23)is totally correct with respect to the specification:

Input: An input graph.
Output:  Fail if and only if the input is not a binary DAG.

Proof. Termination follows from Lemma 3.24. We claim that if the input graph is a binary DAG, then the program eval-
uates to the empty graph, and otherwise, evaluates to fail. In particular, this means the subprogram (init; Reduce!;
Guard) ! must evaluate to the empty graph, or a white-rooted live graph, respectively. We argue by induction of the number
of iterations of the outer loop. Suppose the loop runs no times. Then init failed, so the input graph was empty, so the
subprogram evaluates to the empty graph. Suppose we can make progress, but Guard causes a break. Then init must be
executed, followed by Reduce zero or more times, then £1lag must be applicable, meaning the result must be a white-
rooted live graph. By Lemma 3.23, this means the input graph cannot have been a DAG. Finally, if we can make progress,
and no break is executed, then we are ready to try to run another iteration, and again by 3.23, this particular iteration has
preserves both properties, being and not being a binary DAG. Suppose now that the loop has run n times. If the loop cannot
run again, then we repeat the argument above. Similarly, if we can make progress, then the argument above follows too. O

Lemma 3.26 (Complexity of init). init terminates in constant time on an unrooted live graph G.

Proof. Exactly the same as the proof of Lemma 3.4. The search plan will iterate all nodes in G looking for the first grey
unrooted node. Testing if a node is unrooted and grey takes only constant time. Since every node in an input graph is
unrooted and grey, the search will stop at the first node, or fail in constant time if G is empty. O

Lemma 3.27 (Complexity of up). up terminates in constant time on a live graph G.

Proof. The search plan will look for a root node. If there are no root nodes, matching immediately fails. Otherwise, the first
root node is located in constant time, and the check that it is grey takes constant time. If it is not grey, then the matching
algorithm will look for the next root node, and determines there are no more (Lemma 3.22) in constant time, and matching
fails. In the case that the matching algorithm has determined the root node is grey, it will then check that the incoming
degree is at least one and the outgoing degree is at most two (our application condition), which takes only constant time.
If the degree checks fail, then the search plan looks for another root node, as before.

If the degrees are correct, next the search plan grabs the first incoming edge in constant time and checks if it is unmarked
and proper in constant time. If it is not, then we grab the next incoming edge in constant time. Due to the fact that the
outgoing degree is at most 2, there can only be at most two looped edges and due to Lemma 3.22, there can only be at
most two proper edges that are not unmarked. So, we know that the search plan will find a suitable edge after a bounded
number of attempts. After finding a suitable edge, the search plan then checks the source node is grey and unrooted in
constant time, which it will be. O

Lemma 3.28 (Complexity of Delete). Delete terminates in constant time on an live graph G.

Proof. Delete takes at most as long as the sum of the time needed for del1l, delld, del21, del21d, del22, del22d,
delo.

We start with delo, the simplest. The search plan will look for a root node. If there are no root nodes, matching
immediately fails. Otherwise, the first root node is located in constant time, and the check that it is grey takes constant
time. If it is not grey, then the matching algorithm will look for the next root node, and will not find any more (Lemma 3.22)
in constant time, and matching fails. In the case that the matching algorithm has determined the root node is grey, it will
then check that the incoming and outgoing degrees are zero, in constant time. If they are, we're done, and if not we must
look for another root node, as before.

For dell and dell_d, the search plan will look for a root node. If there are no root nodes, matching immediately fails.
Otherwise, the first root node is located in constant time, and the check that it is grey takes constant time. If it is not grey,
then the matching algorithm will look for the next root node, and determines there are no more (Lemma 3.22) in constant
time, and matching fails. In the case that the matching algorithm has determined the root node is grey, it will then check
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Main = try init then (DFS!; Check)
DFS = forward!; try back else break
Check = if match then fail

init (x: llSt match(x:1ist)
forward(a,x,y:1list) back ( :list)

0@ @-—0

Fig. 27. GP2 program is-connected.

that incoming degree is zero and outgoing degree is one, in constant time. If they are not, we must look for another root
node, which fails in constant time. Otherwise, we grab the first outgoing edge in constant time, and check that it has the
appropriate mark and is proper. If it is not, we proceed to look for the next root node, as before. Otherwise, we then check
the target node of the edge is grey and unrooted. If not, we return to looking for the next root, as before.

The story for the remaining rules is similar. The first difference is that the initial outgoing degree check is for exactly
two, and an additional edge must be matched. For del21 and del21 d, the search plan additionally checks of the second
edge at the end, and for del22 and del22 d the process of checking for a second edge and target node is just an exact
repeat of what happened for the first edge and target node. O

Lemma 3.29 (Complexity of set_flag). set_flag terminates in constant time on an live graph G.

Proof. The search plan will look for a root node. If there are no root nodes, matching immediately fails. Otherwise, the first
root node is located in constant time, and the check that it is grey takes constant time. If it is not grey, then the matching
algorithm will look for the next root node, and find there are no more (Lemma 3.22) in constant time, and matching
fails. O

Lemma 3.30 (Complexity of f1ag). Guard and Check both terminate in constant time on a live graph G.

Proof. Guard and Check take only as long as £1ag. £1ag’s search plan will look for a root node, and find the first one in
constant time, and check that it is unmarked in constant time. If it is unmarked, then matching succeeds. If it is not, then
we look for the next root node, and find there is no other root node in constant time (Lemma 3.22), and fail. O

Theorem 3.31 (Complexity of is-bin-dag). The program is-bin-dag (Fig. 23) terminates in linear time with respect to the size
of its input.

Proof. Lemma 3.24 tells us that there is only a linear number of steps and Lemma 3.22 and its proof tells us that the
conditions under which the rules can be matched in constant time (Lemmata 3.26, 3.27, 3.28, 3.29, and 3.30) is always
preserved. Thus, we have the required result. O

4. Fast DFS-based programs

In this section we will review (undirected) DFS (depth-first search) in GP2, first implemented by Bak and Plump [17,22,
18]. We will observe, by means of an introductory example, how it can be used to recognise connected graphs. We then
consider the 2-colouring problem, producing a topological sorting for a connected DAG, and how to recognise a connected
DAG. The concrete syntax for all the programs in this section is available on GitHub.®

4.1. Recognising connected graphs using DFS

The program is-connected (Fig. 27) can detect the connectedness of a graph. It fails if and only if its input graph is
not connected. This can be achieved by conducting a DFS that turns grey nodes into non-grey ones. Since the DFS cannot
propagate beyond the connected component it started in, the presence of a grey node indicates that the host graph is not
connected.

First, we show correctness, by rigorously defining what we mean by an input graph, and then showing some intermediate
results.

6 https://gist.github.com/GrahamCampbell/79f0f62c50d7de5e7ba739ad5d4581e5.
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Definition 4.1 (Input graph). An input graph (for the purposes of this subsection) is an arbitrarily labelled GP 2 host graph such
that:

1. every node is marked grey;
2. every node is unrooted;
3. every edge is unmarked.

Lemma 4.2 (Invariant of i s-connected). Throughout the execution of the program is-connected on an input graph, all non-
grey nodes in the host graph are in the same connected component.

Proof. The rule init is only called at the start of the program, and turns a grey node into a non-grey one. Subsequently,
only applications of forward can turn grey nodes into non-grey ones, and only if init was successfully applied. The rules
back and match do not modify the number of non-grey nodes. Every rule preserves the structure of the host graph up to
marks and rootedness. Let us inductively show that the invariant is satisfied.

If init is applied at the start of the program, it introduces a single blue node into an input graph, which does not violate
the invariant. If init fails, forward is never called, and the invariant is trivially satisfied due to a lack of successful rule
applications.

Assume by induction that the invariant holds on the current host graph. An application of forward turns node 2 in
the rule’s left hand side blue. However, forward can only be applied if said node is adjacent to an existing blue node 1.
Hence it shares a connected component with the other non-grey nodes. 0O

Lemma 4.3 (Termination of i s-connected). On any host graph, the program is-connected terminates.

Proof. Since the loop body of forward! consists of a single rule, forward either applies and reduces the number of grey
nodes in the host graph, or fails to find a match and terminates the loop. At some point, since the host graph is finite, there
are no grey nodes left, and forward cannot match, terminating the loop.

For the termination of the loop DFS!, consider a couple #(G) consisting of the number of grey nodes of a host graph G,
and the number of dashed edges of G in that order. By reducing the measure # we mean that after changing a host graph
G to a graph H, we have #(G) > #(H) with respect to the lexicographical ordering, i.e. (a,b) < {(c,d) if either a < c or both
a=cand b <d.

When calling DFS on a host graph G, because of try back else break, either back is applied, or the loop termi-
nates. When back is applied, the measure # is reduced. Indeed, if forward is applied at least once the number of grey
nodes is reduced (back does not modify the number of grey nodes). And if forward is not applied, the number of grey
nodes remains the same, but the number of dashed edges decreases.

Due to host graphs being finite, # cannot be reduced anymore at some point, which means back cannot be applied.
Hence break is invoked and the loop terminates. O

Lemma 4.4 (Existence of a non-grey connected component). In the output graph of try init then DFS! executed on an input
graph, there is a connected component consisting only of non-grey nodes.

Proof. The lemma is trivially true for an empty input graph. In the case of an input graph consisting of a single node, init
marks the entire graph non-grey, satisfying the lemma. So we can assume the input contains at least two nodes.

Assume for the sake of a contradiction that all connected components have at least one grey node in the output graph.
Since the input is nonempty, init is applied. Consider the connected component of the node init was applied to. Let
u and v be non-grey and grey nodes of the output graph that are adjacent, respectively. They exist because they share a
connected component that has at least one non-grey node (application of init) and at least one grey node (assumption).
We aim to show that u and v are matched by forward during the execution, contradicting our assumption.

If u is unmarked, it must have been matched by back. Right before that happened, u must have been a blue root,
and forward cannot have been applicable to it (note that there is at most one root in the host graph at any given time).
However, since v is grey and adjacent to u, forward must have been applicable, which is a contradiction. So we may
assume u is blue.

Since u is blue in the output graph, it must have been matched by either init or forward at some point. Either
way, after the rule application, u is a blue root, and the program is executing the loop forward!. Since forward can be
applied to u and v, u must have an unmarked neighbour w different from v, otherwise v is marked blue.

For the next argument, let us take a look at the data structure the program creates. The dashed edges form a path of
blue nodes, where a node at an end is rooted. This can be seen as a stack of blue nodes, where the root represents the top.
Indeed, init initialises the stack, forward implements the push operation, and back the pop operation. Note however
that back leaves the popped node with a blue mark, meaning it cannot be pushed again. This prevents the path from
becoming a cycle, and also means that throughout the execution of DFS!, the number of blue nodes is reduced. Since the
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host graph has finitely many nodes, forward is not applicable anymore at some point, due to unmarked nodes reachable
by forward being gone. So eventually, only back can be applied, popping the top of the stack until the loop terminates.

Coming back to u, v, and w, this reasoning can be applied to the loop DFS! from the point where u is first rooted
onward, in the subgraph of the nodes reachable from w without going through u. By that reasoning, at some point, the
top of the stack is popped until u is the top again. When this happens, back is applied and the loop DFS! enters its next
iteration, which starts with forward!. This leaves us in the same situation as previously, where we must assume u has
another unmarked neighbour, distinct from v and w. However at some point, there will be no unmarked neighbours to
apply the previous argument to (since host graphs are finite), so v will have to be matched by forward, contradicting our
assumption. O

Finally, we show correctness and complexity of is-connected.

Theorem 4.5 (Correctness of is-connected). The program is-connected (Fig. 27) is totally correct with respect to the specifi-
cation:

Input: An input graph.
Output:  Fail if and only if the input consists of more than one connected component.

Proof. Termination follows from Lemma 4.3. For correctness, first assume input graph G has no connected components, i.e.
G is the empty graph. Then init cannot be applied, and the procedure Check is called. The rule match cannot be applied
either, so the program terminates without failing.

Assume G has exactly one connected component. We know by Lemma 4.3 that DFS! terminates. Furthermore, by
Lemma 4.4, the output H of try init then DFS! has a connected component whose nodes are blue. Since no rule
adds or deletes nodes or edges, H is isomorphic to G ignoring marks and roots. Hence the blue connected component must
be the entirety of H. The procedure Check is called, and match cannot find a match in a graph containing only blue nodes.
Hence is-connected does not fail.

Assume G has more than one connected component. The loop DFS! still terminates by Lemma 4.3. Furthermore, by
Lemma 4.4, the output H of try init then DFS! has a connected component C with blue nodes. Since by Lemma 4.2,
all blue nodes share the same connected component, and since H consists of more than one connected component, there is
a grey node in H — C. Hence the rule match matches and the program fails. O

Let us now examine the complexity of is-connected.

Theorem 4.6 (Complexity of i s-connected). On a class of bounded degree input graphs, the program is-connected (Fig. 27)
terminates in linear time with respect to the size of its input.

Proof. To prove this theorem, we show that for each rule, the number of calls during an execution multiplied with its
matching complexity is linear.

The rules init and match have at most linear matching time since they only need to match a single node. They are
also only called once.

In order for Theorem 2.9 to be applicable, there can only be a constant number of roots in the host graph. This is indeed
the case. The only rule that does not preserve the number of roots is init, which is only called once. So the host graph
can have at most one root at any time.

The rules forward and back are fast rules, and hence match in constant time by Theorem 2.9.

Let us show that back is called a linear number of times. The number of calls is the number of successful applications
plus the number of unsuccessful applications. Since the loop DFS! terminates after back is successfully matched (see
Lemma 4.3), we know that back succeeds at each call except for the final one, i.e. it has a constant number of unsuccessful
applications. So it is enough to show the linearity of the number of successful applications of the rule. It is easy to see that
back increases the number of unmarked nodes, while all other rules preserve it. Since back cannot match an unmarked
node, it can only be applied a linear number of times.

Let us show that forward is called a linear number of times. By the previous paragraph, back is called a linear number
of times, meaning the loop DFS! has a linear number of iterations. During each of these iterations, forward fails exactly
once (termination of forward! by Lemma 4.3), so there is a linear amount of unsuccessful applications. The rule forward
decreases the number of grey nodes, while the other rules called in DFS! preserve it. Since it needs a grey node to match
successfully, it can only do so a linear number of times. Hence forward is only called a linear number of times. O

Finally, we have collected empirical timing results, supporting our claim that the program runs in linear time on graph
classes of bounded degree, but not necessarily on those that do not have bounded degree (Figs. 28 and 29).
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4.2. The 2-colouring problem

Vertex colouring has many applications [25] and is among the most frequently considered graph problems. In 2016 Bak
and Plump investigated the possibility of an efficient rule-based algorithm for the 2-colouring problem [18]. We recall this
important case study, and provide further empirical evidence for the linear time complexity on graph classes of bounded
degree of the compiled program generated by the latest version of the GP 2-to-C compiler.

In order to rigorously define what a 2-colouring program is, in the context of GP2, we first define what our notion of an
input graph should be, and what a 2-colouring is.

Definition 4.7 (Input graph). An input graph (for the purposes of this subsection) is an arbitrarily labelled, connected GP 2 host
graph such that:

1. every node is marked grey;
2. every node is unrooted;
3. every edge is unmarked.

Definition 4.8 (2-Colouring). A 2-colouring H of an input graph G is obtained by colouring each of the nodes either red or
blue such that no red (blue) node is adjacent to a red (blue) node, respectively.

The program 2-colour (Fig. 30) traverses its host graph in a depth-first fashion while marking the nodes it traverses
red or blue. This happens in the loop Colour!. The rule set call ColourNode moves the current node (a root) to an
unvisited node (marked grey) and marks it the appropriate colour. It also ensures the current “branch” of the depth-first
traversal is marked with dashed edges. The procedure Backtrack shortens the branch by one node, allowing the next
iteration of the loop to possibly find a new branch. When it is impossible to backtrack, the procedure Backtrack ensures
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Main = try (init; Colour!; unroot)
Colour = (ColourNode; try Invalid then break)!; Backtrack
ColourNode = {colour_blue, colour red}
Invalid = {adjacent blues, adjacent reds}
Backtrack = try {back blue, back _red} else break
init (x: 1lst unroot (x:1ist)
colour blue(a,x,y:list) colour_red(a,x,y:list)
@L@:“ - 0@
1
adjacent_blues(a,x,y:1list) adjacent_reds(a,x,y:1list)
@Lﬁﬂ
1
back_blue(a,x,y:1list) back_red(a,x,y:1list)
Q-- @—@ @-“C):H
1

Fig. 30. GP2 program 2-colour.

that the loop Colour! terminates. At this point, there are no more unvisited branches to be found. If at any point after
using ColourNode the rule set Invalid matches, we have two adjacent nodes of the same colour, and we exit the
enclosing loop. The rule set Invalid also unmarks the root node, so Backtrack is no longer applicable and the loop
Colour! is exited. After all loops are exited, the rule unroot is called. Its left-hand side is a node with the “any” mark,
which can match a grey, red, blue, or green node, but not an unmarked node. If the 2-colouring was unsuccessful, the root
node is unmarked and unroot fails to match, reverting the host graph to its initial state. If the 2-colouring was successful,
the root is red or blue, and unroot matches successfully, enabling the program to output a 2-coloured graph.

Theorem 4.9 (Correctness of 2-colour [22]). The program 2 -colour (Fig. 30) is totally correct with respect to the specification:

Input: An input graph.
Output:  Output a 2-colouring of the input if one exists, otherwise output the input graph unmodified
(up to isomorphism).

Theorem 4.10 (Complexity of 2-colour [22]). On a class of bounded degree input graphs, the program 2-colour (Fig. 30)
terminates in linear time with respect to the size of its input.

Note that while the program is only correct on connected graphs, it can be modified to work on arbitrary graphs too, but
at a cost. Not only does the program become more complex, but the linear time complexity result fails also, due to there
being no way to iterate all the connected components in linear time. Finally, we have collected empirical timing results,
supporting our claim that the program runs in linear time on graph classes of bounded degree, but not necessarily on those
that do not have bounded degree (Figs. 31 and 32).

4.3. Topological sorting and recognising DAGS

The GP2 program top-sort (Figs. 34, 35, 36) presented in this section has two purposes: recognising whether its
connected input graph is a DAG (directed acyclic graph) and if it is, producing a topological sorting of said graph.

The class of DAGs (directed acyclic graphs) consists of all graphs that do not contain a directed cycle as a subgraph. A
topological sorting of a DAG G is a total order (an antisymmetric, transitive, reflexive, and strongly connected binary relation)
< on the set of nodes of G, such that for each edge of source u and target v, u < v (topological property). Topological sortings
cannot exist for graphs containing directed cycles, since there is no way to define a total order on the nodes of a cycle such
that the topological property is satisfied.

Fig. 33 contains pseudocode for an imperative implementation of topological sorting [28]. The program uses depth-first
search to traverse the nodes. Unvisited nodes are marked red, nodes currently being used in the DFS grey, and finished
nodes blue. When a node is finished, it is inserted onto the front of a linked list. When the program terminates, that linked
list contains the nodes in a topological order.

The GP2 program top-sort works in a similar fashion. One difference is that, since (by design) we do not have access
to the graph data structure in GP 2, we cannot directly loop over all nodes in the host graph. So as a first step, we use DFS
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Algorithm: Topological-Sort(G)

L = empty linked list;
foreach node u of G do
| u.colour = RED;

end

foreach node u of G do
if u.colour == RED then

| DFS-Visit(G,u,L);

end

end

return L;

Procedure DFS-Visit(G,u,L).

u.colour = GREY;
foreach node v adjacent to u do
if v.colour == RED then
| DFS-Visit(G,v,L);
end
end
u.colour = BLUE;
insert u onto the front of L

Fig. 33. Pseudocode for topological sorting.

to construct a stack of red edges containing all nodes, enabling us to iterate through them. Another difference is that the
GP2 program has the secondary purpose of recognising DAGs. A topological sorting is defined and only makes sense on
DAGs. So instead of leaving the behaviour of top-sort undefined on non-DAGs, we make the program fail on DAGs. This
is achieved by setting a flag if structures that signify the existence of cycles is found during the topological sorting.

So the GP2 program top-sort uses depth-first search to traverse the host graph in linear time while testing whether
it is a DAG and constructing a path of blue edges that define a topological sorting. Moreover, it terminates in linear time on

inputs of bounded node degree.

Example executions of StackNodes! and LoopNodes! can be found in Figs. 37 and 38 respectively.
Let us first define what an input graph is for the purposes of this subsection, and then show the program terminates.
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Main =
try init then (
StackNodes! ;
unroot;
LoopNodes'! ;
if flag then fail
)
StackNodes =
{forwardl, forward2}!;
try back else break

flag X: llSt 1n1t x:1list)
forwardl (a,x,y:1list) forward2(a,x,y,z:1ist)
@O
1 2 =
3 4
back(a,x,y:1list) unroot (x:1ist)

®'0 - 00 ® - ®

Fig. 34. GP2 program top-sort and procedure StackNodes.

LoopNodes =
if flag then break;
try skipl else (
try skip2 else (
try initl then (

SortNodes'!
) else (
try init2 then (
SortNodes!
) else (
break
)
)
)
)
skipl(x,y,z: llst skip2(x,y:1list)
! !2 1 = 1
2 2
initl(x,y,z:1ist) init2(x,y:1list)

® ©
'i‘

Fig. 35. GP2 procedure LoopNodes.

N@T).
@ H@

Definition 4.11 (Input graph). An input graph (for the purposes of this subsection) is an arbitrarily labelled, connected GP2
host graph such that:

1. every node is marked grey;
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SortNodes =
forward!;

set_flag;
break
)i
try back push else (
try back first push else
try grey push else (
grey first_push
)i
break

)

forward(a,x,y:1list)

two cycle(a b,x,y:1list)

" -

grey_first push(x:list)

O 6-0®

back_first push(a,x, y list)

6o
O

3 3

if {loop, two_cycle, back edge} then (

loop(a,x:1list)

00 -0 @-@ ©0-0

set_flag(x:1list)

back_edge(a,b,x,y,z:1list)

QO Q0o
9 9

3 3
grey_push (x,y:1list)

back_push(a,x,y,z:1ist)

@O
o0 g

Fig. 36. GP2 procedure SortNodes.

—Q

—Q

Fig. 37. Example execution of StackNodes!

2. every node is unrooted;
3. every edge is unmarked.

Lemma 4.12 (Termination of top-soxrt). On any host graph, the program top - sort terminates.

Proof. Consider the loop {forwardl, forward2}! called in the procedure StackNodes (Fig. 34). In each iteration,
either forwardl is applied, forward2 is applied, or both fail and the loop terminates. Whenever one of these rules is
applied, the number of grey nodes in the host graph is reduced. Due to host graphs being finite, there are no grey nodes
left eventually, and neither rule can match, terminating the loop.
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Fig. 38. Example execution of LoopNodes !

Next, consider the loop StackNodes! (Fig. 34), a measure # consisting of the number of grey nodes of a host graph
paired with the number of dashed edges, and a lexicographical ordering on said pairs. In each iteration, either back is
applied or the loop terminates due to break. If back is applied, either the number of grey nodes remains the same and
the number of dashed edges is reduced (i.e. neither forwardl nor forward2 are applied), or the number of grey nodes
is reduced (i.e. forwardl or forward2 have been applied at least once). In either case, # is reduced. Since host graphs
are finite, # cannot be reduced anymore at some point, hence back is not applicable. Then break is invoked and the loop
terminates.

Now consider the loop forward! in the procedure SortNodes (Fig. 36). In each iteration, either forward is applied,
or the loop terminates. Applying forward reduces the number of red nodes in the host graphs. Since there are only finitely
many, there will be no red nodes left for forward to match eventually. Hence the loop has to terminate.

Next, consider the loop SortNodes! (Fig. 36). In each iteration, either the rule back push applies, the rule
back first push applies, or break is invoked. We claim that each iteration either lexicographically reduces the num-
ber of red nodes in the host graph paired with the number of grey nodes (let us call this measure #), or terminates the
loop. The rules set _flag, grey push, and grey first push only get called in an iteration that terminates the loop,
so we do not need to consider them for the purpose of reducing #. Similarly, as rules called in the condition of an if
statement do not modify the host graph, we do not need to consider loop, two_cycle, and back edge for reduction
purposes either. So consider an iteration where either back_push or back_first push applies. If forward is applied
at least once this iteration, the number of red nodes is reduced, which reduces #. If forward is not applied at all, the
number of red nodes remains the same while either back push or back first push reduces the number of grey
nodes, reducing #. So eventually, # cannot be reduced any further in the finite host graph, meaning neither back push
nor back first push can be applied, causing the loop to terminate.

Finally, consider the loop LoopNodes! (Fig. 35). In each iteration, either break is invoked, or one of the rules skipl,
skip2, initl, and init2 is applied. Each of these rules reduces the number of red edges in the host graph. So eventually,
since host graphs are finite, there are no red edges that can be matched by these rules anymore, so all of them will fail,
meaning break is invoked due to the structure of the nested try statements, and the loop terminates. 0O

The command init; StackNodes! creates a stack of nodes in order to navigate between strongly connected com-
ponents while doing a depth-first search that travels in the direction of the edges. It is equivalent to try init then
StackNodes! if init is applied successfully. We shall define stacks via their implementation.

A stack is a finite set of red nodes connected by red edges such that the red edges form a path that does not self-
intersect. The node in the path that has no incoming red edge from another path node is called the top of the stack.
Additionally, there is an unlabelled green root node called the pointer with only one adjacent edge, namely an outgoing red
edge whose target is the top of the stack.

Note that such a stack can also be defined with blue nodes and edges instead of red ones, in which case we shall call it
a blue stack. In fact, during the execution of LoopNodes !, a red and a blue stack coexist using the same green root.

Lemma 4.13 (Correctness of init; StackNodes!). The command sequence init,; StackNodes! is totally correct with re-
spect to the specification:

Input: An input graph G.
Output: G where all its nodes are in a red stack.

Proof. Termination follows from Lemma 4.12.
The proof that all nodes of G are marked red is analogous to that of Lemma 4.4.
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To show that a correctly encoded stack is formed, let us proceed by induction. The rule init creates a valid stack
containing a single node. Now assume a valid stack is encoded in the host graph. Let us argue that after applying Stac-
kNodes, that is still the case. Whenever a red edge is created, the target is the top (since it is adjacent to the green root),
and the source is a grey node (and hence not part of the path already, since an input graph has grey nodes), extending the
non-self-intersecting path. The green root now points toward the newly added node, making it the new top. O

Let us now define how to represent a topological sorting in the context of GP2.

Definition 4.14 (Topological sorting as a graph structure). Consider a graph G and the set of its blue nodes B. Define a binary
relation on B by u < v if there is a blue edge from u to v, or if u = v. G contains a topological sorting if the transitive
closure of < is a topological sorting of the subgraph of G induced by the blue nodes B and the unmarked edges.

With such a structure, one can test whether two nodes are related with a topological sorting by checking whether there
is a path of blue edges connecting them.

Lemma 4.15 (Correctness of LoopNodes !). On a graph whose nodes are all in a red stack, and whose subgraph induced by its
unmarked edges is a DAG, LoopNodes ! outputs a graph G that contains an unmarked root or a topological sorting.

Proof. Termination follows from Lemma 4.12.

Let us assume G does not contain an unmarked root, and show that it does contain a topological sorting. In fact, since no
rules called in LoopNodes ! can mark or unroot an unmarked node, we can assume that no unmarked root is introduced
at any point, i.e. set_flag is not applied.

Consider the binary relation < on the set of blue nodes defined by blue edges as in Definition 4.14, and let us show it is
a topological sorting. It is transitive since it is defined as a transitive closure.

Antisymmetry follows from the fact that < is reflexive and the fact the subgraph H of G induced by blue edges does
not contain directed cycles. Indeed, H behaves like a stack of blue nodes and edges with a green root pointing towards the
top with a blue edge. When the green root is unlabelled, the stack is initialised as a single blue node, and the green root
is labelled 0. Once that label has been established, non-blue nodes are pushed. At no point does the program pop a blue
node, or change the mark of a blue node. Hence no blue cycle can be introduced.

Strong Connectedness follows from the fact that every node is eventually marked blue, i.e. pushed. By using arguments
analogous to those in Lemma 4.4, we can conclude that after SortNodes! is applied, the grey root and all nodes reachable
from it are marked blue (which we can only conclude because the if statement does not change the host graph since we
assume set-flag is not applied). This difference is because the steps of the depth-first search are sensitive to edge
direction. In order to sort through remaining nodes, LoopNodes! skips over blue, i.e. already sorted nodes in the red
stack with skipl and skip2, until it reaches a red, i.e. unsorted node, which is then initialised as grey root with init1l
or init2. Then StackNodes! is called on that grey root. Since all nodes of the input graph are in the red stack by
Lemma 4.13, all nodes are eventually marked blue.

It remains to show that < satisfies the topological property, namely that for each unmarked edge from u to v in the
input, u < v, i.e. there is a blue path from u to v in the output graph. Since the blue edges form a stack of all nodes, it is
enough to show that u is pushed after v. Consider the iteration of SortNodes! that pushes u onto the blue stack with one
of the push rules (grey first push, grey push, back first push, and back push). The node u has no outgoing
unmarked edge with a red node as the source because then forward! would have had at least one more iteration, and
this would not be the iteration of SortNodes! that pushes u. So v is not red. It cannot be grey either because then there
would be a path of dashed edges from v to u (since the grey nodes are in a path of dashed edges, and the root, u, is the
final node of the path), which would mean there was a cycle of unmarked edges in the input. So v must be blue, i.e. it is
pushed before u. O

Now let us show the total correctness of top-sort. Note that we include the empty graph in the definition of DAGs.
If one wishes to exclude it from the class of DAGs, it suffices to add the else fail to the try statement in Main, since
init fails on the empty graph.

Theorem 4.16 (Correctness of top-sort). The program top-sort (Figs. 34, 35, 36) is totally correct with respect to the specifica-
tion:

Input: An input graph.

Output:  Fail if the input is not a DAG, and G equipped with a topological sorting otherwise.

Proof. If G is the empty graph, init is not successfully applied, and the output is G, which defines a valid topological
sorting of the empty DAG.
Termination follows from Lemma 4.12.
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If G is a DAG, and no unmarked root is introduced in LoopNodes !, it follows from the same lemmata and the fact that
no rule of top-sort changes the structure of the underlying graph of unmarked edges, that the output is G containing a
topological sorting. So we need to show that, if G is a DAG, LoopNodes ! does not introduce an unmarked root. Conversely,
if G is not a DAG, we need to show that an unmarked root is introduced in LoopNodes because matching £lag is the
only way for Main to fail (unroot always matches since SteckNodes leaves a red root in the host graph).

The only rule that introduces an unmarked root is set flag, which is only called during the if statement in SortN-
odes, if the condition is satisfied. So it is enough to show that G is a DAG if and only if neither 1loop, two_cycle, nor
back edge matches.

As argued in the proof of Lemma 4.15, every non-pointer node is pushed onto the blue stack with one of the push rules.
So the if statement called right before the push rules are invoked for each non-pointer node while it is a grey root.

If G is a DAG, loop and two_cycle cannot match since they need a 1-cycle or 2-cycle respectively to be present in G.
The rule back_edge cannot match either. It contains a path from node 2 to node 1. As the target of a dashed edge, node
1 is in the stack of dashed edges, so there is a path to node 1 to node 2, the top of the stack. This means there is a cycle.

Conversely, assume that G is not a DAG. If it contains a 1- or 2-cycle, either loop or two_cycle matches. So assume
G contains a cycle of length at least 3. Consider the first time a node of that cycle becomes a grey root due to forward.
Eventually, forward is applied to make the next node in the cycle the grey root. We can repeat this argument until the
last node in the cycle is the grey root (in the cycle, all edges but one are dashed, all nodes are grey, and the node with an
outgoing unmarked edge is rooted). Then back_ edge can match. O

Theorem 4.17 (Complexity of top-sort). On a class of bounded degree input graphs, the program top-sort (Figs. 34, 35, 36)
terminates in linear time with respect to the size of its input.

Proof. To prove this theorem, let us now show that for each rule, the number of calls during an execution multiplied with
its matching complexity is linear.

First consider init. It is called once, and every node of the input graph is a valid match, so its matching complexity is
constant.

Let us now argue that there is a constant number of roots at any given time, so that we can apply Theorem 2.9. The rule
init introduces a green root. In all other rules, the rootedness and mark no green nodes get modified, and no green nodes
get introduced. The rule init also introduces a red root. In StackNodes !, no rules modify the number of red roots. Then
with unroot, the one red root is removed. The rules init1l and init2 introduce a grey root. Whenever one of them
is applied, SortNodes! is called. Let us show that SortNodes! removes the grey root. This loop can only terminate
when break is invoked (termination itself has been shown in Lemma 4.13), or when grey first push does not find a
match. In the latter case, either the grey root has already been removed (which is what we want), or the green root has a
label. If the green root as a label, grey push or back push would have been applied, and grey first push never
called. Now consider the case where break is invoked. This must be preceded by a successful application of set flag,
grey push, or grey first push. In the latter two cases, the grey root is unrooted. In the former case, the grey root is
unmarked, and various break and fail statements are invoked and the program terminates. In either case, the number
of roots remains constant.

Each rule except for init, is a fast rule. So by Theorem 2.9, they have constant matching complexity. So it remains to
show that the number of calls is at most linear.

The rules unroot and flag are called at most once.

Note that {forwardl, forward2} is only applied a linear number of times since it reduces the number of grey
nodes, of which there can be only linearly many, and no other rule in StackNodes! introduces grey nodes. So back can
only be applied a linear number of times. And the number of times back is called but not applied is once, since in that
case break is invoked. Henceback is called a linear number of times. This also means that the number of iterations of
StackNodes! is linear. So the number of times forwardl and forward2 are called but not applied can only be linear
as well. Hence forwardl and forward2 are called a linear number of times.

Therefore there can only be linearly many red edges. In each successful iteration of LoopNodes !, one of skipl, skip2,
initl, init2 has to be applied, reducing the number of red edges. So there can only be linearly many iterations of
LoopNodes, making the number of calls of skip1l, skip2, initl, and init2 linear.

The rule forward can only be applied a linear number of times since it reduces the number of red nodes, and no other
rule in LoopNodes! modifies that number. So there can only be linearly many dashed edges, meaning that combined,
back first push and back push can only be applied a linear number of times. Hence there can only be a linear
number of calls of SortNodes. So each rule r called only once in SortNodes has only a linear number of total calls.
That also means that the number of times forward is called but not applied is also linear, so forward is called a linear
number of times. O

Like 2-colour, top-sort is only correct on connected graphs, and can similarly be modified to work on arbitrary
graphs. Finally, we have collected empirical timing results, supporting our claim that the program runs in linear time on
classes of connected graphs of bounded degree (Fig. 39).
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Fig. 39. Measured performance of top-sort.

5. Conclusion

The polynomial cost of graph matching is the performance bottleneck for languages based on standard graph transforma-
tion rules. GP2 mitigates this problem by providing rooted rules which under mild conditions can be matched in constant
time. We present rooted GP2 programs of two types: (1) graph reduction programs which recognise cycle graphs, trees and
binary DAGs, and (2) depth-first search programs for checking connectedness and acyclicity respectively for producing a
topological sorting. The programs are proved to be correct and to run in linear time either on arbitrary input graphs (in the
case of reduction programs) or on graphs of bounded node degree (in the case of depth-first search programs). The proofs
demonstrate that graph transformation rules provide a convenient and intuitive abstraction level for formal reasoning on
graph programs. We also give empirical evidence for the linear runtime of the programs, by presenting benchmark results
for graphs of up to around 500,000 nodes in various graph classes. For acyclicity checking and topological sorting, the linear
behaviour is achieved by implementing depth-first search strategies based on an encoding of stacks in graphs.

In future work, we intend to investigate for more graph algorithms whether and under what conditions their time com-
plexity in conventional programming languages can be reached in GP2. An example for this line of work is [29], which
presents a GP 2 program for computing minimum spanning trees based on Boruvka’s algorithm. Empirical evidence shows
that the program’s complexity on bounded degree graphs is consistent with the O(mlogn) time bound of Boruvka’s algo-
rithm when implemented in conventional languages (where m is the number of edges and n is the number of nodes).

A challenge for this kind of work is that the more involved the data structures of an algorithm are, the more difficult
the implementation task is. This is because in GP2, the internal graph data structure is (intentionally) hidden from the
programmer and hence any data structures used by an algorithm need to be encoded in host graphs. A simple example of
this is the encoding of stacks as linked lists in the program for topological sorting.

Additional future work is the refinement of unrooted programs into more efficient rooted programs. It is not obvious
how to do this in general, or what refinement tactics could be used.

The programs using depth-first search need host graphs of bounded node degree in order to run in linear time. A topic
for future work is therefore to find a mechanism that allows us to overcome this restriction. Clearly, such a mechanism will
require to modify GP2 and its implementation.

A complementary line of work for constructing efficient graph programs is to develop tools which provide programmers
with dynamic data about the performance of their programs. For example, [30] describes a profiler for graph matching in
the Henshin language which monitors the execution of rules and presents the collected data in visual form to developers. In
the BSc project [31], a tool for monitoring the execution of GP2 programs has been developed which checks user-provided
correctness assertions at runtime. Such a tool could be extended with a mechanism for collecting performance data.
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Label List [Mark]
List LVar | empty | Atom | List ‘.’ List
Atom Avar | Integer | String
Integer = IVar | [-'] Digit {Digit} | ‘(Integer‘)’ |
Integer (‘+' | =" | +’ | ‘') Integer |
(indeg | outdeg) ‘('Node')’ |
length ‘("(LVar | AVar | SVar)')
String = SVar | Char | “’{Character}' "™ |
String ‘.’ String
Char L= CVar | “’Character*™
Mark n= red | green | blue | grey | dashed | any
Fig. A.40. Abstract syntax of rule graph labels.
HostLabel ::=  HostList [HostMark]
HostList :=  empty | HostAtom {“:’ HostAtom}
HostAtom = HostInteger | HostString
HostInteger = [*-'] Digit {Digit}
HostString = ““{Character}™
HostChar = “Character*™
HostMark = red | green | blue | grey | dashed
Fig. A.41. Abstract syntax of host graph labels.
Condition = (int | char | string | atom) ‘('(LVar | AVar | SVar)')’

| List (‘=" | ‘1=") List

| Integer (‘>' | ‘>="| ‘<’ | ‘<=") Integer
| edge ‘(' Node ‘,’ Node [, Label] ‘)

| not Condition

| Condition (and | or) Condition

| ‘(" Condition ‘)’

Fig. A.42. Abstract syntax of conditions.
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Appendix A. Labels and conditions in GP 2

Fig. A.40 and Fig. A.41 give grammars in Extended Backus-Naur Form defining the abstract syntax of labels in rule graphs
and host graphs, respectively.

The binary arithmetic operators ‘+’, ‘-’, ‘«’ and ‘/’ expect integer expressions as arguments while is string con-
catenation. The categories LVar, AVar, IVar, SVar and CVar consist of variables of type List, Atom, Integer, String and Char,
respectively. Variables can be used as expressions of supertypes. For example, integer variables can be used as lists of length
one. The category Node consists of node identifiers in graphs. The operators indeg and outdeg denote the number of in-
going respectively outgoing edges of a node. The 1ength operator returns the length of a list or string represented by a
variable. The category Character consists of the printable ASCII characters except ‘™.

Marks are represented graphically in rule declarations, where grey is reserved for nodes and dashed is reserved for
edges. Mark any can only be used in rules and matches arbitrary marks in host graphs.

Labels in host graphs as defined by the grammar in Fig. A.41 form a subset of the labels allowed in rule graphs. They
represent constant values in that they do not contain variables or unevaluated expressions.

The grammar in Fig. A.42 defines the abstract syntax of rule application conditions. Conditions are Boolean combinations
of subtype assertions, applications of the edge predicate to left-hand node identifiers, or relational comparisons of expres-
sions (where = and ! = can be used for arbitrary expressions). A condition of the form edge(vq, v, [) requires the existence
of an edge from node v to node v, with label L

¢«

Appendix B. Operational semantics of GP 2

This appendix reviews the semantics of GP2, except for the definition of rule applications, in the style of structural
operational semantics [32]. In this approach, inference rules inductively define a small-step transition relation — on config-
urations. In the setting of GP 2, a configuration is either a command sequence together with a host graph, just a host graph
or the special element fail:
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falh] gty fall) g G2
bl g o~ (e /) seq21 g Gy = (@ /)
(P, G) — fail
(seas] pig. Gy fail
if, (C,G)=>*H
lifi] (if C then P else Q, G) — (P, G)
if; (C, G) > fail
U] Tt then Pelse @, )5 (Q. 0)
(C,G)—*H
[y {try C then P e1:e Q,G) — (P, H)
(C, G) —>* fail
[try2] (try C then P else Q, G) — (Q, G)
+ ‘e
llapt) 1 15 Ay [alapy) {5 Ch fal

(P, G) =* (break, H)

[alaps] LG = H [break] (break; P, G) — (break, G)

Fig. B.43. Inference rules for core commands.

[orq] (Por Q, G) — (P, G) [or;]  (Por Q, G)—(Q, G)
[skip]  (skip, G)— G [fail]  (fail, G) — fail
[if3] (if C then P, G) — (if C then P else skip, G)

[try3] (try C then P, G) — (try C then P else skip, G)
[trya] (try C else P, G) — (try C then skip else P, G)

[trys] (try C, G) — (try C then skip else skip, G)

Fig. B.44. Inference rules for derived commands.

— C (ComSeq x G) x ((ComSeq x G) UG U {fail})

where G is the set of GP2 host graphs. Configurations in ComSeq x G, given by a rest program and a host graph, represent
states of unfinished computations while graphs in G are final states or results of computations. The element fail represents
a failure state. A configuration y is said to be terminal if there is no configuration § such that y — §.

Fig. B.43 shows the inference rules for the core commands of GP2. The rules contain meta-variables for command
sequences and graphs, where R stands for a call of a rule set or of a rule, C, P, P/, Q stand for command sequences, and
G, H stand for host graphs. The transitive and reflexive-transitive closures of — are written —* and —*, respectively. We
write G =g H if H results from host graph G by applying the rule set R, while G = means that there is no graph H such
that G = H (application of R fails).

The inference rules for the remaining GP2 commands are given in Fig. B.44. These commands are referred to as derived
commands because they can be defined by the core commands.

The meaning of GP2 programs is summarised by the semantic function [_] which assigns to each command sequence
P the function [P] mapping an input graph G to the set [P]G of all possible results of executing P on G. The value fail
indicates a failed program run while L indicates a run that does not terminate or gets stuck. Program P can diverge from
G if there is an infinite sequence (P, G) — (P1, G1) — (P2, G2) — ... Also, P can get stuck from G if there is a terminal
configuration (Q, H) such that (P, G) —* (Q, H).

The semantic function [_]: ComSeq — (G — 29%) is defined by

[P]G = {X € (GU {fail}) | (P, G) > X} U
{_L | P can diverge or get stuck from G},

where ComSeq is the set of GP2 command sequences and G® = G U {_L, fail}. Getting stuck indicates a form of divergence
that can happen with a command if C then P else Q or try C then P else Q in case C can diverge from a graph
G and neither produce a graph nor fail from G, or with a loop B! whose body B possesses the said property.

References

[1] H. Ehrig, C. Ermel, U. Golas, F. Hermann, Graph and Model Transformation, Monographs in Theoretical Computer Science, Springer, 2015, https://
doi.org/10.1007/978-3-662-47980-3.

[2] O. Runge, C. Ermel, G. Taentzer, AGG 2.0 - new features for specifying and analyzing algebraic graph transformations, in: Proc. 4th International
Symposium on Applications of Graph Transformations with Industrial Relevance (AGTIVE 2011), in: Lecture Notes in Computer Science, vol. 7233,
Springer, 2011, pp. 81-88, https://doi.org/10.1007/978-3-642-34176-2_8.

[3] A. Agrawal, G. Karsai, S. Neema, F. Shi, A. Vizhanyo, The design of a language for model transformations, Softw. Syst. Model. 5 (3) (2006) 261-288,
https://doi.org/10.1007/s10270-006-0027-7.

31



G. Campbell, B. Courtehoute and D. Plump Science of Computer Programming 214 (2022) 102727

[4] A. Ghamarian, M. de Mol, A. Rensink, E. Zambon, M. Zimakova, Modelling and analysis using GROOVE, Int. ]. Softw. Tools Technol. Transf. 14 (1) (2012)
15-40, https://doi.org/10.1007/s10009-011-0186-x.

[5] E. Jakumeit, S. Buchwald, D. Wagelaar, L. Dan, A. Hegediis, M. Herrmannsdorfer, T. Horn, E. Kalnina, C. Krause, K. Lano, A. Rensink, L. Rose, S. Witzoldt,
M. Lepper, S. Mazanek, A survey and comparison of transformation tools based on the transformation tool contest, Sci. Comput. Program. 85 (2014)
41-99, https://doi.org/10.1016/j.scico.2013.10.009.

[6] E. Jakumeit, S. Buchwald, M. Kroll, GrGen.NET - the expressive, convenient and fast graph rewrite system, Int. ]. Softw. Tools Technol. Transf. 12 (3-4)
(2010) 263-271, https://doi.org/10.1007/s10009-010-0148-8.

[7] D. Striiber, K. Born, K.D. Gill, R. Groner, T. Kehrer, M. Ohrndorf, M. Tichy, Henshin: a usability-focused framework for EMF model transformation
development, in: Proc. 10th International Conference on Graph Transformation (ICGT 2017), in: Lecture Notes in Computer Science, vol. 10373, Springer,
2017, pp. 196-208, https://doi.org/10.1007/978-3-319-61470-0_12.

[8] M. Fernidndez, H. Kirchner, B. Pinaud, Strategic port graph rewriting: an interactive modelling framework, Math. Struct. Comput. Sci. 29 (5) (2019)
615-662, https://doi.org/10.1017/S0960129518000270.

[9] D. Plump, The design of GP2, in: Proc. 10th International Workshop on Reduction Strategies in Rewriting and Programming (WRS 2011), in: Electronic
Proceedings in Theoretical Computer Science, vol. 82, 2012, pp. 1-16, https://doi.org/10.4204/EPTCS.82.1.

[10] D. Plump, From imperative to rule-based graph programs, ]J. Log. Algebraic Methods Program. 88 (2017) 154-173, https://doi.org/10.1016/j.jlamp.2016.
12.001.

[11] C. Poskitt, D. Plump, Hoare-style verification of graph programs, Fundam. Inform. 118 (1-2) (2012) 135-175, https://doi.org/10.3233/FI-2012-708.

[12] C. Poskitt, D. Plump, Verifying monadic second-order properties of graph programs, in: Proc. 7th International Conference on Graph Transformation
(ICGT 2014), in: Lecture Notes in Computer Science, vol. 8571, Springer, 2014, pp. 33-48, https://doi.org/10.1007/978-3-319-09108-2_3.

[13] G. Wulandari, D. Plump, Verifying a copying garbage collector in GP2, in: Software Technologies: Applications and Foundations - STAF 2018 Collocated
Workshops, Revised Selected Papers, in: Lecture Notes in Computer Science, vol. 11176, Springer, 2018, pp. 479-494, https://doi.org/10.1007/978-3-
030-04771-9_34.

[14] G. Wulandari, D. Plump, Verifying graph programs with monadic second-order logic, in: Proc. 14th International Conference on Graph Transformation
(ICGT 2021), in: Lecture Notes in Computer Science, vol. 12741, Springer, 2021, pp. 240-261, https://doi.org/10.1007/978-3-030-78946-6_13.

[15] L. Hristakiev, D. Plump, Checking graph programs for confluence, in: Software Technologies: Applications and Foundations - STAF 2017 Collocated
Workshops, Revised Selected Papers, in: Lecture Notes in Computer Science, vol. 10748, Springer, 2018, pp. 92-108, https://doi.org/10.1007/978-3-319-
74730-9_8.

[16] H. Dorr, Efficient Graph Rewriting and Its Implementation, Lecture Notes in Computer Science, vol. 922, Springer, 1995, https://doi.org/10.1007/
BFb0031909.

[17] C. Bak, D. Plump, Rooted graph programs, in: Proc. 7th International Workshop on Graph Based Tools (GraBaTs 2012), in: Electronic Communications
of the EASST, vol. 54, 2012, https://doi.org/10.14279/tuj.eceasst.54.780.

[18] C. Bak, D. Plump, Compiling graph programs to C, in: Proc. 9th International Conference on Graph Transformation (ICGT 2016), in: Lecture Notes in
Computer Science, vol. 9761, Springer, 2016, pp. 102-117, https://doi.org/10.1007/978-3-319-40530-8_7.

[19] R. Sedgewick, Algorithms in C. Part 5: Graph Algorithms, 3rd edition, Addison-Wesley, 2002.

[20] G. Campbell, ]J. Romo, D. Plump, The improved GP2 compiler, Tech. rep., Department of Computer Science, University of York, UK, 2020, https://
arxiv.org/abs/2010.03993.

[21] G. Campbell, B. Courtehoute, D. Plump, Linear-time graph algorithms in GP2, in: Proc. 8th Conference on Algebra and Coalgebra in Computer Sci-
ence (CALCO 2019), in: Leibniz International Proceedings in Informatics (LIPIcs), vol. 139, Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2019,
pp. 16:1-16:23, https://doi.org/10.4230/LIPIcs.CALCO.2019.16.

[22] C. Bak, GP2: Efficient implementation of a graph programming language, Ph.D. thesis, Department of Computer Science, University of York, UK, 2015,
https://etheses.whiterose.ac.uk/12586/.

[23] A. Habel, D. Plump, Relabelling in graph transformation, in: Proc. First International Conference on Graph Transformation (ICGT 2002), in: Lecture Notes
in Computer Science, vol. 2505, Springer, 2002, pp. 135-147, https://doi.org/10.1007/3-540-45832-8_12.

[24] A. Aho, J. Hopcroft, J. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, 1974.

[25] S. Skiena, The Algorithm Design Manual, 3rd edition, Texts in Computer Science, Springer, 2020, https://doi.org/10.1007/978-3-030-54256-6.

[26] A. Ztindorf, Graph pattern matching in PROGRES, in: Proc. 5th International Workshop on Graph Grammars and Their Application to Computer Science
(1994), in: Lecture Notes in Computer Science, vol. 1073, Springer, 1996, pp. 454-468, https://doi.org/10.1007/3-540-61228-9_105.

[27] G. Campbell, Efficient graph rewriting, Bsc thesis, Department of Computer Science, University of York, UK, 2019, https://arxiv.org/abs/1906.05170.

[28] T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms, 3rd edition, MIT Press, 2009.

[29] B. Coutehoute, D. Plump, A fast graph program for computing minimum spanning trees, in: Proc. Eleventh International Workshop on Graph Com-
putation Models (GCM 2020), in: Electronic Proceedings in Theoretical Computer Science, vol. 330, Open Publishing Association, 2020, pp. 163-180,
https://doi.org/10.4204/EPTCS.330.10.

[30] R. Groner, S. Gylstorff, M. Tichy, A profiler for the matching process of Henshin, in: Proc. 23rd International Conference on Model Driven Engineering
Languages and Systems (MODELS 2020), ACM, 2020, 3, https://doi.org/10.1145/3417990.3422000.

[31] H. Stalker, Runtime checking of graph programs, BSc thesis, Department of Computer Science, University of York, UK, 2020, https://www-users.cs.york.
ac.uk/~det/Papers/hector_stalker.pdf.

[32] G. Plotkin, A structural approach to operational semantics, J. Log. Algebraic Program. 60-61 (2004) 17-139, https://doi.org/10.1016/j.jlap.2004.05.001.

32



	Fast rule-based graph programs
	1 Introduction
	2 The graph programming language GP 2
	2.1 Graphs and rules
	2.2 Programs
	2.3 The GP 2-to-C compiler
	2.4 Reasoning about time complexity
	2.5 Rooted programs

	3 Fast reduction programs
	3.1 Recognising cycle graphs
	3.2 Recognising trees
	3.3 Recognising binary DAGs

	4 Fast DFS-based programs
	4.1 Recognising connected graphs using DFS
	4.2 The 2-colouring problem
	4.3 Topological sorting and recognising DAGs

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Labels and conditions in GP 2
	Appendix B Operational semantics of GP 2
	References


