
This is a repository copy of Design and development of automobile assembly model using 
federated artificial intelligence with smart contract.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/179002/

Version: Published Version

Article:

Manimuthu, A., Venkatesh, V.G., Shi, Y. et al. (2 more authors) (2021) Design and 
development of automobile assembly model using federated artificial intelligence with 
smart contract. International Journal of Production Research, 60 (1). pp. 111-135. ISSN 
0020-7543 

https://doi.org/10.1080/00207543.2021.1988750

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tprs20

International Journal of Production Research

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tprs20

Design and development of automobile assembly
model using federated artificial intelligence with
smart contract

Arunmozhi Manimuthu, V. G. Venkatesh, Yangyan Shi, V. Raja Sreedharan &
S. C. Lenny Koh

To cite this article: Arunmozhi Manimuthu, V. G. Venkatesh, Yangyan Shi, V. Raja Sreedharan &
S. C. Lenny Koh (2021): Design and development of automobile assembly model using federated
artificial intelligence with smart contract, International Journal of Production Research, DOI:
10.1080/00207543.2021.1988750

To link to this article:  https://doi.org/10.1080/00207543.2021.1988750

© 2021 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 26 Oct 2021.

Submit your article to this journal 

Article views: 366

View related articles 

View Crossmark data



INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH

https://doi.org/10.1080/00207543.2021.1988750

Design and development of automobile assembly model using federated
artificial intelligence with smart contract

Arunmozhi Manimuthu a, V. G. Venkateshb, Yangyan Shic, V. Raja Sreedharan d and S. C. Lenny Kohe

aNanyang Technological University, Singapore; bEM Normandie Business School, Metis Lab, Le Havre, France; cDepartment of Management,

Macquarie Business School, Macquarie University, Sydney, Australia; dRabat Business School, Université Internationale de Rabat, Rabat,
Morocco; eAdvanced Resource Efficiency Centre and Management School, The University of Sheffield, Sheffield, UK

ABSTRACT

With smart sensors and embedded drivers, today’s automotive industry has taken a giant leap in
emerging technologies like Machine learning, Artificial intelligence, and the Internet of things and
started to build data-driven decision-making strategies to compete in global smart manufacturing.
This paper proposes a novel design framework that uses Federated learning-Artificial intelligence (FAI)
for decision-making and Smart Contract (SC) policies for process execution and control in a com-
pletely automated smart automobile manufacturing industry. The proposed design introduces a
novel element called Trust Threshold Limit (TTL) that helps moderate the excess usage of embedded
equipment, tools, energy, and cost functions, limitingwastages in themanufacturing processes. This
research highlights the use cases of AI in decentralised Blockchain with smart contracts, the com-
pany’s trading policies, and its advantages for effectively handling market risk assessments during
socio-economic crisis. The developed model supported by real-time cases incorporated cost func-
tions, delivery time and energy evaluations. Results spotlight the use of FAI in decision accuracy for
thedeveloped smart contract-basedAutomobileAssemblyModel (AAM), therebyqualitatively limiting
the threshold level of cost, energy and other control functions in procurement assembly andmanu-
facturing. Customisation and graphical user interface with cloud integration are some challenges of
this model.
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1. Introduction

Digital transformation and technology adoption tend to

enhance the quality and quantity of assembly, distribu-

tion, andmanufacturing in a fully automated smart man-

ufacturing enterprise (Manimuthu et al. 2021). All these

technology-driven approaches require smart infrastruc-

ture and customised business plans with market strate-

gies to boost the production line-ups, thereby enhancing

their manufacturing capabilities (Jain, Shao, and Shin

2017). Smart manufacturing involves domain-related

technology adoptions that target an achievable decision

in the manufacturing ecosystem (Elverum and Welo

2016). Some smart technologies that are actively used in

today’s modern and fully automated industries include

Artificial Intelligence, Bigdata, Blockchain, Robotics, and

Machine Learning (Koh, Dolgui, and Sarkis 2020; Singh,

Rathore, and Park 2020).

These technologies assist in collecting, processing, and

assembly to polishing, fitting, and distributing data to

the commercial and industrial markets. Smart sensors,

CONTACT S. C. Lenny Koh S.C.L.Koh@sheffield.ac.uk

electronic controller units, actuators, and embedded soft-

ware are critical in handling the generated data resources

from individual equipment and processes. Industries

widely use artificial intelligence and machine learning

mainly for data processing and analysis, and decision

making (O’Leary 2013), whereas big data and the Internet

of Things (IoT) for decision analytics and data collec-

tion, respectively. Data-driven decision-making provides

solid evidence in improving productivity and enhancing

themanufacturing and assembly processes, thereby helps

in monetary gain and accountability in real-time (The-

orin et al. 2017). Many convolutional methodologies of

today’s industrial practices are getting a smarter trans-

formation due to these technological advancements and

digital adoption, in particular the increasingly prominent

role of blockchain, artificial intelligence and machine

learning (Liao et al. 2017; Xu, Xu, and Li 2018; Dolgui

et al. 2020; Koh, Orzes, and Jia 2019; Pournader et al.

2020; Koh, Dolgui, and Sarkis 2020). All the processes

are fully automated, sophisticated software tools and cus-

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
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tomised control methodologies help industries achieve

efficiency (Gupta et al. 2020).

Based on the infrastructure andmanufacturing capac-

ity, technologies can be incubated and handled effectively

during every transformation stage available in the assem-

bly and testing process(Manimuthu andRamadoss 2019).

Rather than investing inmachinery and goods, industries

focus more on technology adoption. It helps them miti-

gate the market risks that directly affect their profits in

a competitive industrial environment (Khan and Byun

2020). Besides, skilled labour and smart infrastructure

design prove that digital adoption can make technology-

oriented process enhancements profitable, forecasting

the market trends and investment capabilities. Such

transformation plays a critical role in enhancing sustain-

ability and quality assurance besides trustmanagement in

the production and manufacturing processes(Yu Zhang

and Wen 2017).

Besides, contractual formalities and guaranteed return

of investment using smart control and operational strate-

gies help industries sustain global markets. Apart from

market risk, the small and medium enterprises (SMEs)

concentrate more on curtailing the production andman-

ufacturing cost and energy consumption. Such envi-

ronments involve consistent investment plans and flex-

ible return policies with suppliers and developers. Now

the focus is on leveraging smart contracts (SCs), a self-

executing decentralised blockchain-based procurement

mechanism towards data transparency. It helps monitor

and control third-party interventions, hidden broker-

ages, real-time consumption, and unauthorised activities

(Wang et al. 2019; De Giovanni 2020). Thus, from pro-

curement to design and from processing to control, all

the critical elements involved in supply chains need to

be closely monitored before deploying and testing the

latest digital technologies relying on a data-driven and

collaborative model (Xu and Dang 2020). This cooper-

ative mode allows sharing the datasets from a centralised

data repository, often referred to as a federated learning

system, which handles product movement, energy con-

sumption, and other real-time data through embedded

systems (Treleaven, Brown, and Yang 2017; Zheng et al.

2020). However, the deliberation on its (federated system)

relevance to practice is still at the nascent stage though it

leaves scope for diversified objectives.

Against this background, this study recognises a few

research gaps to explore the integration of manufactur-

ing processes with smart systems at process and module

levels. First, the current models do not consider thresh-

old levels for key parameters such as energy consumption

and individual component/module manufacturing costs.

Under market eventualities, these values will assist the

industries in predicting and projecting their target pro-

duction and manufacturing procedures not to be any

loss to initial investments of sectors. Second, to our

best knowledge, the literature lacks a deliberation on

integrating smart contracts for controlling parameters

such as energy and cost values of different components,

especially for complex environments such as automobile

manufacturing, which warrants the assistance of smart-

decision framework. Third, the literature remains far

from reporting the application of federated learning sys-

tems in a real-time manufacturing systems perspective,

though the domain receives some focus only in recent

times (Lu et al. 2020; Pokhrel and Choi 2020). To address

these gaps, the study proposes the research question:How

to design and deploy Federated Learning-Artificial intel-

ligence (FAI) assisted smart decision-making system for

automobile manufacturing environments?

The main objective of this federated learning model is

to introduce a nominal range calledTrust Threshold Limit

(TTL) that helps the system sustain any business pro-

cess/method with minimum freedom from excess usage

in terms of energy and cost without facing losses. Our

work defines TTL as a maximum limit that industrial

processes use to minimise process losses. It provides the

functional entity value, including the permitted level of

purchase and energy usage compared with their max-

imum risk through the smart-decision framework. All

these available attributes are modelled and deployed in

the developed design, unique to production industries.

The study is a pioneering one for the automotiveman-

ufacturing industry in multiple aspects. First, it deliber-

ates how the smart contract is involved in the control,

execution, and legalisation of manufacturing and distri-

bution of spare parts and components required for the

automobile manufacturing process (Magazzeni, McBur-

ney, and Nash 2017). Second, the study deliberates the

effectiveness of using machine learning, especially feder-

ated learning, for computing suitable TTL values for each

tool, method, and component inmanufacturing environ-

ments. Third, the study developed an AI-enabled Auto-

mobile Assembly Model (AAM) that stresses the need and

importance of IoT and ML-based data-driven decision-

making. Thus, it offers a perspective on the role of nego-

tiable entities such as smart contracts in processing real-

time purchase and demand information (Yuanyu Zhang

et al. 2019). Use cases of AAM include analyzing the pro-

ductivity and distribution when SC and TTL are in place.

Critical elements like energy, cost function, time, and

productivity are remarkably improved using AAM as a

reference framework in the industry.

The remainder of this paper is organised as follows.

Section 2 reviews the recent literature on blockchain
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and smart manufacturing processes. Section 3 dis-

cusses model components and control parameters.

Section 4 explains the modelling and design method-

ologies. Experimental study and use case analysis are

shown in section 5. Next, section 6 elaborates the sim-

ulation and experimental analysis. Section 7 discusses

the findings, and Section 8 deliberates both theoretical

andmanagerial implications. Finally, Section 9 concludes

with limitations and future scope.

2. Literature background

The review process adopted a systematic exercise

by retrieving the relevant publications from differ-

ent repositories through the following search strings:

(TITLE-ABS-KEY (blockchain) OR TITLE-ABS-KEY

(smart AND contracts) OR TITLE-ABS-KEY (federated

AND artificial AND intelligence) OR TITLE-ABS-KEY

(machine AND learning) OR TITLE-ABS-KEY (artifi-

cial AND intelligence) AND TITLE-ABS-KEY (automo-

tive AND assembly) OR TITLE-ABS-KEY (automobile

ANDassembly)) AND (LIMIT-TO (DOCTYPE, ‘ar’) OR

LIMIT-TO (DOCTYPE, ‘re’)) AND (LIMIT-TO (LAN-

GUAGE, ‘English’)) AND (LIMIT-TO (SRCTYPE, ‘j’)).

The below sub-sections summarise the recent literature

around blockchain, artificial intelligence in manufactur-

ing, and federated learning systems.

2.1. Blockchain inmanufacturing

Manufacturers are actively involved in developing and

deploying blockchain in their industrial practices due to

many functional aspects: operations control, risk man-

agement, active process control, and additive manu-

facturing supply chain(Macrinici, Cartofeanu, and Gao

2018). These factors help them gain more visibility

in market risk and obtain asset tracking availabil-

ity throughout their market venture capitalisation of

investments in real-time. It can influence the design,

control, process, assessment, and delivery of products

at both ends of the industry. With global supply-

demand forecasting, auditing the control strategies and

cost function are critically important, thereby foster-

ing customers’ trust and market sustainability(Allam

and Dhunny 2019). All these key scaling factors will

adversely affect the system performance (Yuanyu Zhang

et al. 2019). Some of the industrial impacts of using

blockchain include supply-chain monitoring, data-driven

decision making, asset tracking, control, process manage-

ment, trust validation, quality and quantity assurance,

market risk forecasting, energy and cost management, pol-

icy formation, and risk management.Thus, from procure-

ment to delivery, all the raw materials to finished goods

can bemapped andmodelled using suitable policy-based

blockchain applications. The application allows manu-

facturers to track their productmovements and traceabil-

ity on the supply of goods and equipment among com-

panies, vendors, and suppliers (Gonçalves et al. 2021).

Risk accessibility, especially on large-scale production

andmanufacturingwith suitable network and blockchain

aided supply help ease the system-centric smart automa-

tion environment (Manimuthu et al. 2019; Manimuthu

and Dharshini 2021; Mohanta et al. 2020)). SC and

market policy aims to showcase component and fin-

ished product-wide deliverables. Industries also encour-

age legitimate and legally available SC, especially for risk-

prone industries (Baryannis et al. 2019). Thus, companies

need to functionally incubate, implement and plan suit-

able infrastructure design in manufacturing and supply

chains to effectively utilise the blockchain in investment,

retail, export-import, and pre-and post-processing of raw

materials in real-time (Min 2010).

Enterprise resource management and control system

strategies need to have long upgrades. In few cases, these

strategies require infrastructure and automation invest-

ments to utilise the blockchain primitives in their work-

place efficiently. As a nascent technology, blockchainwith

other smart technologies needs to be effectively han-

dled and efficiently used in today’s modern manufac-

turing industries. The reliable and smart manufacturing

process requires a focus on product reception to sup-

ply (Manimuthu et al. 2021). Customer markets need to

be studied to ensure a sustainable market index in the

growing global trade environment. According to agile

and smart manufacturing companies’ market valuation

and customer index, reliable and quality assured prod-

uct delivery between manufacturers and consumers is

very narrow. This gap requires substantial steps that war-

rant long-term business trend forecasting and market

investments (Manimuthu et al. 2021).

Blockchain has proven potential in influencing man-

ufacturing and supply chain practices. Critical elements

such as energy consumption, cost, processing, and con-

trol strategies are integrated towards sustaining the prod-

uct supply under the required specifications. Policy for-

mulation, government regulations, and legal advisories

become part of industrial practices; blockchain with

operational and trade policies help in guiding and pro-

liferating these regulatory gaps (Andoni et al. 2019).

Recently, Venkatesh et al. (2020) propose a blockchain

environment to track the social sustainability dimen-

sion of manufacturing industries. Thus, the objectives of

supply chain transparency, effectivemanagement of tech-

nologies, and deploying smart innovation tools together

offer a win-win situation to all participating industries

of a blockchain-enabled automation environment. In
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addition to the supply-chain practices and operations,

fostering the state-of-the-art design that helps to get

maximum potential with available resources becomes

instrumental (Ivanov, Sokolov, and Dolgui 2014; Saberi

et al. 2019). Summing up all the critical elements for the

design, a novel smart and comprehensive operations and

business model is developed.

2.2. AI in automotive industries

Processing capabilities and error detection/identification

are a few critical elements in the smart manufacturing

industries. A highly reliable smart system needs to be

deployed for automated and completely robotic control

units in assembly, control, and movements (Min 2010;

Yuanyu Zhang et al. 2019; Fenwick and Vermeulen 2019;

Cioffi et al. 2020). Due to the enormous range of data

computing and fast processing capabilities, AI is being

implemented in industries and other smart technologies

(Refer to Table 1). A wide range of customised AI algo-

rithms is readily available in the market to do various

operations such that algorithms can mimic the actions

and processing techniques performed by labours. Thus,

transforming the workplace with manual process into

a robust and customisable AI-driven operation tends

to prove their betterment in areas like pre-and post-

processing, control and application delivery, and other

supply chain practices in real-time(Allam and Dhunny

2019; Kolvart, Poola, and Rull 2016; Singh, Rathore, and

Park 2020).

As a core component for Industry 4.0 and smart IoT

systems, AI never stops enhancing the business model

where it helps to transform the industry to compete

in the global market (Omohundro 2014; Parunak 1996;

Wang et al. 2018). Thus, in today’s businessmodel, indus-

tries aim to incorporate AI in their designs and offer

smart solutions to data-driven decision-making proce-

dures. Due to the advent of developing smart technolo-

gies, the transformation of sectors to adopt industrial 4.0

and industrial IoT standards is getting linear growth. Pro-

duction, control, processing, and manufacturing are vital

areas that get boosted with these smart techniques of

operations (Rane and Narvel 2021). AI provides an inde-

pendent and stand-alone solution to numerous inventory

Table 1. Studies related to emerging technology from the automotive industry.

S.no Authors & Year Domain Focus Methods Applications

1 Gonçalves et al. (2021) Automotive Industry Decision-Making Multivariate approach Forecasting Assembly
process

2 Guo and Ryan (2021) Auto Assembly Line Risk-Averse Optimisation Mixed-Integer Programming Large Vehicles Assembly
3 Kong et al. 2021 Mobility Services Decision-Making Bloom Filter Driver Performance

Evaluation
4 Mishra, Mahanty, and

Thakkar (2021)
Automotive Industry Servitisation Graph-Theoretic Approach Quality Concerns

5 Loading et al. (2021) Automotive Industry Judgment Analysis Discrete Event Simulation Manufacturing systems
6 Raj Kumar Reddy et al.

2021
Automotive Industry State Of the Art Clustering Analysis Vuca World

7 Shahbazi and Byun 2021 Automotive Industry Data Analytics Hybrid Prediction Models Smart Manufacturing
8 Alavian et al. (2020) Automotive Industry Continuous Improvement Industry 4.0 Production Systems
9 Dutta et al. 2020 Blockchain Technology State Of the Art Literature Review Business Visibility
10 Gupta et al. 2020 Autonomous Vehicle State Of the Art Literature Review Cybersecurity
11 Hadian et al. (2020) Automotive Industry Decision-Making Vikor – MCDM Outsourcing
12 Jabbar et al. 2020 Automotive Industry Decentralized Platform Internet Of Vehicles Vehicle Communication
13 Kim, Jung, and Hu 2020 Automotive Industry Smart Contracts Deep Learning Dashcam Application
14 Xia et al. 2020 Vehicle Technology Blockchain Transactions Bayesian Game Electronic Trading
15 Xu and Dang (2020) Automotive Industry Causal Analysis Digital Cause & effect Diagram Knowledge Management
16 Copeland et al. 2019 Vehicle Sourcing Edge Communication Network Function Virtualization Essential Services
17 Samarakoon et al. (2020) Automotive Industry Decision-Making Federated Learning Vehicular communications
18 Sharma, Kumar, and Park

2019
Automotive Industry Distributed Framework Node Selection Algorithm Smart City

19 Erfurth and Bendul (2018) Automotive Industry Manufacturing networks Cross Case Study Global Manufacturing
20 Kumar et al. (2018) Integrated Planning Production control Modeling And Simulation Production Scheduling
21 Sharma, Kumar, and Park

(2019)
Vehicle Technology Distributed framework Blockchain Smart Environment

22 Jain, Shao, and Shin (2017) Automotive Industry Data Analytics Performance Analysis Process Modelling
23 Wei et al. (2017) Auto Part Manufacturer Optimization Algorithm Support Vector Machines Manufacturing Process

Quality
24 Keivanpour, Ait-Kadi, and

Mascle (2017)
Automotive Industry Decision-Making Fuzzy Logic End-Of-Life Vehicle

25 Theorin et al. (2017) Agile Manufacturing Information Systems Event-Driven Architecture Manufacturing Systems
26 Elverum and Welo (2016) Automotive Industry Innovation Management New Product Development Rapid Prototyping
27 Gupta and Vardhan (2016) Automotive Industry Equipment Effectiveness Production Cost Equipment effectiveness
28 Lacerda, Xambre, and

Alvelos (2016)
Automotive Industry Continuous Improvement Value-StreamMapping Component Manufacturing

Note: MCDM –Multi-criteria decision making.
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and supply-chain problems existing within the indus-

trial environment. All these fully automated frameworks

run with the help of customised AI-IoT algorithms with

potential risk assessment features. Thus, manufacturing

and supply chain industries are constantly looking for

these robust and customisable smart innovations to be

adopted in their workplace (Bhamra, Dani, and Burnard

2011; Gupta et al. 2020; Macrinici, Cartofeanu, and Gao

2018; Singh, Rathore, and Park 2020).

2.3. Federated learning

The collaborative learning mode of machine learning

helps iteratively train vast amounts of data from each

of the embedded sensors and devices installed inside

every manufacturing equipment. Data from the vendors,

suppliers, and stockholders are collected and processed

before transferring to the following sections for further

operations. IoT plays a significant role in the instant

delivery of accumulated data from the devices. Such data

have critically been used in training to obtain functional

insights on different goods and commodities in real-

time. One of the key factors that assist in designing and

modelling accumulated sensory data is standard console

built-up, where data can be stored as packets with times-

tamps (O’Leary 2013). Thus, centralised federated learn-

ing is performed whenever the data is obtained using

IoT-enabled smart sensors that tend to get accumulated

on an arbitrary basis and logged based on a specific cus-

tomised AI algorithm. The majority of reported studies

were conceptualised and developed using conventional

techniques and approaches. The review confirms that the

literature remains far from using a federated-learning sys-

tem in manufacturing to improve efficiency, even though

there is a growing interest in recent times. This provides

an opportunity to study the application of FAI as a smart

decision-making framework in an automotive assembly

process. Apart from the consummate design and plan-

ning features, using federated models provides lot of

managerial insights for effective operations and business

practices in real-time. Some of the obsoletedmodels exit-

ing in current practices can be easily tuned, restructure

or replaced using the learning models. A detailed lit-

erature studies about design elements, decision models

and operation support entities are tabulated (Table 1) to

give broader insights AI, and Blockchain in industrial use

cases.

3. Model design background and key
parameters

Federated Learning with AI (FAI) algorithms helps in

bringing different steps of algorithms and codes along

with sensory data in a single window for Grouping-

>Processing->Analysis-> Interpretation->Mapping->

Modelling->Training->Feature Extraction->Decision

Making. Data are stored after all these processes in a

local data repository or data centre (based on industry

infrastructure and data generated).

In the developed FAI model, regression methods

are used a few data processing sections for data nor-

malisation and probability on error identification/rec-

tification during sampling and training. This training

model depends on few critical parameters as follows:

(1) Batch size or Repository sampling values (B)

(2) Number of data entries/iteration (D)

(3) Total number of nodes or components (N)

(4) Deployed FAI models (M)

(5) Training range (R)

(6) Data sampling rate (S)

Depending on the data obtained from vendors, sup-

pliers, and stocks, values are modelled and trained. If

datasets are generated from a single period, sampling

rate needs are assigned for training and processing to a

separate FAI model. In such cases, training values must

be correlated and normalised to avoid sampling errors

affecting the overall outcome for a particular component

in the systemmodel(Gupta et al. 2020; Treleaven, Brown,

and Yang 2017; Zheng et al. 2020). Thus, to avoid such

discrepancies at the output, further modelling is done

using batch processing. Each batch consists of compo-

nents of the same type obtained from multiple vendors

at the same frequency for processing. Each of the tools

and features is identified and grouped with specific iden-

tification (ID) numbers. Consider an item ‘A’ obtained

from vendor ‘X’ at a time ‘t’. Then following notations

are provided by the user to retrieve a particular A at any

time instance ‘ti’.

(1) Total number of components fromparticular vendor

=
∑

X = X1+X2+ . . . ..+Xn

(2) Total number of samples recorded at the time ‘t’= Y

(3) Number of clients involved in the same process = Z

(4) Training dataset value for X at any time ‘t’ = W (R,

B) where W is the weight of a particular dataset.

(5) Error accumulated during training=E

Thus, during the training and while applying FAI,

Tested sampling rate for component X =

n
∑

t=1

Y(Z)

W(Rn,Bn)

+
E

W(Rn,Bn)
+ S′ (1)
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Where S′
=

n
∑

t=1

[

S

B + N
+

D

S

]

(2)

Samples tested correction and modelling using FAI at

time ‘t’ is obtained using the equation (1). Similarly, the

dataset for all the components is modelled and stored

in a shared data repository. This data repository can

be revoked using their unique packet identifier (PID).

Thus, using suitable PID and sampling test results, the

correct proportion of tools and components from pro-

cessing to production can be revoked from the storage.

These capabilities are provided with every section until

the final product is delivered to the clients(Parunak 1996;

Allam and Dhunny 2019;). Apart from the information

handling and data processing, FAI helps to handle the

stock comparison and pricing values. This helps monitor

volatile market share and commodity pricing options of

components or raw materials subjected to market invest-

ment risk and economic crisis. Thus, their cost of pro-

duction, usage, wastages, and energy involved in utilising

them are critically modelled and planned at each section

(O’Leary 2013; Wang et al. 2018).

3.1. AI and Smart contract

Algorithms and learning methodologies involved in

smart manufacturing entities vary with time. Thus, this

basic featurization endorses the smart contract (SC)

usage that extends the production process visibility to

engineer and train the functions and standard oper-

ating procedures. SC is framed between the suppliers

and the manufacturers (mutual agreement) on the risk

of raw materials, processing, testing, and validation of

goods(Baryannis et al. 2019; Magazzeni, McBurney, and

Nash 2017; Min 2010). SC has provisions to include the

insurance schemes available for the assembly, inventory,

and product delivery. Since the entire operation is han-

dled using FAI and SC, the arbitration of data obtained

from all the market shareholders is modelled for effec-

tive management in real-time. Some of the segments that

involve SC in the production and manufacturing in the

industry include:

(1) Raw Materials

(2) Financing and Stock valuation

(3) Insurance and market risk

(4) Delivery and Transportation

All these four SCs are actively enabled during theman-

ufacturing and assembly process. AI models help find

suitable negotiation factors for cost, energy, market risk

by predicting and forecasting the feasibility of SC poli-

cies before the commencement of works in the industries.

Both regulatory and technical policies can be bundled

together using SC as FAI helps in foreseeing the risk

factors in prediction, planning, procurement, purchase,

manufacturing, assembly, and delivery(Cioffi et al. 2020;

Khan and Byun 2020). Thus, to validate this blockchain

during the loading, unloading, and distribution of com-

ponents and tools in and out of the industry and to study

SC’s limitations, functionalities, and features, FAI helps

manage the potential risk in the manufacturing process.

Data with the least possible error values help fetch the

desired benefits of utilising AI and SC in the workplace.

A new normalisation phenomenon is introduced in the

manufacturing process to cut off accumulated errors,

and data mismatch from obtained datasheets to pro-

cessed data (Nofer et al. 2017; Sayeed, Marco-Gisbert,

and Caira 2020). This method is data-centric, and nor-

malisation helps mitigate the system’s accumulated data

errors without affecting the policy to a greater extent.

This novel error limiting factor is called Trust Threshold

Limit (TTL).

3.2. Trust Threshold Limit (TTL)

TTL refers to the maximum limit that any goods and

components involved in assembly, manufacturing, and

delivery can be experimentally utilised with minimum

wastage or losses. Thus, as the name indicates, TTL sets

the threshold limit for all the tools and devices actively

participating in product delivery. SC depends on the

permitted TTL limit for each entry in the data socket,

exceeding which the chance of loss in the product market

is high. With TTL value, the responsibility of the policy-

maker and FAI function is to optimise the scaling factor

for the component within that particular limit(Mohanta

et al. 2020; Sayeed, Marco-Gisbert, and Caira 2020; Yu

Zhang and Wen 2017; Yuanyu Zhang et al. 2019). The

novel decision aid model and the threshold limit values

helps the operations, production and logistics in their

purchase, procurement, distribution, and delivery. Apart

from the normal supply-chain and logistics operations

(Ivanov et al. 2016, 2019), the developed state-of-the-art

TTL values helps the existing business model to incubate

them for better component and product movements in

their real-time industrial environment.

Example: Consider equation (1) where testing sam-

ples for product X are obtained by FAI and weights of X.

When it comes toTTL, themaximum limit value needs to

be obtained using the sameweights and data distribution.

Thus TTL (X) can be modelled as follows:

TTL(X) =

n
∑

t=1

W(R,B)

Y
+

n
∑

t=1

E

(B + D) ∗
1

R+Z ∗ X′

(3)
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Where X′
=

1
B
D + R

+

∑ X

W(R,B)

+ Z ∗ W(R,B)/
∑

X + E (4)

For a manufacturing and production unit to operate

with full potential both in terms of benefits from sup-

ply and process/procurement/purchase, equations 3 and

4 will significantly help. Design testing and analysis fall

under the sameumbrella of TTL. Timestamp and compo-

nent ID are used as a reference entity to model the FAI at

different sections with other industrial procedures (Min

2010; Nofer et al. 2017).

4. Methods

The model framework is structured under four stages

of sequential processes, as shown in Figure 1. The pro-

cess gets started with data collection, followed by data

normalisation. The processed data is tested and analyzed

using suitable testing and validation methods (support

vector machine learning). All these segmented and nor-

malised datasets are thenmodelled and trained using FAI

for decision-making and validation in real-time. SC is

provided with the market risk knowledge and resource

utilisation metrics during all the stages of data accu-

mulation, processing, and control, thereby ensuring the

market standards for better product delivery. Policymak-

ers and standard decision-making units critically evalu-

ate the outcomes at every stage. Finally, the end prod-

uct is delivered with the same features to the consumer

market(Gupta et al. 2020; Min 2010).

4.1. Stage 1: Data collection and classification

The entire process of product design and delivery relies

solely on the accuracy of data gathered from each of

the available components in the system. Discrete datasets

from each supplier, vendor, and stockholder are actively

collected along with their market risk policy to frame

their suitable SC. As these data are entirely obtained from

the IoT-enabled smart sensors, these data require a lot

of pre-and post-processing functions to be performed.

Information about manufacturing, warranty, composi-

tion, maker’s policy, structural details are logged and

Figure 1. Research Flow.
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modleled during the collection process. Sensors, actua-

tors, and other embedded electronic equipment collect

the data and efficiently hand them to the central data

repository for further processing and analysis. After the

data collection, the accumulated data are modelled and

mapped with their unique ID. The equipment data are

stored in their respective local data repositories for long-

term referencing and policy formulation. These data are

then retrieved for the 1st stage of processing, called Trust

validation. The data obtained and stored from the sup-

pliers and stockholders are cross-referenced and verified

to prove confidence and originality regarding measure-

ments, validity, defects, or other deformities. If any flaws

are identified during this stage of trust validation, SC will

immediately help manufacturers raise a replacement or

refund the stocks. This blockchain feature needs to be

mentioned at the time of policy formation. This can be

materialised and followed as a standard defect identifi-

cation and originality check of goods and commodities

covered under the same risk assessment policy(Khan and

Byun 2020). In addition to the existing literature (Ivanov,

Sokolov, and Dolgui 2014, 2019), the impact of engag-

ing smart technologies are explained in detail with the

help of AI and blockchain. This sheds lights for new

research and design perspectives of altering the indus-

trial design for performance enhancement andmonetary

benefits.

The datasets are modelled using the support vec-

tor machine learning model (SVML) in the post-trust-

validation phase. During this unsupervised ML train-

ing, the dataset is provided with classifiers where each

classifier offers the information on the source of goods,

timestamp, and purchase details. All these data are mod-

elled and mapped under SC group policy intended to

avoid the market risk practice. Depending on the sup-

plier’s datasheets and procedures, the manufacturer has

the freedom to plan additional policies if the system’s per-

formance predicts a better ratio than expected during the

policy formation(Mohanta et al. 2020; YuZhang andWen

2017).

Each support vector is identified and mapped with

their classifiers and logged in the same database for each

reference and identification. All the mapped dataset is

logged in a customised database for easy and smooth

identification and utilisation. During the end-product

delivery, these classifiers and the support vectors are

invoked from the system database for final checking and

clearance. In case of any contradiction to the proposed

details, S and FAI values, will be cross-checked andmod-

ified as per the risk assessment SC in the system (Mag-

azzeni, McBurney, and Nash 2017; Yuanyu Zhang et al.

2019).

4.2. Stage 2: Grouping and normalisation

All the logged data and support vectors are moved to the

next section of data normalisation. The data with errors

are identified and removed/correlated with the next least

possible error values required for processing the tools.

Thus, error rectification is completely done during this

process of data normalisation. In someworst-case scenar-

ios, if the schematic of a particular component consec-

utively fails to meet the expectations, then the financial

blockchain is invoked using the SC. One of the most

prominent examples of today’s automotiveworld for such

financial SC and their smart policy is recalling Honda

Model cars due to their faulty airbags. Under such cir-

cumstances, group policies are shared between all the

involved parties, from suppliers to manufacturers. Due

to these unexpected circumstances, the loss incurred is

equally shared by all the commodity vendors and compa-

nies (Sayeed,Marco-Gisbert, andCaira 2020; Zheng et al.

2020). If the defect is identified in the product (Airbag

as in Honda cars), then the faulty product id is revoked

from the database for vendor identification. If the ven-

dor SC is not assigned under such financial blockchain,

then the company is entirely liable for the incidents. If

SC is derived in favour of the manufacturer, then the

vendors will take the whole responsibility and address

the incidents with compensation or replacement of the

entire automobile itself. Thus, data error normalisation

and schematic verification play a major role in training

and SC formation.

4.3. Stage 3: Control, verification, and analysis

Two of the critical stages in the manufacturing and

assembly in the fully automated smart manufacturing

industry are verification and analysis. In this stage, the

component datasets are evaluated for fixing their TTL

range. This range plays a significant role in energy usage,

supply-demand management, cost, and flawless product

delivery. Normalised data obtained after verifying the

schematics is shared with the assembly and verifica-

tion section. TTL of the component is set before start-

ing the process (Magazzeni, McBurney, and Nash 2017;

Yu Zhang and Wen 2017). Once the process is initi-

ated, TTL for that tool is picked from the data model

for fitting and assembly. During the assembly and fit-

ting schemes, the dataset is verified for TTL; thereby,

the reference limit for the whole processing mecha-

nism solely depends on the limit set by TTL. In this

system driven control and processing, all the accumu-

lated datasets are going through series of processes as

follows:
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(1) Fitting

(2) Assembly

(3) Verification

(4) Analysis

(5) Testing

(6) Polishing under the same TTL value from the SVML

training used for deriving SC.

All the SC under this stage is assigned under the insur-

ance and market risk blockchain category. SC associated

with insurance blockchain helps the retail business ven-

tures to take part in the investment procedures, thereby

helps in boosting their market share and business devel-

opment processes (Yuanyu Zhang et al. 2019).Market lia-

bility is insured, and the IoT devices closely monitor the

actions performed at each section. As the data generated

from embedded devices are a continuous process, classi-

fiers and the support vectors are assigned instantly irre-

spective of the functionality and operations performed at

different stages of the assembly and delivery process.

If any mismatch occurs during the production and

delivery stages, the dataset is retrieved from the local

database, and their TTL is critically examined with their

support vectors. Thus, errors are eliminated. Compar-

ing with the existing industrial setup, engaging smart

technologies will give maximum insights about the cru-

cial designs and process automation. Joining up with the

available resources, the operations and control schemes

can be modelled for maximum benefits. For every stage

of product design and fitting, the SC can be provided

with suitable regulatory primitives, thereby bringing all

the datasets under a single database (Zheng et al. 2020).

Insurance companies offer higher flexibility in share

exchanges for policymaking and production strategy

analysis subjected to market risk and investment returns.

For investment returns, the predicted performance by the

FAI schemes holds a high hand in the market demand

with a better supply chain ratio. At the same time, all

the involved third-party vendors and suppliers try to

seek more capital investors. To ensure assured returns

from the entitled policies, commonly available risk fac-

tors include:

(1) Raw material cost

(2) Supply-demand ratio

(3) Goods quality

(4) Delivery time

(5) Economic crisis

(6) Market credibility

Thus, this stage involves a high risk-high return if the

expected product reaches the target audience within the

stipulated time. Thereby effectively balances operational

credibility in real-time(O’Leary 2013; Wang et al. 2018).

Working performance and service satisfaction from the

end-users play a vital role in framing and fixing the SC

once the product is available for usage. A Timeline for the

next bulk production relies entirely on the target audi-

ence’s satisfactory report analysis, which takes time to

obtain in real-time.

4.4. Stage 4: Decisionmaking, FAI, and product

dispatch

The next critical and most crucial stage of AAM design

is the decision-making by which the real-time testing is

evaluated. Data obtained from this stage is used as a ref-

erence for all SC forms considered a baseline scheme

for identifying the TTL values. The convolutional data

processing method offers more error functions than the

FAI scheme (Giancaspro 2017; Macrinici, Cartofeanu,

and Gao 2018). Apart from the analysis and training, the

SC and training datasets are arbitrarily cross-referenced

for smooth data interpretation and model evaluation.

From the study, key findings includemarket valuation for

each product, cost and distribution quantity to individ-

ual shareholders, profit-loss margin and transportation

and insurance coverage, quantity, and quality of goods

delivery, etc. By doing this model evaluation using TTL

and FAI, the decision can be obtained for the AAM

design that includes energy usage, cost, and components

quantity(Allam and Dhunny 2019).

5. Case study

Implementation of the developedmodel in a smart indus-

trial environment helps to understand the benefits of

using TTL and FAI in real-time. As the company can

incubate the necessary blockchain techniques, the infras-

tructure requirement has diversified requirements. The

operations and control scheme of the developed AAM

are thoroughly evaluated in real-time. Implementing the

SC in the workplace without halting the operations in

the industry is quite challenging, but the time taken to

implement is significantly less than any other existing

conventional models.

5.1. Company background

Small and Medium Enterprises (SMEs) are actively

involved in emerging the latest technologies in their

working strategies. One such SME is situated in Europe,

where it assembles various automotive parts manufac-

tured across the globe. They have an automated assem-

bly, distribution, and small-scale manufacturing unit
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(locally develop few components). As a new commer-

cialisation strategy in 2020, they started implementing

the SC Blockchain technique in their vehicle assem-

bly and distribution process. Initially, they tested the

scheme for their domestic warehouse operations, which

assembles embedded components essential for product

delivery, as their concentration was only on transporta-

tion blockchain. Step-by-step, they have expanded their

market to neighbouring countries like Malaysia, India,

and few others (Baryannis et al. 2019; Yuanyu Zhang

et al. 2019). Since the company is about eight years

old, the global response index for testing and emerg-

ing new techniques in their design is quite challeng-

ing in the beginning. However, their initiative is rela-

tively new to the commercial vehicle market. Due to

confidentiality and workplace design ethics, the com-

pany name is kept anonymously as XYZ company. The

company’s goal is to deliver commercial trucks to var-

ious customers across the world. The company aims to

implement AI models, IoT, and other ML techniques

are driven decision-making. There are three stages in

the vehicle assembly and delivery process. Each stage

involves new technologies and standards AI methodolo-

gies that aim to bring a solid result-oriented profitable

design. The developed design helps the company com-

pete effectively in the local and global market for the

long term.

The other objective of implementing SC and AI is to

provide a hassle-free and risk-less automobile delivery

environment that facilitates desirable profit. This leads

to less impact due to socio-economic crises or any other

strategies from existing competitors. The trucks assem-

bled from this factory vary from 10–18 wheels, and each

truck goes through the same assembling stages using AI

and Blockchain(Nofer et al. 2017). Stage 1 consists of

component classification and analysis. Data aremodelled

and associated with the Raw Material Blockchain. Stage

2 comprises embedded equipment and machinery data

that helps in the investigation, grouping, and classifi-

cation of data. This section is closely associated with

financial and insurance blockchain. The final stage in the

design of AAM for XZY company is the final assembly of

the product, where all the sections and stages are involved

in achieving the desired outcome. In this stage, 3, TTL,

and SC help finalise the FAI values by which the company

stakeholders will plan and execute their business plans in

real-time.

The vehicle design has many smart embedded com-

ponents. Thus their working conditions, testing, and

field assembly values need to be processed and modelled

(Yuanyu Zhang et al. 2019). Depending on the indus-

trial standards, market needs, and commercial value, the

quality and quantity of tools, software, and devices are

mapped and installed. Figure 2 exhibits details of com-

mercial vehicles assembled in the plant. The vehicle con-

sists of much electronic equipment that acts as embed-

ded agents and assists the IoT system in data collection,

distribution„ and storage.

5.2. Business case

Component procurement, vendor selection, equipment

identification and market valuations, and the best com-

mercial value for the product are critical zones focused

in the design. Data collection, processing, and analy-

sis based on various factors like energy usage, product

loss/damages, and cost of production are critically consid-

ered in themodelling, evaluation, and implementation of

them in the workplace. Implementing the AAM helps to

improve productivity, competitive market pricing for the

Figure 2. Components involved in Industry Grade Commercial Truck.
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vehicle delivered, and security for all the investors. Fur-

ther investigation includes 1. Component classification

based on loading and unloading time and market cost. 2.

Analyse the pricing values fromall the vendors, suppliers,

and stockholders. 3. It assists in arranging the compo-

nents with their respective logistic sections. 4. Processing

and evaluating the datasheets received from all the com-

ponent delivery members. 5. Identify the component’s

originality, insurance policy, and smart contract details

for practical usage at different sections in the XYZ com-

pany. This helps effective utilisation of IoT devices and

smart components on the manufacturing floor. Data col-

lected are transferred to different processing and control

zones for interpretation, classification, and analysis. For

this purpose, AAMuses support vectormachine learning

and classifiers.

Thus, data are modelled, mapped, and processed

based on industrial requirements and product’s commer-

cial standards in real-time. Required data statistics are

immediately processed andmodelled using FAI to obtain

the TTL value for any individual component involved in

the system design. Stock availability, component usage

metrics, energy consumption at the workplace, and cost

of production are modelled individually in the AAM

design. Thus, the final product assembly and delivery

involves a lot of complex data processing and training

mechanism that assures better market value for the vehi-

cle without any losses in per capita investment for each

investor. As all the schemes modelling are done through

a smart contract, the AAM framework requires stage-

by-stage data processing that uses IoT, machine learning

models that significantly assist in curtailing losses at var-

ious stages of the assembly process. Table 2 shows the

project charter carried out for AAM design and deploy-

ment in the XYZ company.

5.3. Data collection and vector classification

In this design stage, goods, software, tools, and com-

ponents from all the parties are unloaded and verified

for their originality and standards in real-time. All stock

values, component lists and specifications are labelled,

tagged, and received at the unloading section. Stock-

list, storage requirements, processing features, marking

details like time and validity of the contract are mapped

and stored with their respective suppliers (Guo and Ryan

2021). This stage uses a unique identifier for easy recov-

ery in case of loss, damage, or faulty components. Data

about the suppliers are kept confidential throughout the

process as the SC policy will give additional safety and

security details from the manufacturer. Cross functional

embedded equipment can be combined together for data

collection and processing. Energy reading is obtained

Table 2. Project charter.

Business Case: Statistical modelling and efficient cost reduction and
energy consumption in stages like loading, transportation, procurement,
production, and assembly. Sensor-based embedded application processes
are fully automated. Modelling and design evaluation is done using R
programming. Industry-grade simulation software helps to derive the
required values and thresh limits for each component involved in the
design. Market procurement with minimum gain margin will provide
better scaling values when all the components are modelled using the
same procedures. This helps reduce the stock pricing andmarket valuation
by attracting many investors without the risk of the vehicle’s monetary
loss and commercial value.

ProblemStatement: Implementing cost-effective procurement, processing,
and product delivery strategy using FAI and SC. Effectively utilise IoT and
Machine Learning functions for data collection, analysis, estimation, and
performance evaluation in a fully automated assembly and delivery unit
in the automobile industry.

Goal Statement:Minimising excess resource utilisation, cost, and energy
in all the critical areas covered under the smart contract. Introducing a
novel performance measurement index helps the industry maintain a
permitted level of profit-safe margin during purchase and holdings called
Trust Threshold Level (TTL).

Team Requirement: Since the industry is fully automated, only 6–10 skilled
labourers are sufficient to assist the devices, data processing centres,
and robotic platforms. Skillset includes troubleshooting in embedded
software tools, design testing, and high-level experience handling
machine learning algorithms and R models.

Period: 13 months (Full Time) Jan 2020 to Feb 2021 for implementation,
modelling, testing, and deployment of developed AAM in the workplace
with fully established FAI-TTL assistance with Smart Contract.

Equipment used: Sensors, Actuators, Electronic Controller Units, Near Field
Communication Devices, RFID (Radio Frequency Identification) tags, and
IoT enabled smart Transceiver units.

Software and Data Repository used: Local Data storage and processing
unit, Automotive Grade Design software like MATLAB and R modelling
tool.

from a coordinated andmodelled central controlling unit

where all the federated models are deployed for process-

ing and calculation in real-time.

Once the details about the tools, components, and

other miscellaneous elements involved in the design,

assembly, and production process are received, they were

labelled, and tagged for easy classification, identification,

and storage. The stocks are stored in the local reposi-

tory, and the same is modelled using Support vector ML.

In this process, each vendor ID is mapped and logged

with their devices and tools. This information is cat-

egorised and provided as samples for the ML model

for training and feature extraction purposes. Once their

detailed analysis is obtained, the stockpile is provided

with classifiers. The stockpile and their unique compo-

nent ID can be invoked and identified at any stage of their

requirement in real-time. For this analysis and categori-

sation, AAM uses R packages, and the dataset is analyzed

for feature extraction using automotive software tools

(Manimuthu et al. 2021). Key findings from this stage

include:

(1) Fault identification

(2) Component Classification

(3) Mapping of tools and Devices with their suppliers
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(4) Product policy identification

(5) Stocks and Storage range and capacity index

(6) Market cost and Energy consumed during Unload-

ing and storage in dedicated facilities

From this stage, the raw materials are assigned and

model with their specific SC type based on com-

pany requirement, market trend, and investors inter-

est. Some primary SC types include Smart Legal con-

tract, Decentralized Autonomous Organization (DAO)

contract, Application logic Contract (ALC). In this AAM,

components are categorised in the production process

using only two SC: Smart Legal and ALC(Parunak

1996).

5.4. Smart legal contract (SLC)

One of the commonly used blockchain elements where

all the elements, tools, and software investors and stake-

holders are legally merged under one common agree-

ment says profit or loss needs to be shared legally under

accepted terms and conditions. This SC covers software,

tools, and hardware, and the industry’s data centre for

future references. Trust among all involved parties is

ensured using SC. Market reliability, stock value pre-

dictions, and product commercial value evaluations are

accountable and shared by all the investors using SLC.

Easily accessible machine-level SC assists in tying the

consumer market with industries without any external

brokerages. Energy wastages calculation uses a digital

IoT environment. Most SMEs use this blockchain in

their product procurement, delivery, and market stock

analysis.

5.5. Application logic contract (ALC)

SC assists in using IoT devices for data collection, pro-

cessing, analysis, and decision-making in automobile

assembly and delivery. Most of the tools and methods

used in the AAM involve many application-specific IoT

devices, support vectors, classifiers, and federated learn-

ing models. ALC helps bridge gaps in programming

tools, system design software, and industrial standards

for assembly and production processes. ALC applies to

design and modelling. All the active components, irre-

spective of manufacturers and process, can be brought

under a common umbrella of SC without additional pol-

icy formation. Many investors agree to get involved in

the logical contract without scrutinising their design and

development details. Since XYZ company comes under

SME in Europe, the implementation and design pro-

cess is much more flexible while using ALC as one of

the SC.

5.6. Spare parts inspection and trust validation

The pivotal stage is to classify different tools and com-

ponents from manufacturers. During this stage, mar-

ket valuation and the component’s purchase cost are

critically studied. Forecasted market value is quoted as

the best market index during their training in real-

time. All the datasets are trained and modelled using

their unique ID and training vector classifiers. Database

that holds the record about multiple components of the

exact specifications using SC procedures. Their label and

time tags are uniquely modelled, trained, and stored

under their unique classifiers and support vectors (Zheng

et al. 2020).

Once the automotive elements are classified based on

different datasheets, market values and usages are mod-

elled and trained using their support vectors and classi-

fiers. This helps identify and eliminate the data errors and

accumulated processing errors during data reception and

storage by different IoT devices installed at different crit-

ical industrial zones. Data play a critical role in TTL limit

identification for every industry-grade tool and embed-

ded component. Datasets with errors are processed sepa-

rately rather than training with other error-free datasets.

Further data normalisation shows the datacentric abil-

ity of ML in processing the information among different

sections of the industry(Pokhrel and Choi 2020).

After classification and modelling, the components

are mapped with their respective section based on usage

requirements in the assembly process. In this stage, errors

accumulated during the dataset training and evaluation

are updated, and new entries are stored. Sections involved

in the XYZ company use this mapped dataset and their

normalised values for smooth and easy identification of

components from multiple manufacturers. This classi-

fication is based on their market valuation and stock

listings as well. Grouping and logging take place once

the trained values are available at respective data loggers.

Irrespective of time, cost, and energy usage, all the ele-

ments are logged and categorised using their classifiers

and support vectors in this stage. Since the next stage

of vehicle design requires tools and components based

on timing and assembly, these logged data are clustered

together (Manimuthu et al. 2021).

5.7. Product design and schematic verification

As all the datasets required for component assembly and

product structuring are readily available, the SC policy is

checked before starting this process. During the process,

almost all the assembly operations will be completed,

and only the delivery of the final product will remain

in the industry. Before starting this process, product
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Figure 3. Rendered Schematic Viewpoint for the Heavy-Duty Commercial Vehicle.

schematics, as shown in Figure 3, are critically analyzed

and evaluated deeply to come with the process initiation.

The schematics include the components assembly with

reference to the different viewpoints. The references are

shared with all the divisions and the sections for their

correct fitting and design verification in detail. Cross-

sectional views help the design process more compact

as the tools are categorised according to their require-

ments. Robots take care of the assembly process using

the embedded software, and R models help in data visu-

alisation. Once verified and approved, this stage of pro-

duction and assembly cannot be intervened by any of

the embedded devices in the middle(Singh, Rathore, and

Park 2020). Only the emergency halt operation can be

performed. Steps and processes involved in this stage

include:

(1) Fitting

(2) Assembly

(3) Polishing

(4) Testing

(5) Analysis

(6) Verification

In each section, ML values, trained classifiers ele-

ments, and the permitted storage level are recorded; So

that there will not be any excess values in any sections.

This helps to secure the system from any loss due to

excess storage cost, and energy required to process and

store the values. The product design schematics with

all viewpoints, as shown in Figure 3, are kept readily

available for usage and shared as a key reference to assem-

ble every individual component (O’Leary 2013). In con-

trast to the existing business models and industrial setup,

the developed design uses smart technologies, AI and

smart contract to assess and manage all the error prone

zone in the business and industrial operations.

5.8. Product delivery

After assembling the product, the usages are updated

with their ID and TTL values in real-time. In this stage,

data obtained from the sensors and embedded devices are

modelled and trained using FAI. Component’s classifiers

and support vectors are correlated for their usage and

threshold limits in real-time. Once the process is initi-

ated, data obtained are relatively normalised andmapped

in parallel with their SC before getting transported

to the final product delivery section(Gonçalves et al.

2021).

Data about the components and tools, embedded soft-

ware, and smart sensors are cross verified for theirmarket

utility, licenses, and delivery cost with their intended con-

sumers or vendors for commercial stocking. Fault identi-

fication at this stage is crucial as the entire schematics of

the system need to be reworked and revamped based on

the TTL values. FAI training is again performed to restore

the system, just as every process involving the faulty com-

ponent. The component is replaced completely. If the

fault is identified during assembly or production, the

entire items delivered during that time-stamped stage

and product classifiers are separated from the rest of the
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sections. This helps secure the production without being

affected much by the fault at different stages during mass

production(Min 2010).

Further, with TTL, the market pricing is carefully

identified and evaluated to get the best pricing value

during the final product delivery – SCs help bring qual-

ity and quantity during the distribution of vehicles in

the commercial market. Stakeholders and investors, par-

ticipating venture capitals are provided with the vehi-

cle standardisation schemes and method of designs and

explained about the TTL and their performance in devel-

oping customer-centric smart vehicle design with an

assured profit margin to all the investors and partici-

pating agencies in real-time in terms of market share,

stocks and commodity and consumers commercial mar-

ket trust(Cioffi et al. 2020).

6. Design simulation and experimental analysis

Model development, simulation, and software-based

programming include three levels of data extraction and

modelling, as shown in Figure 4. In all the stages, fea-

ture extraction, error identification, rectification, model

processing, and data training are performed continuously

using SVML and FAI. The modelling scheme involves

SC and TTL to ensure the proper commercial pricing to

design and the required number of assembly and product

design components.

6.1. Level 1: Data normalisation and feature

extraction

Rpackages and industry-grade smart system software are

used in bringing the full features available from every

Figure 4. Automobile Assembly Model (AAM) using TTL, FAI, and Smart Contract Blockchain.



INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 15

component involved in the design. Training and eval-

uation include stock lists, pricing values, and manufac-

turer support for smooth testing, loading, unloading, and

information extraction. The process involves fact sheets

and design information obtained from original vendors

and suppliers. This information is retrieved andmodelled

using SVML, and classifiers are provided to each section

for smooth identification(Nofer et al. 2017). Each com-

ponent is mapped and logged onto a local database for

easy pick and place into different sections involved in the

process. Investors and stakeholders are advised about the

market price.

6.2. Level 2: Trust Threshold Limit identification and

modelling

One of the critical levels of design and testing is function

evaluation and vector characterisation of components for

identifying their TTL values in the system. This TTL

references consumption, wastages, energy usage, and cost

function involved in the commercial vehicle assembly and

distribution process.With TTL, the loss margin is greatly

improved, and the stock pricing is kept on the desired

limit by all the involved component vendors. Support

vectors and the federated training values are modelled

and smoothly channelised for best throughput as the

limit is set during the initialisation process. Table 3 shows

the impact of using TTL and SC in analyzing the risk

index in the commercial market. Before implementing

FAI, the use case of SC is not completely achieved in the

design as suitable infrastructure is not viably available.

Based on the contracts and mutual agreements, the pur-

chase and string values go through their applicable SC.

Thereby the unwanted storing cost and the risk involved

in storing are significantly reduced. It is not mandatory

to pay additional costs, and energy wastages for mainte-

nance are nullified completely. Thus, this implementation

directly reduces the risk involved in handling all forms

of products movements. If the SC is not implemented,

the policymakers have the freedom to implement addi-

tional maintenance charges along with storage and deliv-

ery cost. Almost 1.5% of the risk index is improved using

TTL and FAI while setting the FAI margin as 1.27% dur-

ing the purchase and installation of ECU alone. Then

the same process is done for every individual compo-

nent. The overall gain margin using FAI in the design

includes a whopping 26.46% overall gain throughout the

entire process. However, this whole FAI margin will not

be reflected the same at the end of product design and

delivery as the market share is prorated and has its stock

and investment fluctuations(Giancaspro 2017). The pro-

cedure is followed in the SME for almost ten months

unlike any other existing models, which may normally

be implemented only for few months before deploying

on a large-scale industrial environment. Now it is fully

operational and exporting vehicles overseas with a solid

profitability range of in the body and commercial division

split-up alone for each investor based on their investment

percentages apart from market gain and fluctuations in

real-time.

6.3. Level 3: Federated learning AI and smart

contract

The installation, procurement, purchase, and product

delivery process is subject to the cost and energy usages

apart from market investments and stock prices. The

training and evaluation of data and component’s speci-

fications are based on their original suppliers (Fenwick

and Vermeulen 2019; Yuanyu Zhang et al. 2019).

The smart contract involved in the design includes

the insurance policies that attempt to protect and secure

the initial investments made during the production and

delivery process. In this SME, only two insurance policies

are incubated in the design process. 1. Pure Holding Type

and 2. Intermediate Holding type.

6.4. Pure holding type

Companies that participate in component investments

andmarket share alone without product design and com-

ponent pricing come under this category. These invest-

ment companies hold a significant share in the SC, and

the commercial market’s profit margin is also very high.

Table 3. Rawmaterials implemented with FAI training percentage and valuation index.

Elements
License
(In Years)

License
Grade Units

Smart Contract
(SC) Type

Risk Index (%)
(Before FAI)

FAI
Margin

Risk Index (%)
(After FAI)

ECU 2 Industrial 25 ALC 14 1.27 9.8
Embedded Controller 1 Retail 50 ALC 25 2.14 17.5
Sensors 1.5 Vendor 120 Smart Legal 27 4.21 18.9
Actuators 1 Vendor 100 Smart Legal 30 5.31 21
Conveyors 3 Industrial 12 ALC 15 2.89 10.5
Data Stack 5 Retail 5 ALC 10 3.47 9.5
Logger 2 Retail 10 Smart Legal 5 4.01 3.75
Debugger 1 Vendor 10 Smart Legal 5 3.16 3.5
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6.5. Intermediate holding type

As the name suggests, instead of investing and acquiring

a significant stake in the company, these companies will

invest along with other retail investors in terms of cost,

energy, and component purchases. The main advantage

of this type of holding is high return in the short term,

but it also involves heightened risk due to market fluctu-

ations. Companies in this category tend to be proactive

in commercialising the automobile as soon as the prod-

uct reaches the commercial market for consumer utility

in real-time. Table 4 shows the insurance type and the

SC values for each critical component with many ven-

dors and suppliers. In addition to these components and

tools, many other products are available in the vehicle

where the gross margin is shared between many local

investors.

From table 4, it can be observed that the gross mar-

gin gain for each component raised to an average of

1.5–2.3 percent irrespective of their SC and Insurance

holding type. Thus, TTL and FAI help companies get bet-

ter investment returns and market sustainability for the

long term.

Similarly, the TTL tends to limit all the company’s

share value based on their market trends and com-

mercial market fluctuations in real-time irrespective of

the share contributions these companies have in the

vehicle design, development, and commercialisation. As

shown in Table 5, companies from A-G supplies different

embedded components, and the conveyors are purchased

from companies X to Z in the local market. Due to the

randomness of investments and stock prices, the valua-

tion of each company is closely monitored and fed to the

FAI for their best training attributes. Hence, with these

values, the best market price for each of the essential ele-

ments is obtained. Based on this, TTL is developed as iter-

ations for the next consecutive progression ofmatrices for

the same companies.

In this process of training and evaluation of goods and

services, SC involved in the design helps to get better

pricing values from the commercial market by identify-

ing, analyzing, and estimating the pricing of goods and

commodities. It also the product movement from and

to the company and commercial market respectively in

real-time.

The tariff rate, along with their market valuation,

are identified, modelled, and evaluated based on deliv-

ery speed, charges/item, and market capitalisation(SC;

and Enterprise value). Many vendors have their delivery

agencies for loading and unloading goods and commodi-

ties. Thus, TTL and FAI help identify the best pricing

agency for delivery and transportation in the commercial

market. Table 6 shows the delivery agency list and their

enterprise valuations like market cap, enterprise value,

and delivery charges before and after implementing FAI

and TTL in the workplace.

Similarly, the performance index is evaluated for the

dealers based on the revenue and gross sales. These data

must be submitted as per the company policy and SC

blockchain for insurance, maintenance, andmarket share

calculation in real-time. Thus, all the agencies and deal-

ers produce their total retail and commercial revenue

data for FAI training and analysis. This helps to study

and identify potential issues or threats or quality index

and improve cost margin gain regarding distribution and

Table 4. Insurance type and gross margin % of different components in AAM design.

Elements
Insurance

Holding Type
Smart Contract

(SC) Type
SC Rate (%)
(Before FAI)

Gross Margin
(%) (Before FAI)

SC Rate (%)
(After FAI)

Gross Margin
(%) (After FAI)

Conveyor Pure ALC 2.23 4.20 4.68 6.59
Data Stack Intermediate ALC 3.01 5.32 7.21 8.32
ECU Intermediate Smart Legal 2.86 3.26 4.19 3.53
Sensors Immediate Smart Legal 4.33 5.32 10.35 9.81
Battery Pure Smart Legal 4.53 4.82 9.83 7.09
Software Pure ALC 2.87 2.94 3.80 3.61

Table 5. Companies market valuations for each critical component in AAM design.

Companies (Market Fluctuation %)

Elements A B C D E F G X Y Z

ECU 4.011 6.12 3.51 9.6 15.28 17.79 6.402
Embedded Controller 6.19 4.29 5.35 7.29 4.69 8.29 4.69
Sensors 3.67 4.67 3.14 8.21 4.36 7.26 3.03
Actuators 5.158 5.146 5.173 5.193 5.103 6.09 5.049
Conveyors - - - - - - - 11.93 10.29 9.143
Data Stack 5.21 6.21 5.179 4.29 9.21 7.29 6.73
Logger 4.019 9.27 7.95 7.63 6.72 6.1 4.03
Debugger 5.753 6.017 6.32 5.236 4.93 5.017 6.73

Note: Values highlighted in Red gives the best market valuation for a particular component using FAI and TTL.
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Table 6. Transportation tracking with delivery rate of all dealers in AAM design.

Dealer ID
Delivery

Charges (%)
Delivery Rate
(Before FAI)

Market
Cap (%)

Enterprise
Value (%)

Delivery Charges
(%) (After FAI)

Delivery Rate
(After FAI)

IN263 12.23 23.86 131.53 168.75 5.22 21.15
IN753 16.23 15.93 95.89 123.02 −16.68 13.22
IN632 17.30 14.40 89.28 114.55 −21.64 11.68
IN895 14.23 19.27 110.58 141.87 −6.67 16.56
IN412 9.21 20.31 110.76 142.11 7.44 17.60
IN724 11.04 21.42 118.15 151.59 4.54 18.71
IN244 19.23 20.15 119.96 153.91 −17.86 17.43
IN893 10.25 19.33 106.88 137.13 3.37 16.61
IN710 10.86 22.36 122.66 157.38 6.38 19.65
IN837 9.31 18.40 101.29 129.96 4.31 15.68
IN720 8.39 19.38 105.29 135.08 8.09 16.67
IN207 19.34 22.36 131.14 168.25 −14.81 19.65
IN663 14.30 23.64 132.50 169.99 −0.28 20.93
IN743 17.29 20.93 121.94 156.45 −11.83 18.22
IN552 13.70 19.30 110.20 141.39 −5.30 16.59
IN349 14.93 19.76 113.73 145.92 −7.68 17.05
IN735 15.73 24.36 137.53 176.45 −2.79 21.65
IN753 13.29 23.18 129.19 165.75 1.55 20.47
IN823 14.37 22.31 125.92 161.55 −2.46 19.60
IN634 14.20 21.34 120.90 155.11 −3.49 18.63
IN900 11.36 22.56 124.16 159.30 5.44 19.85
IN209 10.30 22.79 124.25 159.41 8.44 20.08
IN760 8.24 19.39 105.19 134.95 8.50 16.68
IN860 11.80 21.29 118.25 151.71 2.43 18.58

Note: Negative Value indicates gross margin exceeds the desired limit (Outperforms in Market Valuation).

Table 7. Dealers revenue and gross sale improvisation using FAI,
TTL, and SC during AAM design.

Dealer ID

Gross Sales
(Margin %)
(Before FAI)

Revenue (%)
(Before FAI)

Gross Sales
(Margin

%)(After FAI)
Revenue

(%)(After FAI)

IN263 14.06 7.56 16.08 10.29
IN753 11.90 13.26 13.92 15.98
IN632 11.57 17.02 13.58 19.75
IN895 12.72 5.77 14.74 8.49
IN412 11.73 8.56 13.75 11.29
IN724 12.71 5.80 14.73 8.53
IN244 14.50 16.05 16.51 18.77
IN893 11.62 3.62 13.63 6.35
IN710 13.05 8.24 15.07 10.96
IN837 10.97 4.29 12.98 7.02
IN720 11.11 8.91 13.13 11.63
IN207 15.45 14.27 17.46 16.99
IN663 14.55 1.35 16.57 4.08
IN743 14.28 11.03 16.29 13.76
IN552 12.58 4.56 14.60 7.29
IN349 13.12 6.87 15.14 9.59
IN735 15.26 4.44 17.27 7.16
IN753 14.08 0.10 16.09 2.83
IN823 14.02 3.29 16.04 6.02
IN634 13.57 3.81 15.59 6.53
IN900 13.28 7.27 15.29 10.00
IN209 13.07 10.71 15.08 13.44
IN760 11.08 9.36 13.09 12.08
IN860 12.87 3.40 14.89 6.13

market limitations. Table 7 shows the similar gross mar-

gin gain achieved by the dealers and commercial distri-

bution agencies after implementing FAI and TTL in their

operating procedures. Advancing further from the exist-

ing design (Ivanov et al. 2016), all the participating agents

are provided with their stock movement details and pric-

ing values. This includes wastages, flaws and defects in

their goods and services.

Table 8. Energy evaluation during AAM design, testing, and
evaluation.

Category

Gross
Margin %
(Before FAI)

Energy
Consumed/
Day (%)

Gross
Margin %
(After FAI)

Energy
Consumed/
Day (%)

Loading 6.346 7.631 11.1055 6.1048
Polishing 3.21 12.78 5.6175 10.224
Assembly 6.27 15.364 10.9725 12.2912
Fitting 4.95 16.37 8.6625 13.096
Organizing 5.071 12.71 8.87425 10.168
Tunning 4.32 20.3 7.56 16.24
Testing 9.22 20.13 16.135 16.104
Control 13.432 15.019 23.506 12.0152
Unloading 11.432 8.31 20.006 6.648
Total Energy 128.614 96.2432

Apart from the cost and component distribution, it

is very much possible for the TTL to identify and ana-

lyze the energy consumed per product. Thus, Table 8

shows the reduction in energy consumption after imple-

menting TTL and FAI in the intelligent industrial unit.

It is estimated and recorded from unloading at the

warehouse throughout different production and assem-

bly stages. Thus, the loading, unloading, transportation,

assembly, fitting, and polishing costs, along with anal-

ysis and design schematic verification costs, are iden-

tified, recorded, and processed. The processed value is

applied with FAI and SC policies for getting final mar-

ket evaluation and stock prices/unit of energy consumed

in the industrial process(Ivanov, Sokolov, and Dolgui

2014, 2019). Figure 5 depicts the performance before and

after implementing TTL in the workplace. The tabulated

results are visually represented in figure 5 to compile and
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Figure 5. Data visualisation and results comparison (before & after implementing TTL & FAI).

show the use case of TTL and the effect of using FAI and

SC in the design process. Apart from the cost and energy,

the interest rate, delivery charges, and SC’s policies help

the industry achieve better performance and improved

productivity in real-time.

7. Discussions of findings

The study has designed and developed an Automobile

Assembly Model (AAM) concentrating on industrial-

grade commercial vehicle design. This study practically

implemented and evaluated the developed design using

real-time data analytics and machine learning models to

process, train, and test developed AAM. Before explain-

ing the key findings, the study has opened doors for

emerging technologies like IoT, AI, and SmartContract

Blockchain into the commercial vehicle industry prac-

tices. Various studies on Blockchain, AI, and IoT have

detailed their usage from the industry perspective (Singh,

Rathore, and Park 2020; Yuanyu Zhang et al. 2019).

They also triggered the point that combining mul-

tiple technologies with data analytics tends to solve

many real-time problems in the industrial environ-

ment over many decades. Quality and performance val-

uation, design analytics, and productivity enhancement

constitute several possible sustainability solutions to

withstand in any global industrial market. In addi-

tion to the additive manufacturing and process automa-

tions, the use of SC and IoT helps the industrial envi-

ronment and active participants to obtain a detailed

market response curated with the existing business

practices.
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Data modelling, computational algorithm design, simu-

lation, and schematic formations were again a big hurdle

due to prevailing trust issues between stakeholders and

investors. As the SC helps bridge this trust issue by pol-

icy formation and legal assistance, all the investors tend

to have hassle-free investment plans in real-time. This

design includesmultiple procedures in terms of purchase,

delivery, utility, and distribution. All the data are mod-

elled using SVML, and Federated LearningML techniques

as the data are effectively captured by the embedded IoT

in the industry. Developed AAM shows the use cases of

ML and IoT in fixing, evaluating, and processing all forms

of data irrespective of sources without any deviation from

their programmed functions. The programmed model

uses a customised R programming scheme, and simu-

lations are done using company-owned industry-grade

licensing software. Thus, unbiased data is fed to the train-

ing, testing, and evaluation model at all assembly stages

in real-time.

Irrespective of industry, these methodologies can be

implemented with a few minor customisations. Many

industries, including leather, textile, biogas, fuel cells,

and two-wheelers, can incubate these methods in their

practices to achieve profitability in the short term. They

maintain ongoing modifications include curtailing the

cost of productivity and minimise energy consump-

tion during their production procedures. In some other

cases, these techniques were exclusively used in iden-

tifying the flaws, damages, and defects in the compo-

nents, tools, and product design. This aims to attain

sustainability without losing the market margin gain

within the calculated time frame. Recent reviews show

that the fault identification and testing scheme evalu-

ation can be made based on industry standards and

company policy, whereas in AAM, all the investors

need to abide by the SC policy. This method of test-

ing and evaluation includes all forms of cost, energy

consumption, and market fluctuations. This confirms

an eco-friendly market share dividend among all the

participating agencies as per their investment per-

centage and profit margin obtained during product

delivery.

Qualitative evaluation of every deliverable plays a sig-

nificant role in design, development, and product assem-

bly. Many techniques other thanML includes fuzzy logic;

the neural network can explore SMEs based on their

production cost and infrastructure capabilities. Predic-

tion analytics and modelling with these techniques aim

to offer better performance without considering any

market investments. Thus, ultimately, improved produc-

tion cost, commercial value gain, and market valuation

become void in these industries. In some worst cases,

the decision model lags in providing the required results

as the dataset may not be sufficient to provide result-

oriented decisions in real-time. Thus, flexible and robust

infrastructure capable of emerging smart technologies in

industrial practice is required in the automated indus-

trial setup. The discussion made from the literature and

practical industrial white papers shows the importance

of decision-making models and flexible data process-

ing metrics. This helps industries to improve resilience

against fluctuating global market. Accordingly, the policy

makers and regulatory management authorities will get a

clear understanding of the business process and manage

the operations with open information, transparency and

visibility. This includes operations, logistics, distribution

and transportation.

The present AAM uses four form factors that act as

pillars in the design, development, and successful test-

ing of the design scheme. It includes smart technologies

and industrial standardizations. Form factors include 1 –

data from Stock, suppliers, and vendors, 2. Smart Contract

Policies, 3. Trust Threshold Level for each element involved

in the production process, 4. SVML and FAI for perfor-

mance comparison, modelling, and analysis at various

stages of design. In addition to these critical form fac-

tors, other methods used in training and processing data

and stages include classification, assembly, fitting, pol-

ishing, testing, analysis, assembly, grouping, logging, and

schematic verification.

Data shared between different stages with the ML

algorithms will extract the features and help in decision

making. SC comes into the picture when the devices

or equipment are observed of any faults or damages or

malfunction during any stage of the assembly until the

product is delivered into the commercial market.

As this process is technically considered stable, the

market fluctuation always prevails while fixing the prod-

ucts’ cost and commercial value. Thus, in this AAM, a

novel estimation technique called TTL is implemented in

the design itself. Through this estimation scheme, all the

products are modelled based on their cost, energy usage,

market value, and profit margin of utilising them in the

design. TTL has the following features that have helped

the XYZ company to have a commercial profit margin

of 13 percent within 60 days of their commercial vehicle

sales. Feature includes:

(1) Data modelling and component analysis (Vendors,

suppliers, stocks)

(2) Loading, Unloading, distribution, and usage valua-

tion cost

(3) Consumer satisfactory index

(4) Market valuation and SC legal policies

(5) Sale valuation and investors profit margin

(6) Storages and stock listing data
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(7) Stock purchase valuation comparison

(8) Market pricing vs. Purchase pricing analytics

These data help fine-tune each component’s threshold

value after their potential utility during the assembly and

delivery process. AAM with TTL in the industries uses

a margin variation function with a maximum deviation

of 2.3-3.2 percent. TTL derived from the production and

assembly process involves market investments and com-

pany stock shares that are openly available for any kind

of investors. It helps them to take part in legal policy with

smart contract blockchain.

Data is modelled and distributed among various sec-

tions for cross-referencing, stocking, and complex com-

putation purposes.

8. Implications

The design and research analysis offer significant con-

tributions in operations and supply chain, specifically

automotive assembly processes.

8.1. Theoretical contributions

First, the study provides a use case of machine learn-

ing models and smart IoT devices and bridges two

indigenous methodologies that contribute to produc-

tivity improvement(O’Leary 2013; Yuanyu Zhang et al.

2019). When compared with the existing industrial prac-

tices, these smart techniques notably promote the stock

value in the commercial market. Timing, data analytics,

fault identification, and systematic assembly process were

made throughout the production and product delivery

process. Targeting the commercial vehicle distribution

market, SMEs focus more on reducing the losses from

purchasing and procuring raw materials. The process is

continued till the final product is delivered. Second, the

study provides procedural guidance to create a smart

industrial ecosystem that involves AI-enabled smart sen-

sors and machine learning practices(Manimuthu et al.

2021) for the best market valuations to each commodity.

As the design involves stock pricing and energy con-

sumption factors, all these data are modelled with their

respective normalisation values obtained during train-

ing, analysis, and estimation. In this way, the marginal

error accumulated at every stage of data processing is

significantly improved.

Third, this is the first study that emphasizes the FAI

and its role in the product assembly industry. The delib-

erations in managing the product complex system and

support vectors for data normalisation helps to find the

best fit values for design and testing. Fourth, it discusses

cost-saving functions in the available industrial practices

focusing on their internal costing features and func-

tions. The developed AAM tried to integrate all forms of

functions, procedures, values, and specifications of every

tool and commodity. Further, the TTL value helps iden-

tify and process every component’s functional attribute

with detailed identification, analysis, and market utility.

Thus, it indirectly facilitates the firm to getmore visibility

and position itself in the competitive commercial vehicle

market. Besides, FAI andTTLdesigned and implemented

are unique and novel where both relatively bring sustain-

able industrial practices and solutions that any industry

can quickly adapt in their workplace. The model devel-

oped, solutions provided, and dataset training function-

alities are entirely customisable based on the industry

requirement and infrastructure support. It will signifi-

cantly contribute to all forms of supply chain practices

and operations management with assured safety. Finally,

the secured smart contract usages act as a backup tomeet

any legal grounds in real-time.

8.2. Practical implications

The study has notable managerial contributions. The

design provides use cases to the SMEs and large-scale

industries irrespective of their domain. First, it supports

the incubation and use of smart IoT devices in industrial

processes through real-time data collection and process-

ing using machine learning algorithms. Here data act

as a critical resource in consecutive processing stages in

the IoT-enabled smart assembly unit. Grouping, vectori-

sation, feature extraction, and data analysis involve both

SVML and Federated learning at different stages. They all

help leverage the information about the tools, software,

components, and devices in the assembly process.

Secondly, in the developed design, a novel element

called Trust Threshold Limit is used in all areas of

data training under the Federated Artificial Intelligence

(FAI) integrated framework. It supports the industrial

automation and analytics that can be realistically mod-

elled using the emerging smart techniques. Limit for

purchase and storage can be visually made available

to the concerned stakeholders using this mode of data

processing and analytics. Modelling and development

involve machine learning models that help bring the

best market values for all the components involved in

the design process. This training and modelling help

investors and the third parties involved in the design to

closely monitor the product prices and their stock val-

ues in real-time. Combining blockchain, federated AI,

and machine learning models helps foresee the com-

ponent requirements, usages, procedural functionali-

ties, and data-driven decision-making models, thereby

reengineering the overall product tracking system in a
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manufacturing firm. In terms of process control and

design optimisation, tracking, modelling and design ver-

ification play a major role. Valuation and the process-

ing capabilities of the smart systems can be studied and

compared with the existing tools for optimised business

operations.

Thirdly, the simulation and modelling provide the

necessary resources for FAI analysis and the TTL estima-

tion. As the market risk is involved in all design stages,

TTL serves as a better response index starting from load-

ing goods to product delivery in real-time. The design

shows the importance of IoT devices and ML modelling

mechanisms in bringing the best possible values for each

component subject to their market investment and com-

mercial values.

Fourthly, the study supports the practical usage of

TTL using ML models and data analytics methods in

real-time for equal distribution of resources. Energy dis-

tribution and parallel computation provisions engage IoT

devices, smart sensors, and electronic controllers. Imple-

menting smart, innovative techniques in the industrial

practices streamline the industrial procedures and orient

them towards profit-making from market investments,

with a focus on market risk and secure product com-

mercialisation in real-time. Thus, in this AAM design,

TTL and FAI advance understanding of the role of stock

pricing, market rate, commercial product valuation with

intense ideation of practical usage of cost, energy, indus-

trial standards, and smart, innovative technologies for

building a better sustainable industrial ecosystem. Evalu-

ation of the existing methods provides a standard perfor-

mancemetrics as tabulated inTable 8 include energy con-

sumption and margin of wastages. This becomes more

realistic while implementing the TTL in the actual busi-

ness practices. Minimum modifications with maximum

potential in operations, supply-chain and production

factors in real-time resource assessment and manage-

ment can be achieved. Besides, AAM will help foresee

the requirements, usages, procedural functionalities, and

data-driven decision-making models. Using smart tech-

nologies such as ML, IoT and Blockchain in industrial

practices, the companies may have better accountability

and sustain competitive commercial market index value.

Thus, AAMdirectly facilitates restructuring of the overall

firm’s standard operating procedures.

9. Conclusion

The work provides evidence that the enhanced data

collection, processing, and control procedures help in

efficiently handling the data generated for the manu-

facturing procedures. The experimental study offers a

roadmap for implementing a wide range of smart tech-

nologies for vehicle operations, control, and assembly

performance valuation using data-driven modelling and

analysis. The study involves IoT and supports vector

machine learning for grouping, analyzing, and classify-

ing tools, components, and other supporting goods in

the assembly process. Irrespective of the market invest-

ments, these additive manufacturing strategies will help

production and distribution processes and quantitatively

assess the market risk and investors’ returns in real-time

(Alavian et al. 2020; Guo and Ryan 2021).

The design proposed a novel TTL value that spotlights

the use of threshold limits in the purchase, production,

and product delivery. TTL is combined with federated

learning AI mechanism to propose a smart solution for

improving profit margins. Data normalisation, vector

classification, analysis, and feature evaluations are criti-

cally scrutinised throughout the process of AAM design.

TTL and FAI help fix, finalise, and set the limit values

for purchase, storage, usage, and distribution of goods

and services commercially, irrespective of market fluctu-

ations. The legal policy for security and liability is taken

care of by smart contract as all the investors and stake-

holders are legally entitled under standards industrial

operating procedures. Thus, TTL helps set the limit in

cost, energy usage, purchase, and processing options. It

assists in building the vehicle from scratch without the

worry of losses due to socio-economic crises or market

stock fluctuations. TTL assists for energy usage, pur-

chase of raw material, transportation, and delivery. The

local vendor selection is mapped, modelled, analyzed,

and tabulated, and verified in the industrial environment

in real-time.

9.1. Limitations and future directions

The study has its limitations and offers future research

avenues. First, the study does not involve any data stor-

age with remote access. Thus, firms can consider using

cloud storage for data processing and remote accessibility.

All the software and codes are purchased from third-

party vendors. They cannot be trusted all the time for

data reliability. Hence the data used for processing may

have a marginal variation of permissible range that could

contribute to other errors. SC formed for this design

scheme can only permit few extendable ranges of com-

plications that include natural disasters. However, it does

not involve defects in industrial design infrastructure, as

that is taken care of solely by the company alone.

The simulation scheme used in the design requires

skilled labourers, and Graphical User Interface (GUI)

cannot be customised as they are not locally developed

for industrial practice. TTL uses FAI and SVML data
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processing that any other ML technique can outperform.

Data acquired and processed from the IoT-enabled smart

sensors can have their latency in data delivery.

In the current industrial setup with more than 60–70

percent of automation in place, the incubation and

deployment of the developed AAM can be a hassle-free

action. Finally, the developed design is not integrated

with the existing model and warrants its customised

infrastructure. The developed model can be adapted in

manufacturing, warehousing, and distribution industries

with minor adjustments and customised control levels,

data collection mode, processing, and analytical meth-

ods. New designs may integrate AAMwith other existing

industrial models by customising it based on infrastruc-

ture, cost, and energy availability. A better alternative for

R packages can also be tested in the design. The devel-

oped AAM with TTL and FAI can set a new benchmark

for research on emerging and innovative smart technolo-

gies in real-time.
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