

This is a repository copy of Activator anion influences the nanostructure of alkali-activated slag cements.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/178969/

Version: Published Version

Article:

Walkley, B. orcid.org/0000-0003-1069-1362, Ke, X., Provis, J.L. orcid.org/0000-0003-3372-8922 et al. (1 more author) (2021) Activator anion influences the nanostructure of alkaliactivated slag cements. The Journal of Physical Chemistry C, 125 (37). pp. 20727-20739. ISSN 1932-7447

https://doi.org/10.1021/acs.jpcc.1c07328

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Activator Anion Influences the Nanostructure of Alkali-Activated **Slag Cements**

Brant Walkley,* Xinyuan Ke, John L. Provis, and Susan A. Bernal*

Solid-state²⁷Al and ²⁹Si magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and ¹H-²⁹Si crosspolarization MAS NMR spectroscopy are used to reveal the effect of the activator anion on the nanostructure, cross-linking, and local hydration of aged alkali-activated slag cements. The main reaction

product identified is a mixed cross-linked/non-cross-linked sodium-substituted calcium aluminosilicate hydrate (C-(N)-A-S-H)gel with a structure comparable to tobermorite 11 Å. Analysis of cross-polarization kinetics revealed that a higher content of soluble silicate in the activator promoted the incorporation of Al into the aluminosilicate chains of C-(N)-A-S-H gels, charge-balanced preferentially by protons within the gel interlayer. In sodium carbonate-activated slag cements, aluminosilicate chains of C-(N)-A-S-H gels are instead charge-balanced preferentially by Ca^{2+} or Al^{V} ions. Hydrotalcite was observed as a secondary reaction product independent of the activator used and in higher quantities as the content of sodium carbonate in the activator increases. The presence of soluble silicates in the activator promotes the formation of an Al-rich sodium aluminosilicate hydrate (N-A-S-H) gel which was not identified when using sodium carbonate as the activator. These results demonstrate that the anion type in the activator promotes significant differences in the nanostructure and local hydration of the main binding phases forming in alkaliactivated slag cements. This explains the significant differences in properties identified when using these different activators.

1. INTRODUCTION

Rapidly progressing urbanization has led to an unprecedented rise in the demand for cement and concrete; however, production of Portland cement is associated with the generation of 8% of global anthropogenic CO₂ emissions. This has driven demand for alternative technologies and materials that provide enhanced performance and sustainability. Alkali-activated cements and geopolymers have received significant academic and commercial interest due to their broad technical importance and enhanced sustainability when compared to traditional Portland cements.² Modern alkali-activated slag cements exhibit desirable mechanical performance, up to 80% reduction in life cycle CO₂ emissions compared to ordinary Portland cement,³ and are increasingly applied in the production of concrete.4,5

Alkali-activated slag cement is produced by blending ground granulated blast furnace slag with an alkali activator. The predominant reaction product in these cements is a sodiumsubstituted calcium aluminosilicate hydrate (C-(N)-A-S-H) gel.⁶⁻⁹ Mg-Al and Ca-Al layered double hydroxides (LDHs) are the commonly formed secondary reaction products,⁶⁻¹⁰ together with a small fraction of noncrystalline sodium aluminosilicate hydrate (N-A-S-H) gels.^{7,9} The coexistence of these phases within alkali-activated slags results in substantial variation in the phase assemblage, nanostructure, and transport properties which ultimately determine the material performance. In particular, the type and concentration of the alkaline activator have been shown to modify the microstructure and transport properties of alkali-activated slags.^{4,6,11–13}

The primary role of the alkaline activators, such as sodium hydroxide (NaOH), sodium silicates (Na2O·rSiO2, where typically $1 \leq r \leq 3$, sodium carbonate (Na₂CO₃), and sodium sulfate (Na₂SO₄), is to generate a high-pH environment which drives the dissolution of the anhydrous precursors and subsequent condensation and precipitation of reaction products. Sodium silicate is in many cases the most effective activator for cements based on conventional blast furnace slags, but the production of sodium silicate-based activators is associated with relatively high cost and CO₂ emissions compared to other potential activators,14 reducing the economic viability and sustainability of sodium silicate-

Received: August 18, 2021 August 24, 2021 Revised: Published: September 9, 2021

activated slag cements. Recently, sodium carbonate-based activators have received particular attention^{12,13,15,16} due to their low cost and enhanced sustainability when compared with sodium silicate-based activators.^{17–22} The use of sodium carbonate activators offer great advantages over sodium silicate activation, as the pH of the activating solutions are comparable to those of hydrated Portland cement, and sodium carbonate can be mined or obtained as a byproduct from different chemical processes.²³

However, there is limited understanding of the nanostructure of the main binding phase formed in sodium carbonateactivated slag cements. Several early studies reported slow reaction, hardening, and strength development, 12,13,16 potentially limiting the application of these materials. Recent studies have demonstrated that these cements can be tailored to react at desirable setting times via the addition of smart inorganic admixtures²⁴ or by partial replacement of sodium carbonate by sodium silicate.¹² The kinetics of reaction and phase assemblage evolution of sodium carbonate-activated slag cements are strongly dependent on slag chemistry as well as the activation conditions adopted.^{7,25} The use of the sodium carbonate activator also enhances the durability performance of these cements against chlorides²¹ and significantly improves the CO_2 binding capacity of these cements,²² without modifying their mechanical performance, compared with sodium silicate-activated slag cements.

Solid-state magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy investigations probing ²⁷Al and ²⁹Si nuclei in alkali-activated cementitious materials have proven instrumental in the development of structural models for C- $S-H_{r}^{26}$ C-(N)-A-S-H_{r}^{27} and N-A-S-H²⁸ gels. Cross-polarization (CP) MAS NMR is a double-resonance technique²⁹ which involves transfer of magnetization from an abundant spin system I (e.g., ¹H) to a dilute spin system S (e.g., ²⁹Si), allowing acquisition of the NMR spectrum of the dilute spin system S with a much higher signal/noise ratio than would be obtained by single-pulse MAS NMR experiments. Acquisition of CP MAS spectra using an array of Hartmann-Hahn contact times can reveal further information related to the mobility and proximity of the spin systems I and S, to resolve signals from sites exhibiting overlapping resonances in single-pulse spectra. However, this type of analysis has not previously been published for alkali-activated slag cements.

In this study, we use single-pulse ²⁷Al and ²⁹Si MAS NMR and ¹H–²⁹Si CP MAS NMR experiments, complemented by X-ray diffraction (XRD) measurements, to examine the relationship between the chemical composition of the alkaline activator and the phase assemblage and nanostructure of a series of aged alkali-activated slag cements. Through quantification of the NMR data, spectral deconvolutions, and CP kinetic curves, in line with the structural models of C– (N)–A–S–H, N–A–S–H, and additional reaction products in these systems, we reveal the strong influence of alkaliactivator composition on the phase assemblage, nanostructure, and local hydration within aged alkali-activated slags.

2. EXPERIMENTAL METHODS

2.1. Sample Preparation. Alkali-activated slag samples were produced by the reaction of a commercial ground granulated blast furnace slag (Table 1) with either sodium silicate, sodium carbonate, or a combination of sodium silicate and sodium carbonate solutions, to determine the effect of silicate and carbonate anions on the nanostructure of these

Fable 1. Chemical Composition	and	Physical
Characteristics of Slag Used		

component	oxide mass %
SiO ₂	33.8
Al ₂ O ₃	13.7
Fe ₂ O ₃	0.4
CaO	42.6
MgO	5.3
Na ₂ O	<0.1
K ₂ O	0.4
Others	3.7
loss on ignition	1.8
blaine fineness	$410 \pm 10 \text{ m}^2/\text{kg}$
particle size distribution ^a	$0.1-74 \ \mu m \ (d_{50} = 15 \ \mu m)$

^aDetermined by laser granulometry (Malvern Mastersizer; Malvern Instruments, Malvern, UK).

cements. The three types of alkaline solutions were prepared, as outlined in Table 2.

To produce the carbonate activating solutions, reagent-grade sodium carbonate (Sigma-Aldrich) was fully dissolved in potable water. For the silicate activators, NaOH pellets were dissolved into water and then mixed with a commercial sodium silicate solution (PQ Grade D; $SiO_2/Na_2O = 2.0$), to achieve a solution of sodium metasilicate composition (Na₂SiO₃), with a SiO_2/Na_2O molar ratio of 1.0. For sample B with a mixed activator, the activating solutions were mixed separately with the anhydrous slag, by first adding the sodium silicate, followed by the sodium carbonate.

Each paste was mixed in a Hobart N50 bench mixer at low speed for 10 min to achieve homogeneity. All paste specimens were cured in sealed centrifuge tubes at 23 $^{\circ}$ C for 2 years.

2.1.1. X-ray Diffraction. XRD data were obtained across a 2θ range of $5^{\circ}-55^{\circ}$ using a Siemens D5000 instrument with Cu K α radiation (1.54178 Å), a nickel filter, and a step size of 0.5°/min. Phase identification was performed using JADE XRD software with the ICDD PDF4+ 2015 database.

2.1.2. Solid-State Nuclear Magnetic Resonance Spectroscopy. Solid-state single-pulse ²⁷Al and ²⁹Si MAS NMR spectra were acquired on a Varian VNMRS 400 spectrometer at 9.4 T (B_0) , yielding a Larmor frequency of 104.261 MHz for ²⁷Al and 79.495 MHz for ²⁹Si. ²⁷Al MAS NMR spectra were acquired using a 4.0 mm triple resonance probe with zirconia rotors spinning at 14.0 kHz, a 1.0 μ s ($\pi/6$) excitation pulse, a 0.2 s relaxation delay, and a total of 7000 scans. ²⁹Si MAS NMR spectra were acquired using a 6.0 mm triple resonance probe with zirconia rotors spinning at 6.8 kHz, a 6.2 μ s nonselective $(\pi/2)$ excitation pulse, a 5 s relaxation delay, a total of 3000 scans, and a nominal ¹H decoupling field strength of 54.3 kHz. ¹H-²⁹Si CP MAS NMR experiments were performed using the same instrument with a spinning frequency of 6.8 kHz, a ²⁹Si non-selective ($\pi/2$) pulse width of 6.2 μ s, an initial ¹H non-selective ($\pi/2$) pulse width of 4.5 μ s, a recycle delay of 1.0 s, and an array of Hartmann-Hahn contact periods (t = 0.2, 0.4, 3, 5, 10, 15, and 20 ms). A nominal ¹H decoupling field strength of 54.3 kHz was employed during acquisition and 16,560 scans were collected per experiment. All $^{\rm 27}Al$ and $^{\rm 29}Si$ spectra were referenced to 1.0 M aqueous AlCl₃ and neat tetramethylsilane, respectively, at 0 ppm.

The ${}^{1}\text{H}-{}^{29}\text{Si}$ CP kinetic curves do not show any obvious oscillatory CP kinetics, and therefore, it can be assumed that the proton spin diffusion rate in the samples presented here is

Table 2	. Activator	Chemical	Composition,	Paste V	Vater-to-S	olid Ratio	$(\mathbf{w}/\mathbf{s}),$	and Dosage	e of Activating	Solutions in	Each Paste
Sample	Tested										

sample	Activator	Na2SiO3:Na2CO3 (wt. %)	SiO ₂ /Na ₂ O	w/s	dosage (wt %) ^a			
А	Na ₂ SiO ₃	100:0	1.0	0.40	8.0			
В	$Na_2SiO_3 + Na_2CO_3$	50:50	0.47	0.40	8.0			
С	Na ₂ CO ₃	0:100	0.0	0.40	8.0			
Dosage is defined relative to the mass of anhydrous slag.								

sufficiently rapid that cross-polarization obeys the classical I-S kinetic theory. CP kinetic curves for the spin system I-S (${}^{1}\text{H}-{}^{29}\text{Si}$ in the work presented here) were therefore fitted with a simplified general CP kinetic equation³⁰ (eq 1) derived from the classical I-S kinetic model, where I(t) is the signal height at contact time t, I_0 is the ideal (full) cross-polarized ${}^{29}\text{Si}$ magnetization signal intensity (i.e., the extrapolated maximum signal height), T_{HSi} is the CP time constant (which is proportional to the sixth power of the ${}^{1}\text{H}-{}^{29}\text{Si}$ internuclear distance 31,32), and $T_{1\rho}^{1}$ is the proton spin–lattice relaxation time in the rotating frame.

$$I(t) = I_0 \cdot (1 - T_{\text{HSi}} / T_{1\rho}^{\text{H}})^{-1} \cdot [\exp(-t / T_{1\rho}^{\text{H}}) - \exp(-t / T_{\text{HSi}})]$$
(1)

This simplified version of the general CP kinetic equation is applicable when polarization is transferred from an abundant spin subsystem I (¹H in the work presented here) to a dilute spin subsystem S (²⁹Si in the work presented here) such that the spin population ratio $\varepsilon = N_{\rm Si}/N_{\rm H} \approx 0$, and the CP rate constant $T_{\rm HSi}$ is much smaller than the relaxation time constant in the rotating frame, $T_{1\rho}^{\rm Si}$ for the dilute spin subsystem S (as is the case for ²⁹Si) such that $T_{\rm HSi}/T_{1\rho}^{\rm Si} \approx 0$. The parameter $1/T_{\rm HSi}$ is often denoted the CP rate constant and is the "rate" at which magnetization is transferred from ¹H to ²⁹Si nuclei.

Gaussian peak profiles were used to deconvolute the ²⁹Si MAS and ¹H-²⁹Si CP MAS NMR spectra.³³ The minimum number of peaks possible were fitted, and the chemical shift and peak full width at half-maximum (FWHM) of each resonance were required to be consistent in both the ²⁹Si MAS NMR and ¹H-²⁹Si CP MAS NMR spectral deconvolutions. Peak FWHM was restricted to ≤ 5 ppm for C-(N)-A-S-H gel products and ≤ 6 ppm for N–A–S–(H) gel products. Peak intensities were required to be consistent with the structural constraints described by the "cross-linked substituted tobermorite model" (CSTM) for C-(N)-A-S-H gel products²⁷ and the thermodynamics of a statistical distribution of Si and Al sites within a Q^4 aluminosilicate network for N–A–S–(H) gel products.²⁸ Six resonances were resolved in the ¹H-²⁹Si CP MAS NMR spectra and were fitted using Gaussian peak profiles and the constraints discussed above. The ²⁹Si MAS NMR spectra were then fitted with these six resonances plus an additional resonance to account for Si sites in remnant unreacted anhydrous slag. The ²⁹Si MAS NMR spectral deconvolutions were required to be consistent with the constraints discussed above. The ²⁷Al MAS NMR spectra were simulated using DMFit^{33,34} and the Czjzek Gaussian isotropic model³⁵ with the minimum number of peaks to obtain a reasonable fit to the data and determine the isotropic chemical shift, δ_{iso} , for each resonance. Quadrupolar coupling constants, C_Q , were obtained from the literature.³⁶⁻³⁸ In all spectral deconvolutions, congruent dissolution of slag was assumed, so a scaled component spectrum was calculated from the ²⁹Si and ²⁷Al MAS NMR spectra of anhydrous slag and used in the fitting.

3. RESULTS AND DISCUSSION

3.1. Mineralogy of Alkali-Activated Slag Cements. XRD results for each alkali-activated slag sample and the anhydrous slag precursor are shown in Figure 1. The XRD data

Figure 1. $\operatorname{CuK}_{\alpha}$ diffractograms of anhydrous slag and slag activated with sodium silicate, sodium carbonate, or a combination of sodium silicate and sodium carbonate as marked. CSH: calcium silicate hydrate, HT: hydrotalcite-group LDH phases, T: thermonatrite, C: calcite, V: vaterite, and A: åkermanite.

for anhydrous slag are dominated by a broad diffuse scattering characteristic of its amorphous nature,^{9,25} with minor quantities of calcite (powder diffraction file (PDF)# 01-083-0577), vaterite (PDF# 01-074-1867), and åkermanite (Ca₂MgSi₂O₇, PDF# 00-035-0592). The XRD data for each alkali-activated slag sample also exhibit a broad feature corresponding to an aluminum-substituted calcium silicate hydrate (C-(A)-S-H) gel that exhibits low crystallinity and some structural similarity to tobermorite-11 Å ($Ca_5(Si_6O_{16})$) (OH₂), PDF# 01-089-6458). Reflections due to Mg-LDH phases in the hydrotalcite group (represented in the PDF database as Mg₆Al₂(CO₃)(OH)₁₆·4H₂O, PDF# 00-041-1428) are also observed in the XRD data for each sample.^{6,8} Similar phase assemblages were identified in the same specimens evaluated in this study when cured up to 180 days.⁶ This confirms that extending the curing time to 2 years does not induce significant mineralogical changes in alkali-activated slag cements produced either with sodium silicate and/or carbonate solutions.

The Ca-LDH phase described as monocarbonate-AFm $([Ca_2(Al,Fe)(OH)_6]\cdot CO_3\cdot xH_2O)$ has been observed to coexist with hydrotalcite in sodium carbonate-activated slags with similar compositions to those used in this study,²⁵ in agreement with thermodynamic modeling.³⁹ However, no clear reflections for this phase are identified in XRD analysis of the aged samples evaluated here.

Figure 2. (a) ²⁷Al MAS ($B_0 = 9.4$ T and $\nu_R = 14.0$ kHz) and (b) ²⁹Si MAS ($B_0 = 9.4$ T and $\nu_R = 6.8$ kHz) NMR spectra of anhydrous slag.

Figure 3. (a) ²⁹Si MAS ($B_0 = 9.4$ T, $\nu_R = 6.8$ kHz) NMR and (b) ¹H-²⁹Si CP MAS ($B_0 = 9.4$ T, $\nu_R = 6.8$ kHz, Hartmann-Hahn contact period t = 3 ms) NMR spectra of slag activated with sodium silicate, sodium carbonate, or a combination of sodium silicate and sodium carbonate as marked.

Reflections due to polymorphs of calcium carbonate (calcite, PDF# 01-083-0577, and vaterite, PDF# 01-074-1867) and thermonatrite (Na₂CO₃·H₂O, PDF# 01-072-0578) were also observed in the XRD data for each alkali-activated slag sample in Figure 1, more prominently than the appearance of the calcium carbonates in the raw slag. The formation of these carbonates in sodium carbonate-activated slag is due to the supply of CO_3^{2-} anions from the activator, while the formation of these phases in sodium silicate-activated samples is attributed to minor weathering of the samples during preparation and analysis.

3.2. Solid-State Nuclear Magnetic Resonance Spectroscopy of Anhydrous Slag. The ²⁷Al MAS NMR data for anhydrous slag (Figure 2a) exhibit a broad tetrahedral Al

resonance with the maximum intensity at $\delta_{obs} = 60$ ppm, consistent with the diffuse scattering observed by XRD (Figure 1). This resonance is assigned to a single tetrahedral AlO₄ site, consistent with previous observations using ²⁷Al MAS, ²⁷Al 3Q MAS, and ²⁷Al 5Q MAS NMR.⁴⁰ The breadth of this resonance indicates extensive local disorder and asymmetry.^{7,41} A sharp, low intensity resonance is also present in the ²⁷Al MAS NMR data at $\delta_{obs} = 9.8$ ppm. This site is tentatively attributed to Al^{VI} in melilite (Ca, Na)²(Al, Mg, Fe²⁺)[(Al, Si)SiO₇]); melilite group minerals form a solid solution between the end members gehlenite (Ca₂Al₂SiO₇) and åkermanite (Ca₂MgSi₂O₇), the latter of which was observed by XRD as discussed above. This is likely to be a result of some minor weathering of the slag prior to analysis.

Figure 4. ²⁹Si MAS ($B_0 = 9.4$ T and $\nu_R = 6.8$ kHz) NMR and (b) ¹H $^{-29}$ Si CP MAS ($B_0 = 9.4$ T, $\nu_R = 6.8$ kHz, and Hartmann-Hahn contact period t = 3 ms) NMR spectra and associated deconvolutions for slag activated with (a) sodium silicate, (b) a combination of sodium silicate and sodium carbonate, and (c) sodium carbonate. All samples are cured for 2 years. In each case, the data are shown in black, the fit (shown in red) is the sum of the deconvoluted peaks, and the difference between the data and the fit is shown in green. Peaks attributed to Si sites in C-(N)-A-S-H are shaded in blue, while those attributed to sites within remnant anhydrous slag are shaded in gray.

The ²⁹Si MAS NMR data for anhydrous slag (Figure 2b) exhibit a single broad resonance with the maximum intensity at

The Journal of Physical Chemistry C

 $\delta_{iso} = -75$ ppm indicating an extensive distribution of Si environments and chemical shifts, consistent with the poorly

Article

Table 3. NMR Parameters Extracted from the Deconvoluted ²⁹Si MAS NMR Spectra for Each Alkali-Activated Slag Sample

		assignment								
Sample	Parameter	unreacted slag	Q^0	$Q^1(I)$	$Q^1(II)$	Q^2	$Q^2(1Al)$	Q ³ (1Al)	Q ⁴ (4Al)	Q ⁴ (3Al)
All	$\delta_{ m iso}~(m ppm)^a$		-72	-76	-79	-84.4	-81.6	-87	-87	-93
	FWHM (ppm) ^a		5	5	2.6	2.3	2.5	7	7	6
Na ₂ SiO ₃	relative integral area $(\%)^b$	40.5	1.4	8.4	10.6	19.9	9.8	7.9	1.5	
$Na_2SiO_3 + Na_2CO_3$	relative integral area $(\%)^b$	40.1	2.4	8.9	11.8	21.3	8.4	7.1	0.0	
Na_2CO_3	relative integral area $(\%)^{b}$	53.3	1.1	7.1	8.6	17.6	8.6	3.6	0.0	

 ${}^{a}\delta_{iso}$ is the isotropic chemical shift and FWHM is the full width at half-maximum obtained by simulating the ²⁹Si MAS and ¹H-²⁹Si MAS NMR spectra; δ_{iso} and FWHM were required to be consistent in both the ²⁹Si MAS and ¹H-²⁹Si MAS NMR spectra. ^bThe relative integrated intensity for each resonance is normalized to the sum of all sites within the reaction product and is obtained by simulating the ²⁹Si MAS NMR spectra. Residual slag component contributions were observed in all alkali-activated slag ²⁹Si MAS NMR spectra and are shown in Figure 3 but are excluded from the quantification of C-(N)-A-S-H gel constituents so that the quantification is conducted on the basis of reaction products only. Estimated error in the relative integral area is 1%.

Figure 5. Schematic representation of silicate chains and the interlayer region of C-(N)-A-S-H gels, based on the cross-linked substituted tobermorite model,²⁷ showing the Si ($Q^n(mAl)$) and Al (q^n) sites that are identified in spectral deconvolutions of the ²⁹Si MAS NMR, ¹H-²⁹Si CP MAS NMR, and ²⁷Al MAS NMR data. Si tetrahedra are shown as gray triangles, while cross-linking and non-cross-linking Al tetrahedra are green and blue, respectively. The calcium hydroxide layers which separate each pair of silicate chains (top and bottom of the graphic as depicted) are omitted for clarity.

crystalline nature of this material, as observed by XRD (Figure 1). This resonance will contain contributions from a distribution of Q^n (*m*Al) environments (where $0 \le m \le n \le 4$), with the maximum intensity at $\delta_{iso} = -75$ ppm, indicating that this distribution is dominated by species with lower polymerization or higher Al substitution. This is consistent with previous ²⁹Si MAS NMR observations for anhydrous slag.^{6,42}

3.3. Nanostructure of Alkali-Activated Slag Cements. 3.3.1. ²⁹Si MAS and ¹H-²⁹Si CP MAS NMR Spectroscopy. The ²⁹Si MAS and ¹H-²⁹Si CP MAS NMR data (Figure 3) indicate that alkali activation of anhydrous slag with each activating solution results in the formation of reaction products with Si environments resonating at $\delta_{iso} = -79.0$, -81.6, and -84.4ppm. These resonances are attributed to Q^1 , $Q^2(1AI)$, and Q^2 sites within a sodium and aluminum-substituted calcium silicate hydrate (C-(N)-A-S-H) gel^{9,43} (Figure 4), consistent with previous observations for sodium silicate- and sodium carbonate-activated slag cements.^{9,13} The main difference observed when using sodium silicate and/or carbonate activators is the intensity of a broad feature within the region consistent with the anhydrous slag (Figure 2B), which indicates that different degrees of the reaction are achieved when using different activator types, even at extended curing durations.

The peaks assigned to $Q^2(1Al)$ and Q^2 are more intense when using sodium carbonate as the activator. The intensity of resonances in ${}^{1}H{-}{}^{29}Si$ CP MAS NMR data is modulated by their proximity to protons and the Hartmann-Hahn contact period (discussed in further detail below), and consequently, this spectrum indicates specifically those Si species that are within the hydrated reaction product. Thus, the ${}^{1}H{-}^{29}Si$ CP MAS NMR data in Figure 3B confirm that the broad feature identified in the ${}^{29}Si$ MAS NMR results (Figure 3A) is attributable to the anhydrous slag present in the alkali-activated slag cements, as it is absent from the CP MAS spectra. This enables more detailed analysis of the differences in the nanostructure of C-(N)-A-S-H gels depending on the content of soluble silicates provided to the system upon slag activation.

Deconvolution and quantification of the ²⁹Si MAS and ¹H–²⁹Si CP MAS NMR data (Figure 4 and Table 3) highlight the three resonances identified above, as well as the presence of three additional Si environments in each sample, resonating at $\delta_{iso} = -72.0, -76.0, \text{ and } -87.0 \text{ ppm}$. All six resonances are unambiguously resolved in the ¹H–²⁹Si CP MAS NMR data and can therefore all be attributed to Si sites within the hydrous reaction product. The resonances at $\delta_{iso} = -72.0, -76.0, \text{ and } -87.0 \text{ ppm}$ are attributed to Q⁰, an additional Q¹ site, and a Q³(1Al) site, respectively, within the C–(N)–A–S–H gel. The identification of the Q³(1Al) site indicates a significant extent of cross-linking with the C–(N)–A–S–H gel, as illustrated in Figure 5. The identification of two distinct Q¹ sites, hereafter denoted as Q¹(I) and Q¹(II), is consistent

Figure 6. ²⁹Si MAS ($B_0 = 9.4$ T and $\nu_R = 6.8$ kHz, shown in black) and ¹H-²⁹Si CP MAS ($B_0 = 9.4$ T, $\nu_R = 6.8$ kHz, and Hartmann-Hahn contact period t = 3 ms, shown in blue) NMR spectra, and a comparison of ¹H-²⁹Si CP kinetics, for slag activated with (a) sodium silicate, (b) a combination of sodium silicate and sodium carbonate, and (c) sodium carbonate.

with differences in shielding experienced by Q^1 species chargebalanced by Ca^{2+} , Na^+ or H^+ , as predicted from molecular dynamics studies⁴⁴ and observed in previous ²⁹Si MAS NMR studies of sodium silicate-activated slag.⁷ Due to differences in electronegativity, H^+ or Na^+ will shield the Si nuclei to a greater extent than Ca^{2+} , and therefore, the $Q^1(I)$ and $Q^1(II)$ sites are attributed to Q^1 species charge-balanced by Ca^{2+} and by Na^+/H^+ , respectively (Figure 4). This assignment is

Article

Table 4.	. NMR Paramete	ers Extracted	from the Deco	nvoluted ¹ H-	- ²⁹ Si CP MAS	5 NMR Spectra	and CP Kinet	ic Curves f	or Each
Alkali-A	ctivated Slag Sa	mple							

		assignment							
sample	parameter	Q^0	$Q^1(I)$	$Q^1(II)$	Q^2	$Q^2(1Al)$	$Q^3(1Al)$	Q ⁴ (4Al)	$Q^4(3Al)$
All	$\delta_{ m iso}~(m ppm)^a$	-72	-76	-79	-84.4	-81.6	-87	-87	-93
	FWHM (ppm) ^a	5	5	2.6	2.3	2.5	7	7	6
Na ₂ SiO ₃	I_0 (arbitrary units) ^b	32.5	39.4	84	117	142	12	12	2.5
	$T_{\rm HSi} \ ({\rm ms})^{b}$	1.6	0.9	0.4	1.4	1.0	0.3	0.3	0.8
	$\mathrm{T}_{1 ho}^{\mathrm{H}}\left(\mathrm{ms} ight)^{b}$	1.6	6.2	13.4	30.1	22.2	20.3	20.3	35.5
$Na_2SiO_3 + Na_2CO_3$	I_0 (arbitrary units) ^b	15	38	66	76	110	20.0		
	$T_{\rm HSi} ({\rm ms})^{b}$	0.65	0.7	0.1	0.4	0.4	0.4		
	$\mathrm{T}_{1 ho}^{\mathrm{H}}~(\mathrm{ms})^{b}$	3.62	3.6	13.0	15.1	15.4	5.3		
Na ₂ CO ₃	I_0 (arbitrary units) ^b	23	37	94	71	134	30		
	$T_{\rm HSi} \ ({\rm ms})^b$	1.8	0.5	0.5	0.6	0.7	0.5		
	$T_{1\rho}^{H}$ (ms) ^b	2.9	7.3	10.4	23	17.3	9.4		

 ${}^{a}\delta_{iso}$ is the isotropic chemical shift and FWHM is the full width at half-maximum obtained by simulating the ²⁹Si MAS and ${}^{1}H^{-29}Si$ MAS NMR spectra; δ_{iso} and FWHM were required to be consistent in both the ²⁹Si MAS and ${}^{1}H^{-29}Si$ MAS NMR spectra. ${}^{b}I_{0}$, $T_{HS\nu}$ and $T^{H}_{1\rho}$ are the extrapolated signal intensity, CP time constant, and proton spin–lattice relaxation time in the rotating frame, respectively, and are calculated by fitting the CP kinetic curves with a simplified general CP kinetic equation.³⁰

corroborated by T_{HSi} values for each Q^1 site determined by fitting the ${}^{1}H-{}^{29}Si$ CP kinetic curves and will be discussed in further detail below.

A significant resonance intensity is also observed at approximately $\delta_{iso} = -93$ ppm in alkali-activated slag cements produced with sodium silicate or sodium silicate/carbonate activating solutions. A resonance with this chemical shift may be assigned to Q^3 and/or $Q^4(3Al)$ environments.⁴⁵ However, to maintain consistency with the structural constraints for a mixed cross-linked/non-cross-linked C-(N)-A-S-H gel described by the cross-linked substituted tobermorite model, a separate peak representing $Q^4(3AI)$ resonances at -93 ppm must be fitted.^{7,27} This $Q^4(3Al)$ environment is attributed to a polymerized Al-rich (Si/Al \leq 1.2) N–A–S–H gel that, in the presence of high Al and Na content, has formed in the addition to C-(N)-A-S-H,^{7,9,42,46} comprising $Q^4(3Al)$ and $Q^4(4Al)$ Si sites.²⁸ This resonance is not observed in sodium carbonateactivated slag cements. In cements produced with sodium silicate activators, the resonance at -87 ppm initially attributed to $Q^{3}(1Al)$ environments will also contain contributions from overlapping resonances from Q⁴(4Al) environments. However, it is unlikely that this is the case for sodium carbonate-activated slag cements as there is no other indication of the presence of N–A–S–H gel in these cements.

3.3.1.1. ${}^{1}H^{-29}Si$ Cross-Polarization Kinetics. A comparison of the ${}^{29}Si$ MAS and ${}^{1}H^{-29}Si$ CP MAS NMR data is shown alongside the ${}^{1}H^{-29}Si$ CP kinetic curves in Figure 6. Each ${}^{1}H^{-29}Si$ CP kinetic curve exhibits dynamics characteristic of classical *I*–*S* kinetic theory,³⁰ with an initial buildup and subsequent decrease in signal intensity with increasing contact time, as described in Section 2.1.2. A simplified general CP kinetic equation³⁰ derived from the classical *I*–*S* kinetic model was therefore used to determine the ideal cross-polarized signal intensity, *I*₀, *T*_{HSi}, and T^H₁₀ (Table 4).

Magnetization transfer during cross-polarization depends on the strength of the ${}^{1}\text{H}{-}^{29}\text{Si}$ magnetic dipolar interaction; a stronger dipolar interaction will result in faster transfer of magnetization. As the ${}^{1}\text{H}{-}^{29}\text{Si}$ magnetic dipolar interaction (and consequently T_{HSi}) is inversely proportional to both the ${}^{1}\text{H}{-}^{29}\text{Si}$ internuclear distance and the mobility of the surrounding protons,³⁰ the magnitude of T_{HSi} obtained from fitting the ${}^{1}\text{H}{-}^{29}\text{Si}$ CP kinetic curves can provide information

about these physical quantities. Also, as $T_{1\rho}^{H}$ is proportional to the number of surrounding protons, the magnitude of $T^{H}_{1\rho}$ obtained from fitting the ${}^{1}H-{}^{29}Si$ CP kinetic curves can provide information regarding the relative number of protons surrounding each site (scaled by the sixth power of the $^{1}\text{H}-^{29}\text{Si}$ internuclear distance in the case of classical I-S kinetics) over a distance of approximately 2 nm. 47 This is complicated by the relationship between $T^H_{1\rho}$ and the dynamics of the protons, interactions with other spins (including paramagnetic ions), B₀, and the CP experimental conditions, meaning that an element of caution must be used when interpreting this parameter. However, in the work presented here, T_{1a}^{H} can provide an indication of the relative number of protons in proximity to Si sites, as the cements analyzed contain very similar phase assemblages and gel structures and were produced from the same precursor materials, and the ¹H-²⁹Si CP MAS NMR experiments were performed on the same instrument using the same experimental conditions.

Relatively high-quality fits to the CP kinetic curves were obtained for the sodium silicate- and sodium carbonateactivated slag cements; however, lower-quality fits were obtained for slag cements activated with a blend of sodium silicate and sodium carbonate due to the lower signal/noise of the ¹H-²⁹Si CP MAS NMR spectra for these samples. The buildup in these curves is governed by $T_{\rm HSi}$, whereas the subsequent decay is influenced primarily by $T_{1\rho}^{\rm H}$. Due to the rapid buildup, there are a limited number of data points in this section of the curve, and the error associated with T_{HSi} is likely to be significantly larger than that for $T^{H}_{1\rho}$. An element of caution should therefore be used when interpreting the fits to the CP kinetic curves, although the general trends observed are informative. Therefore, the data obtained from these fits cannot be interpreted in isolation and must be interpreted within the context of information regarding the local structure of the main binding phases observed in these cements obtained from the ²⁹Si MAS and ¹H-²⁹Si CP MAS NMR spectral deconvolutions.

In all samples examined here, Q^0 sites exhibit large T_{HSi} values and small $T^H_{1\rho}$ values, consistent with these sites being surrounded by a small number of highly mobile protons (which may exist within the Si(OH)₄ species themselves as well as nearby molecular water). This suggests that these sites

may be structurally similar to those found in strätlingite and mullite, with Si bonded to one or more Al^{VI} sites.⁴⁸ All alkaliactivated slags exhibit CP parameters such that $T_{\rm HSi}$ (Q⁰) \geq $T_{\rm HSi}$ (Q¹(I)) \geq $T_{\rm HSi}$ (Q¹(II)) and $T_{1\rho}^{\rm H}$ (Q⁰) \leq $T_{1\rho}^{\rm H}$ (Q¹(I)) \leq $T_{1\rho}^{\rm H}$ (Q¹(II)), suggesting a shorter ¹H-²⁹Si internuclear distance and lower proton mobility for Q¹ sites compared with Q⁰ (Si(OH)₄). In all samples, Q¹(I) exhibits a larger $T_{\rm HSi}$ value than Q¹(II), suggesting faster cross-polarization and a shorter ¹H-²⁹Si internuclear distance of Q¹(II) species. This is consistent with the assignment of the Q¹(I) and Q¹(II) peaks to Q¹ sites charge-balanced by Ca²⁺ and by Na⁺/H⁺, respectively, as identified by differences in $\delta_{\rm iso}$ for these sites (Figure 4) and discussed above.

 $T_{\rm HSi}$ values for Q² sites are generally shorter than those for Q¹ sites in all samples, and Q² sites also have longer $T_{1\rho}^{\rm H}$ values than Q¹ sites (seen by the slower decay of the ¹H-²⁹Si CP kinetic curves for these sites in Figure 6), suggesting that Q² sites have a longer ¹H-²⁹Si internuclear distance and that there are fewer protons surrounding these Q² sites relative to Q¹ sites. In slags activated with sodium silicate or sodium carbonate, Q²(1Al) sites exhibit shorter $T_{1\rho}^{\rm H}$ values than Q² sites are approximately equal. This suggests a greater number of mobile protons nearby Q²(1Al) sites than Q² sites. In slags activated with blended sodium silicate and carbonate, the $T_{\rm HSi}$ and $T_{1\rho}^{\rm H}$ values for Q²(1Al) and Q² sites are approximately equal. This suggests a greater number of mobile protons nearby Q²(1Al) sites than Q² sites. In slags activated with blended sodium silicate and carbonate, the $T_{\rm HSi}$ and $T_{1\rho}^{\rm H}$ values for Q²(1Al) and Q² sites are similar, suggesting a similar association of protons with these two sites.

In all samples, the resonance in the ²⁹Si MAS and ¹H-²⁹Si CP MAS NMR data that contain contributions from $Q^{3}(1Al)$ and Q⁴(4Al) sites exhibits small $T_{\rm HSi}$ values and large $T_{1\rho}^{\rm H}$ values, consistent with close association of these sites with a smaller number of protons that have low mobility. This aligns well with the increased structural rigidity expected for these sites within $C-(N)-A-S-H^{27}$ and N-A-S-H gels.²⁸ The smallest T_{HSi} value and the largest $T_{1\rho}^{H}$ value are exhibited by this resonance in the sodium silicate-activated slag, consistent with previous observations of greater cross-linking (and hence greater structural rigidity) in slags activated with sodium silicate compared with other activators.^{15,16} The Q⁴(3Al) site observed in the ²⁹Si MAS and ¹H-²⁹Si CP MAS NMR data for sodium silicate-activated slag exhibits a much larger T^H₁₀ value (35.5 ms) than all other sites in all samples and a very small $T_{\rm HSi}$ value (0.8 ms). This indicates that this site possesses the largest ¹H-²⁹Si internuclear distance and is therefore associated with the smallest number of protons, which are very rigid. This aligns with the greater structural rigidity of the three-dimensional N-A-S-H gel framework than the chains of C-(N)-A-S-H gels and the fact that there are no -OHgroups in the immediate vicinity of a Q⁴-type site.

3.3.1.2. ²⁷Al MAS NMR Spectroscopy. The ²⁷Al MAS NMR spectra for each alkali-activated sample (Figure 7) exhibit a broad tetrahedral Al resonance spanning from $\delta_{obs} = 80$ to 50 ppm, a broad pentahedral Al resonance centered at $\delta_{obs} = 37$ ppm, and a broad octahedral Al resonance spanning from $\delta_{obs} = 20$ to 0 ppm. Both the tetrahedral and octahedral Al resonances clearly contain contributions from multiple Al sites. This is confirmed by the extensive quadrupolar broadening occurring at $B_0 = 9.4$ T, so only significantly ordered sites will exhibit a quadrupolar lineshape (c.f. ²⁷Al MAS NMR spectra ($B_0 = 9.4$ T) of CA, CA₃, C₃A, ettringite, and monosulfate⁴⁹); however, the XRD data for the cements studied here (Figure 1) showed the absence of any significant quantity of each

Figure 7. ²⁷Al MAS ($B_0 = 9.4$ T and $\nu_R = 14$ kHz) NMR spectra of slag activated with sodium silicate, sodium carbonate, or a combination of sodium silicate and sodium carbonate as marked.

of the overlapping sites varies between samples (for both tetrahedral and octahedral sites), which would not be observed for a single site exhibiting a quadrupolar lineshape.⁴⁹ Deconvolution and simulation of the ²⁷Al MAS NMR data (Figure 8 and Table 5) resolve three distinct tetrahedral Al sites at δ_{iso} = 74.0, 68.4, and 72.0 ppm. The resonances at δ_{iso} = 68.4 and 72.0 ppm are attributed to Al in bridging tetrahedra (q²(II))^{50,51} and Al in cross-linked bridging tetrahedra (q³)^{7,15,16} (Figure 5) within the aluminosilicate chains in the C-(N)-A-S-H gels, respectively.^{9,13,52} Similar amounts of q²(II) and q³ sites are formed in each sample.

The resonance at $\delta_{iso} = 74.0 \ (q^2(I))$ is attributed to Al in a q^2 site distinct from $q^2(II)$, which may possibly result from differences in the local coordination spheres of q^2 bridging sites due to clustering of different charge-balancing cations (as observed in the ²⁹Si MAS and ¹H-²⁹Si CP MAS NMR data discussed above), or which may possibly result from the presence of Al in pairing tetrahedra, $q^2(P)$, as observed previously.^{50,53} The observation of $q^2(P)$ sites contrasts with the standard interpretation of the C–A–S–H structure, which excludes Al from substituting for Si in pairing tetrahedra^{27,43} as there is a strong thermodynamic preference of Al substitution into bridging tetrahedra within the C-A-S-H gel⁵⁴ and to bermorite.⁵¹ The large intensity of the $q^2(I)$ resonance in the ²⁷Al MAS NMR data for all samples would suggest that this resonance therefore arises due to Al in a q² bridging site charge-balanced by Ca²⁺ ions, which consequently experiences a lower electron density than the Al in bridging sites chargebalanced by Na⁺ or H⁺ ions (Figure 5). A similar amount of $q^{2}(I)$ sites are formed in each sample.

The peak FWHM of $q^2(I)$ (6.5 ppm) is slightly less than that of $q^2(II)$ (7.5 ppm), while the C_Q of $q^2(I)$ (1.1 MHz) is much lower that of $q^2(II)$ (2.0 MHz). This indicates less disorder of the C-(N)-A-S-H aluminosilicate chains and less perturbation of the local electric field gradient (EFG) surrounding $q^2(I)$ sites compared to $q^2(II)$ sites, consistent with their assignments here. The presence of q^3 sites exhibiting a significant degree of asymmetry and perturbation of the local EFG ($C_Q = 3.0$ MHz) indicates a significant level of aluminosilicate chain cross-linking in the C-(N)-A-S-H gel, aligning with previous observations for silicate-activated

Figure 8. ²⁷Al MAS (B_0 = 9.4 T and ν_R = 14 kHz) NMR spectra and associated deconvolutions for slag activated with (a) sodium silicate, (b) a combination of sodium silicate and sodium carbonate, and (c) sodium carbonate. All samples are cured for 2 years. In each case, the data are shown in black, the fit (shown in red) is the sum of the deconvoluted peaks, and the difference between the data and the fit is shown in green. Peaks attributed to Si sites in C-(N)-A-S-H are shown in blue, peaks attributed to additional reaction products (i.e.,

Figure 8. continued

hydrotalcite and TAH/[AlO₂(OH)₄]⁵⁻) are shown in green, and peaks attributed to sites within remnant anhydrous slag are shown shaded in gray, with the simulated spectrum of anhydrous slag also shown in Figure S1 of Supporting Information.

slags.^{7,15,16} In all samples, a broad resonance from remnant

anhydrous slag particles is also observed. A single Al^V (δ_{iso} = 38.0 ppm, C_Q = 4.0 MHz) environment is identified in the ²⁷Al MAS NMR data for all samples and is attributed to charge-balancing AI^V within C-(N)-A-S-H gel interlayers.⁷ While the existence of five-coordinated Al within the C-(N)-A-S-H gel interlayer has been hypothe-sized, 36,52,55 it is not included in current structural descriptions of C-(N)-A-S-H gels.²⁷ However, the observation of a new ²⁷Al MAS NMR resonance due to an Al^V environment whose intensity cannot be attributed solely to remnant anhydrous slag particles is unambiguous in the data presented here, and this has also recently been observed by ²⁷Al multiple quantum MAS NMR analysis of synthetic C-(N)-A-S-H gels.⁵³

The number of charge-balancing Al^V atoms within the C-(N)-A-S-H gel interlayers (determined by the relative integral area of the resonance attributed to this peak) decreases significantly with increasing activator SiO₃²⁻ content. This is possibly due to the increased substitution of Al for Si in the aluminosilicate chains in C-(N)-A-S-H in samples produced with higher activator SiO_3^{2-} content and the consequent reduction of excess Al species that may be available to participate in charge-balancing.

Two Al^{VI} environments attributed to Al in a hydrotalcitetype LDH reaction product are identified in the ²⁷Al MAS NMR data for all samples,^{7,38,56} consistent with the XRD data presented above. The resonances due to these environments appear at $\delta_{iso} = 10.0 \text{ ppm (HT(I))}$ and $\delta_{iso} = 9.42 \text{ ppm (HT(II))}$, with C_Q values of 2.3 and 3.55 MHz, respectively, and are attributed, respectively, to Al^{VI} coordinated to both OH⁻ and CO₃²⁻ anions ((HT(I))) and Al^{VI} coordinated solely to CO_3^{2-} anions (HT(II)).³⁸ The sum of the intensity of the HT(I) and HT(II) resonances, and hence the amount of hydrotalcite in the sample, increases with increasing activator CO_3^{2-} content, as one would expect from simple stoichiometric arguments.

A resonance at δ_{iso} = 4.60 ppm (C_Q = 1.13 MHz) is also resolved in the deconvoluted ²⁷Al MAS NMR spectra for all samples. Until recently, this resonance has typically been attributed to the "third aluminate hydrate" (TAH), thought to be an amorphous nanoscale aluminate hydrate phase precipitated at the surface of the C-(N)-A-S-H gels within alkali-activated slags and other calcium-rich binders.^{7,9,36,57} However, recent work using one- and two-dimensional dynamic nuclear polarization-enhanced ²⁷Al and ²⁹Si MAS NMR experiments attributed this resonance to silicate-bridging [AlO₂(OH)₄]⁵⁻ sites in C-A-S-H⁵⁹ and postulated that TAH does not exist. The attribution of this resonance in that study was based on atomistic simulations, and therefore, it could still reflect an amorphous aluminate phase on the C-A-S-H surface, interacting with nearby Q^1 silicate sites. The intensity of this resonance in the work here is similar across all samples, indicating the formation of a similar amount of this site in each case and suggesting that its formation is not influenced by differences in activator SiO_3^{2-} or CO_3^{2-} content.

Article

Table 5. NMR Parameters Extracted from the Deconvoluted	²⁷ Al MAS NMR Spectra for Each Alkali-Activated Slag Samp	ple ^{a,b}
---	--	--------------------

Phase	assignment	coordination	$\delta_{ m iso}~(m ppm)$	FWHM (ppm)	$C_Q \left(MHz \right)$	Na ₂ SiO ₃	$Na_2SiO_3 + Na_2CO_3$	Na ₂ CO ₃
Slag	Al(IV)	Al(IV)	74	19.0	6.7	41.4	41.8	41.0
	Al(VI)	Al(VI)	10	3.0	1.0	16.1	15.1	12.0
C-(N)-A-S-H	$q^2(I)$	Al(IV)	74	6.5	1.1	14.3	14.1	13.7
	$q^2(II)$	Al(IV)	68.4	7.5	2.0	5.1	4.9	6.9
	q^3	Al(IV)	62.0	5.0	3.0	2.9	2.4	2.8
	Al(V)	Al(V)	38.0	8.0	4.0	6.4	7.5	9.3
Hydrotalcite	HT(I)	Al(VI)	10.0	5.0	1.20	11.1	13.0	12.9
	HT(II)	Al(VI)	9.42	18	3.55	2.6	1.0	1.3
$TAH/[AlO_2(OH)_4]^{5-}$	TAH	Al(VI)	4.6	4	1.13	0.2	0.2	0.2

 ${}^{a}\delta_{iso}$ is the isotropic chemical shift; FWHM is the full width at half-maximum obtained by simulating the ²⁷Al MAS NMR spectrum; and C_Q is the quadrupolar coupling constant and was obtained from the literature. ^{36–38} ^bThe relative integrated intensity for each resonance is normalized to the sum of all sites within the sample; estimated error in the relative integral area is 1%.

4. CONCLUSIONS

Through the application of multinuclear spectroscopic and diffractometric analysis of alkali-activated slag cements, new insights have been revealed into the nanostructure and local hydration of the gels that are formed in these materials, as a function of the anion type supplied by the activator used. In the activated slag cements assessed, the main reaction product is a mixed cross-linked/non-cross-linked C-(N)-A-S-H gel exhibiting a structure similar to tobermorite 11 Å. In alkaliactivated slag cements produced with sodium silicate or sodium silicate/carbonate activators, an Al-rich N-A-S-H gel exhibiting a three-dimensional framework structure is also identified as a reaction product. This gel is not observed in sodium carbonate-activated slag cements. A Mg-rich LDH in the hydrotalcite group and an AI^{VI} site in either the "TAH" or silicate-bridging $[AlO_2(OH)_4]^{5-}$ sites in C-(N)-A-S-H are observed in all the cements assessed, and the amounts of these phases do not seem to be strongly influenced by the content of silicate in the activator. Al atoms within the C-(N)-A-S-Hgel substitute for Si^{IV} in q³ cross-linking and q² bridging sites, and charge-balancing Al^{V} is also present within C-(N)-A-S-H gel interlayers.

The presence of q^3 sites exhibiting a significant degree of asymmetry and perturbation of the local EFG indicates a significant level of aluminosilicate chain cross-linking in the C-(N)-A-S-H gel in aged alkali-activated slag samples. Similar amounts of $q^2(I)$, $q^2(II)$, and q^3 sites are formed in each sample; however, the number of charge-balancing AI^V atoms within the C-(N)-A-S-H gel interlayers decreases with increasing activator SiO_3^{2-} content.

As the activator ${\rm SiO_3}^{2-}$ content is increased, $Q^2(1\text{Al})$ sites within the alkali-activated slags become more closely associated with protons, while $Q^2(0\text{Al})$ sites exhibit a similar association with protons in slags activated with both silicateand carbonate-based solutions. Al atoms that have substituted for Si atoms within Q^2 sites in the aluminosilicate chains of C– (N)-A-S-H gels formed in sodium silicate-activated slags are therefore charge-balanced preferentially by protons within the gel interlayer, while those in the aluminosilicate chains of C– (N)-A-S-H gels formed in sodium carbonate-activated slags are charge-balanced preferentially by Ca^{2+} or Al^{IV} ions. Increasing activator SiO_3^{2-} content also leads to clustering of charge-balancing protons around $Q^2(1\text{Al})$ sites in the Al-rich C-(N)-A-S-H gels.

While this study has revealed new insights into the nanostructure and local hydration of the gels that are formed

in sodium silicate- and sodium carbonate-activated slag cements, there remain a number of limitations of the current work, primarily in relation to interpretation of the ${}^{1}\text{H}-{}^{29}\text{Si}$ CP MAS NMR data. As discussed in the main text, the relationship between $T^{H}_{1\rho}$ and the dynamics of the protons, interactions with other spins (including paramagnetic ions), B_0 , and the CP experimental conditions are particularly complicated. This means that an element of caution must be used when interpreting $T^{H}_{1\rho}$. In the work presented here, $T^{H}_{1\rho}$ can provide an indication of the relative number of protons in proximity to Si sites, as the cements analyzed contain very similar phase assemblages and gel structures and were produced from the same precursor materials, and the ${}^{1}\text{H}-{}^{29}\text{Si}$ CP MAS NMR experiments were performed on the same instrument using the same experimental conditions.

Relatively high-quality fits to the CP kinetic curves were obtained for the sodium silicate- and sodium carbonate-activated slag cements; however, lower-quality fits were obtained for slag cements activated with a blend of sodium silicate and sodium carbonate due to the lower signal/noise of the ¹H-²⁹Si CP MAS NMR spectra for these samples. The buildup in these curves is governed by $T_{\rm HSi}$, whereas the subsequent decay is influenced primarily by $T_{\rm L\rho}^{\rm H}$.

The error associated with $T_{\rm HSi}$ is also likely to be significantly larger than that for $T_{1\rho}^{\rm H}$ for slag cements activated with a blend of sodium silicate and sodium carbonate, due to a rapid buildup, consequent limited number of data points in this section of the curve, and the lower signal/noise of the ${}^{1}\text{H}-{}^{29}\text{Si}$ CP MAS NMR spectra for these samples. The data obtained from these fits should therefore not be interpreted in isolation and must be interpreted within the context of information regarding the local structure of the main binding phases observed in these cements obtained from the ${}^{29}\text{Si}$ MAS and ${}^{1}\text{H}-{}^{29}\text{Si}$ CP MAS NMR spectral deconvolutions.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpcc.1c07328.

Additional figure showing ²⁹Si MAS NMR data and associated deconvolution for anhydrous slag, as discussed in the main text (PDF)

pubs.acs.org/JPCC

AUTHOR INFORMATION

Corresponding Authors

- Brant Walkley Department of Chemical and Biological Engineering and Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.; oricid.org/0000-0003-1069-1362; Email: b.walkley@sheffield.ac.uk
- Susan A. Bernal School of Civil Engineering, University of Leeds, Leeds LS2 9JT, U.K.; Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.; Email: s.a.bernallopez@leeds.ac.uk

Authors

- Xinyuan Ke Department of Architecture and Civil Engineering, University of Bath, Bath BA2 7AY, U.K.; Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.
- John L. Provis Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.; © orcid.org/0000-0003-3372-8922

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jpcc.1c07328

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This study has been funded by the Engineering and Physical Sciences Research Council (EPSRC), UK, through grant EP/M003272/1. Participation of S.A. Bernal was partially funded by the EPSRC through EC fellowship EP/R001642/1. All solid-state NMR spectra were obtained at the EPSRC UK National Solid-state NMR Service at Durham, and we thank Dr David Apperley for his assistance with acquiring the data. We also thank the anonymous reviewers of an earlier version of this article for their constructive input regarding interpretation of some of the NMR data.

REFERENCES

(1) Olivier, J. G. J.; Janssens-Maenhout, G.; Peters, J. A. H. W. Trends in Global CO_2 Emissions; 2012 Report; PBL Netherlands Environmental Assessment Agency: The Hague, Netherlands, 2012.

(2) Provis, J. L.; van Deventer, J. S. J. Alkali Activated Materials. State-of-the-Art Report, RILEM TC 224-AAM; Springer: Dordrecht, 2014; Vol. 13.

(3) Habert, G.; Ouellet-Plamondon, C. Recent Update on the Environmental Impact of Geopolymers. *RILEM Tech. Lett.* **2016**, *1*, 17–23.

(4) Juenger, M. C. G.; Winnefeld, F.; Provis, J. L.; Ideker, J. H. Advances in Alternative Cementitious Binders. *Cem. Concr. Res.* 2011, 41, 1232–1243.

(5) Bernal, S. A.; Provis, J. L. Durability of Alkali-Activated Materials: Progress and Perspectives. J. Am. Ceram. Soc. 2014, 97, 997–1008.

(6) Bernal, S. A.; San Nicolas, R.; Myers, R. J.; Mejía de Gutiérrez, R.; Puertas, F.; van Deventer, J. S. J.; Provis, J. L. MgO Content of Slag Controls Phase Evolution and Structural Changes Induced by Accelerated Carbonation in Alkali-Activated Binders. *Cem. Concr. Res.* **2014**, 57, 33–43.

(7) Myers, R. J.; Bernal, S. A.; Gehman, J. D.; van Deventer, J. S. J.; Provis, J. L. The Role of Al in Cross-Linking of Alkali-Activated Slag Cements. J. Am. Ceram. Soc. **2015**, *98*, 996–1004.

(8) Haha, M. B.; Lothenbach, B.; Le Saoût, G.; Winnefeld, F. Influence of Slag Chemistry on the Hydration of Alkali-Activated

Blast-Furnace Slag—Part I: Effect of Mgo. Cem. Concr. Res. 2011, 41, 955–963.

(9) Bernal, S. A.; Provis, J. L.; Walkley, B.; San Nicolas, R.; Gehman, J. D.; Brice, D. G.; Kilcullen, A. R.; Duxson, P.; van Deventer, J. S. J. Gel Nanostructure in Alkali-Activated Binders Based on Slag and Fly Ash, and Effects of Accelerated Carbonation. *Cem. Concr. Res.* **2013**, *53*, 127–144.

(10) Walkley, B.; San Nicolas, R.; Sani, M.-A.; Bernal, S. A.; van Deventer, J. S. J.; Provis, J. L. Structural Evolution of Synthetic Alkali-Activated CaO-MgO-Na₂O-Al₂O₃-SiO₂ Materials Is Influenced by Mg Content. *Cem. Concr. Res.* **2017**, *99*, 155–171.

(11) Wang, S.-D.; Pu, X.-C.; Scrivener, K. L.; Pratt, P. L. Alkali-Activated Slag Cement and Concrete: A Review of Properties and Problems. *Adv. Cem. Res.* **1995**, *7*, 93–102.

(12) Bernal, S. A.; San Nicolas, R.; van Deventer, J. S. J.; Provis, J. L. Alkali-Activated Slag Cements Produced with a Blended Sodium Carbonate/Sodium Silicate Activator. *Adv. Cem. Res.* **2016**, *28*, 262–273.

(13) Bernal, S. A.; Provis, J. L.; Myers, R. J.; San Nicolas, R.; van Deventer, J. S. J. Role of Carbonates in the Chemical Evolution of Sodium Carbonate-Activated Slag Binders. *Mater. Struct* **2015**, *48*, 517–529.

(14) Fawer, M.; Concannon, M.; Rieber, W. Life Cycle Inventories for the Production of Sodium Silicates. *Int. J. Life Cycle Assess.* **1999**, *4*, 207.

(15) Palacios, M.; Puertas, F. Effect of Carbonation on Alkali-Activated Slag Paste. J. Am. Ceram. Soc. 2006, 89, 3211–3221.

(16) Fernández-Jiménez, A.; Puertas, F.; Sobrados, I.; Sanz, J. Structure of Calcium Silicate Hydrates Formed in Alkaline-Activated Slag: Influence of the Type of Alkaline Activator. *J. Am. Ceram. Soc.* **2003**, *86*, 1389–1394.

(17) Bai, Y.; Collier, N. C.; Milestone, N. B.; Yang, C. H. The Potential for Using Slags Activated with near Neutral Salts as Immobilisation Matrices for Nuclear Wastes Containing Reactive Metals. *J. Nucl. Mater.* **2011**, *413*, 183–192.

(18) Sakulich, A. R.; Miller, S.; Barsoum, M. W. Chemical and Microstructural Characterization of 20-Month-Old Alkali-Activated Slag Cements. J. Am. Ceram. Soc. 2010, 93, 1741–1748.

(19) Provis, J. L.; Duxson, P.; Kavalerova, E.; Krivenko, P. V.; Pan, Z.; Puertas, F.; van Deventer, J. S. J. Historical Aspects and Overview. In *Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM*; Provis, J. L., van Deventer, J. S. J., Eds.; Springer Netherlands: Dordrecht, 2014; pp 11–57.

(20) Provis, J. L.; Brice, D. G.; Buchwald, A.; Duxson, P.; Kavalerova, E.; Krivenko, P. V.; Shi, C.; van Deventer, J. S. J.; Wiercx, J. A. L. M. Demonstration Projects and Applications in Building and Civil Infrastructure. In *Alkali Activated Materials: Stateof-the-Art Report, RILEM TC 224-AAM*; Provis, J. L., van Deventer, J. S. J., Eds.; Springer Netherlands: Dordrecht, 2014; pp 309–338.

(21) Ke, X.; Bernal, S. A.; Hussein, O. H.; Provis, J. L. Chloride Binding and Mobility in Sodium Carbonate-Activated Slag Pastes and Mortars. *Mater. Struct* **2017**, *50*, 252.

(22) Ke, X.; Criado, M.; Provis, J. L.; Bernal, S. A. Slag-Based Cements That Resist Damage Induced by Carbon Dioxide. ACS Sustainable Chem. Eng. 2018, 6, 5067–5075.

(23) Bernal, S. A. Advances in Near-Neutral Salts Activation of Blast Furnace Slags. *RILEM Tech. Lett.* **2016**, *1*, 39–44.

(24) Ke, X.; Bernal, S. A.; Provis, J. L. Uptake of Chloride and Carbonate by Mg-Al and Ca-Al Layered Double Hydroxides in Simulated Pore Solutions of Alkali-Activated Slag Cement. *Cem. Concr. Res.* **2017**, *100*, 1–13.

(25) Ke, X.; Bernal, S. A.; Provis, J. L. Controlling the Reaction Kinetics of Sodium Carbonate-Activated Slag Cements Using Calcined Layered Double Hydroxides. *Cem. Concr. Res.* 2016, *81*, 24–37.

(26) Richardson, I. G.; Groves, G. W. The Incorporation of Minor and Trace Elements into Calcium Silicate Hydrates (C-S-H) Gel in Hardened Cement Pastes. *Cem. Concr. Res.* **1993**, *23*, 131–138.

(27) Myers, R. J.; Bernal, S. A.; San Nicolas, R.; Provis, J. L. Generalized Structural Description of Calcium-Sodium Aluminosilicate Hydrate Gels: The Cross-Linked Substituted Tobermorite Model. *Langmuir* **2013**, *29*, 5294–5306.

(28) Provis, J. L.; Duxson, P.; Lukey, G. C.; van Deventer, J. S. J. Statistical Thermodynamic Model for Si/Al Ordering in Amorphous Aluminosilicates. *Chem. Mater.* **2005**, *17*, 2976–2986.

(29) Pines, A.; Gibby, M. G.; Waugh, J. S. Proton-Enhanced NMR of Dilute Spins in Solids. J. Chem. Phys. 1973, 59, 569–590.

(30) Kolodziejski, W.; Klinowski, J. Kinetics of Cross-Polarization in Solid-State NMR: A Guide for Chemists. *Chem. Rev.* **2002**, *102*, 613–628.

(31) Klein Douwel, C. H.; Maas, W. E. J. R.; Veeman, W. S.; Werumeus Buning, G. H.; Vankan, J. M. J. Miscibility in PMMA/ PVF_2 Blends, Studied by ${}^{19}F_{-13}C$ CPMAS NMR. *Macromolecules* **1990**, 23, 406–412.

(32) Eijkelenboom, A. P. A. M.; Maas, W. E. J. R.; Veeman, W. S.; Buning, G. H. W.; Vankan, J. M. J. Triple-Resonance ¹⁹F, 1H, Carbon-¹³C CP-MAS NMR Study of the Influence of PMMA Tacticity on the Miscibility in PMMA/PVF2 Blends. *Macromolecules* **1992**, 25, 4511–4518.

(33) Massiot, D.; Fayon, F.; Capron, M.; King, I.; Le Calvé, S.; Alonso, B.; Durand, J.-O.; Bujoli, B.; Gan, Z.; Hoatson, G. Modelling One- and Two-Dimensional Solid-State NMR Spectra. *Magn. Reson. Chem.* **2002**, *40*, 70–76.

(34) Neuville, D. R.; Cormier, L.; Massiot, D. Al Environment in Tectosilicate and Peraluminous Glasses: A ²⁷Al MQ-MAS NMR, Raman, and XANES Investigation. *Geochim. Cosmochim. Acta* **2004**, 68, 5071–5079.

(35) d'Espinose de Lacaillerie, J.-B.; Fretigny, C.; Massiot, D. MAS NMR Spectra of Quadrupolar Nuclei in Disordered Solids: The Czjzek Model. J. Magn. Reson. **2008**, 192, 244–251.

(36) Andersen, M. D.; Jakobsen, H. J.; Skibsted, J. A New Aluminium-Hydrate Species in Hydrated Portland Cements Characterized by ²⁷Al and ²⁹Si MAS NMR Spectroscopy. *Cem. Concr. Res.* **2006**, *36*, 3–17.

(37) Engelhardt, G.; Koller, H. A Simple Procedure for the Determination of the Quadrupole Interaction Parameters and Isotropic Chemical Shifts from Magic Angle Spinning NMR Spectra of Half-Integer Spin Nuclei in Solids. *Magn. Reson. Chem.* **1991**, *29*, 941–945.

(38) Sideris, P. J.; Blanc, F.; Gan, Z.; Grey, C. P. Identification of Cation Clustering in Mg–Al Layered Double Hydroxides Using Multinuclear Solid State Nuclear Magnetic Resonance Spectroscopy. *Chem. Mater.* **2012**, *24*, 2449–2461.

(39) Myers, R. J.; Lothenbach, B.; Bernal, S. A.; Provis, J. L. Thermodynamic Modelling of Alkali-Activated Slag Cements. *Appl. Geochem.* **2015**, *61*, 233–247.

(40) Shimoda, K.; Tobu, Y.; Kanehashi, K.; Nemoto, T.; Saito, K. Total Understanding of the Local Structures of an Amorphous Slag: Perspective from Multi-Nuclear (²⁹Si, ²⁷Al, ¹⁷O, ²⁵Mg, and ⁴³Ca) Solid-State NMR. *J. Non-Cryst. Solids* **2008**, 354, 1036–1043.

(41) Wang, S.-D.; Scrivener, K. L. ²⁹Si and ²⁷Al NMR Study of Alkali-Activated Slag. *Cem. Concr. Res.* 2003, 33, 769–774.

(42) Walkley, B.; Kashani, A.; Sani, M.-A.; Ngo, T. D.; Mendis, P. Examination of Alkali-Activated Material Nanostructure During Thermal Treatment. J. Mater. Sci. 2018, 53, 9486–9503.

(43) Richardson, I. G.; Brough, A. R.; Brydson, R.; Groves, G. W.; Dobson, C. M. Location of Aluminum in Substituted Calcium Silicate Hydrate (C-S-H) Gels as Determined by ²⁹Si and ²⁷Al NMR and EELS. *J. Am. Ceram. Soc.* **1993**, *76*, 2285–2288.

(44) Rejmak, P.; Dolado, J. S.; Stott, M. J.; Ayuela, A. ²⁹Si NMR in Cement: A Theoretical Study on Calcium Silicate Hydrates. *J. Phys. Chem. C* **2012**, *116*, 9755–9761.

(45) Engelhardt, G.; Michel, D. High-Resolution Solid State NMR of Silicates and Zeolites; Wiley: Chichester, 1987.

(46) Walkley, B.; San Nicolas, R.; Sani, M.-A.; Rees, G. J.; Hanna, J. V.; van Deventer, J. S. J.; Provis, J. L. Phase Evolution of C-(N)-A-S-H/N-A-S-H Gel Blends Investigated Via Alkali-Activation of

Synthetic Calcium Aluminosilicate Precursors. Cem. Concr. Res. 2016, 89, 120-135.

pubs.acs.org/JPCC

(47) McBrierty, V. J.; Douglass, D. C. Recent Advances in the NMR of Solid Polymers. J. Polym. Sci., Part D: Macromol. Rev. **1981**, 16, 295–366.

(48) Rinaldi, R.; Sacerdoti, M.; Passaglia, E. Strätlingite: Crystal Structure, Chemistry, and a Reexamination of Its Polytpye Vertumnite. *Eur. J. Mineral.* **1990**, *2*, 841–850.

(49) Skibsted, J.; Henderson, E.; Jakobsen, H. J. Characterization of Calcium Aluminate Phases in Cements by ²⁷Al MAS NMR Spectroscopy. *Inorg. Chem.* **1993**, *32*, 1013–1027.

(50) Pardal, X.; Brunet, F.; Charpentier, T.; Pochard, I.; Nonat, A. ²⁷Al and ²⁹Si Solid-State NMR Characterization of Calcium-Aluminosilicate-Hydrate. *Inorg. Chem.* **2012**, *51*, 1827–1836.

(51) Houston, J. R.; Maxwell, R. S.; Carroll, S. A. Transformation of Meta-Stable Calcium Silicate Hydrates to Tobermorite: Reaction Kinetics and Molecular Structure from XRD and NMR Spectroscopy. *Geochem. Trans.* **2009**, *10*, 1–14.

(52) Sun, G. K.; Young, J. F.; Kirkpatrick, R. J. The Role of Al in C– S–H: NMR, XRD, and Compositional Results for Precipitated Samples. *Cem. Concr. Res.* **2006**, *36*, 18–29.

(53) Walkley, B.; Page, S. J.; Rees, G. J.; Provis, J. L.; Hanna, J. V. Nanostructure of CaO- (Na_2O) -Al₂O₃-SiO₂-H₂O Gels Revealed by Multinuclear Solid State Magic Angle Spinning and Multiple Quantum Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy. *J. Phys. Chem. C* **2020**, *124*, 1681–1694.

(54) Manzano, H.; Dolado, J. S.; Ayuela, A. Aluminum Incorporation to Dreierketten Silicate Chains. J. Phys. Chem. B 2009, 113, 2832–2839.

(55) Faucon, P.; Delagrave, A.; Richet, C.; Marchand, J. M.; Zanni, H. Aluminum Incorporation in Calcium Silicate Hydrates (C–S–H) Depending on Their Ca/Si Ratio. *J. Phys. Chem. B* **1999**, *103*, 7796–7802.

(56) Vyalikh, A.; Massiot, D.; Scheler, U. Structural Characterisation of Aluminium Layered Double Hydroxides by ²⁷Al Solid-State NMR. *Solid State Nucl. Magn. Reson.* **2009**, *36*, 19–23.

(57) Bonk, F.; Schneider, J.; Cincotto, M. A.; Panepucci, H. Characterization by Multinuclear High-Resolution NMR of Hydration Products in Activated Blast-Furnace Slag Pastes. J. Am. Ceram. Soc. 2003, 86, 1712–1719.

(58) Wang, S.-D.; Scrivener, K. L. Hydration Products of Alkali-Activated Slag Cement. Cem. Concr. Res. 1995, 25, 561-571.

(59) Kunhi Mohamed, A.; Moutzouri, P.; Berruyer, P.; Walder, B. J.; Siramanont, J.; Harris, M.; Negroni, M.; Galmarini, S. C.; Parker, S. C.; Scrivener, K. L.; Emsley, L.; Bowen, P. The Atomic-Level Structure of Cementitious Calcium Aluminate Silicate Hydrate. *J. Am. Chem. Soc.* **2020**, *142*, 11060–11071.