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An important theorem in Gaussian quantum information tells us that we can diagonalise the
covariance matrix of any Gaussian state via a symplectic transformation. Whilst the diagonal
form is easy to find, the process for finding the diagonalising symplectic can be more difficult,
and a common, existing method requires taking matrix powers, which can be demanding
analytically. Inspired by a recently presented technique for finding the eigenvectors of a
Hermitian matrix from certain submatrix eigenvalues, we derive a similar method for finding
the diagonalising symplectic from certain submatrix determinants, which could prove useful
in Gaussian quantum information.
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I. INTRODUCTION

Gaussian states, in continuous-variable quantum infor-
mation, are those states that can be described entirely by
the first and second moments of their field quadratures1,2.
In the phase-space representation, the first moments of
a state can be expressed as a first moments vector and
the second moments can be expressed as a covariance
matrix. These are real, symmetric, positive-definite ma-
trices. Any Gaussian unitary operation (a unitary opera-
tion that maps Gaussian states to other Gaussian states)
on a state can be represented by a symplectic transfor-
mation, S. In other words, let ρ be a Gaussian state,
with covariance matrix V , and let U be a unitary opera-
tion such that ρ′ = UρU † is also a Gaussian state, with
covariance matrix V ′. Then, there exists a symplectic
matrix S such that V ′ = STV S. This S can therefore be
regarded as the phase-space representation of U . Simi-
larly, any symplectic matrix has a corresponding unitary
transformation.

A key theorem, in Gaussian quantum information the-
ory, is Williamson’s theorem3, which states that, for any
covariance matrix, V , there exists some symplectic trans-
formation, S, such that V = STDS, where D is a covari-
ance matrix in diagonal form. This is analogous to how
every Hermitian matrix has some unitary matrix that
puts it into diagonal form. The diagonalised covariance
matrix is simple to find, as its non-zero elements are the
eigenvalues of |iΩV |, where Ω is a matrix (defined later)
called the symplectic form. The process for finding the
diagonalising symplectic, S, is more difficult, however.

A recent paper by Denton et al.4 presented a method
for finding the elements of the eigenvectors of a Hermitian
matrix, using its submatrix eigenvalues. Some of the the-
orems presented in that paper can be simply adapted to
the symplectic formalism, to provide a method for find-
ing the diagonalising symplectic for a covariance matrix,
using certain submatrix determinants. In this work, we
present such a technique, along with examples of how it
can be applied.

II. FINDING THE SYMPLECTIC

DECOMPOSITION

First, we must define some quantities. Let V be any
valid, d-mode covariance matrix. V is a 2d by 2d, real,
symmetric, square matrix. We define

V = STDS, (1)

where S is a symplectic matrix andD is a diagonal matrix
that can be expressed as

D =

d
⊕

m=1

∆m, ∆m = λmI2. (2)

In is the n by n identity matrix. D is called the
Williamson form of V and is unique up to a rearrange-
ment of the modes (i.e. of the labels m). The real values
λm are called the symplectic eigenvalues of V . The diag-
onalising symplectic, S, obeys the (symplectic) condition

STΩS = Ω, (3)
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where Ω is called the symplectic form. Ω is required to
be non-singular and skew-symmetric. Common choices
in Gaussian quantum information theory are

Ω =

d
⊕

m=1

ω, ω =

(

0 1
−1 0

)

(4)

and

Ω =

(

0d Id
−Id 0d

)

, (5)

where 0n is an n by n square matrix with all entries
equal to 0. In this work, we will consider the symplectic
form defined in Eq. (4), although it is simple to con-
vert the results to a form compatible with Eq. (5). Our
choice corresponds to ordering the field quadratures into
the 2d-dimensional vector (x1, p1, . . . , xd, pd) where xj , pj
are, respectively, the position and momentum operators,
satisfying [xj , pk] = iδjk.
Finally we define complex numbers sm,k with m =

1, . . . , d and k = 1, . . . , 2d such that

S2m−1,2n = −Re[sm,2n−1],

S2m,2n = Im[sm,2n−1],

S2m−1,2n−1 = Re[sm,2n],

S2m,2n−1 = −Im[sm,2n].

(6)

m = 1, . . . , d and n = 1, . . . , d. Our main result is the
following theorem, the proof of which is presented in
Sec. III.

Theorem 1 For any covariance matrix V, and integer

indices 1 ≤ m ≤ d and 1 ≤ k, l ≤ 2d we may write

det [Rk,l(V − iλmΩ)] =(−1)k+ls∗m,ksm,l

× λm

d
∏

n=1,
n6=m

(λ2
n − λ2

m). (7)

where Rk,l(M), for any matrix M , is the matrix M with

the k-th row and l-th column removed, while the complex

numbers sk,l are linearly related, via Eqs. (6), to the real

elements Smn of the symplectic matrix diagonalising V .

Based on the above theorem, we present the following
algorithm for finding the diagonalising symplectic, S, for
non-degenerate symplectic eigenvalues (λm 6= λn for n 6=
m). The degenerate case can be handled by inserting a
small, O(ǫ) perturbation that breaks the degeneracy; the
correct analytical result can be obtained by taking the
limit as ǫ → 0, while numerical results within a certain
accuracy can be obtained with a suitably small ǫ (see
Section IV for an extended discussion).

i) Find the d symplectic eigenvalues, λm, as the pos-
itive eigenvalues of iΩV .

ii) Calculate the d quantities

ℵm = λm

d
∏

n=1,
n6=m

(λ2
n − λ2

m), (8)

for m = 1, . . . , d.

iii) Fix an integer k̄ between 1 and 2d. Without loss of
generality, we fix the phase such that sm,k̄ is a pos-
itive real number – see also the extended discussion
in the next section.

iv) For each m = 1, . . . , d and l = 1, . . . , 2d, calculate
the 2d× d minors

ik̄lm = det
[

Rk̄,l(V − iλmΩ)
]

(9)

where k̄ was defined in step (iii). If ik̄k̄m = 0 for
some m, go back to step (iii) and choose a different
k̄.

v) For each label m = 1, . . . , d and l = 1, . . . , 2d, cal-
culate the d× 2d values

sm,l = (−1)k̄+l ik̄lm
√

ℵmik̄k̄m

. (10)

where again k̄ was defined in step (iii).

vi) Extract the elements of S, using Eq. (6).

In Eq. (10) we use Eq. (7) to write

s∗m,k̄sm,l = (−1)k̄+lik̄lm

ℵm
, (11)

where sm,k̄ is a real positive number by explicit choice.
Hence, we may calculate sm,l by dividing the products
s∗m,ksm,l by

√

s∗m,ksm,k.

III. PROOF OF THE MAIN THEOREM

In this section we prove our main result, Theorem 1.
Our proof follows similar lines to that given by Denton
et al.4 We begin by proving a theorem similar to their
Lemma 13 and then use it to get an identity similar to
their Theorem 1 and its generalisation in Proposition 17
(Lemmas 1 and 2 respectively in the first version preprint
on arXiv).
Note the following equations, which follow directly

from the previous definitions:

Ω−1 = ΩT = −Ω, (12)

S−1 = −ΩSTΩ, (13)

D = −SΩVΩST . (14)

Next, we define the matrices Am, which are given by

Am = V − iλmΩ. (15)

Note that

−SΩAmΩST = D − iλmΩ, (16)

so Am is a block diagonal, Hermitian matrix, composed
of two by two blocks along the main diagonal. Note too
that the symplectic eigenvalues of V can be easily found
as the eigenvalues of |iΩV |.
Let U be the 2d by 2d matrix with elements

Um,n =
1√
2

{

δ2m−1,n + iδ2m,n m ≤ d

δ2(m−d)−1,n − iδ2(m−d),n m > d
. (17)
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Note that U is a unitary. To make its structure clearer,
its explicit form for d = 3 is

Ud=3 =
1√
2

















1 i 0 0 0 0
0 0 1 i 0 0
0 0 0 0 1 i
1 −i 0 0 0 0
0 0 1 −i 0 0
0 0 0 0 1 −i

















. (18)

The matrix U maps the vector of quadrature opera-
tors to the vector of creation and annihilation operators
(a1, . . . , ad, a

†
1, . . . , a

†
d), where aj = (xj + ipj)/

√
2. U di-

agonalises the matrices D − iλmΩ. We can write

D′
m = U(D − iλmΩ)U † = −USΩAmΩSTU †, (19)

where D′
m is a diagonal matrix, with its elements along

the main diagonal given by

(D′
m)n,n =

{

λn − λm n ≤ d

λn + λm n > d
. (20)

Note that the m-th element on the main diagonal (i.e.
(D′

m)m,m) will always be 0.
We now define the 2d by 1 column vectors em, which

have elements (em)n = δm,n, where δ is the Kronecker
delta function and the label m runs from 1 to d. Note
that the label m could run up to 2d, but we do not use
vectors em>d. We can then define the vectors sm as

sm = −
√
2ΩSTU †em. (21)

These d vectors contain all of the elements of S. To show
this, let us carry out the multiplication in Eq. (21) step
by step. U †em is a column vector with elements

(U †em)n =
1√
2
(δ2m−1,n − iδ2m,n). (22)

STU †em is a column vector with elements

(STU †em)n =
1√
2
(S2m−1,n − iS2m,n). (23)

Finally, sm is the 2d by 1 column vector with elements

(sm)n =

{

−S2m−1,n+1 + iS2m,n+1 odd n

S2m−1,n−1 − iS2m,n−1 even n
. (24)

We will sometimes refer to the n-th element of sm as sm,n.
The vectors sm can be regarded as symplectic counter-
parts to eigenvectors, in the same way that the symplectic
eigenvalues of a covariance matrix are to eigenvalues.
The form of U given in Eq. (17) is the only expression

given so far that explicitly depends on the choice of sym-
plectic form, Ω. If we want to use the symplectic form
given by Eq. (5), instead of the form given by Eq. (4),
we can use the same expressions, but with the definition
of the vectors sm changed so that they have elements

(sm)n =

{

−Sm,n+d + iSm+d,n+d n ≤ d

Sm,n−d − iSm+d,n−d n > d
. (25)

With the sm vectors redefined in this way, all of the the-
orems given in this paper hold for the symplectic form
given by Eq. (5).
We are now ready to state Theorem 2.

Theorem 2 For any pair of 2d by 2d − 1 matrices, Bx

and By,

det
[

B†
xAmBy

]

=det

[(

Bx
sm√
2

)]∗
det

[(

By
sm√
2

)]

× 2λm

d
∏

n=1,
n6=m

(λ2
n − λ2

m),

(26)

where
(

Bx/y
sm√
2

)

, on the right-hand side of the equation,

indicates concatenation of Bx/y and sm√
2
into a single 2d

by 2d, square matrix, rather than multiplication, and ∗
indicates the complex conjugate.

The theorem holds for all matricesBx and By (whether
real or complex) and for all covariance matrices V , al-
though both sides of Eq. (26) will go to 0 if λm is a
degenerate symplectic eigenvalue.
To prove this theorem, let us define

B′
x/y = UΩSBx/y, (27)

so that we can express Bx/y as

Bx/y = −ΩSTU †B′
x/y. (28)

Substituting Eq. (28) into B†AmB, we get

B†
xAmBy = (B′†

x USΩ)Am(−ΩSTU †B′
y)

= B′†
x D

′
mBy,

(29)

where we have used Eq. (19).
Next we define Rm,n(M), for any matrix M , as the

matrix M with the m-th row and the n-th column re-
moved. The index 0 indicates that no rows/columns are
removed (e.g. R0,m(M) is the matrix M with the m-th
column removed but no rows removed). Recalling that
D′

m is a diagonal matrix with the m-th element on the
main diagonal equal to 0, we can write

det
[

B′†
x D

′
mB′

y

]

=det
[

Rm,0(B
′
x)

†Rm,m(D′)Rm,0(B
′
y)
]

=det [Rm,0(B
′
x)]

∗
det

[

Rm,0(B
′
y)
]

× det [Rm,m(D′)] ,

(30)

where, on the second line, we have used the cyclic invari-
ance of the determinant of a product of square matrices.
Recalling Eq. (20), we can write

det [Rm,m(D′)] =
d
∏

n=1,
n6=m

(λn − λm)

d
∏

n=1

(λn + λm)

= 2λm

d
∏

n=1,
n6=m

(λ2
n − λ2

m).

(31)

Thus, the left-hand side of Eq. (26) is given by

det
[

B†
xAmBy

]

=det [Rm,0(B
′
x)]

∗
det

[

Rm,0(B
′
y)
]

× 2λm

d
∏

n=1,
n6=m

(λ2
n − λ2

m). (32)
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Finally, we must compute the right-hand side of
Eq. (26). Using Eqs. (21) and (28), we can write

det

[(

Bx/y
sm√
2

)]

= det
[

−ΩSTU †(B′
x/y em)

]

= det
[

−ΩSTU †]det
[

(B′
x/y em)

]

.

(33)

The determinants of Ω and S are both 1, so we can write

det

[(

Bx/y
sm√
2

)]

= −det
[

U †]det
[

(B′
x/y em)

]

,

(34)

where the determinant of U † also has a magnitude of 1.
For any lower-triangular block matrix M , expressible

as

M =

(

X 0
Y Z

)

, (35)

where the 0 represents a matrix composed entirely of 0s,
we know that

det[M ] = det[X ]det[Z]. (36)

Using the form of em, the matrix (B′
x/y em) can be ex-

pressed in the form given by Eq. (35), where Z is the
single element 1, up to some permutation of the rows (in
fact, a single swap). Recalling that a permutation of the
rows of a matrix simply multiplies the determinant by
±1, we can write

det

[(

Bx/y
sm√
2

)]

=(−1)pdet
[

U †]

× det
[

Rm,0(B
′
x/y)

]

,

(37)

where p, which depends on the parity of the permutation,
is an integer. Note that

det
[

U †]∗ = det [U ] = det
[

U †]−1
, (38)

and so

det

[(

Bx
sm√
2

)]∗
=(−1)pdet

[

U †]−1

× det [Rm,0(B
′
x)]

∗
.

(39)

Since the left-hand side of Eq. (26) equals the right-hand
side, this concludes the proof of Theorem 2.
If λm is a degenerate symplectic eigenvalue, D′

m will
have multiple elements on the main diagonal that are
equal to 0, so both sides of Eq. (26) will trivially go to 0.
A generalisation of Theorem 2 is given by Corollary 2.1.

Corollary 2.1 Let λm be an k-fold degenerate symplec-

tic eigenvalue of V , and let the labels for the degenerate

eigenvalues form the set {mj}, where j runs from 1 to k.
For any pair of 2d by 2d− k matrices, Bx and By,

det
[

B†
xAmBy

]

=det

[(

Bx
sm1√
2
. . .

smk√
2

)]∗

× det

[(

By
sm1√
2
. . .

smk√
2

)]

× (2λm)k
d
∏

n=1,
n/∈{mj}

(λ2
n − λ2

m),

(40)

where
(

Bx/y
sm1√

2
. . .

smk√
2

)

, on the right-hand side of the

equation, is the concatenation of Bx/y with all k of the

vectors in { smj√
2
}, to form a 2d by 2d, square matrix.

Corollary 2.1 can be proved in exactly the same
way as Theorem 2, but using the new definition of
Bx/y and replacing Rm,0(B

′
x/y) and Rm,m(D′) with

R{mj},0(B
′
x/y) and R{mj},{mj}(D

′) respectively (where

all of the rows/columns labelled by elements in the sub-
scripted sets are removed).

We can now prove the relationship between the ele-
ments of the diagonalising symplectic and the submatrix
determinants of the matrices Am given in Theorem 1,
which we restate here for clarity.

Theorem 1 For any covariance matrix V,

det [Rk,l(V − iλmΩ)] =(−1)k+ls∗m,ksm,l

× λm

d
∏

n=1,
n6=m

(λ2
n − λ2

m). (41)

Define M1 as the concatenation of a 1 by 2d − 1 row
vector with all of its elements equal to 0 and a (2d− 1)-
dimensional identity matrix, i.e.

M1 =

(

0
I2d−1

)

. (42)

Then define the matrices Ml as M1 with the rows per-
muted such that the row vector of 0s is the l-th row.

Theorem 1 now follows directly from setting Bx, in
Theorem 2, to Mk and setting By to Ml. For the left-
hand side, we use

M †
l AMk = Rk,l(A), (43)

and for the right-hand side we use Eq. (36) (albeit with
an upper-triangular block matrix, rather than a lower-
triangular one). The factor of ±1 comes from the parity
of the permutation of rows required to put the matrix in
an upper-triangular form.

If we fix the phase of one element of sm, we now have
an expression for the magnitudes and relative phases of
the other elements of sm, except for cases in which λm is
a degenerate symplectic eigenvalue. The only remaining
task is then to fix the relative phases of the different sm.
In fact, this is not required, because these relative phases
are arbitrary. There is a correspondence here with the
fact that, when finding the diagonalising unitary for a
Hermitian matrix, the relative phases between the eigen-
vectors are also arbitrary.

Let S be the symplectic recovered using Theorem 1
with some arbitrary set of relative phases between the
vectors sm and let S′ be the symplectic corresponding to
some different set of relative phases, so that

s′m = eiφmsm. (44)
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From Eq. (24), we can see that

S′ = PS, (45)

P =

d
⊕

m=1

(

cosφm sinφm

− sinφm cosφm

)

. (46)

P is a symplectic corresponding to a series of one-mode
phase rotations, so S′ is also a valid symplectic matrix.
Further, suppose S diagonalises a covariance matrix, V .
S′ will then also diagonalise V , because the Williamson
form is invariant under the application of one-mode phase
rotations. Thus, by finding the d symplectic eigenvalues
and 2d2 submatrix determinants, we can completely de-
termine the diagonalising symplectic.
For completeness, we can also apply Corollary 2.1 to

find a corollary to Theorem 1 that applies in the degen-
erate case.

Corollary 1.1 Let λm be an p-fold degenerate symplec-

tic eigenvalue of V , and let the labels for the degener-

ate eigenvalues form the p-element set {mj}. Let {kj}
and {lj} be two other sets, each consisting of p elements

drawn from the set of integers between 1 and 2d.

det
[

R{kj},{lj}(V − iλmΩ)
]

=(−1)
∑

kj+ljλp
m

× det
[

s{mj},{kj}
]∗

× det
[

s{mj},{lj}
]

×
d
∏

n=1,
n/∈{mj}

(λ2
n − λ2

m),

(47)

where s{mj},{k/lj} denotes the p by p, square matrix

whose elements are sx,y, where x is drawn from {mj}
and y is drawn from {k/lj}.

Note the correspondence with Proposition 17 from
Denton et al4.
Corollary 1.1 gives us

(

2d
p

)

conditions (since this is the

number of different choices of sets {k/lj}) on the 2dp
unknown elements of {smj

}.

IV. HANDLING THE DEGENERATE CASE

Theorem 1 holds for all covariance matrices, but does
not always yield useful results. If the covariance matrix,
V , has degenerate symplectic eigenvalues, {λmj

}, we will
not be able to use Eq. (7) to find {smj

}, as both sides of
the equation will go to 0.
One workaround is to introduce a perturbed matrix,

V ′. Specifically, we define

V ′ = V + ǫ∆, (48)

where ∆ is some perturbation matrix, chosen such that
V ′ is a valid covariance matrix with non-degenerate sym-
plectic eigenvalues for 0 < ǫ < E, where E is some posi-
tive, real number. In other words, we can treat V as the

limiting case of some sequence of covariance matrices,
parametrised by ǫ, that do not generally have degenerate
eigenvalues. We then find the diagonalising symplectic
for V ′, parametrised by ǫ, and then take the limit of our
expression for this diagonalising symplectic as ǫ → 0.
This technique is demonstrated by the example in Sec-
tion V.C.
In order to prove that this technique is valid in all

cases, we must show that the elements of the diagonalis-
ing symplectic are continuous functions of the covariance
matrix. First, let us clarify what this means. Let f be a
function mapping from a variable ǫ to the set of complex
numbers. Restrict epsilon to the real interval D = [0, E].
We call f continuous at the point ǫ0 iff, for any δ there
exists some δǫ such that

|f [ǫ0]− f [ǫ1] < δ ∀ǫ1 ∈ D : |ǫ0 − ǫ1| < δǫ. (49)

In other words, f is continuous at ǫ0 iff there is some
neighbourhood around ǫ0 within which all values of ǫ
give rise to a value of f that is sufficiently close to f [ǫ0].
If all elements of a matrix are continuous functions of ǫ,
we will say that that matrix is a continuous function of
ǫ.
An important ingredient in our proof is the fact that

the eigenvalues of a matrix parameterised by a variable
restricted to a real interval are continuous functions of
that variable5,6. This stems from the fact that the eigen-
values of a matrix are the solutions of that matrix’s char-
acteristic equation, which is a polynomial in its elements.
Recall that the symplectic eigenvalues of a covariance

matrix V are the absolute values of the eigenvalues of
iΩV (a Hermitian matrix), and that they are non-zero
for all valid covariance matrices (in fact, they are greater
than or equal to the shot-noise, the numerical value of
which depends on the convention used1). Consequently,
the symplectic eigenvalues of V ′, λ′

m, are continuous
functions of ǫ in the domain D. It is immediate that
products and sums of continuous functions are them-
selves continuous, so

ℵm = λ′
m

d
∏

n=1,
n/∈{mj}

(λ′2
n − λ′2

m) (50)

is a continuous function of ǫ.
Since Rk,l(V

′− iλ′
mΩ) is a continuous function of ǫ, its

eigenvalues are too, and so det
[

R{kj},{lj}(V − iλmΩ)
]

is
also a continuous function of ǫ.
Putting this together, we can see that the products

s′∗m,ks
′
m,l and hence the elements s′m,l are continuous func-

tions of ǫ. Finally, since the real/imaginary part of the
output of a continuous function is also continuous, the
calculated symplectic, S′(ǫ), is a continuous function of
ǫ in the domain D.
We are guaranteed that there exists some matrix ∆

such that V ′ is a valid covariance matrix with non-
degenerate symplectic eigenvalues for sufficiently small,
positive ǫ. For instance, we could choose

∆ = ST ξS, (51)
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where ξ is some diagonal matrix. Then, after diagonali-
sation, the Williamson form of the perturbed matrix be-
comes

D′ = D + ǫξ. (52)

We can therefore always choose ξ such that V ′ is non-
degenerate. Note that S is not known (indeed the pur-
pose of the algorithm is to find it), so Eq. (51) is not
intended to provide a viable choice of ∆ for the method,
but rather to demonstrate that such a matrix is always
guaranteed to exist.

V. EXAMPLES

Let us consider some examples of how Theorem 1 can
be applied.

V.A. Two-mode squeezed states

The symplectic matrix that diagonalises a two-mode
squeezed state is known1,7, and so provides a useful ex-
ample case. The covariance matrices we are interested in
take the form

V =

(

aI2 cZ
cZ bI2

)

, (53)

where Z is the Pauli-Z matrix. The symplectic eigenval-
ues of V are

λ1 =

√
y − (a− b)

2
, λ2 =

√
y + (a− b)

2
, (54)

y = (a+ b)2 − 4c2. (55)

Now define

ℵ1 = λ1(λ
2
2 − λ2

1), (56)

ℵ2 = λ2(λ
2
1 − λ2

2). (57)

We can then calculate

ℵ1 =
1

2

(

(a− b)y − (a− b)2
√
y
)

, (58)

ℵ2 = −1

2

(

(a− b)y + (a− b)2
√
y
)

. (59)

Next, we calculate four different submatrix determi-
nants (minors) of the matrix

V − iλ1Ω =









a −iλ1 c 0
iλ1 a 0 −c
c 0 b −iλ1

0 −c iλ1 b









. (60)

Specifically, we find the minors

i2,j,1 = det [R2,j(V − iλ1Ω)] , (61)

for j taking values from 1 to 4. We calculate

i2,1,1 = iλ1(λ
2
1 − b2 + c2), (62)

i2,2,1 = a(b2 − λ2
1)− bc2, (63)

i2,3,1 = −iλ1c(a− b), (64)

i2,4,1 = −c(λ2
1 − ab+ c2) (65)

Combining Eq. (58) with Eqs. (62) to (65), and using
Theorem 1, we get

s∗1,1s1,1 = −i
a+ b−√

y

2
√
y

, (66)

s∗1,1s1,2 =
a+ b−√

y

2
√
y

, (67)

s∗1,1s1,3 = i
c√
y
, (68)

s∗1,1s1,4 =
c√
y
. (69)

Finally, we calculate

s1 =
(

−iω− ω− iω+ ω+

)

, (70)

ω± =

√

a+ b±√
y

2
√
y

. (71)

Similarly, we find the minors

i4,j,2 = det [R4,j(V − iλ2Ω)] , (72)

for j taking values from 1 to 4, by calculating

i4,1,2 = iλ2c(a− b), (73)

i4,2,2 = −c(λ2
2 − ab+ c2), (74)

i4,3,2 = iλ2(λ
2
2 − a2 + c2), (75)

i4,4,2 = b(a2 − λ2
2)− ac2. (76)

Combining Eq. (59) with Eqs. (73) to (76), we get

s∗2,3s2,1 = i
c√
y
, (77)

s∗2,3s2,2 =
c√
y
, (78)

s∗2,3s2,3 = −i
a+ b−√

y

2
√
y

, (79)

s∗2,3s2,4 =
a+ b−√

y

2
√
y

. (80)

Finally, we can calculate

s2 =
(

iω+ ω+ −iω− ω−
)

. (81)

Using Eq. (24), we can construct the diagonalising
symplectic, S, from the elements of s1 and s2. We get

S =

(

ω−Z ω+I2
ω+I2 ω−Z

)

. (82)

This is the same as the expression given by Ref. [7] up to
multiplication by

U =

(

02 I2
I2 02

)

, (83)

which is simply a rearrangement of the modes.
One point to note is that we can pick a and b such that

λ1 = λ2 (specifically, by picking a = b). Despite the fact
that, in this particular case, both sides of Eq. (7) go to
0, the matrix S that we have calculated for the general
case is still correct.
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V.B. Three-mode example

We will also show how to diagonalise a specific three-
mode case. We consider covariance matrices of the form

V =





aI2 cZ cZ
cZ aI2 cI2
cZ cI2 aI2



 . (84)

The corresponding symplectic eigenvalues are

λ1 = a− c, (85)

λ2 =

√

2a2 + 2ac− 3c2 +
√
x√

2
, (86)

λ2 =

√

2a2 + 2ac− 3c2 −√
x√

2
, (87)

where

x = 4a2 + 4ac− 7c2. (88)

Due to the greater number of quantities that must be
calculated in the three-mode case, we will not present
the explicit calculations here, but they are contained in
the supplementary Mathematica file8. The diagonalising
symplectic is given by

S =











02
1√
2
I2 − 1√

2
I2

2c
√
λ2√√

x(ay++2λ2
2
)
Z

√
ay++2λ2

2

2
√

λ2

√
x

I2
√

ay++2λ2
2

2
√

λ2

√
x

I2
√

2a+y+√
2
√
x

I2
√

2a+y
−

2
√
x

Z
√

2a+y
−

2
√
x

Z











,

(89)

y± = c±
√
x. (90)

V.C. Degenerate three-mode example

By finding the diagonalising symplectic for a three-
mode covariance matrix with a degenerate eigenvalue,
we will demonstrate how degenerate symplectic eigenval-
ues can be handled. The covariance matrices that we
consider take the form

V (0) =





aI2 a
2I2 a

2I2
a
2I2 aI2 a

2I2
a
2I2 a

2I2 aI2



 , (91)

and have symplectic eigenvalues

λ
(0)
1 = 2a, λ

(0)
2 = λ

(0)
3 =

a

2
. (92)

To deal with this problem, we introduce the perturbed
covariance matrix

V (ǫ) = V (0) + ǫ





I2 02 02
02 02 02
02 02 02





=





(a+ ǫ)I2 a
2I2 a

2I2
a
2I2 aI2 a

2I2
a
2I2 a

2I2 aI2



 ,

(93)

which has symplectic eigenvalues

λ
(ǫ)
1 =

a

2
, (94)

λ
(ǫ)
2 =

√

17a2 + 8aǫ+ 4ǫ2 +
√
x(5a+ 2ǫ)

2
√
2

, (95)

λ
(ǫ)
3 =

√

17a2 + 8aǫ+ 4ǫ2 −√
x(5a+ 2ǫ)

2
√
2

, (96)

where

x = 9a2 − 4aǫ+ 4ǫ2. (97)

These symplectic eigenvalues are non-degenerate for all
ǫ > 0. It is clear from the form of V (ǫ) that, if V (0) is a
valid covariance matrix, V (ǫ) is too, for all x ≥ 0. The
diagonalising symplectic for V (ǫ) is given by

S(ǫ) =







02
1√
2
I2 − 1√

2
I2

y
−√
2
I2 y+

2 I2 y+

2 I2
− y+√

2
I2 y

−

2 I2 y
−

2 I2






, (98)

y± =

√√
x± (a− 2ǫ)

4
√
x

. (99)

The explicit details of the calculation are again given in
the supplementary Mathematica file. Now, since

V (0) = lim
ǫ→0

V (ǫ), (100)

and since Eq. (98) defines a diagonalising symplectic for
any value of ǫ, we can find the symplectic, S(0), that
diagonalises the unperturbed covariance matrix, V (0), as
the limit

S(0) = lim
ǫ→0

S(ǫ). (101)

We find that

S(0) =







02
1√
2
I2 − 1√

2
I2

1√
3
I2 1√

3
I2 1√

3
I2

−
√

2
3I2 1√

6
I2 1√

6
I2






. (102)

This is still a valid symplectic matrix and it diagonalises
V (0). Thus, we can find the diagonalising symplectic for
a covariance matrix with degenerate eigenvalues by per-
turbing it such that it loses its degeneracy, diagonalising
the perturbed covariance matrix and taking the limit as
the magnitude of the perturbation goes to 0.

VI. RELATION WITH PREVIOUS METHODS

A common numerical algorithm for diagonalising co-
variance matrices involves the following steps9.
First we write

S = D− 1
2KV

1
2 , (103)

for a real, orthogonal transformation K. Such a matrix
S automatically verifies Eq. (1) (recalling that the square
root of a positive, symmetric matrix is also symmetric),
yet in general it is not symplectic.
We now impose Eq. (3), by writing

V
1
2KTD− 1

2ΩD− 1
2KV

1
2 = Ω. (104)
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Defining the anti-symmetric matrix

X = V
1
2ΩV

1
2 , (105)

we must find the unique, orthogonal matrix K satisfying

KX−1KT = −D− 1
2ΩD− 1

2

=
d

⊕

m=1

− 1

λm
ω,

(106)

where the λm are the symplectic eigenvalues of V .
We construct thisK as follows. Let U be a unitary that

diagonalisesX (and hence X−1). Half of the eigenvectors
of X are the complex conjugates of the other half. We
order the eigenvectors of X , xm, that compose U as

U =
(

x1 x∗
1 x2 x∗

2 . . . xd x∗
d

)

. (107)

Then, X−1 can be diagonalised as

U †X−1U =

d
⊕

m=1

− i

λm
Z. (108)

We now define the matrix Γ as

Γ =

d
⊕

γ, γ =
1√
2

(

−i i
1 1

)

. (109)

Finally, we can write

K = ΓU †. (110)

Since Γ is unitary, K is also a unitary. From the form of
Γ and Eq. (110), we can see that KT is constructed as

KT =
√
2
(

−Im[x1] Re[x1] . . . −Im[xd] Re[xd]
)

.

(111)

Consequently, K is real, and therefore orthogonal.
We can therefore write

KX−1KT = KX−1K†

= ΓU †X−1UΓ†

=

d
⊕

m=1

− i

λm
γZγ†

=
d

⊕

m=1

− 1

λm
ω,

(112)

showing that the symplectic condition is satisfied.
Alternative yet related algorithms for diagonalising

quadratic bosonic Hamiltonians are also known in the
nuclear physics community10,11.
Compared to previous methods, our Theorem 1 of-

fers the advantage of not requiring full diagonalisations.
Whilst we need to find the determinants of certain sub-
matrices, our technique does not involve taking matrix
powers, and so does not require us to find the eigenvec-
tors of matrices (only eigenvalues). This can often be
simpler analytically. In the supplementary Mathematica
file, we find that the algorithm presented in Section II is

faster at finding the diagonalising symplectic for covari-
ance matrices given by Eq. (53) (parametrised by three
free variables) than the existing method presented in this
section, although the existing method is faster for numer-
ical covariance matrices. This suggests that the method
derived in this paper could be of use when the analyti-
cal form of the diagonalising symplectic for a covariance
matrix with free variables is required.

VII. CONCLUSION

In this paper, we have presented a simple technique
for finding the diagonalising symplectic for a covariance
matrix, based on similar ideas to the technique for cal-
culating the diagonalising unitary for a Hermitian ma-
trix presented by Denton et al.4 This technique requires
the calculation of submatrix determinants, but does not
require eigenvector decompositions (which can often be
analytically difficult). Our technique applies to all co-
variance matrices that do not have degenerate symplec-
tic eigenvalues, but we have also presented a workaround
for matrices that have degenerate symplectic eigenvalues.
We have provided three example cases, to show how our
method can be applied.
Whilst methods to find the diagonalising symplectic

for a covariance matrix already exist, the technique pre-
sented here may provide a simpler technique for calcu-
lating the diagonalising symplectic, in some cases.
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