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Abstract: Households accounted for 35% of total UK electricity consumption in 2019 and 

have considerable potential to support the target of net-zero CO2 emissions by 2050. However, 

there is little understanding of the potential to reduce emissions from household energy systems 

using emissions-responsive battery charging, and existing investigations use average emissions 

factors rather than marginal. To understand the overall carbon reduction potential of household 

energy systems, a life cycle assessment has been conducted for a typical house in the UK, with 

annual electricity consumption of 3960 kWh. Household energy systems comprising solar 

photovoltaics arrays and battery energy storage systems are assessed using time-series 

consumption and generation data, determined by combining a validated demand model, 

marginal emissions factor calculations, storage system models, and assumptions regarding the 

future grid. Marginal emissions factors are used to calculate the life cycle carbon emissions of 

electricity consumption. The carbon emissions and financial costs of household electricity 

consumption have been estimated for different combinations of battery storage, photovoltaics 

arrays, and smart battery charging systems. Results show that the deployment of a rooftop 

photovoltaics array and lithium nickel-manganese-cobalt battery operating in response to grid 

emissions factors could achieve 14 tons of CO2 savings through the system’s life span, though 

total electricity costs would be increased considerably. The household with just a photovoltaics 

array and no battery storage could increase total electricity costs by £2,170 and achieve 12 tons 

of CO2 savings through the system’s life span, providing much improved marginal abatement 

costs over systems with battery storage. The battery operation mode and the characteristics of 

batteries and photovoltaics systems in carbon emissions reduction are discussed. High cost is 

the main factor limiting the deployment of household battery systems. 

Keywords: Energy storage household, PV panel system, Marginal emissions factors, Future 

grid assumption, Life cycle assessment 
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1. Introduction 

In 2019, households accounted for roughly 35% of the UK’s total electricity consumption [1] 

and around 9% [2] of carbon emissions. Households have considerable potential to support the 

realisation of the net-zero emissions target through strategies such as decentralised electricity 

production at domestic scales, in addition to reductions in electricity consumption [3].  

Fitting domestic properties with PV panels could facilitate an effective reduction in 

electricity import from the grid [4]. However, the potential is limited by intermittency effects [5]. 

In particular, during daytime, the sufficiency of a rooftop PV system depends upon the capacity 

of the system compared with the household demand. Obviously, there is no PV generation 

overnight when the sun has set. PV certainly has a low-capacity factor. [6]. Thus, introducing 

an integrated PV-battery system could help balance unpredictable outputs [7] and increase self-

consumption via deferring the use of the electricity produced from PV, known as load shifting 
[8]. In principle, a detached house with a PV-battery system [9] should be able to reach grid 

independence with net-zero external electricity consumption [10] despite many challenges [11]. 

Considering the battery storage part of the PV-battery system, the storage system increases 

self-consumption of local generation and hence reduces electricity bills, the use of fossil 

generation and the stress on electricity distribution infrastructure [12]. A “smart battery charging” 

strategy is proposed in this paper based on marginal emissions factors (MEFs) [13]. MEFs is 

defined as the metric to measure the CO2 intensity of the demand change, which could represent 

the impact on emissions of changes in consumption relative to current conditions [14]. Average 

emission factors (AEFs) are the ratio of CO2 emission to electricity generation which describe 

the average kgCO2/kWh of the electricity consumption [15]. MEFs are suitable and applied to 

the energy sector because the AEFs underestimate the impact of policies on electricity 

consumption [16,17]. MEFs have also been applied to the electricity consumption sector in the 

study of carbon emissions [18]. Braeuer et al. applied MEFs to assess the carbon emissions of 

grid storage system and found that MEFs can better reflect changes in grid carbon emissions 

than AEFs [19]. Bettle et al. applied MEFs to calculate the carbon emissions of electricity from 

the UK grid [20]. Pinel et al. analysed the impact of grid structure on MEFs and highlighted the 

importance of fully accounting for electricity imports and exports [21]. The proposed smart 

battery charging strategy facilitates charging at low MEFs when electricity is mainly generated 

from low carbon sources and discharges at high MEFs when power comes from high carbon 

sources, thus resulting in a reduction in carbon emissions [22]. 

Economic and environmental benefits are the two main motivations for households to adopt 

the proposed strategies [23,24]. The priority of the two is different in each study [25−27]. The 



4 

 

infrastructure construction, manufacture, the maintenance of the system and the battery 

efficiency all affect the carbon emissions and financial burden for the households and the 

government. Life cycle assessment (LCA) and life cycle cost (LCC) have been widely applied 

to household PV and battery systems to evaluate the environmental and economic impacts, 

respectively [6,28−33]. Hoppmann et al. studied how PV-battery system sizing affects 

environmental and economic benefits and found that smaller systems have better 

environmental and economic performance than larger systems based on existing technology 
[34]. Chatzisideris et al. analysed the impact of electricity generation mix characteristics and 

found that under current electricity prices in Greece and Denmark, it is not financially viable 

to add storage to a PV system, and the generation mix greatly affects the environmental benefits 

of the system [35]. Analysing the environmental and economic benefits of PV generation, 

Espinosa et al. focused on standalone PV systems, where all generation is exported to the grid 
[36]. In contrast, others such as Chatzisideris et al. consider PV generation mainly for self-

consumption [37]. The effect of different battery chemistries has also been assessed in studies 

of PV-battery systems, with common examples being Lead-acid batteries [38] and Li-ion 

batteries [11]. 

However, most research into household PV-battery systems and demand response has only 

focused on annual average values of electricity production and consumption [6,29,31−33,39]. 

Studies using high-resolution household demand and generation data according to the features 

of the research area or considering possible future changes in the structure of the energy system 

are unavailable. Although a few studies on estimation according to questionnaires or some 

experimental cases are available [28,30], they do not involve widely recognised data on 

household electricity consumption and future grid assumptions. Additionally, there is no 

integrated evaluation that takes into account temporal variations in electricity grid emissions 

factors to assess the environmental impacts and economic costs of implementing these facilities. 

Most research has calculated the carbon emissions of electricity demand and generation using 

temporally- and spatially-averaged values of electricity generation mix and emissions factor 
[6,28−30,33]. The assessment of carbon emissions based on marginal emissions factors has not 

previously been included in studies using an LCA approach. 

Therefore, the major challenges and contributions of the current research are summarised as 

follows: 

•  The influence mechanisms of battery, PV and smart charging systems on carbon emissions 

and economic performance are comprehensively investigated using time-series household 

electricity consumption and generation data, through comparison of LCA and LCC analyses in 
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different scenarios. This comparison considers a range of combinations of PV and battery 

systems. 

•  Marginal emissions factors are used to calculate the life cycle carbon emission of electricity 

consumption. The smart charging system is developed for further decarbonisation in household 

PV-battery systems. 

This research not only highlights opportunities to further reduce the UK’s carbon emissions 

and the cost of household electricity, but also provides insights for other countries looking to 

meet green commitments and tackle climate change. 

 

2. Aims and approach 

This study compares three combinations of domestic PV, battery, and smart battery charging 

systems to identify which scenario is associated with the highest CO2 saving and the lowest 

marginal abatement cost compared to the scenario without a PV or battery system, as illustrated 

in Table 1. A further goal is to determine the effect of the following parameters: 

 different storage system operation modes; 

 three battery types (lead acid battery (LAB), lithium-ion phosphate battery (LIB) and 

lithium nickel-manganese-cobalt battery (LNB)); 

 PV and battery characteristics. 
 

Table 1: Four scenarios of the household electricity consumption 

Scenarios Details 

Basic (no PV or battery, 
NPB) 

The houses in this scenario just use electricity from the grid. 

PV only (P) The houses in this scenario use electricity from the grid and 
PV, without the battery system. 

PV + battery (PB) The houses in this scenario use electricity from grid and PV, 
with a battery system. The battery is charged from the grid and 
PV in the low tariff time and discharged in the high tariff time. 

PV + smart-charging 
battery (PSB) 

The houses in this scenario use electricity from the grid and 
PV, with a smart battery charging system. The battery is 
charged from the grid and PV in the low MEFs time and 
discharged in the high MEFs time. 

 

This study uses LCA and LCC to analyse the environmental and economic impact of 

different strategies applied to the UK, with complete consideration of the characteristics of 

batteries, PV panels, and the source of electricity. The semi-detached house is considered to 
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represent a typical British house, accounting for 31.9% of homes in the UK [40]. The electricity 

consumption of a typical household energy system for 25 years from 2018 to 2043 (excluding 

energy for travel) is selected as the functional unit for quantitative analysis of the energy input, 

material consumption and environmental impact of the entire system. As shown in Fig.1, the 

system boundary of ‘cradle to grave’, including extraction, manufacture, operation and 

maintenance, disposal and recycling of all components (excluding transportation), is selected. 

 

Fig. 1. System boundary of household electricity consumption 

For our analysis, the inventory is divided into two parts: facilities (battery system, PV system) 
and the usage stage, as shown in Fig.2. The inventory of facilities is mainly taken from the 
literature and the Ecoinvent Database. The inventory of the usage stage is determined by 
combining the CREST Demand Model [41], MEF calculations, a storage system model, and 
assumptions regarding the future grid.  

In detail, half-hour resolution household electricity demand and generation data are obtained 
for the simulation period using the CREST Demand Model. The half-hour resolution marginal 
carbon emissions of the unit grid electricity in the year a (Mt,a) is obtained through the MEFs 
simulation. Then, the amount of grid electricity consumption (Gt,i,a) and export (Et,i,a) of 
scenario i in the year a could be calculated based on the storage model. The CO2 saving of the 
optimised scenario i in the year a (Ci,a) could then be calculated (Eq. 1). The life cycle CO2 
saving of scenario i in the usage stage could be estimated using the Ci,a in 2018, 2030 and 2050 
as reference years. 2018 is assumed as the starting year for the 25-year period and the results 
in other years are found using linear interpolation between the 3 reference years. 
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𝐶𝑖,𝑎 = ∑ (𝐸𝑡,𝑖,𝑎 − 𝐺𝑡,𝑖,𝑎) ∗ 𝑀𝑡,𝑎𝑛𝑡=1 − 𝐶𝑏𝑎𝑠𝑖𝑐,𝑎                                   (1) 
In Eq. 1, 𝐶𝑖,𝑎 is the CO2 saving of scenario i in the year a; n is the total number of all half-

hours in the year a; 𝐸𝑡,𝑖,𝑎 is the grid electricity consumption of scenario i in the year a at time 
t; 𝐺𝑡,𝑖,𝑎 is the export of scenario i at time t in the year a; 𝑀𝑡,𝑎 is constant MEF at time t in the 
year a; 𝐶𝑏𝑎𝑠𝑖𝑐,𝑎 is the total carbon emissions from electricity consumption in the basic scenario 
in the year a. 

The 100-year global warming potential (GWP100) values of the ReCiPe midpoint model 

and the EcoInvent Database are used to determine the life cycle carbon emissions of the 

facilities (battery system and PV system). The ReCiPe midpoint model is the most widely used 

life cycle impact assessment method and includes 17 midpoint impact categories [42-44]. The 

GWP100 for a greenhouse gas can be defined as the heat absorbed by that gas in the atmosphere 

over a 100-year period, as a multiple of the heat that would be absorbed by the same mass of 

CO2 over the same period [45].  

The LCC is used to calculate the present value of financial cost of each strategy through the 

life span. The time-of-use tariff is the same as the one used in the Bethesda Energy Local Club 

community energy scheme [46] in the UK and is used to calculate the financial burden and 

economic benefits of the scenarios. Cash flow is determined for each year from 2018. This 

takes into account all potential costs and revenues including installation cost, O&M cost, 

replacement cost of battery system and PV system, as well as electricity bills and electricity 

export benefits. Electricity prices and capital costs are assumed to remain the same throughout 

the lifetime. The study calculates the discounted costs by multiplying the cash flow of each 

year by the discount factor cited in HOMER Pro 3.14 [47]. The LCC of the system is calculated 

by summing the discounted costs for each year through the lifecycle. 
The influence mechanisms of the battery and PV characteristics are detailed through the 

sensitivity analysis of smart battery charging condition, battery C-rate and PV capacity. 
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Fig. 2. Flow chart of the approach 

 

3. Inventory of manufacture and disposal 

Concerning the inventory in the manufacture and disposal stage, three kinds of batteries are 

considered in this paper: the LAB as the most common battery [5], the LIB as the battery of 

Moixa Smart Battery [48], and the LNB as the battery of Tesla Powerwall 2 [49]. The life cycle 

inventory (LCI) data of PV and batteries are obtained from the Ecoinvent database [50] and other 
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studies [51,52]. 

3.1 PV panel inventory 

The panel size of 2.6 kWp is chosen in accordance with the roof area of an average semi-

detached house [53]. The effect of different panel sizes (0−10 kWp) is examined in the 

sensitivity analysis. The lifespan of the PV system is assumed to be 25 years because most 

manufacturers offer a 25-year warranty for solar systems [54,48]. The life cycle inventory (LCI) 

data of PV panel manufacture is based on the research of Balcombe et al. [11]. At the end of life, 

all valuable materials are assumed to be recycled and the recycled materials displace the raw 

materials from manufacture. All other components are assumed to be landfilled. The inverter 

efficiency of the PV panel is assumed at 97% [55]. Further details are given in Table 2. 

3.2 Battery inventory 

The battery size is assumed to be 4.8 kWh, equal to that of the Moixa Smart Battery [48], and 

the influence of varying the battery capacity between 4.8 kWh (Moixa Smart Battery) [48] and 

13.5 kWh (Tesla Powerwall 2) [54] is shown in the sensitivity analysis. Referring to Sun's battery 

storage modelling [13], a charge/discharge rate limit (C-rate) of 0.25 C (1.2 kW for a 4.8 kWh 

battery) is used for the simulation, and the effect of varying C-rate from 0.1 C to 0.5 C (0.48–

2.4 kW for a 4.8 kWh battery) is assessed in the sensitivity analysis. The charge/discharge and 

AC-DC/DC-DC each-way converter efficiencies are assumed at 98.5% and 97%, respectively 

[13]. The lifespan of the lead acid battery (LAB) is assumed at five years based on previous 

research [56]. The life spans of lithium-ion phosphate battery (LIB) and lithium nickel-

manganese-cobalt battery (LNB) are assumed at 10 years according to the warranties offered 

by Moixa [48] and Tesla [54]. As battery recycling is a legal requirement in the UK [57], valuable 

materials are assumed to be recovered. All other components are assumed to be landfilled. The 

details of the three types of battery are shown in Table 2. The realisation of the smart battery 

charging mainly relies on the control component integrated in the battery’s supporting 

hardware. The annual real discount rate of 6% from HOMER Pro 3.14 is used to calculate the 

life cycle cost of the system [47]. Hardware cost and material input are not associated with the 

implementation of the smart battery charging.  

Table 2:Inventory data and the cost of strategy components for household electricity consumption 

Components Description Data source for LCA Capital cost (£) O & M cost (£) 

PV panel 2.6kWp Balcombe et al. [11] 4251 [58] 42.12/yr [56] 

LAB 4.8 kWh Wang et al. 2018 [51] 1134 [59] 13.88/yr [59] 

LIB 4.8 kWh Wang et al. 2018 [51] 4450 [48] 0 [48] 

LNB 4.8 kWh Berg and Zackrisson 2019 [52] 2350 [54] 0 [54] 
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4. Inventory of usage stage 

The semi-detached house with four residents is selected to create the household electricity 

demand and generation through the CREST Demand Model. The carbon footprint of electricity 

is calculated using the regression method with the generation and demand data from the G.B. 

National Grid for two weeks before and after a specific half-hour and the carbon intensity data 

from the Carbon Intensity API. The economic effect is calculated using the electricity tariff of 

the Bethesda Energy Local Club community energy scheme. The storage systems of different 

strategies are modelled separately based on the time-varying MEFs and electricity tariffs. The 

MEFs in 2030 and 2050 are estimated by a dispatch model built on the basis of the capacity of 

different generation types in the CR Scenario. The electricity consumption and generation data 

of each scenario in the usage stage could then be assumed. 

4.1 Estimation of the household demand and generation 

The use of the CREST Demand Model offers comprehensive, high-resolution data on 

domestic energy demand and rooftop PV generation for households in the UK [60]. This is a 

widely recognised model to simulate minute-resolution household electricity consumption and 

PV generation based on a bottom-up activity-based structure, using Markov chain 

programming to analyse time-use data [41,60]. For the simulation preset of the CREST Demand 

Model, the gross electricity demand, PV output, and net electricity demand data are collected 

from 1 January to 31 December for a semi-detached house at latitude 53.8, longitude −1.5 in 

the UK with household size of 4 and annual consumption of 3960.31 kWh. The average UK 

household electricity consumption in 2017 was 3760 kWh per household [61]. It is assumed that 

the annual household electricity consumption and PV generation are consistent through the 

lifecycle. This research selects the average of five simulation results to reduce the uncertainty 

of the household demand and generation data. The LCI data for grid electricity are those 

published by the G.B. electricity system operator, National Grid [62]. 

4.2 Determining MEFs 

The MEFs of the UK in 2018 are determined to calculate the carbon footprint of electricity 

consumption in each half-hour. MEFs are calculated using the regression approach for different 

fuel types, as developed by Hawkes [63]. The half-hourly time series of MEFs for 2018 is 

calculated using systematic, detailed, five-minute resolution monitoring data from the G.B. 

National Grid [62], and carbon intensity factors (Table 3) determined by Staffell [64] and 

GridCarbon [65], to estimate nationwide, type-based, time-varying emissions factors. The fuel 

types of CCGT, nuclear, wind, pumped storage, hydro (non-pumped storage hydro), other 

(mainly biomass CHP), intfr (French interconnector), intirl (Moyle interconnector), intned 
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(Dutch interconnector), intew (East-West interconnector), dedicated biomass, and solar are 

included to calculate the MEFs. Pimm et al. [22] obtained the MEFs in the simulation based on 

the entire year, which disregarded the impact of the demand variation and the grid mix structure 

in different months. Sun et al. [13] calculated the MEFs separately for each month, which 

resulted in discontinuous MEFs between months. Pinel et al. found that yearly marginal factors 

ignore the seasonal variation of electricity [21]. Hawkes’ method is applied to the generation 

and demand data for two weeks before and after a specific half-hour to calculate the MEFs for 

the given time and address the aforementioned problems. 

Table 3: The carbon intensity factors 

Fuel Type Carbon Intensity (gCO2/kWh) 
Biomass 120 

Coal 937 

Dutch Imports 474 

French Imports 53 

Gas (Combined Cycle) 394 

Gas (Open Cycle) 651 

Hydro 0 

Irish Imports 458 

Nuclear 0 

Oil 935 

Other 300 

Pumped Storage 0 

Solar 0 

Wind 0 

The data is binned by system net demand and the MEFs are calculated by two-dimensional 

linear regression, with a line of best fit in the form of y = mix, which is fitted to a plot of change 

in emissions (ΔCi) against change in net demand (ΔDi). Fig.3 shows an example of the linear 

regression approach results. In the example, the generation and demand data from 00:00 on 

January 1, 2018 to 00:30 on January 29, 2018 are used to calculate the MEF result at 00:30 on 

January 15, and the same method will be used throughout the year. The MEF time series in 

2018 is shown in Fig.4. It is observed that MEFs are higher in winter than in summer because 

of the increased use of fossil generation. 
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Fig. 3. MEF results of two-dimensional linear regression for the UK from 00:00 on January 1, 2018 to 00:30 

on January 29 

 

Fig. 4. MEF results in 2018 

4.3 Modelling the storage system 

The charging and discharging condition is simulated to fully understand the effect of the 

battery operation on economics and carbon emissions. The life cycle environmental impact and 

economic cost of the four household energy scenarios are analysed based on the household 

demand and generation, the MEFs in 2018, the electricity tariff and the modelled storage 

system. 

The storage system operation in the PB scenario depends on the electricity tariff, with the 

time-of-use tariff from the Bethesda Energy Local Club used here, as shown in Table 4 [46]. The 

battery is charged when the tariff is low (11:00–16:00 and 20:00–06:00) and discharged when 
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the tariff is high (06:00–11:00 and 16:00–20:00).  

Table 4:Electricity tariff seen by the Bethesda Energy Local Club community energy scheme. 

Tariff Component Period Price 

Morning 06:00-11:00 12 p/kWh 

Midday 11:00-16:00 10 p/kWh 

Evening 16:00-20:00 14 p/kWh 

Overnight 20:00-06:00 7.25 p/kWh 

Export All the time 6 p/kWh 

The PSB scenario uses MEFs as the standard for charging and discharging. The battery 

discharges whenever the instantaneous MEF(t) is above a given limit L+, and charges whenever 

MEF(t) is below limit L− [13]. The limits L− and L+ are continuously updated and set at a fixed 

delta below and above the mean of the previous 30-day MEF(t). This delta is set at 20 

gCO2/kWh [13] and the effect of varying delta from 0 gCO2/kWh to 100 gCO2/kWh in each year 

is analysed in the sensitivity analysis. 

In both the PB and PSB scenarios, the charge/discharge rate of the battery is fixed as the 

maximum C-rate until full/empty. When discharging, all excess energy (from both PV 

generation and battery) above the household demand is exported. If there is no excess then 

electricity from the grid is imported to serve the demand. When charging, the PV generation is 

prioritized as the source of battery charging and the rest is supplemented by the grid. All excess 

energy from PV generation is exported. The system structure is shown in Fig.5. 

The conditions used to determine charging and discharging have a considerable impact on 

battery operation, which affects carbon emissions and financial cost results. Therefore, the 

influence of the charging source and the discharging rate is simulated. 

 

Fig. 5. System structure of the household energy network 

4.4 Future energy scenarios 

A dispatch model is built to estimate the energy supply in 2030 and 2050, based on the 

Community Renewables (CR) scenario from the Future Energy Scenarios 2019 Data 

Workbook [66] (published by Great Britain’s electricity system operator) and GB grid data [62]. 
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This model is then coupled with the MEFs module to calculate the future MEFs. Within the 

four scenarios of the Future Energy Scenarios 2019 Data Workbook [66], the Community 

Renewables (CR) and Two Degrees (TD) scenarios are the only ones that meet the 2050 carbon 

reduction target of the UK [67]. Of these, the CR scenario is the one with the highest deployment 

of decentralised energy technologies, therefore the CR scenario is used to develop the model 

framework, along with data from the GB system in 2018 [62]. A dispatch model is built for 2030 

and 2050 based on historical data. The dispatch model is used to allocate power generation 

shares and utilise various types of power resources [68]. As a simplification, the energy supply 

data for nuclear, wind, solar and other renewables are assumed to maintain the same trend as 

the data for 2018 and are only positively correlated with changes in their capacity. Storage is 

used to balance variable wind and solar energy and is dispatched ahead of CCGT and 

interconnectors, which are used to meet the remainder of total demand.  

The installed generation capacity of the CR scenario is shown in Table 5. Some 

simplifications are made to the grid composition because the CR scheme does not have the 

installed generation capacity for specific types of interconnectors and other renewables. The 

four interconnectors in 2018 are treated as one type in the future, and hydro, biomass and others 

are combined as other renewables [69] and then divided in accordance with their energy supply 

proportion in 2018 for MEF calculation. The UK government is committed to phasing out coal-

fired power generation by 2025 [70]. Therefore, the thermal fuel type is assumed to be CCGT in 

2030 and 2050. 
Table 5: Installed generation capacity of different generation types and peak demand assumption in the CR 
scenario 

 2018 2030 2050 

Interconnectors 3.585 16.505 16.505 

Nuclear 9.229 4.556 7.896 

Thermal 48.487 22.824 16.636 

Solar 12.719 29.715 52.215 

Wind 20.977 53.282 86.885 

Other renewables 9.27 14.096 14.396 

Storage 3.59 12.3 28.063 

Peak demand 59.6 57.4 72.4 

To simplify the assumption, the dispatch model in this study followed the trend of energy 

supply by generation types of nuclear, wind, solar and other renewables and the total generation 

requirement in every half hour in 2018. The storage system is used to compensate for the 

volatility inherent to renewable energy because of the significant increase in installed wind and 

solar generation capacity in future [71,72]. CCGTs and interconnectors are used to meet the 
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remainder of the total generation requirement.  

  Firstly, the total electricity demand for every period t is calculated on the basis of the change 

in peak demand (Eq. 2). ∀𝑡:      𝐷𝑦,𝑡 = 𝑃𝐷𝑦𝑃𝐷2018 ∗ 𝐷2018,𝑡                                             ( 2 ) 𝑡, 𝑡𝑡 ∈ 𝑇 is the set of all time periods in a modelling horizon T; 𝐷𝑦,𝑡 is the total electricity demand for 
every period t in year y; 𝑃𝐷𝑦 is the peak demand in year y; 𝑃𝐷2018 is the peak demand in 2018; 𝐷2018,𝑡 
is the total electricity demand for every period t in 2018. 

Secondly, the future energy supply by technology types of nuclear, wind, solar and other 

renewables for every period t is determined by the energy supply in 2018 and the multiple of 

the installed generation capacity change by technology types (Eq. 3). ∀𝑗 ∈ 𝐽(𝑓), 𝑡:      𝑝𝑦,𝑗,𝑡 = 𝐶𝑦,𝑗𝐶2018,𝑗 ∗ 𝑝2018,𝑗,𝑡                                    ( 3 ) 𝑗 ∈ 𝐽 is the set by generation types of nuclear, wind, solar and other renewables in the model; 𝑝𝑦,𝑗,𝑡 is 
the electrical energy flow from generation type 𝑗 ∈ 𝐽 at time t in year y; 𝐶𝑦,𝑗 is the generation capacity of 
generation type 𝑗 ∈ 𝐽  in year y; 𝐶2018,𝑗  is the generation capacity of generation type 𝑗 ∈ 𝐽  in 2018; 𝑝2018,𝑗,𝑡 is the electrical energy flow from generation type 𝑗 ∈ 𝐽 at time t in 2018. 

Thirdly, the generation types of storage, CCGT and interconnectors are modelled to complete 

the energy supply. The energy in the storage system is used preferentially to meet the remaining 

electricity demand. Considering the energy storage constraints, charging (Eq. 4) and 

discharging (Eq. 5) should follow the generation capacity limitation, and the total stored energy 

cannot be more than the storage volume capacity (Eq. 6). The storage system charges when the 

total electrical energy output of wind, solar, nuclear and other renewables is higher than the 

electricity demand at time t. The generation type of CCGT is then used to meet electricity 

demand. Two constraints ensure that CCGT generation operates within allowable limits for 

output and ramp rate (Eqs. 7 and 8). Lastly, interconnectors provide any remaining load 

balancing that is necessary. The flows of interconnectors are limited by installed generation 

capacity (Eq. 9). ∀𝑡:      𝑐ℎ𝑎𝑦,𝑡 ≤ 𝐶𝑦,𝑠                                                       ( 4 ) ∀𝑡:      𝑑𝑖𝑠𝑦,𝑡 ≤ 𝐶𝑦,𝑠                                                        ( 5 ) ∀𝑡:    ∑ (𝑆𝐸 × 𝑐ℎ𝑎𝑦,𝑡 − 𝑑𝑖𝑠𝑦,𝑡𝑡𝑡|𝑡𝑡<𝑡 ) ≤ 𝑆𝑦                                       ( 6 ) ∀𝑡:      𝑝𝑦,𝑐𝑐𝑔𝑡,𝑡 ≤ 𝐶𝑦,𝐶𝐶𝐺𝑇                                                       (7) ∀𝑡:      |𝑝𝑦,𝑐𝑐𝑔𝑡,𝑡 − 𝑝𝑦,𝑐𝑐𝑔𝑡,𝑡−1| ≤ 𝑅𝐶𝑦 × 𝐶𝑦,𝐶𝐶𝐺𝑇                                      ( 8 ) ∀𝑡:      |𝑝𝑦,𝑖𝑛,𝑡| ≤ 𝐶𝑦,𝑖𝑛                                                          (9) 𝑐ℎ𝑎𝑦,𝑡 is the charge of storage at time t in year y; 𝐶𝑦,𝑠 is the installed charge/discharge capacity of storage 
in year y; 𝑑𝑖𝑠𝑦,𝑡 is the discharge of storage at time t in year y; 𝑆𝐸 is the charging efficiency; 𝑆𝑦 is the 
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maximum storage level; 𝑝𝑦,𝑐𝑐𝑔𝑡,𝑡 is the electrical energy output of CCGT at time t in year y; 𝑅𝐶𝑦 is the 
maximum ramp rate of CCGT when committed in year y; 𝐶𝑦,𝐶𝐶𝐺𝑇 is the installed generation capacity of 
CCGT in year y; 𝑝𝑦,𝑖𝑛,𝑡  is the electrical energy flow of interconnectors at time t in year y; 𝐶𝑦,𝑖𝑛  is the 
installed generation capacity of interconnectors in year y. 

Finally, the electricity balance for every period t must be satisfied (Eq. 10). The deficiency 

is filled by the generation type of other renewables under the constraint (Eq. 11) when the total 

generation output is less than the energy demand at time t. ∀𝑡:    ∑ 𝑝𝑦,𝑗,𝑡𝑗∈𝐽 + 𝑑𝑖𝑠𝑦,𝑡 − 𝑐ℎ𝑎𝑦,𝑡/𝑆𝐸 = 𝐷𝑦,𝑡                                  ( 1 0 ) ∀𝑡:    𝑝𝑦,𝑜𝑡ℎ,𝑡 ≤ 𝐶𝑦,𝑜𝑡ℎ                                                                (11) 𝑝𝑦,𝑜𝑡ℎ,𝑡 is the electrical energy flow of other renewables at time t in year y, and 𝐶𝑦,𝑜𝑡ℎ is the installed 
generation capacity of other renewables in year y. 

The charging efficiency of the storage system is 75% for the modelling [73]. According to the 

energy capacity and power of operational pumped hydro storage stations in 2016 [74], the 

maximum storage power of the storage system is assumed to be one-tenth of the energy storage 

capacity. Inspection of the output of CCGT generation in 2018 reveals that the variation of the 

CCGT output between two consecutive times is always less than 15%. Therefore, the maximum 

ramp rate of CCGT is assumed to be 15% in the modelling. The energy supply in 2030 and 

2050 are calculated using the approach that has just been presented, and the MEF results for 

the generation mix in 2030 and 2050 are calculated in accordance with the future energy supply, 

given in the Supplementary Materials. 

 

5. Results and discussion 

5.1 Detailed effects of strategies 

Two characteristics (CO2 saving and financial cost) of the four scenarios are mainly analysed 

using the demand and generation results and the MEF results in 2018 to explore the substantial 

carbon reduction effect of each scenario in the use phase. In terms of the export from PV and 

battery systems, Sun et al. considered the CO2 saving from this export power in their research 
[13]. This saving from export electricity is discussed in the current research. Because a certain 

amount of electricity consumption in the scenarios with battery system does not serve the 

household demand, but for grid output, the system carbon emissions are disregarded in this 

research. The total CO2 saving and cost of the usage stage for each scenario in 2018 is shown 

in Table 6. Fig.6 and Fig.7 show the results to explain the function of the battery system and 

PV system. The total carbon emission of the original scenario (NPB scenario) is 1.6 tons. 

The results suggest encouraging news regarding the installation of PV, and the related 

strategies could effectively reduce carbon emissions and financial costs caused by household 
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electricity consumption. Over 650kg CO2 saving and £170 cost reduction of the P, PB and PSB 

scenarios can be observed. These benefits are significant from March to August (the months 

around the summer solstice); specifically, the CO2 saving reaches around 60kg per month and 

the cost reduction reaches around 45%. By contrast, the benefits in the months around the 

winter solstice are relatively lower. Around 60kg monthly CO2 saving after the application of 

PV panels would lead to effective progress in the net-zero emission goal. The benefits of the 

battery (in non-smart charging mode) are insignificant because of the energy losses when the 

battery is charged and discharged. 

In detail, around 29% of the annual household demand is satisfied by solar power in the P 

scenario, which has no operating cost or carbon emissions. This scenario has the lowest annual 

electricity bill, of £208. In addition to the positive effect of meeting almost a third of the 

household demand, approximately 690 kWh of excess electricity from the PV is exported to 

the grid. Significant CO2 and cost savings could be realised by further deployment of PV 

technologies. 

The PB scenario conducts load shifting based on the P scenario, and the improvement is 

mainly focused on the use of batteries to store power in the low tariff periods. The power is 

then consumed during high tariff periods. However, compared with the P scenario, 138kg less 

CO2 saving and £26 cost increase could be observed. This is because 1.89 × 103 kWh extra 

electricity is exported, energy is lost in the battery operation, and the export tariff shown in 

Table 4 is relatively low. 

The PSB scenario achieves the highest CO2 saving of 825 kg. This scenario has the same 

proportion of the PV energy used for demand as the P scenario (29%). Meanwhile, the 

percentage of battery energy used for demand increases to 8%, of which 4% of the charging 

energy comes from the PV panel. Most of the extra PV energy in this scenario is exported in 

high and mid-MEF (t) times, and a certain amount of electricity from the grid in the low-MEF(t) 

period is exported in the high-MEF(t) period. 
Table 6 

CO2 saving and cost of the electricity consumption for the scenarios in 2018 

 NPB P PB PSB 

CO2 saving (kg) * 807 669 825 

Cost (£) 406 208 234 222 
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Fig. 6. CO2 saving and the cost of each scenario in 2018. a. The CO2 saving of the household electricity 

consumption for four scenarios in 2018. b. The cost of the household electricity consumption for four 

scenarios in 2018. 

 

Fig. 7. Proportion of the annual household demand met from the grid, battery and PV panel in each 

scenario in 2018. 

5.2 Effects of battery operation mode 

The effects of the source of charging energy and different discharging rates are analysed. 

Fig.8 shows the estimated variation in environmental and economic impacts in four scenarios 

in 2018, and the contribution of household electricity demand met from the grid, the battery, 
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and the PV panels. The modes for battery operation have significant effects on scenarios, 

especially on the PB scenario.  

When the battery is only charged from excess PV energy, both the PB and PSB scenarios see 

cost reductions. In all scenarios before and after the change, the PSB scenario (original) has 

the highest CO2 saving while the PB scenario (charged by PV energy) has the lowest financial 

cost. The total contribution of PV generation on total demand would increase by 4% after the 

change in PSB scenario, which leads to the slight decrease in financial cost. However, after the 

change, there would be no energy charged from the grid in low MEF(t) period and export in 

the high MEF(t) period, which would limit the function of smart battery charging and decrease 

the CO2 saving in the PSB scenario. 

When the battery is discharged in a load-following mode, costs in the PB and PSB scenarios 

would be reduced by 31% and 6% respectively. The PSB scenario (original) has the highest 

CO2 saving while the PB scenario (discharged on demand) has the lowest financial cost. The 

proportion of electricity consumed from the grid of the PB and PSB scenarios is declined when 

the battery is discharged on demand. The export amount of the system in these scenarios is also 

decreased. The decrease in cost could be explained by the reduction in the grid electricity 

consumption and export amount in the three scenarios. However, export from the battery is not 

observed in the high MEF(t) period when the battery is discharged on demand, and 0.4% 

decrease CO2 saving is found in the PSB scenario with the unchanged charge amount from the 

PV panel. 

It is observed that the PSB scenario (original) always has the highest CO2 saving, which 

could be an effective scenario to reduce carbon emissions in the usage phase. Meanwhile, the 

battery operation mode has a great impact on the electricity bill. More effective use of PV 

generation can reduce electricity bills during the use phase and increase consumer acceptance 

of facilities implementation. 
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Fig. 8. Results for the change of battery operation mode in 2018. a–c. The CO2 saving (a) and cost (b) 

of the household electricity consumption for four scenarios and the situations when the battery of the PB and 

PSB scenarios is only charged by PV energy in 2018. The proportion of the grid, battery and PV panel of 

the household demand before and after the change in the PB and PSB scenarios (c). d–f. The CO2 saving (d) 

and cost (e) of the household electricity consumption for four scenarios and the situations when the battery 

of the PB and PSB scenarios is discharged on demand in 2018. The proportion of the grid, battery and PV 

panel of the household demand before and after the change in the B, PB and PSB scenarios (f). 

5.3 Life cycle impact assessment 

The LCIA and LCC results of each scenario are shown in Table 7 and Table 8 for the three 

different battery technologies. 2018 is assumed as the first year of 25yr PV system installation, 

which is the first year of the system’s lifecycle to calculate cumulative emissions. The life cycle 

carbon emission of the original scenario (NPB) is 3.05×104 kgCO2. The negative CO2 saving 

results of the PV and battery represent the carbon emissions of manufacturing and disposal.   
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Table 7: Life cycle CO2 saving results of each scenario 

 

Embedded emissions (kg) CO2 saving from 

electricity 

consumption (kg) 

Life cycle 

CO2 saving 

(kg) 
PV LAB LNB LIB 

NPB      * 

P -4.04E+03    1.56E+04 1.16E+04 

PB+LAB -4.04E+03 -8.98E+02   1.41E+04 1.01E+04 

PB+LNB -4.04E+03  -4.05E+02  1.41E+04 1.01E+04 

PB+LIB -4.04E+03   -3.81E+02 1.41E+04 1.01E+04 

PSB+LAB -4.04E+03 -8.98E+02   1.78E+04 1.38E+04 

PSB+LNB -4.04E+03  -4.05E+02  1.78E+04 1.38E+04 

PSB+LIB -4.04E+03   -3.81E+02 1.78E+04 1.38E+04 

 

Table 8: LCC results of each scenario 

 
Cost of manufacturing and disposal (£) Cost of electricity 

consumption (£) 
LCC (£) 

PV LAB LNB LIB 

NPB     5.50E+03 5.50E+03 

P 4.86E+03    2.81E+03 7.67E+03 

PB+LAB 4.86E+03 3.63E+03   3.18E+03 1.17E+04 

PB+LNB 4.86E+03  4.40E+03  3.18E+03 1.24E+04 

PB+LIB 4.86E+03   8.32E+03 3.18E+03 1.64E+04 

PSB+LAB 4.86E+03 3.63E+03   3.14E+03 1.16E+04 

PSB+LNB 4.86E+03  4.40E+03  3.14E+03 1.24E+04 

PSB+LIB 4.86E+03   8.32E+03 3.14E+03 1.63E+04 

The key elements of each scenario from environmental and economic aspects are identified 

to improve the system. The results are shown in Fig.9. 
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Fig. 9. LCIA and LCC results of each scenario. The CO2 saving (a) and cost (b) of the household 

electricity consumption for four scenarios for the life cycle. The negative CO2 saving results of the PV and 

battery represent the carbon emissions of manufacturing and disposal. 

Through 25 years life span of the household system, around 11 tons of CO2 savings could 

be achieved in the scenarios with the PV system (P, PB and PSB) while the scenario with battery 

only will bring an additional 2 tons of carbon emissions. The electricity consumption during 

the usage stage is the key factor influencing carbon emissions of the system life cycle. The cost 

of battery system and PV system is relatively high, accounting for more than 25% of the total 

life cycle cost of the scenarios with these systems. Our analysis illustrates that the deployment 

of rooftop solar PV leads to significant benefits in terms of CO2 savings, and that adding battery 

storage provides little or no further benefit, regardless of which battery technology is used. 

Notably, realising further environmental and cost improvements by changing the battery 

operating mode and system size should be considered. 

5.4 Life cycle interpretation 

The analysis of CO2 saving and cost reveals the contributions of each life stage. The 

maximum value of CO2 saving in the usage stage is found in the scenario with smart battery 

charging system, at 17.8 tons. This scenario still has the best carbon reduction after taking into 
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account the embedded carbon emissions of the PV and battery systems. The different types of 

battery have different environmental and economic performance. The LIB has the lowest life 

cycle carbon emission among the three types of battery but has the highest life cycle cost, at 

£8,320. The LNB has 25 kg higher carbon emissions (a very small fraction of total life cycle 

emissions) but costs £3,930 less than the LIB. Focusing on carbon emissions reduction, 

followed by cost, the scenario with smart LNB battery charging system is the suggested 

scenario. This scenario provides a 13.8 tons CO2 saving compared with the original scenario, 

but increases total cost by £6,900. This equates to a marginal abatement cost (MAC) of 

£500/tCO2. 

The scenario with just a PV system is the recommended choice considering cost priority. 

This scenario increases total electricity costs by £2,170 and achieves 11.6 tons of CO2 savings 

compared with the original scenario. This equates to a negative MAC of £187/tCO2. If battery 

storage is deployed alongside rooftop solar PV, implementing smart battery charging could 

achieve significant carbon reductions. However, the cost of battery systems is considerable. 

This finding may reduce the public’s motivation to adopt battery storage [23,24]. The costs of 

batteries are expected to reduce due to the surge in demand for batteries in electric vehicles and 

households [39]. Furthermore, the improvement of battery lifespan could be an effective method 

to reduce the life cycle costs of batteries. It has been shown in previous research that battery 

operation mode could extend lifespan [75]. The electricity price will presumably be more 

expensive because of the changes in the power generation structure and carbon costs in the 

electricity market [76], which means that more economic benefits could be obtained from PV 

generation. 

Our dispatch model is mainly based on the trend as for 2018 GB data and may perform 

poorly on the simulation results in 2030 and 2050, which could be the case that the storage 

schedule rapidly changes the output of other generation types. Furthermore, the assumption of 

future grid structure may not necessarily hold true. This could be the case that the installed 

generation capacity of renewable generation types may fail to meet the Paris Agreement target 
[77]. However, we believe this simplified model could be a useful means of predicting future 

carbon emissions from grid electricity. The simulation results demonstrate that the MEFs of 

the grid gradually reduce over time and general results will be true for GB. Future work will 

continue to improve the performance of the dispatch model and deal with forecast uncertainty. 

5.5 Sensitivity analysis 

Finally, the effect of smart charging condition, C-rate, the battery system size and PV system 

size is analysed, as shown in Fig.10. 
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In terms of the sensitivity effect of the delta, the life cycle CO2 saving is highest when the 

delta is around 20 gCO2/kWh. At higher deltas, the additional CO2 savings are offset by the 

reduction in charging/discharging activity. Therefore, 20 gCO2/kWh should be the best value 

for the delta in terms of the UK grid structure. As for the effect of C-rate, the CO2 saving 

increases with C-rate up to a maximum CO2 saving of 13.4 tons at 0.4 C, and then reduces at 

higher C-rates. This finding is similar to that of Sun [13]. 

There is a positive linear relationship between CO2 savings and both PV size and battery 

size. The benefits from increased PV system size are more significant than those of increased 

battery system size. This result shows that PV capacity has clear environmental benefits 

compared with the grid mix at present. However, the PV capacity in households is limited by 

roof area and is affected by atmospheric conditions. In addition, the smart charging system 

could achieve carbon reductions from the grid mix by shifting load, and the preferential policy 

could improve the implementation of smart battery system. 

 

Fig. 10. Sensitivity analysis results. 
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6. Conclusion 

The battery system, PV-battery system, and smart charging system are implemented in the 

UK household to meet the net-zero CO2 emission target with the consideration of marginal 

emissions factors for electricity. Life cycle assessment and life cycle cost methods have been 

used to compare the carbon emissions and economic cost of household electricity consumption 

for these scenarios.  

The application of the PV system could have achieved about 650kg annual CO2 savings and 

£200 cost reduction in the usage stage in 2018, which will encourage the public to accept the 

proposed strategies. The PV system with smart charging battery system would have achieved 

the highest annual CO2 saving (825 kg) in 2018. The benefits of the scenarios featuring a PV 

system are significant in summer months. By changing the battery operation mode, more of the 

PV generation and the energy discharged from the storage system could be used to meet the 

household demand, thereby reducing electricity bills but having little impact on CO2 savings. 

The life cycle assessment results show that the electricity consumption of the usage stage is 

a key driver of the carbon emissions in each scenario. The implementation of the PV system 

could bring nearly 11 tons of CO2 savings over its life span. The life cycle cost analysis reveals 

that the application of battery and PV systems could reduce electricity bills in the usage stage 

though the cost of battery and PV systems is relatively high. The scenario with lithium nickel-

manganese-cobalt battery and smart battery charging system and PV system is the scenario 

with highest CO2 savings, and could achieve around 14 tons of CO2 savings compared with the 

original scenario, but increasing electricity costs by £6,900 over the 25-year system life. This 

equates to a marginal abatement cost of around £500/tCO2. The scenario with PV system only 

is the recommended choice if cost is prioritised, rising total electricity costs by £2,170 and CO2 

emissions by 12 tons compared with the original scenario. This equates to a marginal abatement 

cost of around £187/tCO2. The electricity tariff used in the paper is stable and the electricity 

tariff changing in the future could reflect the variation of renewable generation is disregarded. 

The delta of smart charging was found to have a crucial impact on smart charging 

performance, and 20 gCO2/kWh provides the best value in terms of the current UK grid 

structure. The sensitivity analysis reveals that the system could achieve the best CO2 saving 

when the charging rate is around 0.4 C (1.92 kW for a 4.8 kWh battery). There is a positive 

linear relationship between CO2 savings and both PV size and battery size. The benefits from 

increased PV system size are more significant than those of increased battery system size. 

Battery storage systems are expensive, limiting their widescale deployment, however 

improvements in battery production that increase life span could potentially serve to reduce 
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life cycle cost. If battery storage is already deployed, the marginal abatement cost of reducing 

CO2 emissions by implementing smart charging according to marginal emissions factors is 

effectively zero. However, this could reduce the scope for provision of grid services such as 

frequency response, and there are presently no financial incentives for households to adopt 

battery control systems that reduce emissions by responding to grid marginal emissions factors. 

We expect that the findings of this study will provide a reference for the strategic 

implementation of energy storage, PV systems and smart battery charging systems in UK 

households, although the methods employed are applicable to any country. 
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