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Abstract

Law, interpretations of law, legal arguments,

agreements, etc. are typically expressed in

writing, leading to the production of vast cor-

pora of legal text. Their analysis, which is at

the center of legal practice, becomes increas-

ingly elaborate as these collections grow in

size. Natural language understanding (NLU)

technologies can be a valuable tool to sup-

port legal practitioners in these endeavors.

Their usefulness, however, largely depends

on whether current state-of-the-art models can

generalize across various tasks in the legal do-

main. To answer this currently open ques-

tion, we introduce the Legal General Language

Understanding Evaluation (LexGLUE) bench-

mark, a collection of datasets for evaluating

model performance across a diverse set of le-

gal NLU tasks in a standardized way. We

also provide an evaluation and analysis of sev-

eral generic and legal-oriented models demon-

strating that the latter consistently offer perfor-

mance improvements across multiple tasks.

1 Introduction

Law is a field of human endeavor dominated by

the use of language. As part of their professional

training, law students consume large bodies of text

as they seek to tune their understanding of the law

and its application to help manage human behav-

ior. Virtually every modern legal system produces

massive volumes of textual data. Lawyers, judges,

and regulators continuously author legal documents

such as briefs, memos, statutes, regulations, con-

tracts, patents and judicial decisions. Beyond the

consumption and production of language, law and

the art of lawyering is also an exercise centered

around the analysis and interpretation of text.

Natural language understanding (NLU) technolo-

gies can assist legal practitioners in a variety of

legal tasks (Chalkidis and Kampas, 2018; Aletras

et al., 2019, 2020; Zhong et al., 2020b; Bommarito

∗ Corresponding author: ilias.chalkidis@di.ku.dk

Figure 1: LexGLUE: A new benchmark dataset to eval-

uate the capabilities of NLU models on legal text.

et al., 2021), from judgment prediction (Aletras

et al., 2016; Sim et al., 2016; Katz et al., 2017;

Zhong et al., 2018; Chalkidis et al., 2019a; Malik

et al., 2021), information extraction from legal doc-

uments (Chalkidis et al., 2018, 2019c; Chen et al.,

2020; Hendrycks et al., 2021) and case summariza-

tion (Bhattacharya et al., 2019) to legal question an-

swering (Ravichander et al., 2019; Kien et al., 2020;

Zhong et al., 2020a,c) and text classification (Nal-

lapati and Manning, 2008; Chalkidis et al., 2019b,

2020a). Transformer models (Vaswani et al., 2017)

pre-trained on legal, rather than generic, corpora

have also been studied (Chalkidis et al., 2020b;

Zheng et al., 2021; Xiao et al., 2021).

Pre-trained Transformers, including BERT (De-

vlin et al., 2019), GPT-3 (Brown et al., 2020), T5

(Raffel et al., 2020), BART (Lewis et al., 2020),

DeBERTa (He et al., 2021) and numerous variants,

are currently the state of the art in most natural lan-

guage processing (NLP) tasks. Rapid performance

improvements have been witnessed, to the extent

that ambitious multi-task benchmarks (Wang et al.,

2018, 2019b) are considered almost ‘solved’ a few

years after their release and need to be made more

challenging (Wang et al., 2019a).
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Recently, Bommasani et al. (2021) named these

pre-trained models (e.g., BERT, DALL-E, GPT-3)

foundation models. The term may be controversial,

but it emphasizes the paradigm shift these models

have caused and their interdisciplinary potential.

Studying the latter includes the question of how

to adapt these models to legal text (Bommarito

et al., 2021). As discussed by Zhong et al. (2020b)

and Chalkidis et al. (2020b), legal text has dis-

tinct characteristics, such as terms that are uncom-

mon in generic corpora (e.g., ‘restrictive covenant’,

‘promissory estoppel’, ‘tort’, ‘novation’), terms that

have different senses than in everyday language

(e.g., an ‘executed’ contract is signed and effec-

tive, a ‘party’ is a legal entity), older expressions

(e.g., pronominal adverbs like ‘herein’, ‘hereto’,

‘wherefore’), uncommon expressions from other

languages (e.g., ‘laches’, ‘voir dire’, ‘certiorari’,

‘sub judice’), and long sentences with unusual word

order (e.g., “the provisions for termination here-

inafter appearing or will at the cost of the borrower

forthwith comply with the same”) to the extent

that legal language is often classified as a ‘sub-

language’ (Tiersma, 1999; Williams, 2007; Haigh,

2018). Furthermore, legal documents are often

much longer than the maximum length state-of-

the-art deep learning models can handle, including

those designed to handle long text (Beltagy et al.,

2020; Zaheer et al., 2020; Yang et al., 2020).

Inspired by the recent widespread use of the

GLUE multi-task benchmark NLP dataset (Wang

et al., 2018, 2019b), the subsequent more difficult

SuperGLUE (Wang et al., 2019a), other previous

multi-task NLP benchmarks (Conneau and Kiela,

2018; McCann et al., 2018), and similar initiatives

in other domains (Peng et al., 2019), we intro-

duce LexGLUE, a benchmark dataset to evaluate

the performance of NLP methods in legal tasks.

LexGLUE is based on seven English existing legal

NLP datasets, selected using criteria largely from

SuperGLUE (discussed in Section 3.1).

We anticipate that more datasets, tasks, and

languages will be added in later versions of

LexGLUE.1 As more legal NLP datasets become

available, we also plan to favor datasets checked

thoroughly for validity (scores reflecting real-life

performance), annotation quality, statistical power,

and social bias (Bowman and Dahl, 2021).

As in GLUE and SuperGLUE (Wang et al.,

1See https://nllpw.org/resources/ and https://
github.com/thunlp/LegalPapers for lists of papers,
datasets, and other resources related to NLP for legal text.

2019b,a), one of our goals is to push towards

generic (or ‘foundation’) models that can cope with

multiple NLP tasks, in our case legal NLP tasks,

possibly with limited task-specific fine-tuning. An-

other goal is to provide a convenient and informa-

tive entry point for NLP researchers and practition-

ers wishing to explore or develop methods for legal

NLP. Having these goals in mind, the datasets we

include in LexGLUE and the tasks they address

have been simplified in several ways, discussed be-

low, to make it easier for newcomers and generic

models to address all tasks. We provide Python

APIs integrated with Hugging Face (Wolf et al.,

2020; Lhoest et al., 2021) to easily import all the

datasets, experiment with and evaluate their perfor-

mance (Section 4.5).

By unifying and facilitating the access to a set of

law-related datasets and tasks, we hope to attract

not only more NLP experts, but also more interdis-

ciplinary researchers (e.g., law doctoral students

willing to take NLP courses). More broadly, we

hope LexGLUE will speed up the adoption and

transparent evaluation of new legal NLP methods

and approaches in the commercial sector too. In-

deed, there have been many commercial press re-

leases in legal-tech industry, but almost no indepen-

dent evaluation of the veracity of the performance

of various machine learning and NLP-based of-

ferings. A standard publicly available benchmark

would also allay concerns of undue influence in

predictive models, including the use of metadata

which the relevant law expressly disregards.

2 Related Work

The rapid growth of the legal text processing field

is demonstrated by numerous papers presented

in top-tier conferences in NLP and artificial in-

telligence (Luo et al., 2017; Zhong et al., 2018;

Chalkidis et al., 2019a; Valvoda et al., 2021) as well

as surveys (Chalkidis and Kampas, 2018; Zhong

et al., 2020b; Bommarito et al., 2021). Moreover,

specialized workshops on NLP for legal text (Ale-

tras et al., 2019; Di Fatta et al., 2020; Aletras et al.,

2020) are regularly organized.

A core task in this area has been legal judgment

prediction (forecasting), where the goal is to predict

the outcome (verdict) of a court case. In this direc-

tion, there have been at least three lines of work.

The first one (Aletras et al., 2016; Medvedeva et al.,

2017; Chalkidis et al., 2019a) predicts violations

of human rights in cases of the European Court of



Human Rights (ECtHR). The second line of work

(Luo et al., 2017; Zhong et al., 2018; Yang et al.,

2019) considers Chinese criminal cases where the

goal is to predict relevant law articles, criminal

charges, and the term of the penalty. The third line

of work (Ruger et al., 2004; Katz et al., 2017; Kauf-

man et al., 2019) includes methods for predicting

the outcomes of cases of the Supreme Court of the

United States (SCOTUS).

The same or similar task has also been studied

with court cases in many other jurisdictions includ-

ing France (Şulea et al., 2017), Philippines (Virtu-

cio et al., 2018), Turkey (Mumcuoğlu et al., 2021),

Thailand (Kowsrihawat et al., 2018), United King-

dom (Strickson and De La Iglesia, 2020), Germany

(Urchs et al., 2021), and Switzerland (Niklaus et al.,

2021). Apart from predicting court decisions, there

is also work aiming to interpret (explain) the deci-

sions of particular courts (Ye et al., 2018; Chalkidis

et al., 2021c; Branting et al., 2021).

Another popular task is legal topic classifica-

tion. Nallapati and Manning (2008) highlighted the

challenges of legal document classification com-

pared to more generic text classification by using a

dataset including docket entries of US court cases.

Chalkidis et al. (2020a) classify EU laws into EU-

ROVOC concepts, a task earlier introduced by Men-

cia and Fürnkranzand (2007), with a special inter-

est in few- and zero-shot learning. Luz de Araujo

et al. (2020) also studied topic classification us-

ing a dataset of Brazilian Supreme Court cases.

There are similar interesting applications in con-

tract law (Lippi et al., 2019; Tuggener et al., 2020).

Several studies (Chalkidis et al., 2018, 2019c;

Hendrycks et al., 2021) explored information ex-

traction from contracts, to extract important infor-

mation such as the contracting parties, agreed pay-

ment amount, start and end dates, applicable law,

etc. Other studies focus on extracting information

from legislation (Cardellino et al., 2017; Angelidis

et al., 2018) or court cases (Leitner et al., 2019).

Legal Question Answering (QA) is another task

of interest in legal NLP, where the goal is to train

models for answering legal questions (Kim et al.,

2015; Ravichander et al., 2019; Kien et al., 2020;

Zhong et al., 2020a,c). Not only is this task inter-

esting for researchers but it could support efforts to

help laypeople better understand their legal rights.

In the general task setting, this requires identifying

relevant legislation, case law, or other legal docu-

ments, and extracting elements of those documents

that answer a particular question. A notable venue

for legal QA has been the Competition on Legal

Information Extraction and Entailment (COLIEE)

(Kim et al., 2016; Kano et al., 2017, 2018).

More recently, there have also been efforts to

pre-train Transformer-based language models on

legal corpora (Chalkidis et al., 2020b; Zheng et al.,

2021; Xiao et al., 2021), leading to state-of-the-

art results in several legal NLP tasks, compared to

models pre-trained on generic corpora.

Overall, the legal NLP literature is overwhelm-

ing, and the resources are scattered. Documenta-

tion is often not available, and evaluation measures

vary across articles studying the same task. Our

goal is to create the first unified benchmark to ac-

cess the performance of NLP models on legal NLU.

As a first step, we selected a representative group

of tasks, using datasets in English that are also pub-

licly available, adequately documented and have

an appropriate size for developing modern NLP

methods. We also introduce several simplifications

to make the new benchmark more standardized and

easily accessible, as already noted.

3 LexGLUE Tasks and Datasets

3.1 Benchmark Characteristics & Desiderata

We present the Legal General Language Under-

standing2 Evaluation (LexGLUE) benchmark, a

collection of datasets for evaluating model per-

formance across a diverse set of legal NLU tasks.

LexGLUE has the following main characteristics:

• Language: We only consider English datasets,

to make experimentation easier for researchers

across the globe.

• Substance:3 The datasets should check the abil-

ity of systems to understand and reason about

legal text to a certain extent in order to perform

tasks that are meaningful for legal practitioners.

• Difficulty: The performance of state-of-the-art

methods on the datasets should leave large scope

for improvements (cf. GLUE and SuperGLUE,

where top-ranked models now achieve average

scores higher than 90%). Unlike SuperGLUE

(Wang et al., 2019a), we did not rule out, but

rather favored, datasets requiring domain (in our

case legal) expertise.

2The term ‘understanding’ is, of course, as debatable as
in NLU and GLUE, but is commonly used in NLP to refer to
systems that analyze, rather than generate text.

3We reuse this term from the work of Wang et al. (2019a).



Dataset Source Sub-domain Task Type Training/Dev/Test Instances Classes

ECtHR (Task A) Chalkidis et al. (2019a) ECHR Multi-label classification 9,000/1,000/1,000 10+1

ECtHR (Task B) Chalkidis et al. (2021c) ECHR Multi-label classification 9,000/1,000/1,000 10

SCOTUS Spaeth et al. (2020) US Law Multi-class classification 5,000/1,400/1,400 14

EUR-LEX Chalkidis et al. (2021a) EU Law Multi-label classification 55,000/5,000/5,000 100

LEDGAR Tuggener et al. (2020) Contracts Multi-class classification 60,000/10,000/10,000 100

UNFAIR-ToS Lippi et al. (2019) Contracts Multi-label classification 5,532/2,275/1,607 8

CaseHOLD Zheng et al. (2021) US Law Multiple choice QA 45,000/3,900/3,900 n/a

Table 1: Statistics of the LexGLUE datasets, including simplifications made.

• Availability & Size: We consider only publicly

available datasets, documented by published arti-

cles, avoiding proprietary, untested, poorly doc-

umented datasets. We also excluded very small

datasets, e.g., with fewer than 5K documents. Al-

though large pre-trained models often perform

well with relatively few task-specific training in-

stances, newcomers may wish to experiment with

simpler models that may perform disappointingly

with small training sets. Small test sets may also

lead to unstable and unreliable results.

3.2 Tasks

LexGLUE comprise seven datasets in total. Table 1

shows core information for each of the LexGLUE

datasets and tasks, described in detail below:

ECtHR Tasks A & B The European Court of

Human Rights (ECtHR) hears allegations that a

state has breached human rights provisions of the

European Convention of Human Rights (ECHR).

We use the dataset of Chalkidis et al. (2019a,

2021c), which contains approx. 11K cases from

the ECtHR public database. The cases are chrono-

logically split into training (9k, 2001–2016), devel-

opment (1k, 2016–2017), and test (1k, 2017–2019).

For each case, the dataset provides a list of factual

paragraphs (facts) from the case description. Each

case is mapped to articles of the ECHR that were

violated (if any). In Task A, the input to a model is

the list of facts of a case, and the output is the set of

violated articles. In the most recent version of the

dataset (Chalkidis et al., 2021c), each case is also

mapped to articles of ECHR that were allegedly

violated (considered by the court). In Task B, the

input is again the list of facts of a case, but the

output is the set of allegedly violated articles.

The total number of ECHR articles is currently

66. Several articles, however, cannot be violated,

are rarely (or never) discussed in practice, or do not

depend on the facts of a case and concern procedu-

ral technicalities. Thus, we use a simplified version

of the label set (ECHR articles) in both Task A and

B, including only 10 ECHR articles that can be

violated and depend on the case’s facts. In Task A,

no violation is a possible event, thus in evaluation,

we also include an additional label representing

the event of no violation.4 No violation is not a

possible event in Task B.

SCOTUS The US Supreme Court (SCOTUS)5

is the highest federal court in the United States of

America and generally hears only the most con-

troversial or otherwise complex cases which have

not been sufficiently well solved by lower courts.

We combine information from SCOTUS opin-

ions6 with the Supreme Court DataBase (SCDB)7

(Spaeth et al., 2020). SCDB provides metadata

(e.g., decisions, issues, decision directions) for all

cases (from 1946 up to 2020). We opted to use

SCDB to classify the court opinions in the avail-

able 14 issue areas (e.g., Criminal Procedure, Civil

Rights, Economic Activity, etc.). This is a single-

label multi-class classification task (Table 1). The

14 issue areas cluster 278 issues whose focus is on

the subject matter of the controversy (dispute). The

SCOTUS cases are chronologically split into train-

ing (5k, 1946–1982), development (1.4k, 1982–

1991), test (1.4k, 1991–2016) sets.

EUR-LEX European Union (EU) legislation is

published in EUR-Lex portal.8 All EU laws are

annotated by EU’s Publications Office with multi-

ple concepts from the EuroVoc thesaurus, a multi-

lingual thesaurus maintained by the Publications

Office.9 The current version of EuroVoc contains

more than 7k concepts referring to various activities

of the EU and its Member States (e.g., economics,

health-care, trade). We use the English part of the

dataset of Chalkidis et al. (2021a), which comprises

65K EU laws (documents) from EUR-Lex. Given a

document, the task is to predict its EuroVoc labels

4The value of the additional label is 1 (positive), if the
value is 0 (negative) across all 10 ECHR articles.

5https://www.supremecourt.gov
6https://www.courtlistener.com
7http://scdb.wustl.edu
8http://eur-lex.europa.eu/
9http://eurovoc.europa.eu/



Method Source # Params Vocab. Size Max Length Pretrain Specs Pre-training Corpora

BERT (Devlin et al., 2019) 110M 32K 512 1M / 256 (16GB) Wiki, BC

RoBERTa (Liu et al., 2019) 125M 50K 512 100K / 8K (160GB) Wiki, BC, CC-News, OWT

DeBERTa (He et al., 2021) 139M 50K 512 1M / 256 (160GB) Wiki, BC, CC-News, OWT

Longformer* (Beltagy et al., 2020) 149M 50K 4096 65K / 64 (160GB) Wiki, BC, CC-News, OWT

BigBird* (Zaheer et al., 2020) 127M 50K 4096 1M / 256 (160GB) Wiki, BC, CC-News, OWT

Legal-BERT (Chalkidis et al., 2020b) 110M 32K 512 1M /256 (12GB) Legislation, Court Cases, Contracts

CaseLaw-BERT (Zheng et al., 2021) 110M 32K 512 2M /256 (37GB) US Court Cases

Table 2: Key specifications of the examined models. We report the number of parameters, the size of vocabulary,

the maximum sequence length, the core pre-training specifications (training steps and batch size) and the training

corpora (cf. OWT = OpenWebText, BC = BookCorpus). * Models have been warmed started from RoBERTa.

(concepts). The dataset is chronologically split in

training (55k, 1958–2010), development (5k, 2010–

2012), test (5k, 2012–2016) subsets. It supports

four different label granularities, comprising 21,

127, 567, 7390 EuroVoc concepts, respectively. We

use the 100 most frequent concepts from level 2,

which has a highly skewed label distribution and

temporal concept drift, making it sufficiently diffi-

cult for an entry point baseline.

LEDGAR Tuggener et al. (2020) introduced

LEDGAR (Labeled EDGAR), a dataset for contract

provision (paragraph) classification. The contract

provisions come from contracts obtained from the

US Securities and Exchange Commission (SEC) fil-

ings, which are publicly available from EDGAR10

(Electronic Data Gathering, Analysis, and Retrieval

system). The original dataset includes approx. 850k

contract provisions labeled with 12.5k categories.

Each label represents the single main topic (theme)

of the corresponding contract provision, i.e., this

is a single-label multi-class classification task. In

LexGLUE, we use a subset of the original dataset

with 80k contract provisions, considering only the

100 most frequent categories as a simplification.

We split the new dataset chronologically into train-

ing (60k, 2016–2017), development (10k, 2018),

and test (10k, 2019) sets.

UNFAIR-ToS The UNFAIR-ToS dataset (Lippi

et al., 2019) contains 50 Terms of Service (ToS)

from on-line platforms (e.g., YouTube, Ebay, Face-

book, etc.). The dataset has been annotated on the

sentence-level with 8 types of unfair contractual

terms (sentences), meaning terms that potentially

violate user rights according to the European con-

sumer law.11 We split the dataset chronologically

into training (5.5k, 2006–2016), development (2.3k,

2017), and test (1.6k, 2017) sets.

10https://www.sec.gov/edgar/
11Art. 3 of the Directive 93/13 on Unfair Terms in

Consumer Contracts (http://data.europa.eu/eli/dir/
1993/13/oj).

CaseHOLD The CaseHOLD (Case Holdings on

Legal Decisions) dataset (Zheng et al., 2021) con-

tains approx. 53k multiple choice questions about

holdings of US court cases from the Harvard Law

Library case law corpus. Holdings are short sum-

maries of legal rulings accompany referenced deci-

sions relevant for the present case, e.g.:

“. . . to act pursuant to City policy, re d 503, 506-07

(3d Cir.l985)(holding that for purposes of a class

certification motion the court must accept as true

all factual allegations in the complaint and may

draw reasonable inferences therefrom).”

The input consists of an excerpt (or prompt) from

a court decision, containing a reference to a partic-

ular case, while the holding statement is masked

out. The model must identify the correct (masked)

holding statement from a selection of five choices.

We split the dataset in training (45k), development

(3.9k) and test (3.9k) sets, excluding samples that

are shorter than 256 tokens. Chronological infor-

mation is missing from CaseHOLD, thus we cannot

perform a chronological re-split.

4 Evaluation Framework

4.1 Pre-trained Models

We experiment with Transformer-based (Vaswani

et al., 2017) pre-trained language models, which

achieve state of the art performance in most NLP

tasks (Bommasani et al., 2021) and NLU bench-

marks (Wang et al., 2019a). These models are pre-

trained on very large unlabeled corpora to predict

masked tokens (masked language modeling) and

typically also to perform other pre-training tasks

that still do not require any manual annotation (e.g.,

predicting if two sentences were adjacent in the

corpus or not, dubbed next sentence prediction).

The pre-trained models are then fine-tuned (further

trained) on task-specific (typically much smaller)

annotated datasets, after adding task-specific layers.

We fine-tune and evaluate the performance of the

following publicly available models (Table 2):



Figure 2: Distribution of text input length measured in BERT sub-word units across LexGLUE datasets.

BERT (Devlin et al., 2019) is the best-known pre-

trained Transformer-based language model. It is

pre-trained to perform masked language modeling

and next sentence prediction.

RoBERTa (Liu et al., 2019) is also a pre-trained

Transformer-based language model. Unlike BERT,

RoBERTa uses dynamic masking, it eliminates the

next sentence prediction pre-training task, uses

a larger vocabulary, and has been pre-trained

on much larger corpora. Liu et al. (2019) re-

ported improved results on NLU benchmarks using

RoBERTa, compared to BERT.

DeBERTa (He et al., 2021) is another improved

BERT model that uses disentangled attention, i.e.,

four separate attention mechanisms considering

the content and the relative position of each token,

and an enhanced mask decoder, which explicitly

considers the absolute position of the tokens. De-

BERTa has been reported to outperform BERT and

RoBERTa in several NLP tasks (He et al., 2021).

Longformer (Beltagy et al., 2020) extends

Transformer-based models to support much longer

sequences using sparse-attention. The sparse-

attention is a combination of a local (window-

based) attention, and global (dilated) attention that

reduces the computational complexity of the model

and thus can be deployed in longer documents (up

to 4096). Longformer outperforms RoBERTa on

long document tasks and QA benchmarks.

BigBird (Zaheer et al., 2020) is another sparse-

attention based transformer that uses a combina-

tion of a local (window-based) attention, global

(dilated) and random attention, i.e., all tokens also

attend a number of random tokens on top of those

in the same neighborhood (window). BigBird has

been reported to outperform Longformer on QA

and summarization tasks.

Legal-BERT (Chalkidis et al., 2020b) is a BERT

model pre-trained on English legal corpora, con-

sisting of legislation, contracts, and court cases. It

uses the original pre-training BERT configuration.

The sub-word vocabulary of Legal-BERT is built

from scratch, to better support legal terminology.

CaseLaw-BERT (Zheng et al., 2021) is another

law-specific BERT model. It also uses the origi-

nal pre-training BERT configuration and has been

pre-trained from scratch on the Harvard Law case

corpus,12 which comprises 3.4M legal decisions

from US federal and state courts. This model is

called Custom Legal-BERT by Zheng et al. (2021).

We call it CaseLaw-BERT to distinguish it from

the previously published Legal-BERT of Chalkidis

et al. (2020b) and to highlight that it is trained

exclusively on case law (court opinions).

4.2 Task-Specific Fine-Tuning

Hierarchical Model Legal documents are usually

much longer (i.e. consisting of thousands of words)

than typical text (e.g., tweets, customer reviews,

news articles) often considered in various NLP

tasks. Thus, standard Transformer-based models

that can typically process up to 512 sub-word units

cannot be directly applied across all LexGLUE

datasets, unless documents are severely truncated

to the model’s limit. Figure 2 shows the distribution

of text input length across all LexGLUE datasets.

Even for Transformer-based models specifically

designed to handle long text (e.g., LongFormer,

BigBird), handling longer legal documents remains

a challenge. Given the length of the text input

in three of the seven LexGLUE tasks, ECtHR (A

and B) and SCOTUS, we employ a hierarchical

variant of all standard pre-trained Transformer-

based models (BERT, RoBERTa, DeBERTa, Legal-

BERT, CaseLaw-BERT) during fine-tuning and in-

ference. The hierarchical variants are similar to

that of Chalkidis et al. (2021c). They use the cor-

responding pre-trained Transformer-based model

12https://case.law/



Method
ECtHR (A)* ECtHR (B)* SCOTUS* EUR-LEX LEDGAR UNFAIR-ToS CaseHOLD

µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1 µ-F1/ m-F1

BERT 71.4 64.0 87.6 77.8 70.5 60.9 71.6 55.6 87.7 82.2 87.5 81.0 70.7

RoBERTa 69.8 61.1 87.2 77.3 70.8 61.2 71.8 57.5 87.9 82.1 87.7 81.5 71.7

DeBERTa 69.3 63.0 87.4 77.3 70.0 60.0 72.3 57.2 87.9 82.0 87.2 78.8 72.1

Longformer 69.6 62.7 88.0 77.8 72.2 62.5 71.9 56.7 87.7 82.3 87.7 80.1 72.0

BigBird 69.7 62.2 88.1 76.6 71.7 61.4 71.8 56.6 87.7 82.1 87.7 80.2 70.4

Legal-BERT 71.2 64.9 88.0 77.2 76.2 65.8 72.2 56.2 88.1 82.7 88.6 82.3 75.1

CaseLaw-BERT 71.2 64.2 88.0 77.5 76.4 66.2 71.0 55.9 88.0 82.3 88.3 81.0 75.6

Table 3: Test results for all examined baselines across LexGLUE tasks. In datasets marked with an asterisk (*), we

use the hierarchical variant of each model, as described in Section 4.1.

to encode each paragraph of the input text inde-

pendently and obtain the top-level representation

h[cls] of each paragraph. A second-level shal-

low (2-layered) Transformer encoder with the exact

same specifications (e.g., hidden units, number of

attention heads) is fed with the paragraph represen-

tations to make them context-aware (aware of the

surrounding paragraphs). We then max-pool over

the context-aware paragraph representations to ob-

tain a document representation, which is fed to a

classification layer, as in the rest of the datasets.13

Text Classification Tasks For EUR-LEX,

LEDGAR and UNFAIR-ToS tasks, we feed

each document to the pre-trained model (e.g.,

BERT) and obtain the top-level representation

h[cls] of the special [cls] token as the document

representation, following Devlin et al. (2019).

The latter goes through a dense layer of L output

units, one per label, followed by a sigmoid

(in EUR-LEX, UNFAIR-ToS) or softmax (in

LEDGAR) activation, respectively. For the two

ECtHR tasks (A and B) and SCOTUS, where

the hierarchical model is employed, we feed

the max-pooled document representation to a

classification linear layer. The linear layer is

again followed by a sigmoid (EctHR) or softmax

(SCOTUS) activation.

Multiple-Choice QA Task For CaseHOLD, we

convert each training (or test) instance (the prompt

and the five candidate answers) into five input pairs

following Zheng et al. (2021). Each pair consists of

the prompt and one of the five candidate answers,

separated by the special delimiter token [sep]. The

top-level representation h[cls] of each pair is fed

to a linear layer to obtain a logit (score), and the five

logits are then passed through a softmax activation

to obtain a probability distribution over the five

candidate answers.

13In Appendix B, we present results from preliminary ex-
periments using the standard version of BERT for ECtHR
Task A (-12.2%), Task B(-10.6%), and SCOTUS (-3.5%).

4.3 Experimental Set Up

For all the pre-trained models, we use publicly

available Hugging Face checkpoints.14 We use the

*-base configuration of each pre-trained model, i.e.,

12 Transformer blocks, 768 hidden units, and 12

attention heads. We train models with the Adam

optimizer (Kingma and Ba, 2015) and an initial

learning rate of 3e-5 up to 20 epochs using early

stopping on development data. We use mixed pre-

cision (fp16) to decrease the memory footprint in

training and gradient accumulation for all hierarchi-

cal models.15 The hierarchical models can read up

to 64 paragraphs of 128 tokens each. We use Long-

former and BigBird in default settings, i.e., Long-

former uses windows of 512 tokens and a single

global token ([cls]), while BigBird uses blocks of

64 tokens (windows: 3x block, random: 3x block,

global: 2x initial block; each token attends 512 to-

kens in total). The batch size is 8 in all experiments.

We run five repetitions with different random seeds

and report the the average scores across runs on

the test set. We evaluate classification performance

using micro-F1 (µ-F1) and macro-F1 (m-F1) across

all datasets to take into account class imbalance.

4.4 Experimental Results

Table 3 presents the test results for all models

across all LexGLUE tasks. We observe that the two

legal-oriented pre-trained models (Legal-BERT,

CaseLaw-BERT) perform overall better across all

tasks. Their in-domain (legal) knowledge seems

to be more critical in the two datasets relying on

US case law data (SCOTUS, CaseHOLD) with an

improvement of approximately +5% over the rest

of the models, which are pre-trained on generic

corpora. While these two models perform mostly

on par, CaseLaw-BERT performs marginally better

than Legal-BERT on SCOTUS and CaseHOLD,

14http://huggingface.co/models
15We omit results for *-large models, as we found them to

be very unstable in preliminary experiments using fp16. See
details in Appendix C.



which is easily explained by the fact that it is solely

trained on US case law; on the other hand Legal-

BERT has been exposed to a wider variety of legal

corpora, including EU legislation, ECtHR cases,

US contracts; thus it performs slightly better in

EUR-LEX, LEDGAR, UNFAIR-ToS, without per-

forming better than CaseLaw-BERT, though, in the

ECtHR tasks. No single model performs best in all

tasks, and the results of Table 3 show that there is

still large scope for improvements.

We note that we experimented exclusively with

pre-trained Transformer models, because they cur-

rently achieve state of the art results in most NLP

tasks. However, it would be interesting to exper-

iment with simpler (and computationally much

cheaper) models too (e.g., linear classifiers with

TF-IDF features) to see how worse (if at all) they

actually perform, and newcomers (e.g., students)

could easily contribute results of this kind.

4.5 Data Repository and Code

For reproducibility purposes and to facilitate future

experimentation with other models, we pre-process

and release all datasets on Hugging Face Datasets

(Lhoest et al., 2021).16 Furthermore, we release

the code of our experiments, which relies on the

Hugging Face transformers (Wolf et al., 2020) li-

brary17 on Github.18 Details on how to load the

datasets and how to run experiments with our code

are available in Appendix A. We also provide a

leaderboard where new results can be added.

5 Vision – Future Considerations

Beyond the scope of this work and the examined

baseline models, we identify four major factors

that could potentially advance the state of the art in

LexGLUE and legal NLP more generally:

Long Documents: Several Transformer-based

models (Beltagy et al., 2020; Zaheer et al., 2020;

Kitaev et al., 2020; Choromanski et al., 2021) have

been proposed to handle long documents by explor-

ing sparse attention. The publicly available models

(Longformer, BigBird) can handle sequences up to

4096 sub-words, which is largely exceeded in three

out of seven LexGLUE tasks (Figure 2).

Structured Text: Current models for long docu-

ments, like Longformer and BigBird, do not con-

sider the document structure (e.g., sentences, para-

16https://huggingface.co/datasets/lex_glue
17https://huggingface.co/transformers
18https://github.com/coastalcph/lex-glue

graphs, sections). For example, window-based at-

tention may consider a sequence of sentences that

cross paragraph boundaries or even consider trun-

cated sentences. To exploit the document structure,

Yang et al. (2020) proposed SMITH, a hierarchi-

cal Transformer model that hierarchically encodes

increasingly larger blocks (e.g., words, sentences,

documents). SMITH is very similar to the hierarchi-

cal model of Section 4.1, but it is pre-trained end-

to-end with two objectives: token-level masked and

sentence block language modeling.

Large-scale Legal Pre-training: Recent stud-

ies (Chalkidis et al., 2020b; Zheng et al., 2021;

Bambroo and Awasthi, 2021; Xiao et al., 2021) in-

troduced language models pre-trained on legal cor-

pora, but of relatively small sizes, i.e., 12–36 GB.

In the work of Zheng et al. (2021), the pre-training

corpus covered only a narrowly defined area of

legal documents, US court opinions. The same

applies to Lawformer (Xiao et al., 2021), which

was pre-trained on Chinese court opinions. Future

work could curate and release a legal version of the

C4 corpus (Raffel et al., 2020), containing multi-

jurisdictional legislation, court decisions, contracts

and legal literature at a size of hundreds of GBs.

Given such a corpus, a large language model ca-

pable of processing long structured text could be

pre-trained and it might excel in LexGLUE.

Even Larger Language Models: Scaling up the

capacity of pre-trained models has led to increas-

ingly better results in general NLU benchmarks

(Kaplan et al., 2020), and models have been scaled

up to billions of parameters (Brown et al., 2020;

Raffel et al., 2020; He et al., 2021). The effect

of largely increasing model capacity has not been

studied, however, in LexGLUE (the models we con-

sidered have up to 100M parameters). Hence, it is

currently unclear what computing resources (and

funding) one needs to excel in LexGLUE or, more

generally, in domain-specific benchmarks.

6 Limitations and Future Work

In its current version, LexGLUE can only be used

to evaluate English language models. As legal doc-

uments are typically written in the official language

of the particular country of origin, there is an in-

creasing need for developing models for other lan-

guages. The current lack of datasets in other lan-

guages (with the exception of Chinese) makes a

multilingual extension of LexGLUE challenging,



but an interesting avenue for future research.

Beyond language barriers, legal restrictions cur-

rently inhibit the creation of more datasets. Impor-

tant document types, such as contracts and schol-

arly publications are protected by copyright or con-

sidered trade secrets. As a result, their owners are

concerned with data-leakage when they are used for

model training and evaluation. Providing both legal

and technical solutions, e.g., using privacy-aware

infrastructure and models (Downie, 2004; Feyise-

tan et al., 2020) is a challenge to be addressed in

future work.

Access to court decisions can also be hindered by

bureaucratic inertia, outdated technology and data

protection concerns which collectively result in

these otherwise public decisions not being publicly

available (Pah et al., 2020). While the anonymiza-

tion of personal data provides a solution to this

problem, it is itself an open challenge for legal

NLP (Jana and Biemann, 2021). In lack of suit-

able datasets and benchmarks, we have refrained

from including anonymization in this version of

LexGLUE, but plan to do so at a later stage.

While LexGLUE offers a much needed unified

testbed for legal NLU, there are several other criti-

cal aspects that need to be studied carefully. These

include multi-disciplinary research to better under-

stand the limitations and challenges of applying

NLP to law (Binns, 2020), while also considering

fairness (Angwin et al., 2016; Dressel and Farid,

2018), and robustness (Wang et al., 2021).
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pos, Fabricio Ataides Braz, and Nilton Correia da
Silva. 2020. VICTOR: a dataset for Brazilian le-
gal documents classification. In Proceedings of the
12th Language Resources and Evaluation Confer-
ence, pages 1449–1458, Marseille, France. Euro-
pean Language Resources Association.

Purbid Bambroo and Aditi Awasthi. 2021. Legaldb:
Long distilbert for legal document classification. In
2021 International Conference on Advances in Elec-
trical, Computing, Communication and Sustainable
Technologies (ICAECT), pages 1–4.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
CoRR, abs/2004.05150.

Paheli Bhattacharya, Kaustubh Hiware, Subham Raj-
garia, Nilay Pochhi, Kripabandhu Ghosh, and Sap-
tarshi Ghosh. 2019. A comparative study of summa-
rization algorithms applied to legal case judgments.
In Advances in Information Retrieval, pages 413–
428, Cham. Springer International Publishing.

Reuben Binns. 2020. Analogies and disanalogies
between machine-driven and human-driven legal
judgement. Journal of Cross-disciplinary Research
in Computational Law, 1(1).

Michael J. Bommarito, Daniel Martin Katz, and Eric M.
Detterman. 2021. Lexnlp: Natural language process-
ing and information extraction for legal and regula-
tory texts. Research Handbook on Big Data Law,
pages 216–227.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli,
Russ Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine
Bosselut, Emma Brunskill, Erik Brynjolfsson, Shya-
mal Buch, Dallas Card, Rodrigo Castellon, Niladri
Chatterji, Annie Chen, Kathleen Creel, Jared Quincy
Davis, Dora Demszky, Chris Donahue, Moussa
Doumbouya, Esin Durmus, Stefano Ermon, John
Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea
Finn, Trevor Gale, Lauren Gillespie, Karan Goel,
Noah Goodman, Shelby Grossman, Neel Guha,
Tatsunori Hashimoto, Peter Henderson, John He-
witt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing
Huang, Thomas Icard, Saahil Jain, Dan Jurafsky,
Pratyusha Kalluri, Siddharth Karamcheti, Geoff
Keeling, Fereshte Khani, Omar Khattab, Pang Wei
Kohd, Mark Krass, Ranjay Krishna, Rohith Kudi-
tipudi, Ananya Kumar, Faisal Ladhak, Mina Lee,
Tony Lee, Jure Leskovec, Isabelle Levent, Xi-
ang Lisa Li, Xuechen Li, Tengyu Ma, Ali Malik,
Christopher D. Manning, Suvir Mirchandani, Eric
Mitchell, Zanele Munyikwa, Suraj Nair, Avanika
Narayan, Deepak Narayanan, Ben Newman, Allen



Nie, Juan Carlos Niebles, Hamed Nilforoshan, Ju-
lian Nyarko, Giray Ogut, Laurel Orr, Isabel Pa-
padimitriou, Joon Sung Park, Chris Piech, Eva Porte-
lance, Christopher Potts, Aditi Raghunathan, Rob
Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani,
Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa
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A Datasets, Code, and Participation

Where are the datasets? We provide access

to LexGLUE on Hugging Face Datasets (Lhoest

et al., 2021) at https://huggingface.co/datasets/

lex_glue. For example to load the SCOTUS dataset,

you first simply install the datasets python library

and then make the following call:
___________________________________________________

from datasets import load_dataset

dataset = load_dataset("lex_glue", task=’scotus’)

___________________________________________________

How to run experiments? To make reproduc-

ing the results of the already examined mod-

els or future models even easier, we release our

code on GitHub (https://github.com/coastalcph/

lex-glue). In that repository, in the folder

(/experiments), there are Python scripts, relying

on the Hugging Face Transformers library (Wolf

et al., 2020), to run and evaluate any Transformer-

based model (e.g., BERT, RoBERTa, LegalBERT,

and their hierarchical variants, as well as, Longfor-

rmer, and BigBird). We also provide bash scripts

to replicate the experiments for each dataset with 5

randoms seeds, as we did for the reported results

for the original leaderboard.

B Use of standard BERT models

In Table 3, we present the results for the standard

BERT model of Devlin et al. (2019) using up to 512

tokens, compared to its hierarchical variant. We ob-

serve that across all datasets, where documents are



Method
ECtHR (A)* ECtHR (B)* SCOTUS* EUR-LEX LEDGAR UNFAIR-ToS CaseHOLD

µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1 µ-F1/ m-F1

BERT 70.6 64.1 87.9 79.0 76.6 68.8 77.2 61.1 87.9 81.8 87.0 76.7 72.6

RoBERTa 69.8 64.3 87.4 79.4 76.2 68.4 77.5 63.1 87.9 81.4 86.1 75.0 73.9

DeBERTa 69.2 62.9 76.1 68.4 77.7 63.1 77.7 63.1 88.1 81.5 86.4 74.5 73.8

Longformer 70.8 64.4 88.9 80.5 76.9 70.1 77.4 62.5 88.1 81.7 85.2 73.3 73.7

BigBird 70.9 65.0 88.7 78.4 75.9 68.7 77.2 62.1 87.9 81.5 86.2 76.4 73.5

Legal-BERT 71.8 67.8 88.5 80.5 80.1 72.3 77.5 61.5 88.3 81.9 87.2 77.5 76.1

CaseLaw-BERT 71.9 66.3 88.4 79.0 81.1 73.4 77.2 62.3 88.3 81.9 87.2 77.1 77.2

Table 4: Validation results for all examined baselines across LexGLUE tasks. In datasets marked with an asterisk

(*), we use the hierarchical variant of each model, as described in Section 4.1.

long (Figure 2(a)), the hierarchical variant clearly

outperforms the standard model fed with truncated

documents (ECtHR A: +12.2%, ECtHR B: 10.6%,

SCOTUS: 3.5%). Compared to the ECtHR tasks,

the gains are lower in SCOTUS, a topic classifica-

tion task where long-range reasoning is not needed,

i.e., in contrast for ECtHR, multiple distant facts

need to be combined.

Figure 3: Results of BERT models in ECtHR (Task A

and B) and SCOTUS. Light blue denotes the average

score across 5 runs for the hierarchical variant of BERT,

presented in Table 3, while dark blue corresponds to the

standard BERT model (up to 512 tokens). The black

error bars show the standard error.

C Use of Larger Models

In preliminary experiments, we also considered

pre-trained models using the *-large configuration,

i.e., 24 Transformer blocks, 1024 units, and 18 at-

tentions heads, namely RoBERTa-large Liu et al.

(2019). Similarly to the rest of the experiments, we

used mixed precision (fp16) to decrease the mem-

ory footprint in training. Using fp16 in attention

operation resulted in floating point overflow and

NaNs in later stages of training. Similar issues

have been also reported by Beltagy et al. (2020). In

our case, we face similar issues even training mod-

Figure 4: Results of RoBERTa models in LEDGAR

and CaseHOLD. Blue and orange denote the maximum

and average scores, respectively, across 5 runs. The

black error bars show the standard error.

els with the standard fp32 setting. In Table 4, we

present the results across runs for RoBERTa-large.

D Additional Results

For completeness, Table 4 shows the validation re-

sults for all examined models across all datasets.

Results are improved and also vary comparing to

those reported for the test set, which further high-

lights the importance of temporal splits. In Table 5,

we present information on the training time per

dataset and model.

E Other Tasks/Datasets Considered

We primarily considered including the Contract Un-

derstanding Atticus Dataset (CUAD) (Hendrycks

et al., 2021), an expertly curated dataset that com-

prises 510 contracts annotated with 41 valuable

contractual insights (e.g., agreement date, parties,

governing law, etc.). The task is formulated as a

SQUAD-like question answering task, where given

a question (the name of an insight) and a paragraph

from the contract, the model has to identify the an-



Method
ECtHR (Task A)* ECtHR (Task B)* SCOTUS* EUR-LEX LEDGAR CaseHOLD

T T/e T T/e T T/e T T/e T T/e T T/e

BERT 3h 42m 28m 3h 9m 28m 1h 24m 11m 3h 36m 19m 6h 9m 21m 4h 24m 24m

RoBERTa 4h 11m 27m 3h 43m 27m 2h 46m 17m 3h 36m 19m 6h 22m 21m 4h 21m 24m

DeBERTa 7h 43m 46m 6h 48m 46m 3h 42m 29m 5h 34m 36m 9h 29m 40m 6h 42m 45m

Longformer 6h 47m 56m 7h 31m 56m 6h 27m 34m 11h 10m 45m 15h 47m 50m 4h 45m 30m

BigBird 8h 41m 1h 2m 8h 17m 1h 2m 5h 51m 37m 3h 57m 24m 8h 13m 27m 6h 4m 49m

Legal-BERT 3h 52m 28m 3h 2m 28m 2h 2m 17m 3h 22m 19m 5h 23m 21m 4h 13m 23m

CaseLaw-BERT 3h 2m 28m 2h 57m 28m 2h 34m 34m 3h 40m 19m 6h 8m 21m 4h 21m 24m

Table 5: Training time in total (T ) and per epoch (T/e) across LexGLUE tasks. In datasets marked with asterisk

(*), we use the hierarchical variant of each model, as described in Section 4.1.

swer span in the paragraph.19 The original dataset

follows the SQUAD v2.0 setting, including unan-

swerable questions. Following the SQUAD v1.1

(Rajpurkar et al., 2016) setting, we simplified the

task by removing all unanswerable pairs (question,

paragraph). The information in the original dataset

is very sparse leading to a vast majority of unan-

swerable pairs. We also excluded all annotations

that exceeded 128 full words to alleviate the imbal-

ance between short and long answers. We then re-

split the dataset chronologically into training (5.2k,

1994–2019), development (572, 2019–2020), and

test (604, 2020) sets.

Following Devlin et al. (2019), and similarly to

Hendrycks et al. (2021), for each training (or test)

instance, we consider pairs that consist of a ques-

tion and a paragraph, separated by the special de-

limiter token [sep]. The top-level representations

[h1, . . . , hN] of the tokens of the paragraph are fed

into a linear layer to obtain two logits per token (for

the token being the start or end of the answer span),

which are then passed through a softmax activation

(separately for start and end) to obtain probabil-

ity distributions. The tokens with the highest start

and end probabilities are selected as boundaries of

the answer span. We evaluated performance with

token-level F1 score, similar to SQUAD.

We trained all the models of Table 2, which

scored approx. 10-20% in token-level F1, with

Legal-BERT performing slightly better than the rest

(+5% F1).20 In the paper that introduced CUAD

(Hendrycks et al., 2021), several other measures

(Precision @ N% Recall, AUPR, Jaccard similar-

ity) are used to more leniently estimate a model’s

ability to approximately locate answers in context

paragraphs. Through careful manual inspection of

the dataset, we noticed the following points that

19The question mostly resembles a prompt, rather than a
natural question, as there is a closed set of 41 alternatives.

20F1 is one of the two official SQUAD measures. In the
second one, Exact Answer Accuracy, all models scored 0%.

seem to require more careful consideration.

• Contractual insights (categories, shown in ital-

ics below) include both entity-level (short) an-

swers (e.g., “SERVICE AGREEMENT” for Doc-

ument Name, and “Imprimis Pharmaceuticals,

Inc.” for Parties) and paragraph-level (long) an-

swers (e.g., “If any of the conditions specified in

Section 8 shall not have been fulfilled when and

as required by this Agreement, or by the Closing

Date, or waived in writing by Capital Resources,

this Agreement and all of Capital Resources obli-

gations hereunder may be canceled [...] except

as otherwise provided in Sections 2, 7, 9 and

10 hereof.” for Termination for Convenience).

These two different types of answers (short and

paragraph-long) seem to require different mod-

els and different evaluation measures, unlike how

they are treated in the original CUAD paper.

• Some contractual insights (categories), e.g., Par-

ties, have been annotated with both short (e.g.,

“Imprimis Pharmaceuticals, Inc.”) and long (e.g.,

“together, Blackwell and Munksgaard shall be

referred to as ‘the Publishers’.”) answers. Anno-

tations of these kind introduce noise during both

training and evaluation. For example, it becomes

unclear when a short (finer/strict) or a long (loose)

annotation should be taken to be the correct one.

• Annotations may include indirect mentions (e.g.,

‘Franchisee’, ‘Service Provider’ for Parties) in-

stead of the actual entities (the company name).

In this case (Parties), those mentions are actually

party roles in the context of a contract.

• Annotations may include semi-redacted text (e.g.,

“ , 1996” for Agreement Date), or even fully

redacted text (e.g., “ ” for Parties).

This practice secures () information in public fil-

ings, but the scope of the examined task is to

process everyday business contracts, hence such

cases could have been excluded.



The points above, which seem to require revisit-

ing the annotations of CUAD, and the very low F1

scores of all models led us to exclude CUAD from

LexGLUE. We also note that there is related work

covering similar topics, such as Contract Element

Extraction (Chalkidis and Androutsopoulos, 2017),

Contractual Obligation Extraction (Chalkidis et al.,

2018), and Contractual Provision Classification

(Tuggener et al., 2020), where models perform

much better (in terms of accuracy), relying on sim-

pler (separate) more carefully designed tasks and

much bigger datasets. Thus we believe that the

points mentioned above, which blur the task defini-

tion of CUAD and introduce noise, and the limited

(compared to larger datasets) number of annota-

tions strongly affect the performance of the models

on CUAD, underestimating their true potential.

We also considered some very interesting legal

Information Retrieval datasets (Locke and Zuccon,

2018; Chalkidis et al., 2021b). However, we de-

cided to exclude them from the first version of

LexGLUE, because they rely on processing multi-

ple long documents and require more task-specific

neural network architectures (e.g., siamese net-

works), and different evaluation measures. Hence,

they would make LexGLUE more complex and a

less attractive entry point for newcomers to legal

NLP. We do plan, however, to include more de-

manding tasks in future LexGLUE versions, as the

legal NLP community will be growing.


