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Abstract  

The prospect of enhancing cognition through behavioural training interventions, for example, the 

repetitive practice of cognitive tasks or metacognitive strategy instruction, has seen a surge in 

popularity over the past 20 years. Although overwhelming evidence demonstrates that such training 

interventions increase performance in the trained tasks, controversy remains over whether these 

benefits transfer to other tasks and abilities beyond the trained context. In this Review, we provide 

an overview of the state of the evidence for the effectiveness of cognitive training in inducing 

transfer, with a particular focus on the theoretical mechanisms that have been proposed to 

potentially underlie training and transfer effects. We highlight that there is relatively little evidence 

that training enhances cognitive capacity, that is, the overall cognitive resource available to an 

individual. In contrast, substantial evidence supports training-induced improvements in cognitive 

efficiency, that is, optimised performance within the existing capacity limits. We conclude that 

shifting research focus towards identifying the cognitive mechanisms underlying gains in cognitive 

efficiency offers a fruitful avenue for developing effective cognitive training interventions. Critically, 

however, to truly advance our understanding of human cognition and cognitive plasticity, we must 

strive for developing and refining theories that allow for deriving falsifiable, testable hypotheses.  
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Mechanisms Underlying Training-Induced Cognitive Change 

A multitude of mental processes is necessary for successfully managing even the most 

mundane situations. For example, when shopping in a supermarket, the item you wish to purchase 

first needs to be retrieved from your memory. Next, to identify the item, you need to perceptually 

process the visual information. Sometimes, when you cannot locate the desired item on the shelf 

right away, you will need to compare the appearance of the items on the shelf to the 

representations of the item you are looking for in your memory. Often, it can help to remember the 

last time you purchased the item in this store: Instead of a time-consuming visual search, you can 

simply focus your attention on the most likely location of the item. Finally, once you have located 

the item and put it into your shopping cart, you need to maintain and update your memory of other 

items you still want to buy.  

To perform efficiently in such a mundane situation, people need to flexibly adapt to the 

demands of changing contexts and dynamic environments. If these demands exceed an individual’s 

range of functional flexibility over a prolonged period of time, cognitive plasticity can be triggered1. 

Plasticity is the brain’s capacity to implement lasting changes that alter its functional and 

behavioural repertoire2,3. One way to advance our understanding of plasticity is to study cognitive 

training [G] and measure its effects on cognitive performance in both the laboratory and everyday 

life.  

Cognitive training interventions typically target fluid cognitive abilities central to human 

learning, problem solving, and innovation throughout the lifespan, including the basic abilities 

required in the situation described above. Fluid cognitive abilities first develop rapidly until young 

adulthood, and then begin to decline with progressing age4. Moreover, they are often affected by 

developmental neurocognitive disorders such as ADHD5 or autism spectrum disorder6, age-related 

disorders such as dementia7, and impairments after acquired brain injury such as ischemic stroke8. 

Therefore, affordable, easy-to-administer interventions that may improve these cognitive abilities 

are highly desirable.  

Due to the flexibility and upscaling potential of cognitive training, research exploring its 

effectiveness [G] has seen a surge in popularity over the past 20 years. Past studies have consistently 

demonstrated training effects [G]. However, the ultimate goal of cognitive training is to establish 

transfer [G] of training to contexts beyond the trained tasks. Inconsistent evidence for such transfer 

effects, pervasive methodological concerns, and an only relatively recent shift towards developing 

more refined theoretical accounts of the mechanisms [G] 9 underpinning training-induced cognitive 

change have led to heated debates in this field. 
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In this Review, a key emphasis will be on theories of training and transfer and the current 

state of evidence of the malleability of the most frequently targeted fluid cognitive abilities: 

perception [G] and attentional control [G] , working memory [G] , episodic memory [G] , and 

multitasking [G] . In contrast to previous reviews of the cognitive training literature10-12,this 

comprehensive Review will highlight the importance of identifying the mechanisms that underlie 

training-induced cognitive performance improvements, and how a more in-depth theoretical 

understanding about these mechanisms can be harnessed to develop more robust, reliable, and 

powerful cognitive training interventions. 

Designs of Cognitive Training Studies  

The gold-standard for testing whether training generates transfer is to use a pretest-posttest 

study design (Figure 1). Training-induced improvements are measured by assessing cognitive 

performance and other outcomes of interest before and after cognitive training, with some studies 

additionally including a follow-up assessment [G] to evaluate the durability of effects. Training 

interventions vary regarding their content; some involve the repetitive practice of cognitive 

laboratory tasks, whereas others focus on metacognitive instructions, for example by teaching 

strategies. Many training interventions comprise 10 to 20 sessions, each taking between 20 and 60 

minutes long; however, some past interventions consisted of just a few sessions13 or hundreds of 

sessions14.  

The measures assessing training-induced improvements vary in the degree to which the 

processes they measure overlap with the processes targeted by the training tasks. Gains in tasks 

assessing the trained processes with a different stimulus materials and/or task structure are 

considered near transfer effects, whereas improvements in measures thought to rely on the trained 

processes to a lesser degree (for example, gains in related but different cognitive constructs or in 

everyday life functioning) are interpreted as far transfer effects15,16.  

To distinguish training-induced effects from simply repeatedly completing the same set of 

measures (“test-retest effects”), a group of participants undergoing the training intervention - the 

training group - is compared to passive control groups [G] or active control groups [G]. Active control 

groups have the advantage over passive control groups that they additionally control for placebo 

and expectancy effects17,18 as well as other non-specific changes that occur due to taking part in an 

intervention in general, for example, benefitting from sticking to a regular training schedule19. 

Moreover, elaborated control group activities allow for pinpointing the specific mechanisms 

underlying and explaining training effects20. The design of these alternative activities is one of the 

biggest challenges in this field. The activities must be as plausible and believable as the training 

group’s activities to elicit similar expectations regarding training success. Importantly, though, the 
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alternative activities must not demand the same cognitive processes as the training activities; 

otherwise, no conclusions can be inferred about the effects of training. What constitutes an ideal 

control group is still heatedly debated and varies between training approaches for different 

processes19-21. Regardless of the type of control group, it is critical to demonstrate that all included 

groups perform similarly in the transfer tasks pre-training to avoid confounding pre-training 

differences and regression-to-the-mean with post-training between-groups differences.  

Other methodological considerations when designing a cognitive training study include the 

validity and statistical power of transfer assessment. In the past, the validity of transfer assessment 

has been questioned because cognitive abilities and other outcomes are often assessed by only a 

single measure22,23 and, hence, do not account for the task impurity problem24. Specifically, single 

measures are not process-pure because they generate task-specific variance in addition to individual 

differences in the outcome of interest. For example, when measuring the ability to update contents 

in working memory only with a letter keep-track task, it is possible that any gains detected in this 

task mostly reflect better performance with the particular stimuli (letters) or the specific paradigm 

(keep-track). To adequately address the task impurity problem and to assess changes in cognitive 

abilities unconfounded with task-specific gains, performance needs to be assessed across multiple 

measures.  

The statistical power of transfer assessment has been criticized because many training 

studies include only relatively small sample sizes although any potential transfer effects can be 

expected to be of a small or medium size at best25. Low statistical power is problematic because it 

can lead to false-negative results [G] 26. For example, in the training literature, groups comprise 

typically no more than 30 participants27,28. For a medium effect size (Cohen’s d = 0.50), this 

translates into a theoretical statistical power of 48%. Thus, even if we were to expect such sizable 

transfer effects, we would be able to detect them only in about every second study. Ironically, low 

statistical power also increases the likelihood of false-positive results [G] 29. Finally, low statistical 

power can also lead to substantially inflated effect sizes30. For example, a simulation study 

demonstrated that, for a true medium effect that is tested with 30 participants per group, about 

98% of effect sizes are inflated31. One way to address these problems is to more adequately power 

cognitive training studies and to evaluate the strength of evidence with Bayesian inference25 (Box 1). 

Importantly, these methodological concerns should not translate into generally dismissing any 

evidence from past studies that did not include active control groups, broad assessment of transfer, 

and adequate sample sizes. However, the strengths and weaknesses of the methodologies used 

must be taken into account when evaluating the overall evidence for the effectiveness of cognitive 

training, in particular when interpreting findings of meta-analyses. Because meta-analyses average 
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across effect-size estimates reported in the primary literature, they directly rely on the 

methodological quality of the empirical studies in the field they are summarising. For example, when 

averaging across overestimated effect sizes from studies with small sample sizes, the overall effect 

size estimate will be equally inflated; similarly, if meta-analyses do not distinguish between actively 

and passively controlled studies, non-specific training effects may contribute to the average effect 

size estimates.  

 
Figure 1. A typical cognitive training study design. Benefits of training are evaluated by comparing changes in measures of 

interest (training, near transfer, and far transfer effects) from pretest (before training) to posttest and follow-up (after the 

end of training) assessments between training group(s) undergoing cognitive training to control group(s) that complete 

alternative interventions (active control groups) and/or no intervention (passive control groups). Note that not all training 

studies conduct a follow-up. 

 

Theories of Training and Transfer 

The theoretical questions that propel cognitive training research are (1) when does training 

generalize, and (2) what cognitive processes change during training. These two questions represent 

two different, but partially overlapping, perspectives on training: To develop maximally effective 

interventions, we need to know not only when transfer occurs, but also which cognitive processes 

are prone to change so training interventions can target them more directly. The reverse is equally 

true: If we can predict how cognitive performance changes during training but lack any theoretical 

idea of how this change may transfer to other contexts, we cannot develop training interventions 

that are indeed effective in improving human cognition. Theoretical accounts and frameworks that 

speak towards both questions can help guide cognitive training research.  

One such framework is the capacity-efficiency model of cognitive training and transfer19 that 

proposes training can induce transfer through two pathways (Figure 2): (1) expanding the cognitive 

capacity [G], or (2) increasing the efficiency [G] in how the existing capacity is used. Cognitive 
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training has often been compared to physical training and, despite its limitations, this analogy can be 

helpful to better understand the distinction between training-induced enhancements in capacity and 

efficiency. For example, when training weightlifting with the goal to lift heavy objects, trainees who 

enhanced their capacity would have increased their actual muscle mass. In contrast, trainees for 

whom training improved efficiency could have figured out how to use leverage to lift heavy objects 

without increasing their actual muscle mass. Neurobiologically, an increase in capacity following 

cognitive training would be reflected in an increase in grey matter; enhanced efficiency would be 

reflected in changes in functional brain connectivity and/or a reduction in overall energy required to 

complete the tasks at hand. These two mechanisms are not necessarily mutually exclusive; for 

example, training may yield broad benefits through enhanced efficiency as well as capacity. 

Critically, different from other theoretical accounts1,32, enhancing cognitive efficiency is not limited 

to the acquisition of strategies or general task knowledge. Other possible mechanisms that may 

underlie training-induced enhancements of efficiency include an increased level of automatization or 

speed of information processing that frees up cognitive resources for other concurrent tasks.  

Generally, enhanced capacity can be expected to lead to broad transfer to any other task or 

activity that draws on the expanded capacity limit. Conversely, efficiency gains due to the acquisition 

of strategies or task-relevant knowledge tend to be task- or material-specific and, therefore, are 

often reflected by only narrow transfer effects. However, depending on their sources, gains in 

cognitive efficiency can also lead to relatively broad transfer effects. For example, a higher level of 

automatization of a core cognitive process can improve performance in a wide range of task 

contexts. Moreover, gains in capacity and efficiency are not necessarily mutually exclusive; training 

may yield broad benefits through enhanced efficiency as well as capacity. Consequently, gains in 

capacity and efficiency do not simply map on single indicators of behavioural near and far transfer 

effects, and a change in any particular neurobiological metric is not conclusively indicative of either 

enhanced capacity or efficiency33. For example, training-induced change in grey matter volume, 

structural integrity, or functional brain connectivity can be correlated with both gains in capacity and 

efficiency; similarly, gains can be accompanied by both a reduction in overall energy required to 

complete the task at hand34, or even an increase in functional activity16. Therefore, relying on single 

behavioural tasks and neurobiological markers is too simplistic; instead, to conclusively distinguish 

between training-induced improvements in capacity and efficiency, it is necessary to theoretically 

identify the potential mechanisms of cognitive efficiency and select transfer outcomes that allow for 

systematically pitting them against changes in capacity, and to interpret the overall pattern of 

outcomes.   
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Transfer effects can manifest in behavioural, neural, and biopsychosocial outcomes. Past 

studies primarily assessed behavioural outcomes using laboratory tasks, with some also considering 

their neural correlates using techniques such as neuroimaging35 (Box 2) and EEG36. Only few studies 

have also evaluated gains in everyday cognition outside of the laboratory37 or biopsychosocial 

benefits such as increased quality of life, wellbeing, and physical and mental health38. Moderators at 

the level of training39-41 or transfer42,43 include factors related to the intervention (for example, 

training tasks44 or conditions45), between-person differences (for example, age, initial cognitive 

ability, biological and neural predispositions, or personality), within-person fluctuations (for 

example, affect, motivation, wellbeing, physical and mental health, or everyday leisure activities), or 

the environment (for example, external events, environment of the intervention).  

Most past cognitive training studies aimed at enhancing capacity based on the idea that it 

will maximally generalise to untrained outcomes. This basic rationale loosely builds on the common-

elements theory46, which hypothesizes that transfer occurs if knowledge components are identical 

across tasks. In later variations and extensions of this theory, identical knowledge has been replaced 

by process47 or functional overlap35. Specifically, if two tasks overlap in the cognitive processes they 

demand, any gains in these underlying processes should transfer from training one task to 

performing the other task. However, this basic rationale of functional overlap comes with two 

challenges. First, training will involve more than just practising what is considered the underlying 

process. Second, tasks may appear to be similar because of similar surface structures or because 

they correlate well, but our understanding of the granularity of underlying processes might be 

wrong. Detailed task analyses and formalised models of cognition48 (Box 3) are necessary to enable 

making testable predictions when transfer can be expected, but these models are rare.  

One approach for deriving testable predictions of transfer effects is to consider the structure 

of individual differences in cognitive abilities49. Put simply, if individual differences in two cognitive 

abilities are more strongly correlated, it is assumed that they have more processes in common and, 

thus, transfer should be more likely. For example, one suggestion16 is to define transfer distance 

based on the three-stratum model49, which differentiates between 69 narrow abilities that are 

grouped into eight broader abilities, with general intelligence on top of the hierarchy. Transfer from 

one task to another within the same narrow ability would constitute nearest transfer, whereas 

transfer within one broad ability would be intermediate transfer, and transfer to a different broad 

ability would reflect far transfer through the change in general intelligence. One criticism towards 

this conceptualization is that it implies that correlation reflects causation, as changes in one ability 

are assumed to causally lead to changes in a correlated ability. However, it is possible that 

correlations between abilities do not reflect common processes but a common biological basis that 
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contributed to their development50. Indeed, evidence from recent working memory training studies 

has shown that transfer may be absent even between strongly correlated tasks51, with findings from 

statistical modelling speaking against the notion of correlations reflecting common cognitive 

processes52. Independent of how transfer abilities are determined though, enhanced capacity is 

assumed to manifest in transfer to a wide range of cognitive tasks.  

Similar to changes in capacity, enhanced efficiency of overlapping processes or acquisition of 

strategies or routines that are useful across different contexts could translate into patterns of 

relatively broad transfer effects19. The triarchic theory of learning53 proposes that, initially, novice 

learners of a new cognitive task will rely mainly on their metacognitive system to generate and 

establish new behavioural routines. These routines may also involve strategies such as grouping of 

information or mental imagery. Once these routines are formed, the metacognitive system’s role will 

diminish, and learners will engage mostly their cognitive control network to execute these new 

routines. Finally, and with sufficient practice, learners will move from controlled towards automatic 

task execution. For example, students of arithmetic might first rely on explicit multiplication but, 

later, can automatically retrieve the previously stored answer (for example, when answering “what 

is two plus two?”). Using the acquired cognitive routines flexibly in different contexts with reduced 

involvement of the cognitive control network may establish transfer without necessarily increasing 

the capacity of the cognitive system.  

In a similar vein, the cognitive routine framework32 suggests that training a task involves 

learning a new skill by developing new cognitive routines. In the beginning of training, when the 

training task is still novel and unfamiliar, general cognitive resources are needed to identify and 

execute the routine, which later becomes automated by the end of the training regime. Transfer will 

be observed if that newly acquired cognitive routine can be applied also in the transfer measure.  
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Figure 2. The capacity-efficiency model of cognitive training and transfer. Cognitive training can lead to transfer through 

enhancing capacity or enhancing efficiency. For example, increasing the amount of information that can be held accessible 

at one time would be an increase in capacity, whereas using a strategy allowing for remembering more items more easily 

stepwould reflect improved efficiency. Transfer can manifest in behavioural, neural, and/or biopsychosocial outcomes that 

overlap with the trained processes to a varying degree. Moderating variables can modulate performance gains during 

training but also the extent of transfer by affecting either or both mechanism(s) of transfer.  

 

Training Effects and Mechanisms 

The fluid cognitive abilities most commonly targeted by cognitive training include perception 

and attentional control, working memory, episodic memory, and multitasking. Below, we will discuss 

the empirical evidence for near and far transfer effects and the mechanisms assumed to underpin 

training and transfer effects for each of these target abilities.  

Perception and Attentional Control 

Perception and attentional control are critical for understanding the environment and 

executing goal-directed behaviours, for example when visually scanning the products in a 

supermarket aisle. Training interventions targeting early basic perceptual and attentional control 

range from using laboratory tasks such as in speed-of-processing training54 to interventions building 

more directly on real-life activities such as mindfulness meditation55,56 and action video gaming57,58.  

Speed-of-processing training is a process-based training [G] approach in which participants 

train variations of the useful field of view test [G] 59,60  to improve their visual search and divided 

attention abilities. Often, to keep the task challenging over the course of training, task difficulty is 

adaptively [G] adjusted to individual performance by displaying the stimuli for a shorter time or 

further apart from each other, or by increasing the amount of visual or auditory distraction, or the 

number of concurrent tasks. A recent meta-analysis54 reported, on average, small training-induced 

improvements in measures assessing speed of processing (d = 0.22), in which participants have to 

identify, locate, and/or compare stimuli (for example letters, pictures, or digits) as quickly and as 

accurately as possible, and in measures of spatial and sustained attention. Thus, speed-of-processing 
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training transfers to other laboratory tasks that measure the same cognitive constructs. Moreover, 

the same meta-analysis found evidence for small far transfer effects to real-word and 

biopsychosocial outcomes such as instrumental activities of daily living (d = 0.27), well-being (d = 

0.21), and driving (d = 0.36). 

Another family of cognitive training interventions involves training tasks that require top-

down attention [G] , for example the go/no-go task61-63 or stop-signal task64,65. In these types of 

tasks, participants have to respond to certain stimuli and inhibit their impulsive response to others. 

Although inhibitory control training rarely transfers to other laboratory tasks66, a recent meta-

analysis67 across 19 studies revealed a small to medium overall benefit  (d = 0.38)of this type of 

training intervention on health behaviours such as reducing the consumption of alcohol68 or high-

calorie food69. The meta-analytic effect was stronger for interventions using stimuli specific to the 

health-behaviour of interest such as food stimuli for interventions aiming at reducing high-calorie 

food intake.  

Different from typical laboratory cognitive tasks, visual environments in action video games 

[G] are more complex and dynamic. The fast-paced and constantly changing task conditions of such 

games require players to perform multiple tasks simultaneously and to continuously update and 

adapt their task goals and actions. Moreover, action video games are typically also highly engaging 

and immersive. Therefore, a growing body of research has explored their potential as interventions 

for enhancing these abilities. However, evidence for the effectiveness of action video game training 

is mixed, with meta-analyses reporting non-significant (g = -0.12 to g = 0.1070) or small effects (g = 

0.3458) on cognitive performance across domains. Estimates vary for more specific domains but, 

overall, suggest only small benefits if any. For example, there is some evidence for small effects on 

top-down attention (g = 0.3158), mixed evidence for improvements in spatial cognition (ranging from 

g = -0.0470 to g = 0.4558), and no evidence for effects on perception (g = 0.2658), and visual attention 

and processing (g = -0.01 to g = 0.2270). In contrast to training, habitually playing action video games 

was consistently significantly associated with better cognitive performance across domains (g = 

0.4070 to g = 0.5558) and on measures of perception (g = 0.7958), visual attention and processing (g = 

0.4570), spatial ability (g = 0.4770 to g = 0.7558), attentional control (g = 0.2770 to g = 0.3158), 

multitasking (g = 0.5558), and verbal cognition (g = 0.3358). Cross-sectional studies investigating 

habitual players cannot rule out self-selection effects though; nonetheless, these findings might 

indicate that playing action video games for a longer time than the typical duration of training 

interventions (that is, around 10 to 50 hours) may still yield cognitive benefits. Differences in study 

inclusion criteria, meta-analytic methods, corrections for publication bias, and characteristics of 

study designs and participants (for example, distinction between different control groups, 
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participant age) likely contribute to the variations in effect sizes, and the discussion continues on 

best practices in those meta-analyses as well as in primary research methods20,71. 

Transfer effects of training interventions targeting perception and attention have been 

attributed predominantly to enhanced efficiency, specifically the acquisition of knowledge and skills 

that, although not being directly applicable to new tasks, nonetheless allow new tasks to be learned 

more efficiently due to improved probabilistic inference [G] 72-74. Specifically, the learning-to-learn 

account72 suggests that, training increases the effectiveness in extracting and accumulating evidence 

from the task environment, thereby optimising  decision-making and resource allocation. The 

learning of how to use the evidence from repeated presentations for performing better is thought to 

take place on a single more general level of improvement, which therefore can yield performance 

improvements in other tasks. 

Working Memory 

Working memory capacity is particularly strongly correlated with many other abilities, such 

as fluid intelligence75. The hypothesis76 that increasing working memory capacity through training 

could lead to neuroplastic changes benefitting these other related cognitive abilities, resulted in 

working memory training to become one of the most extensively studied cognitive training 

approaches.  

Initial excitement about the promise of working memory training arose after seminal studies 

found large improvements in working memory capacity as well as far transfer to fluid 

intelligence77,78. However, subsequent studies addressing methodological concerns such as the lack 

of active control groups failed to replicate most of these far transfer effects using either similar n-

back tasks79 or other working memory training tasks51,80-82. To date, findings remain inconsistent 

even at the meta-analytic level, with some meta-analyses finding evidence of small, yet significant 

far transfer effects (estimates ranging from g = 0.18 to g = 0.20)83-86, while others do not (estimates 

ranging from g = 0.01 to g = 0.20)28,87,88. Furthermore, there is even inconsistent support for the 

presence of near transfer within working memory, as it has been observed for transfer tasks using 

the same stimuli or paradigm but not for dissimilar tasks32,86.  

Given the narrow effects of working memory training at the behavioural level, the claim that 

training increases capacity76 is not well supported. However, neuroplastic changes have been 

observed, including greater interconnectivity89, and improved white matter integrity90 amongst 

networks known to support working memory. These findings raise the question of how these 

apparent neuroplastic changes can be accommodated with the lacking evidence for behavioural 

transfer. Likely, these neural changes reflect more efficient processing and connectivity between 
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existing structures rather than an increase in neural capacity per se. Indeed, no training-induced 

changes were found for potential biomarkers of increased capacity, such as in grey matter volume91.  

How might these changes in efficiency be reflected at a cognitive level? Some evidence 

points towards the acquisition of strategies that are difficult to apply to new contexts92. The context-

specificity of acquired strategies is well exemplified in the case study of participant S.F.93, who 

trained in a digit span task for two years. S.F. was a runner and, thus, re-coded the digit sequences 

into familiar running times he remembered from his long-term memory. With this strategy, he was 

able to expand his digit span from 7 to 79 items. However, his memory span for letter sequences 

remained unchanged because his strategy of utilising running times was not applicable to letter 

stimuli. The strategy remediation hypothesis posits that such task-specific strategies are developed 

during training to compensate for the challenges imposed by the training task94, and therefore will 

benefit performance in highly similar tasks only. For example, working memory training has been 

shown to increase the use of strategies such as grouping, visualisation, and forming semantic 

associations, but only little training-related gains were observed in untrained tasks 94. However, 

strategy acquisition can yield benefits in untrained tasks if they afford these strategies, with studies 

suggesting that improvements in untrained working memory tasks are moderated by the degree to 

which participants utilised various encoding strategies on similar untrained tasks95.  

Few studies investigated other mechanisms possibly underpinning working memory training 

and transfer effects, including interference resolution 51,96, removal of no-longer relevant 

information51, and switching attention between representations51,97, or more global strategies such 

as relying more on familiarity-based processing than recollection. Finally, a further change in 

efficiency may result in improvements in probabilistic learning72, allowing participants to better take 

advantage of task regularities. For example, over the course of completing just a single working 

memory task, performance increased as participants learned to take advantage of statistical 

regularities in the task, allowing them to compress the presented information, thereby using their 

available working memory capacity more efficiently98. These statistical regularities may not appear in 

dissimilar transfer tasks, thereby explaining why improvements become apparent only in similarly 

structured tasks. 

Episodic Memory 

Episodic memory gives individuals a sense of continuity and identity and, therefore, is critical 

to maintain independence across the lifespan. Episodic memory training is often strategy-based [G] 

and involves teaching of mnemonics [G] to support depth and specificity of encoding92,99-102, based 

on mental imagery (for example, method of loci) or elaboration (for example, semantic associations). 

Mnemonics are powerful and studies typically observe near transfer effects98-103. However, a key 
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aspect is that mnemonics must be used with material that lends itself to these strategies. Hence, far 

transfer is usually not assessed with entirely different material but with self-report measures of 

metacognition in which people indicate whether they use the mnemonics in everyday life and 

whether this alleviates difficulties in complex activities. Although these interventions seem to 

improve knowledge and use of mnemonics in everyday life, there is little evidence for benefits on 

complex daily activities37,100,102-104. Nonetheless, a meta-analysis of 30 studies showed that strategy 

training can, on average, induce small benefits on activities of daily living (d = 0.32) and mood (d = 

0.16), and metacognition, including a stronger sense of self-efficacy [G] (d = 0.37)104. 

To facilitate transfer of training, some studies have combined strategy training with explicit 

metacognitive approaches. For example, the Méthode d'Entraînement pour Mémoire Optimale 

(MEMO) programme101,102 teaches a range of mnemonics but also includes explicit instructions 

regarding when and for which type of material the mnemonics are appropriate to use. The 

programme also educates about age-related memory changes and how to improve metacognition 

and self-efficacy. Similarly, strategy-adaptation training, which encourages participants to test 

strategies in different contexts was found to yield transfer105. These findings show that it is critical to 

instruct trainees how to adapt trained strategies to meet the demands of unpractised tasks and 

contexts.  

Process-based approaches to improving episodic memory include interventions 

manipulating memory load, retrieval intervals, or interference during retrieval. Studies targeting 

memory load administered episodic associative memory tasks in which participants have to 

remember an adaptively increasing number of associations, for example, objects and their locations. 

Findings of these studies are mixed. In an object-location memory training study, transfer to spatial 

episodic memory and reasoning was observed four months after training106. However, a study 

administering paired-associates training found no transfer effects to untrained tasks involving 

episodic associative memory or reasoning107. 

Studies that manipulate the spacing of repeated retrieval build on the robust finding that 

memory is better after spaced than massed learning108. One explanation for the benefits of spaced 

retrieval is that the intervals introduce variability at encoding, hence allowing a larger spectrum of 

retrieval cues resulting in better performance. Another possible explanation is that spaced retrieval 

ensures an optimal balance between retrieval effort and retrieval109. Generally, practising with equal 

intervals can be equally effective as practising with expanded schedules where the intervals between 

recalls gradually increase over the learning phase110,111 . Yet, the more frequent positive feedback 

during the early learning phase with expanded schedules might increase interest in the training task 

and reduce frustration.  
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Another approach is to manipulate the level of interference at retrieval by interspersing 

recall with varying materials, referred to as repetition-lag training. The rationale of repetition-lag 

training is to increase reliance on consciously controlled, recollection-based memory processes over 

automatic, familiarity-based memory processes112-115. Participants first study lists of items and are 

then probed for study items in recognition trials that include a gradually increasing number of lures 

that are repeated at increasingly longer intervals. This procedure has been shown to benefit 

recollection in younger and older adults112-118 and in people with dementia115. These positive effects 

were found to last over a three month delay period114. However, transfer of those gains to novel 

materials or tasks is weak112-114,116,117.  

Multitasking 

Multitasking entails flexibly switching between tasks (task switching) or performing them 

concurrently (dual tasking)119. Task switching training studies have demonstrated substantial 

reductions in switch costs [G] in the trained tasks across the lifespan (for meta-analyses, see84,120), 

including in clinical groups such as children with ADHD121. Most studies also reported near transfer 

effects in untrained switching tasks122, suggesting improvements in the ability to flexibly switch tasks 

on a trial-to trial basis in the context of interference from other active, competing task sets. 

However, the amount of near transfer varies - for example, it is much larger in healthy children and 

older adults than in younger adults123. Findings of far transfer following task switching training are 

inconsistent, with some studies reporting transfer to other executive functions and fluid 

intelligence123,124, others observing no far transfer at all125,126.  

The Primitive Information Processing Elements (PRIMs; see also Box 3) model can explain 

the mechanisms underlying task switching training and predict transfer effects47. Specifically, broad 

transfer has been demonstrated in task switching training regimes that administered alternating-run 

task switching paradigms, in which participants have to monitor the task sequence to switch tasks at 

the appropriate time, but they also have the opportunity to prepare for upcoming task switches in 

advance. Thus, participants are forced to use a proactive cognitive control strategy48,127. The PRIMs 

model conceptualises this proactive strategy in task switching as two operations acting in 

concordance. Before the stimulus appears, the first operator initiates task preparation and, if 

necessary, adjusts the task goals. Once the stimulus has appeared, the second operator carries out 

the task goal. Transfer will be demonstrated in tasks that can reuse these proactive operators. For 

example, in a Stroop task that requires naming the ink colour of a stimulus while suppressing the 

predominant tendency to read the word (for example, “GREEN” printed in red ink), the second 

operator focuses attention on the relevant stimulus dimension (the ink colour), thereby overruling 

the default operator that would attend all attributes of the stimulus. Hence, training task switching is 
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thought to be effective because the proactive operators are trained and, therefore, become more 

efficient to use. 

Similar to task switching training, research on dual-task training has shown that dual-task 

costs [G] can be extremely reduced and, under some conditions, even eliminated128,129. Training 

studies aiming to reduce dual-task costs often compare fixed-priority to variable-priority conditions. 

Under fixed-priority conditions, participants are asked to emphasise both tasks equally throughout 

training. In contrast, in variable-priority conditions, participants are instructed to flexibly vary their 

task response priorities, thereby constantly varying how attentional resources are split between the 

two tasks. Findings from these studies suggest that, during dual-tasks trainees acquire skills that 

optimise allocation of limited attentional resources when processing multiple competing tasks130-136. 

Moreover, consistent with this proposition, larger training-related improvements have been 

observed under the variable-priority than in fixed-priority conditions also for untrained dual tasks. 

Alternatively, dual-task training could induce acquisition of skills for improving coordination of 

multiple tasks. To test this hypothesis, effects of fixed-priority dual-task training were compared to 

pure single-task training, in which participants exclusively trained two tasks separately128,137. Indeed, 

dual-task training led to larger improvements in dual-task performance than single-task training, 

both in trained and in untrained dual tasks129,138,139, thus demonstrating the acquisition of 

transferable gains in task coordination skills. It is disputed, however, whether these skills are 

accessible in other task contexts, with some studies showing short-term far transfer effects (for 

example in measures of sustained attention and working memory36,140) whereas others do not141,142. 

Summary and Future Directions  

Independent of the cognitive ability targeted and of the approach taken, people undergoing 

cognitive training interventions usually show large improvements within the trained context. 

However, broad transfer to cognitive, neural, or biopsychosocial measures different to the training 

tasks is much more elusive. In this Review, we argue that, to advance our understanding of how to 

develop cognitive training interventions that are successful in generating transfer, it is critical to 

identify the mechanisms underpinning training and transfer effects. Evidence from past research in 

the cognitive domains we reviewed highlights several candidate mechanisms (Table 1).  

Returning to the capacity-efficiency model of cognitive training and transfer we introduced 

earlier (Figure 2), these findings suggests that transfer, if it occurs, is primarily driven by 

improvements in cognitive efficiency, with little convincing evidence for gains in overall cognitive 

capacity. Shifting research focus from attempting to increase cognitive capacity towards how to use 

cognitive training to enhance cognitive efficiency might indeed be a more fruitful avenue for future 

research. Notably, until relatively recently143,144, assuming a fixed capacity was indeed the 
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predominant view145. At first, the notion of a fixed capacity limit may seem contradictory to that of a 

plastic brain. Importantly, however, as highlighted by the empirical evidence we reviewed, a fixed 

capacity does by no means imply that cognitive performance is immutable. Instead, some of the 

processes that appear to be prone to training-induced enhancements of cognitive efficiency could be 

potentially useful in a wider range of contexts. To advance our understanding of cognitive plasticity, 

future research will need to investigate these mechanisms further and identify how they can be 

harnessed for developing interventions that are effective in inducing generalisable cognitive 

improvements. For example, explicit metacognitive instructions to support trainees in applying 

strategies across contexts101,102,146 and adaptive process-based metacognitive training, in which 

participants practise to more accurately estimate their own performance147, appear to be promising 

avenues for achieving broader transfer. Metacognitive instruction could also be a potential avenue 

for maximising transfer of efficiency gains in probabilistic inference and attention allocation.  

Cognitive training can be a powerful experimental tool for researching individual differences 

in cognition. Patterns of transfer can yield insights of how cognitive abilities are related, including 

advancing our understanding of the causality underlying these relationships52. Moreover, identifying 

the mechanisms that are prone to change through cognitive training can offer insights about the 

nature of individual differences in cognition. Especially when combined with neuroimaging (Box 2) 

and computational modelling approaches (Box 3), cognitive training can help to delineate the 

relative contribution of individual differences in cognitive capacity and cognitive efficiency to overall 

cognitive performance, on both a conceptual and analytical level. Critically, to fully exploit cognitive 

training as an experimental tool to advance our understanding of human cognition and cognitive 

plasticity, we must move past vague theoretical notions of common elements and strive for 

developing theories that allow for deriving falsifiable, testable hypotheses.  

 

Table 1. Pattens and mechanisms of transfer with empirical support.  

Ability Observed patterns of transfer Mechanisms of transfer with empirical 

support 

Perception and attentional 

control 

Near transfer, some far transfer Improvements in probabilistic inference 

Working memory Near transfer, disputed far transfer Acquisition of strategies 

More efficient attention allocation 

Improvements in probabilistic inference 

Episodic memory Near transfer, some far transfer Acquisition of strategies 

Improved metacognition 

Multitasking Near transfer, disputed far transfer More efficient attention allocation 

More efficient task coordination 

Engagement of proactive control strategies 

 



18 

 

Box 1: Using Bayesian statistics for evaluating the evidence of cognitive training effectiveness 

Low statistical power has plagued the cognitive training literature, with the average working 

memory intervention only capable of detecting 38% of true effects25. This is particularly problematic 

when using null-hypothesis significance testing (NHST) for analysis: non-significant p-values do not 

distinguish between the true lack of an effect or there being insufficient data to detect the effect. In 

addition, significant p-values do not provide any information about the likelihood of the alternative 

hypothesis148. Finally, p-values ‘dance’ around the significance threshold149, and repeated sampling 

artificially increases false-positive results29. 

To address these issues of NHST, many have advocated for the use of Bayesian statistical 

analysis148,150,151. A Bayesian analysis quantifies one’s beliefs about a model after observing some 

data, and these posterior beliefs about different models can be compared in the form of Bayes 

factors. Bayes factors are ratios (ranging from 0 to ∞) of the relative belief in one model (the 

numerator, for example the null hypothesis) over another (the denominator, for example the 

alternative hypothesis). The magnitude of the Bayes factor indicates the strength of evidence in the 

data, which allows one to identify whether there is sufficient evidence to distinguish one model over 

the other, or whether further testing is warranted; a possibility not supported by NHST148. Different 

to NHST, where repeatedly peeking at the data increases the likelihood of false-positive findings151, 

Bayesian experimenters can collect data until the Bayes factor passes a pre-selected (ideally pre-

registered) threshold in favour of either model. Although rules of thumb exist about what 

constitutes an appropriate threshold152,153, we suggest authors select a value appropriate to the field 

and phenomenon being studied. 

Straightforward, accessible implementations of many Bayesian tests are now readily 

available154,155. The few cognitive training studies that have analysed their data with Bayesian 

inference focused mainly on working memory training. For example, a Bayesian re-analysis156 of one 

meta-analysis83 found that studies using a passive-control group showed strong evidence of transfer 

to other abilities. However, studies with active-control groups showed modest evidence in support 

of the null. A similar re-analysis25 of another meta-analysis27 found that 68% of working memory 

training interventions did not produce sufficient evidence to disambiguate the two competing 

hypotheses regarding transfer. Of the 9 studies which found sufficient evidence either way (Bayes 

factors > 3), 6 showed stronger evidence in support of the null than the alternative. Similarly, within 

studies on executive functioning and reasoning training, 55% had insufficient data to disambiguate 

the competing hypotheses, 38% strongly supported the null and 7% strongly supported the 

alternative. 
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Box 2: Contribution of brain imaging to the field of cognitive training 

Brain imaging refers to a range of investigative methods that aim to reflect the structure, 

function, pharmacology or metabolism of the brain. Most studies that have used brain imaging as 

part of cognitive training have relied on structural or functional brain imaging. Imaging-derived 

quantitative information about the structure of the brain includes whole-brain and regional grey 

matter volumes, cortical thickness, and white matter integrity and other microstructure. Functional 

brain imaging reveals patterns of brain activation when participants are at rest or when they 

perform cognitive tasks. Brain imaging can contribute in several ways to the field of cognitive 

training. 

Theory Development 

Brain imaging can provide unique information on the neural and cognitive mechanisms by 

which training exerts its effect. For instance, the INTERACTIVE model157 proposes that training-

related activation varies according to the characteristics of the intervention (for example, 

intervention dosage) and characteristics of the individual (for example, pre-training brain status). 

Brain imaging can also be used to assess transfer models. For instance, findings from brain imaging 

provided support to the hypothesis that transfer depends on the overlap between the brain regions 

associated with the training task and those associated with the transfer task35. 

Brain imaging can also be used to better understand brain plasticity in humans by revealing 

neural compensatory mechanisms associated with patterns of cognitive changes1,158-160. 

Furthermore, brain imaging can contribute to refining cognitive reserve models measuring whether 

training-induced brain changes correspond to those observed in individuals who have lived a 

cognitively stimulating life161. 

Translational Research and Clinical Application 

Neurobiological models of training can aid clinicians in the informed selection of suitable 

training programmes. For example, when selecting the best programme for a particular population, 

clinicians may choose training approaches that restore damaged regions or for approaches that rely 

on intact regions157,162. Brain imaging indicators can also be used as surrogate markers of cognitive 

training effects163, that is, clinically meaningful measures of therapeutic effects when optimal clinical 

outcomes are difficult to obtain. For example, hippocampal volume or metabolic changes might 

serve as a surrogate marker of cognitive training benefits on dementia progression103. 

Finally, brain imaging can reveal who benefits best from cognitive training: Studies have 

used brain imaging to identify responders based on their brain structure and/or function. For 

instance, performance gain in variable-priority training was predicted by pre-training volume of the 

dorsal striatum but not by pre-training volume of the hippocampus164. 
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Still, neuroimaging has caveats that should be recognized. Neuroimaging methods with high 

spatial accuracy usually lack temporal accuracy and vice versa. Functional neuroimaging methods are 

only indirect measures of brain activity. More work is needed to determine the sensitivity to change 

and reliability over time of these different techniques. Finally, the biological relationship to disease 

of surrogate markers should be well understood and relevant to the clinical effect they are intended 

to reflect. 

Box 3: Using computational modelling approaches to advance understanding of training and 

transfer 

As cognitive training research is moving beyond the dichotomous question of whether 

training can improve performance towards how it can induce change, there is a growing need for 

more precise theories of training and transfer that enable formulating quantifiable and testable 

predictions. Formalised, computational explanatory and measurement models can serve this 

purpose165. 

Explanatory models seek to explain why behaviour differs across conditions. These models 

are particularly useful for creating a shared, precise understanding of theoretical assumptions and 

their consequences165. For example, a puzzling empirical finding of some working memory training 

studies is the observation of far transfer in combination with a lack of near transfer77,124. Relying on a 

verbal account of common-elements theory46, one interpretation of these findings is that the 

working memory training and transfer tasks do not measure overlapping processes166. Thus, training 

may well increase capacity, but the near transfer task is an inadequate measure to capture that 

capacity. However, this explanation is ultimately non-falsifiable: whenever near transfer is observed, 

the tasks must share elements; otherwise, they are too different. Falsifiability can be preserved by 

implementing a formal model that quantifies when two tasks are considered to share sufficient 

elements for generating transfer. The Primitive Information Processing Elements (PRIMs) model48, 

which builds on the Adaptive Control of Thought—Rational (ACT-R) cognitive architecture167, is such 

a formalised implementation. According to the PRIMs model, training specific tasks will hone general 

skills that can be reused in transfer tasks that share the same pattern of how information is directed 

through the cognitive system – consequently, training and transfer tasks can look highly dissimilar. 

Using PRIMs to model the patterns of information routing for two or more tasks allows for making 

falsifiable predictions when to expect transfer effects. 

Measurement models allow for estimating latent variables from empirical data based on 

formalised theoretical assumptions. These types of models are particularly useful to gauge what 

cognitive processes change during training. For example, one common finding in cognitive training 

studies that involve practice of speeded tasks is a reduction of overall reaction times124,168: with 
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increasing practice, participants become faster in the training tasks. There are multiple reasons for 

this improvement in speed: over the course of training, trainees might prioritise responding quickly 

over responding accurately, speed up their motor response, or increase the rate in which they can 

extract information from the environment to guide their response. The diffusion model is a 

measurement model that allows for disentangling these psychological processes assumed to 

underlie behaviour in speeded cognitive tasks169. Research has shown that these processes relate 

differentially to other behaviours; specifically, only the rate of information extraction – the drift rate 

– predicts individual differences in fluid intelligence170,171. Therefore, it is plausible to hypothesise 

that only people improving in drift rate exhibit transfer effects to outcomes related to the drift rate, 

such as fluid intelligence. Our group is currently testing this hypothesis in ongoing work. 

Glossary Terms 

Perception: Organization, identification, and interpretation of sensory information to form mental 

representations. 

Attentional control: Ability to regulate information processing during goal-directed behaviour.  

Working memory: Ability to temporarily access mental representations needed for complex 

cognition in the present moment.  

Episodic memory: Ability to encode and retrieve information with their appropriate context.  

Multitasking: Ability to shift and divide attention between different tasks. 

Cognitive training: Behavioural interventions designed to improve cognitive performance. 

Effectiveness: Positive training effects in ecologically valid, real-world settings with only little 

experimental control and in non-homogeneous samples.  

Training effect: Performance improvement in the training tasks (also: training gains) from the first 

training session to the last training session. 

Transfer: Performance improvement in outcomes that differ from the training tasks. 

Mechanism: A theoretical construct specifying the function and organisation of one or more 

processes and their interplay with other processes and/or biological substrates.  

Follow-up assessment: An additional assessment of outcomes some time, often around 3 to 6 

months, after the end of training. 

Passive control group: Group of participants who do not perform any cognitive training but take 

part in the pre-test and post-test (and follow-up). 

Active control group: Group of participants who complete an alternative intervention that does not 

rely or relies less on the cognitive ability targeted by the cognitive training intervention.  

False-negative results: A statistical test result which wrongly indicates the lack of an effect. 

False-positive results: A statistical test result which wrongly indicates the presence of an effect. 
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Enhanced capacity: Training-induced increase in the overall cognitive resource available to an 

individual. 

Enhanced efficiency: Training-induced increase in flexibility to optimize performance within the 

existing capacity limits. 

Process-based training: Repetitive practice of tasks that are assumed to measure basic cognitive 

processes. 

Useful field of view test: (UFOV test). Computer-based measure of the spatial area and speed with 

which a person can discriminate stimuli presented in central vision with or without concurrent tasks 

and distractors in peripheral vision. 

Adaptive training: Task difficulty is (often automatically) adjusted as a function of individual 

performance in the training task, so that the challenge of the training tasks matches how well the 

trainee performs them. 

Top-down attention: Goal-oriented, voluntary allocation of attention to particular features, 

locations, or objects. 

Action video games: Video games with a fast-paced, complex, and dynamic visual environment with 

a high degree of visual clutter and distraction, demanding focused and distributed attention. 

Probabilistic inference: Computing the probability of one or more random variables using a specific 

value or set of values. 

Strategy-based training: Instruction of mental processes or strategies that differ from those typically 

involved in the task.  

Mnemonic: Strategy that helps to remember larger amounts of information.  

Self-efficacy: A person's belief in their ability to manage and succeed in a particular situation. 

Switch cost: Difference in performance (for example, response times) between stay trials, in which 

participants perform the same task as in the previous trial, and switch trials, in which participants 

perform a different task than in the previous trial. 

Dual-task cost: Difference in performance (for example, response times) between dual-task trials, in 

which participants perform two tasks simultaneously, and single-task trials, in which participants 

complete the two tasks separately. 
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