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Abstract. Graph neural networks (GNNs) are emerging as a powerful
technique for modeling graph structures. Due to the sparsity of real-
world graph data, GNN performance is limited by extensive sparse ma-
trix multiplication (SpMM) operations involved in computation. While
the right sparse matrix storage format varies across input data, existing
deep learning frameworks employ a single, static storage format, leaving
much room for improvement. This paper investigates how the choice of
sparse matrix storage formats affect the GNN performance. We observe
that choosing a suitable sparse matrix storage format can significantly
improve the GNN training performance, but the right format depends
on the input workloads and can change as the GNN iterates over the
input graph. We then develop a predictive model to dynamically choose
a sparse matrix storage format to be used by a GNN layer based on the
input matrices. Our model is first trained offline using training matrix
samples, and the trained model can be applied to any input matrix and
GNN kernels with SpMM computation. We implement our approach on
top of PyTorch and apply it to 5 representative GNN models running
on a multi-core CPU using real-life and synthetic datasets. Experimental
results show that our approach gives an average speedup of 1.17x (up to
3x) for GNN running time.

1 Introduction

In recent years, graph neural networks (GNNs) [46] are shown to be effective in
extracting information from graph structures like social networks with millions
of nodes and billions of edges [8]. Indeed, GNNs account for over 90% of the
leading models in solving the open graph benchmark suite [16,17].

A GNN is designed to propagate and aggregate information across graph
nodes. This is achieved by applying a kernel function to a feature matrix of graph
nodes, which captures the properties of nodes, as well as an adjacency matrix
that encodes the connectivity of graph edges. The kernel function is typically
implemented using matrix multiplications [46] that often dominate the GNN
execution time during training and inference. Because most of the nodes in a
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real-life graph only have a small number of direct neighbors, the graph adjacency
matrix that a GNN kernel operates on is often sparse (i.e., many matrix elements
are zeros). As a result, the matrix multiplication computation within a GNN is
essentially sparse matrix multiplication (SpMM) operations.

There is an extensive body of work in optimizing SpMM for scientific work-
loads [13]. Various sparse matrix storage formats have been proposed to re-
duce the memory and computation overhead of SpMM [14,19]. Studies have also
shown that choosing the right storage format can have a significant impact on
the SpMM performance [21]. Although SpMM performance optimization is a
well-studied field in traditional high-performance computing (HPC) domains,
the benefit of sparse matrix storage format selection is unclear on the new GNN
workloads. Existing deep learning frameworks like PyTorch [23] and Tensorflow
[1] all use a single, static sparse matrix storage format across graph inputs. Since
GNNs are becoming an important application class, it is essential to understand
how GNN performance can benefit from sparse matrix format selection.

This paper presents the first study of sparse matrix storage selection on
GNN performance. We consider five representative GNN architectures and six
commonly used sparse matrix storage formats. We empirically demonstrate that
choosing a suitable sparse matrix storage format can have a significant perfor-
mance benefit, but the right format changes depending on the input matrix.
We show that unlike traditional HPC workloads, the matrix sparsity can change
over time as the GNN iterates over the input graph; and as a result, the suitable
format can vary throughout GNN execution.

In light of this observation, we employ machine learning to automatically
construct a predictive model based on XGBoost [7] for sparse matrix format
selection. Our predictor predicts, at runtime, the sparse matrix storage format
and the associate SpMM computation kernel for each GNN kernel. Our pre-
dictor is first trained off-line using synthetic matrix data. Then, using a set of
automatically tuned features of the matrix input, the predictor determines the
optimal storage format to use before entering a kernel. We showcase that our
approach is generally applicable and can adapt to various optimization goals to
find different trade-offs between the memory overhead and execution time.

We evaluate our approach by applying it to five GNN architectures running
on multi-core CPUs using both real-life and synthetic graph data. We compare
our approach against two prior machine-learning methods [27,24] for selecting
sparse matrix storage formats. Experimental results show that our approach
gives better performance over alternative optimization strategies by giving an
average 1.17x speedup. The performance of our approach translates to average
89% of the oracle, a theoretically perfect predictor for storage form selection
(Section 6.3). performance given by a theoretically perfect predictor.

This paper makes the following contributions:

– It is the first paper to study sparse matrix storage format selection on GNN
performance;

– It shows how machine learning techniques can be employed to develop a
runtime predictor for optimizing GNN sparse matrix format selection;
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– It provides quantified performance results of widely used sparse matrix stor-
age formats on representative GNN architectures.

2 Background

2.1 Graph Neural Networks

A GNN operates on a graph structure, where each graph node is associated with
a d-dimensional feature vector of numerical values known as embeddings. Edges
between nodes indicate their relationship, quantified with edge weights. For a
graph with N nodes, the graph edges are encoded in an N×N adjacency matrix,
A, and the node embeddings are stored in an N × d feature matrix, X.

Like most neural networks, a GNN model can have multiple layers. Each
layer is represented by two functions: i) an aggregation function and ii) an up-
date function (i.e., a combination function). During training, a GNN takes as
input the adjacency matrix, A, of the graph. It then uses a neighbourhood ag-
gregation scheme to update the feature vector of each graph node based on the
feature vector of its neighboring nodes. Feature aggregation is performed by first
applying the aggregation function (e.g., reductions) to collect the features of the
neighbours for a given node and then updating each node’s feature vectors using
the updating function. After repeating this process of updating node features for
a fixed number of times, a readout function is applied to aggregate the feature
matrix to a single numerical vector to be used as the graph representation.

The aggregation and update functions used by a GNN layer are implemented
using matrix multiplications. Because the graph adjacency matrix, A, is sparse
in many real-life graphs, the GNN matrix multiplications are often realized as
SpMM to reduce the memory footprint and processing time [17]. When profiling
5 representative GNN models (Section 5.1) on real-life datasets, we find that
SpMM can account for 95% of the GNN processing time.

2.2 Sparse Matrix Storage Formats

Our work considers the following commonly used sparse matrix storage formats:

COO. The coordinate list (COO) stores a list of (row, column, value) tuples of
non-zero elements. This is the default storage format used by PyTorch-geometric
[11] for graph processing.

CSR. The compressed sparse row (CSR) format uses three arrays to represent
non-zero matrix elements, that respectively contain non-zero values, the begin-
ning position of each row, and the column indices of non-zero elements. CSR is
similar to COO, but compresses the row indices, hence the name.

CSC. The compressed sparse column format (CSC) is similar to CSR, with one
exception for using an array to store the target matrix’s row indices of non-zero
elements instead of column indices as in CSR.

DIA. The diagonal format (DIA) stores non-zero elements along the diagonal
direction of a matrix into a row of a 2-dimensional array. It is best suited for
non-zero elements that appear along the diagonals of a matrix.
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Table 1. Input matrix sparsity from graph datasets

Name Adj. Matrix Density Adj. Matrix Size Node Feature Vector
Dimension

CoraFull 0.6% 19, 793 × 8, 710 19,793
Cora 1.27% 2, 708 × 1, 433 2,708
DblpFull 0.31% 17, 716 × 1, 639 17,716
PubmedFull 10.02% 19, 717 × 500 19,717
KarateClub 2.94% 34 × 34 34

CSR BSR
COO

CSR
BSR
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Fig. 1. The best-performing storage format
per dataset.
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Fig. 2. Changes of the adjacency matrix
density over GNN training epochs.

BSR. The block sparse row format (BSR) evenly divides the input matrix into
blocks. It is CSR with dense sub-matrices of fixed shape instead of scalar items.

DOK. The dictionary of keys format (DOK) stores key-value pairs<(row,column),
value> in a dictionary (e.g., a hash table). Elements that are not presented in
the dictionary are treated as zero elements.

LIL. The linked list (LIL) format stores non-zero elements and their column
indices in a linked list. This format uses a row-based linked list, where each row
is a list of column indices of non-zero elements.

3 Motivation
As a motivating example, consider applying a two-layered graph convolution
network (GCN) model [18] to 5 real-life graph datasets (Table 1) using the 7
sparse matrix storage formats described in Section 2.2.

3.1 Setup

In this experiment, we consider five real-life graph datasets used in prior work
[2]. Table 1 summarizes the size and sparsity of the graph adjacency matrix,
and the dimension of the node feature vector (a dense vector). We run the GCN
model on a 2.0 GHz 20-core Intel Xeon CPU. We note that it is common to run
a GNN on the CPU due to the large memory footprint of graph processing [2].

3.2 Results

Figure 1 shows the best-performing sparse matrix format for each dataset, when
a format is used to encode the initial model input and used throughout the
model training process. Here, we normalize the measured runtime against the
time of the PyTorch-geometric default COO format. While COO gives the best
performance on DBLPFull, it leaves much room for performance improvement on
other datasets. Furthermore, we also observe that the best-performing storage
format varies depending on the input dataset.
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Fig. 3. Performance improvement over the PyTorch-geometric default COO format
on the CoraFull (a) and PubmedFull dataset (b) when using different sparse matrix
format to store the output of the first GNN layer.

If we now consider Figure 2, we see that the density of the input matrix
increases as we iterate over the GNN model on the CoraFull dataset. This is
expected as a GNN tries to incorporate further neighbourhood information by
iterating over the graph, which in turn increases the reach and information prop-
agation of a graph node. As can be seen in figure 3, CSR is the best format used
to store the neural network input (i.e., the feature and the adjacency matrix) for
both the CoraFull and PubmedFull datasets. Thus, for a model with a single
layer GNN, CSR might be the best storage format. However, for a typical GNN
model with multiple GNN layers, the sparsity of the matrices processed by the
latter layers can change, calling for a different storage format to be used. Specif-
ically, for CoraFull (figure 3(a)) used in our setting, using CSC, LIL and DIA
after the first GNN layer can also give a relatively good speedup over COO,
but these format give no benefit on PubmedFull (Figure 3(b)) because of the
changing distribution of the non-zero elements, the details can be seen in figure
3.

Lesson learned. This example shows that choosing the right sparse matrix
storage format can have a significant performance benefit, but the choice depends
on the input data and the GNN layers. Therefore, the decision for storage format
should be made on a per GNN layer basis during runtime.

4 Our Approach
Our work aims to choose the most efficient sparse matrix storage format for ac-
celerating GNN performance or finding a trade-off between the memory footprint
and runtime. As the right choice depends on the characteristics of the input ma-
trix processed by a GNN layer, and the optimal storage format can change over
the duration of the training, we wish to develop an approach to automatically
derive a storage format (and the SpMM kernel) on a per input basis.

To this end, we employ machine learning to build a classifier to predict the
sparse matrix storage format to use from a pool of candidate formats. The pre-
dictive model takes as input a feature vector of numerical values, which describe
the essential characteristics of the input matrix. It then produces a label, in-
dicating which of the storage formats to be used by a GNN layer. We provide
APIs (Section 4.6) to monitor the input matrix sparsity and dynamically adjust
the storage format to use before entering a GNN layer at runtime. If the chosen
format is different from the one used by the previous layer or a prior training
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Fig. 5. Overview of our training process

epoch, our library will convert the input matrix to the chosen format. Note that
we include the overhead of format conversion and feature extraction in all our
experimental results.

4.1 Predictive Modeling

Our predictive model builds upon the XGBoost classifier [7]. We have evaluated
a number of alternative classification techniques, including multilayer perceptron
(MLP) neural networks, K-Nearest neighbour (KNN), and support vector ma-
chines (SVM). We choose XGBoost because of its good generalization ability [7],
its decision-tree-like structure is interpretable, and its better and more robust
performance over alternatives on our problem (Section 6.4). In the remainder of
this section, we describe our predictive model by following the classical 4-step
process for supervised learning: i) problem modeling, ii) training data generation,
iii) train a predictor and iv) implement the predictor.

4.2 Problem Modeling

Figure 4 depicts the workflow of our approach. The deployed model extracts
features from the adjacency and feature matrices and uses the feature values
to predict the sparse matrix storage format to use. Our library automatically
converts the input matrix to the selected storage format if needed. Note that
a SpMM computation kernel can be chosen based on the object type of the
input. Since we implemented our prototype in PyTorch, this computation kernel
selection process is performed automatically by the Python library.

As depicted in Figure 5, our model is trained offline using training samples.
The trained model can be applied to any previously unseen matrix. Training in-
volves finding the best storage format, extracting feature values for each training
matrix and learning a model from the training data, described as follows.

4.3 Training Data Generation

We use 300 synthetically generated square matrices to train the XGBoost model.
The matrix size of our training samples ranges from 1, 000 to 15, 000, increased
with a step of 200. We populate the matrix with random values of 0 and 1 with
a sparsity ranging from 0.1% to 70%, to simulate the matrix sparsity seen at the
initial model graph input and later message propagation stages. For each training
matrix, we exhaustively execute the SpMM computation kernel with each sparse
matrix storage format and record the best performing format for each matrix
sample on each kernel. We then label each best-performing configuration with
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Fig. 6. How often a storage format is considered to be optimal on our synthetic training
data when varying the weight w in Eq 1. Noted that there might be multiple optimal
formats for a single input if the final output O is very similar (±0.0001).

a unique number (i.e., class label). Note that we apply cross-validation in our
evaluation to make sure we always test the trained model on unseen datasets.

Optimization goal. Our approach allows the user to find a trade-off between
the memory footprint and the GNN performance and train a predictive model
for their optimization goal. Specifically, in this work, we consider the following
optimization formulation, but other formulas can also be used:

min
O

Ol∈L = w ×R+ (1.0− w)×M (1)

where R and M are the normalized running time and memory footprint for a
sparse matrix storage format from a collection of candidate formats (L), and w

is a configurable weight parameter. Note that we scale the execution time and
memory footprint to the (0, 1) range using the min-max values found from the
profiled training data. Essentially, our goal is to minimize the weighted sum, O
in Eq 1 to trade runtime for a lower memory footprint. For example, setting w to
0 and 1.0 means we only optimize for memory overhead and speeds respectively.

Our training data includes the raw measurements of the execution time and
memory footprint for each storage format under each matrix. We then apply the
Eq 1 to label the storage format that gives the smallest O for each training sam-
ple. Figure 6 lists the frequency of a storage format to be found to be optimal
on our training dataset. Here, the x-axis shows different settings of w in Eq 1.
As can be seen from the diagram, the optimal storage format can vary depend-
ing on the optimization criterion. Our approach can adapt to such changes by
automatically learning from the training samples (see Section 4.5).

For each training data sample, we also extract the values of a selected set of
features (described in Section 4.4). We note that training is a one-off cost, and
the trained predictive model can be used by any GNN model to optimize the
SpMM computation kernel.

4.4 Feature Engineering

Feature selection. A key aspect in building a good machine learning predictor
is finding the right representation, or features, to capture the essential charac-
teristics of the input workload. We start by considering over 30 raw features
chosen based on previous work of SPMV optimization [27]. Most of the features
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Table 2. Matrix feature used by in our predictive model

No. Featur. Description No. Featur. Description

F1 numRow # rows F2 numCol # columns
F3 NNZ # Non-zeros F4 N diags # diagonals
F5 aver RD Avg. # non-zero ele-

ments per row
F6 max RD Max. # non-zeros per

row
F7 min RD Min. # non-zeros per

row
F8 dev RD Standard deviation of

non-zero numbers per
row

F9 aver CD Avg. # non-zeros per
column

F10 max CD Max. # non-zero values
per column

F11 min CD Min. # non-zero values
per column

F12 dev CD The deviation number of
non-zeros per column

F13 ER DIA Ratio of non-zeros in di-
agonals

F14 ER CD Ratio of non-zeros in
column-packed structure

F15 row bounceAvg. differences between
non-zeros of adjacent
rows

F16 col bounce Avg. difference between
non-zeros of adjacent
columns

F17 density Density of non-zeros F18 cv Normalized variation of
non-zeros per row

F19 max mu max. RD - avg. RD

cv ER_DIA ER_RD ER_CD dev_CD row_bounce max_cu num_col
0%
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s
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Fig. 7. Top-8 features which can lead to a high loss in accuracy if they are not used.

are used to capture the distribution of non-zero elements of the input matrix,
which can be extracted in parallel to reduce the overhead of feature extraction.

To learn effectively over a small training dataset, we use the feature score
given as a by-product of the XGBoost training process to select a compact
set of features. The feature score is computed summing up how many times
each feature is split on the decision tree. We then keep features that contribute
to 95% of the aggregated importance scores across all raw features. Using a
fewer number of features also help us to reduce the overhead of runtime feature
extraction. Table 2 summarizes our chosen matrix features.

Feature normalization. In the final step, we scale each of the extracted feature
values to a common range (between 0 and 1) to prevent the range of any single
feature from being a factor in its importance. We record the minimum and
maximum values of each feature in the training dataset in order to scale the
feature values of an unseen matrix. We also clip a feature value to make sure it
is within the expected range during deployment.

Feature importance. Figure 7 shows the top 8 dominant features based on
their impact on our predictive model accuracy. We calculate feature importance
by first training a model using all 19 of our chosen features, and record the accu-
racy of our model. In turn, we then remove each of our features, retraining and
evaluating our model on the other 18, noting the drop in prediction accuracy. We
then normalize the values to produce a percentage of importance for each of our
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features. Features for measuring the non-zero element distribution, like ER DIA
and cv in Table 2, are important for choosing the storage format. The similar
distribution of feature importance is an indication that each of our features is
able to represent distinct information about the matrix workload, all of which is
important for the prediction task at hand.

4.5 Training The Model

The collected feature values, together with the desired label for each training ma-
trix, are passed to a supervised learning algorithm to learn the XGBoost model.
The time for training the predictor is dominated by generating the training data.
In this work, it takes less than a week to label all the training samples using
a single multi-core server. In comparison, processing the raw data and building
the models took a negligible amount of time, less than an hour run in a RTX
2060 GPU. Since training is only performed once, it is a one-off cost.

4.6 Using The Model

The trained predictor can be applied to a new, unseen matrix used by a SpMM
kernel. We implement our predictive model using the Python Scikit-learn [4]
package, which can be easily integrated with mainstream deep learning frame-
works. We have encapsulated all of the inner workings, such as feature extraction,
prediction and storage format conversion and kernel selection, into a single pack-
age. Prediction is done by calling a dedicated SpMMPredict function (provided
by our library) before each GNN layer. The function takes as input a matrix
object and outputs a matrix object stored using the predicted storage format.
Depending on the matrix object type, the corresponding SpMM kernel will be
automatically chosen. Our current implementation supports PyTorch, but it can
be easily ported to other deep learning frameworks.

5 Experimental Setup

5.1 Software and Hardware

Evaluation platform. Our hardware platform is a dual-socket multi-core server
with two 20-core Intel Sky Lake Xeon Gold 6138 CPUs running at 2.0 Ghz with
192GB of RAM. Our evaluation platform runs Centos 7 with Linux kernel version
3.10. We test our approach on PyTorch v1.4.0, running on the CPU.

GNN models. We apply our approach to 5 representative GNN architectures,
including GCN, graph attention network (GAT) [30], relational graph convo-
lutional neural network (RGCN) [26], GNN with feature-wise linear modula-
tion (FiLM) [3] and efficient graph convolutions (EGN)[28]. We use the open-
source implementation provided by PyTorch-geometric library [11] by stacking
two GNN layers to form a standard graph model.

Datasets. In our evaluation, we use two graph data suites, CoraFull [40] and
Entities [26], containing a total of 5 graph datasets with matrix sizes ranging from
19,793 to 58,086. To evaluate the generalization ability of our approach, we also
apply our approach to 100 synthetic matrices of different sizes and sparsity. For
the synthetic data, we initialize weights in the adjacency matrices by populating
them with random single floating numbers between 0 and 1.0.
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Fig. 8. Speedup given by our approach over COO. GeoMean represents the geometric
mean given by the previous performance.

5.2 Evaluation Methodology

Competitive methods. We compare our approach against two closely related
predictive methods for using machine learning to choose the sparse matrix stor-
age format. The first approach employs a convolutional neural network (CNN)
[45,24], and the second uses a decision tree model for format selection [27]. We
use an open-source implementation of ResNet [23] as the CNN model. To pro-
vide a fair comparison, we train all machine learning models on the same training
dataset using the methodology described in the source publications.

Performance report.We consider the end-to-end execution time, including the
overhead of our predictive model (i.e., the time spending on feature extraction,
storage format transformation and model prediction). Our feature extraction
process runs in parallel using all CPU cores. We measure the end-to-end training
time by training each model on each dataset for 10 epochs. We run each matrix
input 5 times and report the geometric mean of the end-to-end training time
and show the variations across different runs as a min-max bar. Note that we
only need to decide the matrix storage format once for each GNN layer across
training epochs. Given that in our evaluation, the sparse matrix distribution is
similar across training epochs, and hence the overhead of our approach can be
further amortised across multiple training epochs.

6 Experimental Results

6.1 Overall Results

Figure 8(a) shows the speedup over the PyTorch COO sparse matrix storage
format for each GNN model across our evaluation datasets. Here, the min-max
bar show the variance across the evaluated datasets. In this experiment, we aim
to optimize for speedups by setting w of Eq. 1. Moreover, in Section 6.4 we show
our approach can generalize to other settings of w.

As can be seen from the diagrams, choosing the right sparse matrix storage
format can improve the GNN performance. Our approach delivers an average
speedup of 1.3x (up to 3x) on GCN, which involves many SpMM computations
when performing the graph convolution operations. Our approach gives less per-
formance improvement on RGCN because the dataset that RGCN operates is
a dense edge-based dataset that does not benefit from sparse matrix format
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Table 3. Comparing our XGBoost approach with prior work

Model Inference Time (s) Prediction Accuracy (%) Realized Speedup

XGboost (ours) 0.0008 89.1 1.17
CNN [45,24] 0.002 66.8 0.86
Decision-Tree [27] 0.0002 83.8 1.14
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Fig. 9. Performance of our approach re-
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Fig. 10. Prediction accuracy of our ap-
proach when varying w in Eq 1.

selection. Furthermore, on a small number of datasets, where the COO is the
best format, our approach shows a minor slowdown, less than 7%, due to the
overhead of feature extraction. But for the majority of the evaluated datasets,
our approach gives a noticeable improvement over COO. Overall, our techniques
give an average speedup of 1.17x across GNN models and evaluation datasets.

Figure 8(b) shows the achieved performance per real-world graph dataset
across models. For most of the datasets, our approach gives noticeable speedups
across GNN.

6.2 Compare to Prior Methods

Table 3 compares our approach against a CNN and a decision tree model for
choosing the matrix storage format, where our approach gives a better overall
prediction accuracy. The CNN model gives a poor prediction accuracy when the
model is trained on 300 synthetic matrices. While the performance of the CNN
model can be improved by using more training data, doing so would incur a
higher overhead. Table 3 confirms that a higher prediction accuracy does trans-
late into better speedup performance, where our approach improves the CNN
and the decision tree model by 27% and 3%, respectively.

6.3 Compare to Oracle Performance

Figure 9 compares our approach against a theoretically perfect predictor for stor-
age form selection, for which we call oracle. We obtain the oracle performance
by exhaustively profiling all candidate storage formats for each GNN layer to
find out the best-performing format. The results show how close our predictive
modeling approach is to the theoretical upper bound. Our approach achieves, on
average, 89% of the oracle performance. Our model can be further improved by
using more training samples together with more representative features to char-
acterise some of the input matrices better to improve the prediction accuracy.
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Fig. 11. Comparing our XGBoost model against alternative modeling techniques.

6.4 Model Analysis

Impact of optimization goal. Our evaluation so far set w to 1 of our optimiza-
tion function (Eq. 1) by solely optimizing for speeds. Figure 10 shows prediction
accuracy when we vary the parameter settings. Our approach has a good gen-
eralization by giving the average accuracy of 90%. This experiment shows that
our approach is flexible and can adapt to different optimization trade-offs.

Alternative modeling techniques. Figure 11 compares our XGBoost-based
predictor against three other classification methods used in prior works for code
optimization [34]: MLP neural network [12], KNN (with k = 1) [42], and SVM
[22]. All the alternative techniques were trained and evaluated using the same
method and training data as our model. In this experiment, we consider the
model prediction accuracy and the time for making a prediction. As can be
seen from the diagram, our approach has the lowest runtime overhead while
giving the highest accuracy when compared to alternative modeling techniques.
Since XGBoost is a decision-tree-based model, it also has the advantage of being
interpretable because its decision process can be followed by traversing the tree.

Training and deployment overhead. Training of our predictive model only
needs to be performed once, after which the trained model can be applied to
any matrices. Training is dominated by the generation of training data which
takes in total less than a week’s machine time (Section 4.3). We can speed this
up by using multiple machines. The overhead for learning the XGBoost model is
negligible, less than 5 minutes. Our approach has a negligible runtime overhead
compared to the GNN kernel execution time, the overhead of feature extraction
and prediction is less than 3% to the end-to-end kernel execution time.

6.5 Discussion

Supporting other storage formats. Our approach can be easily extended to
support other sparse matrix storage formats. As we formulate the storage format
prediction as a classification problem, this can be achieved by adding a new class
label (for the newly supported format) into our training dataset. Doing so would
also require providing the relevant SpMM kernel implementation. Other than
these, a large part of the training process and deployment can remain unchanged.

Supporting GPU computation. This work focuses on the CPU execution of
GNN models due to the large graph datasets that a GNN model typically pro-
cesses. There are methods to support large-scale graph processing on GPUs such
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as GraphSAGE [15]. Our approach can be ported to support GPU processing.
This will require using training data collected from the targeting GPU to train
our predictive model.

Optimize SpMM algorithms. Optimizing SpMM computation is an active
research field [10]. It is interesting to investigate how the SpMM computation
kernel can be tailored for GNN computation and what parameters can be opened
to a tuning framework. As the best algorithm parameters are likely to change
depending on the matrix input and the underlying hardware, an automatic ma-
chine learning-based approach similar to our approach is highly attractive.

7 Related Work
Several approaches have been proposed to optimize graph processing [39]. Some
provide new programming abstractions to optimize vertex/node-centric or edge-
centric processing [46]. For example, Pytorch-Geometric (PyG) [11] and Deep
Graph Library (DGL) [33] are two major frameworks for GNN computation.
Both libraries rely on a low-level, hand-optimized SpMM library, but they use
a single sparse matrix storage format throughout the execution. Our work com-
plements these prior efforts by dynamically adapting the sparse matrix storage
format and the associated computation kernel for each GNN layer, which can be
easily integrated with existing graph programming models.

Various sparse matrix storage formats have been proposed in the past [19].
Studies have shown that there is no “one-fit-for-all” storage format, and the
right format can change from one matrix to the other [20,6]. Methods have been
proposed to dynamically choose sparse matrix storage format based on the input
workloads [27]. These include approaches build around analytical methods [31]
or machine-learning-based predictive models [5]. The latter has the benefit of
can be easily ported to different architectures as machine learning learns from
empirical observations rather than simplified assumptions used by an analytical
model. However, prior machine-learning-based solutions have been concentrated
on optimizing sparse matrix-vector multiplication (SpMV) of scientific workloads
[45]. They choose a storage format at the beginning of the program execution
but do not adjust the format during application execution. No work so far has
concerned choosing the sparse matrix storage format for GNN SpMM throughout
program execution. Our work is the first to do so.

Machine learning is a proven design methodology for systems modeling and
optimization [35,25,34,43,38,44]. Studies have demonstrated the success of apply-
ing machine learning for a wide range of code optimization tasks [29,37,9,36,41,32]
In this work, we employ machine learning techniques to develop an automatic
approach to optimize GNN SpMM. We remark that our work does not seek to
advance machine learning algorithms; instead, it explores and applies a well-
established modeling method to tackle the GNN SpMM optimization problem.

8 Conclusions
This paper has presented a machine-learning based predictive model to dynam-
ically choose the sparse matrix storage format and the associate computation
kernel during GNN execution. Our model uses numerical features to characterize
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the input matrix to predict the storage format to use for the next GNN layer. We
evaluate our approach by applying it to five representative GNN models running
on a multi-core CPU using both real-world and synthetic datasets. Experimental
results show that our approach gives an average speedup of 1.17x (up to 3x) over
the Pytorch default strategy and exhibits a good generalization ability.
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