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A Mathematical Analysis of Casimir
Interactions I: The Scalar Field

Yan-Long Fang and Alexander Strohmaier

Abstract. Starting from the construction of the free quantum scalar field
of mass m ≥ 0, we give mathematically precise and rigorous versions
of three different approaches to computing the Casimir forces between
compact obstacles. We then prove that they are equivalent.

1. Introduction

Casimir interactions are forces between objects such as perfect conductors.
They can be either understood as quantum fluctuations of the vacuum or as the
total effect of van der Waals forces. Hendrik Casimir predicted and computed
this effect in the special case of two planar conductors in 1948 using an infinite
mode summation [1]. This force was measured experimentally by Sparnaay
about 10 years later [2]. Since then also, more precise measurements have been
performed with good agreement to the theoretical prediction of Casimir [3–6].
Other geometric situations, such as for example the Casimir force between a
sphere and a plane, were also considered in precision experiments [7,8].

The classical way to compute Casimir forces, and indeed the way it was
done by Casimir himself, is by performing a zeta function regularisation of the
vacuum energy. This has been carried out for a number of particular geomet-
ric situations (see [9–13] and references therein). Since this method requires
knowledge of the spectrum of the Laplace operator in order to perform the
analytic continuation, it has long been a very difficult problem to compute the
Casimir force in a generic geometric situation even from a non-rigorous point of
view. Already, it has been realised by quantum field theorists (see, e.g. [14–18])
that the Casimir force can also be understood by considering the renormalised
stress–energy tensor of the electromagnetic field. This tensor is defined by
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comparing the induced vacuum states of the quantum field with boundary
conditions and the free theory. Once the renormalised stress–energy tensor is
mathematically defined, the computation of the Casimir energy density be-
comes a problem of spectral geometry (see, e.g. [19]) and numerical analysis.
The renormalised stress–energy tensor and its relation to the Casimir effect
can be understood at the level of rigour of axiomatic algebraic quantum field
theory. Currently, this is still the subject of ongoing research in mathemati-
cal physics (see, e.g. [20]) in particular when it comes to the effect in curved
backgrounds and fields that are not scalar, or in situations when the objects
move.

Recently progress was made in the non-rigorous numerical computation
of Casimir forces between objects (see for example [21–23]). This approach uses
a formalism that relates the Casimir energy to a determinant computed from
boundary layer operators. Such determinant formulae result in finite quantities
that do not require further regularisation and have been obtained and justified
in the physics literature [24–33]. This has not only resulted in more efficient
numerical algorithms but also in various asymptotic formulae for the Casimir
forces for large and small separations. Many of the justifications and deriva-
tions of these formulae are based on physics considerations of macroscopic
properties of matter or of van der Waals forces. As such they often involve
ill-defined path integrals. From a mathematical point of view, considerations
that link the determinant formulae to the spectral approach initially taken by
Casimir have been largely formal computations or involve ad hoc cut-offs and
regularisation procedures. We note that in the Appendix of [30] it is proved
correctly that the Fredholm determinant in the final formula of the Casimir
energy is well defined. Only recently a mathematical justification of these for-
mulae was given in [34], relating it to the trace of a linear combination of
powers of the Laplace operator. The determinant formulae are directly related
to the multi-reflection expansion of Balian and Duplantier [35] that also yields
a finite Casimir energy. We mention [36] in the mathematical literature where
the Casimir energy of a piston configuration is expressed in terms of the zeta
regularised Fredholm determinant of the Dirichlet-to-Neumann operator.

Summarising, we list several ways to compute the Casimir force acting
on a compact object that have been proposed and carried out:

(1) Using a total energy obtained in some way by regularising the spectrally
defined zeta function. This can be done either directly or by first consid-
ering a compact problem in a box and then taking the adiabatic limit.

(2) By integrating the renormalised stress–energy tensor around any surface
enclosing the object.

(3) Using formulae for the energy in terms of a determinant of boundary
layer operator.

The list is non-exhaustive and other methods exist, such as for example the
worldline approach (see, e.g. [37] and references). Here, we will restrict our-
selves to the listed methods.
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The aim of the present paper is to establish, in the case of finitely many
compact objects, the precise mathematical meaning of each of the listed meth-
ods for the case of the scalar field and then prove that they give the same
answer for the force (not necessarily for the energy). The main tool to achieve
this will be the relative stress–energy tensor. This tensor mimics the definition
of the relative trace of [34] and seems to not have been defined or studied
previously in the literature. Note that the renormalised stress tensor becomes
unbounded and non-integrable [16,38] near the boundaries of objects and this
makes it unsuitable to compute the total energy component from the energy
density T00. In contrast, the relative stress–energy tensor is smooth up to the
obstacles and is much more regular when considering boundary variations. This
relative stress–energy tensor does not satisfy Dirichlet or Neumann boundary
conditions and therefore integration by parts involves boundary contributions.
The relative energy density can be defined entirely in terms of functional cal-
culus of the Laplace operator. This relative energy density has been introduced
in [34]. It was shown to be integrable and its integral can be interpreted as
the trace of a certain operator. The main result of [34] states that this trace
can be expressed as the determinant of an operator constructed from bound-
ary layer operators, thus providing a rigorous justification of the method (3)
linking it with method (1). To show the equivalence of methods (2) and (3)
we must provide a formula for the variation of the relative energy when one
of the objects is moved. To compute this variation, we prove and use a special
case of the Hadamard variation formula ([39–41]) adapted to the non-compact
setting. We then show that as a consequence of this formula that the variation
of the total energy equals the surface integral of the spatial components of the
relative stress–energy tensor (see Theorem 5.9). This surface integral is also
equal to the surface integral over the renormalised tensor (see Theorem 5.10).
We will now give a more precise formulation of our main result.

We consider d-dimensional Euclidean space with d ≥ 2. Let O be a
bounded open subset of R

d with smooth boundary such that the comple-
ment E = R

d
∖ O is connected. The domain O will be assumed to consist of

N many connected components O1, . . . ,ON . The space X = R
d
∖∂O therefore

consists of the N + 1-many connected components O1, . . . ,ON ,E . We think of
O as obstacles placed in R

d, and E then corresponds to the exterior region of
these obstacles. The set X ⊂ R

d consists of the interior and the exterior of the
obstacles, separated by ∂O. See Fig. 1 for an example with three obstacles.

For the free scalar field of mass m ≥ 0, let Tren be the renormalised
stress–energy tensor as defined in Sect. 2.2. In QFT terms, this stress–energy
tensor is equivalent to the usual stress–energy tensor obtained from canonical
quantisation when normal ordering is used with respect to the free vacuum
state. This is a smooth symmetric two-tensor away from ∂O, but it is singular
at ∂O and the integral of T00 over E does not converge. Let Trel be the relative
stress–energy tensor as given in Definition 3.3. The relative total energy Erel is
defined as the integral of (Trel)00(x) over Rd which can be shown to exist and
to be equal the trace of a certain combination of operators. In case m > 0, the
regularised energy Ereg is defined in Sect. 6, Definition 6.3 via zeta function
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Figure 1. Configuration of four obstacles O1,O2,O3,O4

with complement E in a Euclidean space

regularisation. We would like to compute the force on an object Oj due to the
presence of the other objects. Approach (2) is to directly compute

Fi = ∫
Σ
(Tren)iknkdσ

where Tren is the renormalised stress–energy tensor given in Definition 2.3 and
Σ is any smooth surface enclosing Oj (i.e. homologous to ∂Oj in E), nk is
the exterior unit normal vector field, and dσ is the surface measure on Σ. If
energy conservation holds, i.e. no energy is radiated off to infinity, one expects
this force to be the directional derivative of the total energy when Oj is moved
rigidly. Thus, let Z be a constant vector field on R

d. Let Y be a vector field that
equals Z near Oj and vanishes near Ol when l /= j. The vector field generates a
flow Φε that, for ε near zero, moves the object Oj rigidly and we end up with
a configuration that depends on the parameter ε. The total energies Erel and
Ereg then also depend on ε in that way and become functions of ε in a small
interval around zero. The change of these energies with respect to the flow
can be interpreted as the change of energy needed to move object Oj rigidly
relative to the other objects in the direction of Z. Our main result may be
stated as follows.

Theorem 1.1. The relative energy Erel(ε) is differentiable in ε at ε = 0 and its
derivative equals FiZ

i, where

Fi = ∫
Σ
(Trel)iknkdσ = ∫

Σ
(Tren)iknkdσ. (1)

Moreover,

Erel =
1
π
∫

∞

m

ω
√

ω2 −m2
log detQrel(ω)dω, (2)

where Qrel(ω) = Qiω(Q̃iω)
−1 is defined in detail in Sect. 3 and constructed out

of boundary layer operators for the Laplacian. If m > 0, then Erel(ε) −Ereg(ε)
is constant near ε = 0.

We note that this mathematical theorem simply shows that all these pro-
posed computational methods give the same Casimir interactions in the case of
separated rigid bodies. The statement does not say anything about the actual
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origin of the Casimir force or its existence, which needs to be determined from
experiments or physics considerations. There is however a strong argument for
the expression

Fi = ∫
Σ
(Trel)iknkdσ

to be a directly relevant physical quantity. Our point of view is that the stress–
energy tensor does not have an absolute meaning in this context, but rather is
used to compare two vacuum states (normal ordering depends on a comparison
state). If we would like to know the effect for the rigid objects O2, . . .ON

on the rigid object O1, the states to compare are not the ground state with
Dirichlet conditions and the free ground state. It is rather the vacuum states
obtained from the Laplacian with Dirichlet conditions imposed on O1 alone
and with Dirichlet conditions on all the objects. The comparison of these two
states yields a stress–energy tensor that is completely regular near O1, and
the computation of the force based on this tensor leads directly to the above
formula without regularisation.

The paper is organised as follows. In Sect. 2, we review the rigorous con-
struction of the free scalar field of mass m ≥ 0 in the presence of boundaries and
show how this leads to a natural definition of the renormalised stress–energy
tensor, which is given in Sect. 2.2. We also review its most important prop-
erties and express it in terms of spectral quantities for the Laplace operator.
Section 3 introduces the relative setting and gives the definition of the relative
stress–energy tensor and its basic properties. Some norm estimates on the rel-
ative resolvent are given in Sect. 4, which provides mathematical justifications
for later proofs. In Sect. 5, we prove a Hadamard variation formula and com-
pute the variation of the relative energy to establish the first part of the main
theorem. In Sect. 6, we show that for m > 0 the renormalised version of the
zeta function has a meromorphic continuation and can thus be used to define
the regularised energy. This section also contains a proof that variations of the
regularised energy and the relative energy coincide. To illustrate the method
and relate it to the classical computations we treat the easier example of the
one-dimensional Casimir energy explicitly in Appendix 7. This example also
illustrates that a divergence term for the time-component of the renormalised
stress–energy tensor that is normally neglected needs to be taken into account
to obtain the correct result (see Remark 2.5).

In a follow-up paper, we will establish a similar theorem for the electro-
magnetic field. We note here that the stress–energy for the electromagnetic
field is quite different from the scalar field and there are additional complica-
tions such as zero modes [42] that are absent for the scalar field. Moreover,
the boundary conditions for the electromagnetic field are slightly more compli-
cated, and cannot be reduced to Dirichlet boundary conditions. We therefore
decided to not attempt a unified treatment which would obscure the result by
additional notations.

Our approach is expected to carry over to other boundary conditions such
a Neumann, mixed Dirichlet–Neumann or Robin boundary conditions with the
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single-layer operators replaced by the appropriate layer operators. As in the
electromagnetic case, additional technical problems need to be overcome in
these cases due to the possible appearance of zero modes and singularities of
the Dirichlet-to-Neumann map at zero.

1.1. Notations

Let M ⊂ R
d be an open subset. By the Schwartz kernel theorem, continuous

linear operators A ∶ C∞0 (M) → D
′

(M) are in one to one correspondence to
distributions in D′(M×M), i.e. for every such A there exists a unique Schwartz
kernel in D

′

(M ×M). In this paper, the Schwartz kernel of A will be denoted
by Ă.

2. Scalar Quantum Field Theory with Dirichlet Boundary
Conditions

Let −Δ be the (positive) Dirichlet Laplacian imposed on the codimension one
submanifold ∂O. By definition, this is the unbounded self-adjoint operator de-
fined on the Hilbert space L2

(R
d
) associated with the Dirichlet quadratic form

qD(f, f) = ∫X ∥∇f∥2dx with form domain being the Sobolev space H1
0(X).

As a consequence of elliptic regularity ([43]*Sect. 7.2), we have for the
domain of dom((−Δ)

s
2 ) equipped with its graph norm for any s ∈ 2N0 the

continuous inclusions

Hs
comp(X) ⊂ dom((−Δ)

s
2 ) ⊂ Hs

loc(X).

One can use complex interpolation ([44]*Sect. 4 and Theorem 4.2) to extend
this to any s ≥ 0. Here, Hs

comp(X) denotes the space of functions in Hs
(X)

with compact support in X.
The Hilbert space L2

(R
d
) then decomposes into a direct sum

L2
(R

d
) = L2

(O1) ⊕ . . .⊕L2
(ON) ⊕L2

(E)

and each subspace is an invariant subspace for −Δ in the sense that any
bounded function of the operator as defined by spectral calculus will leave
these subspaces invariant. The restriction of −Δ to L2

(Oj) is the Dirichlet
Laplacian on the interior of Oj and therefore has compact resolvent. The re-
striction of −Δ to L2

(E) has purely absolutely continuous spectrum [0,∞). By
comparison, we also have the free Laplacian −Δfree on R

d which corresponds
to the case O = ∅. Throughout the paper, we fix a mass parameter m ≥ 0.

Definition 2.1. The relativistic Hamiltonian H is defined to be the self-adjoint
operator H = (−Δ +m2

)
1
2 .

The space-time M we consider is the Lorentzian space-time R ×X with
Minkowski metric. The forward and backward fundamental solutions G

+/−
∶
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C∞0 (M) → C∞(M) of the Klein–Gordon operator ◻+m2 with Dirichlet bound-
ary conditions are given by

(G
+
f)(t, x) = ∫ (θ(t − t′)H−1 sin(H(t − t′))f(t′, ⋅)) (x)dt′,

(G
−
f)(t, x) = ∫ (θ(t′ − t)H−1 sin(H(t′ − t))f(t′, ⋅)) (x)dt′,

where θ is the Heaviside step function. As usual in canonical quantisation, one
considers the difference G = G

+
−G

−
given by

(Gf)(t, x) = ∫ (H−1 sin(H(t − t′))f(t′, ⋅)) (x)dt′.

Here, H−1 sin(H(t − t′)) is defined by spectral calculus. Since the function
∣x−1 sin(xt)∣ is bounded by ∣t∣, the operator H−1 sin(H(t − t′)) defines for any
s ≥ 0 a bounded map from Hs

comp(X) to dom(−Δ)s ⊂ Hs
(O1)⊕ . . .Hs

(ON)⊕

Hs
(E). Here, the inclusion of the domain in the Sobolev spaces follows for

s ∈ 2N0 from elliptic regularity up to the boundary ( [45]*Theorem 4.18) and for
general s ≥ 0 by interpolation. In particular, this means that H−1 sin(H(t−t′))
has a distributional integral kernel. We can define a symplectic structure σ on
W = C∞0 (M)/ ((◻ +m2

)C∞0 (M)) by

σ([f], [g]) = (f,Gg).

This induces a symplectic structure on GC∞0 (M) that is well known to coincide
with the standard symplectic structure on the space of solutions. Indeed, if we
define u = Gf and v = Gg for f, g ∈ C∞0 (M) then u and v solve the Klein–
Gordon equation with Dirichlet boundary conditions and

(f,Gg) = ∫
X
(∂tu)v − (∂tv)udx.

In this equality, the right-hand side is independent of t.

2.1. Field Algebra and the Vacuum State

The field algebra of the real Klein–Gordon field is then the (unbounded) CCR
∗-algebra of this symplectic space. Instead of using the symplectic space W one
can describe this algebra A directly as the complex unital ∗-algebra generated
by symbols φ(f) with f ∈ C∞0 (M,R) satisfying the relation

f → φ(f) is real linear,

[φ(f1), φ(f2)] = −i(f1,Gf2)1

φ(f)∗ = φ(f),

φ((◻ +m2
)f) = 0.

Physical states of this quantum system are states on this ∗-algebra. The con-
struction and physical interpretations of such states usually relies on a Fock
representation of A. This representation is chosen on physical grounds as a
positive energy representation.

We briefly explain this now. The group of time translations (Tsf)(t, x) =
f(t − s, x) commutes with ◻ + m2 and G and therefore αt(φ(f)) ∶= φ(Ttf)
defines a group of ∗-automorphisms of A. If a state ω ∶ A → C is invariant then
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this group lifts to a group of unitary transformations U(t) on the GNS-Hilbert
space which is uniquely determined by

π(αt(a)) = Utπ(a)U−t,

UtΩ = Ω.

We say that π is a positive energy representation if this group is strongly
continuous and its infinitesimal generator has non-negative spectrum.

We will focus in this paper on the quasi-free ground state. This means
that the state is completely determined by its two point distribution

ω2 ∈ D
′

(M ×M), ω2(f1 ⊗ f2) = ω (φ(f1)φ(f2))

which is given explicitly as

ω2(f1 ⊗ f2) = ∫
R×R

(f1(t, ⋅),
1
2
H−1e−iH(t−t

′

)f2(t
′, ⋅)) dt dt′,

i.e. ω2 is the integral kernel of the operator H−1e−iH(t−t
′

). In case m = 0, the
spectrum of H contains zero and this expression needs to be interpreted in the
sense of quadratic forms. Namely, it follows from general resolvent expansions
(for example [42]*Theorems 1.5, 1.6 and 1.7) that C∞0 (X) is contained in the
domain of the operator H−

1
2 . This follows from the formula

⟨H−
1
2 f,H−

1
2 f⟩ =

2
π
∫

∞

0
⟨(−Δ + λ2

)
−1f, f⟩dλ.

In particular, the space of test functions C∞0 (X) is contained in the form
domain of H−1 and therefore, by the Schwartz kernel theorem, the operator
H−1 has a distributional kernel in D

′

(X ×X). This is of course also the case
for general m > 0. We will denote the integral kernel of H−1 by H̆−1, mildly
abusing notation.

One can check directly that ω2 defines a positive energy representation.
Instead of using −Δ, we could also have used −Δfree, the free Laplace operator.
This also defines a positive energy state on the free algebra of observables
Afree which we will denote by ωfree, and similarly we use the notation Hfree =

(−Δfree +m2
)

1
2 . There states can be compared by restricting them to certain

subalgebras that are contained in both the algebra of observables and the free
algebra of observables. For example if U is contained in a double cone in M
then A(U) which is generated by φ(f), supp(f) ⊂ U can be thought of as a
subset of both A and Afree and therefore both states can be restricted to this
algebra.

2.2. The Renormalised Stress–energy Tensor

The classical stress–energy tensor of the Klein–Gordon field for a smooth real-
valued solution u is given by

T cl
(u) = du⊗ du −

1
2
g(du,du)g −

1
2
g m2u2.

This is a symmetric 2-tensor on M and one can easily show, using the Klein–
Gordon equation, that it is divergence-free. Here, g is the Minkowski metric on
M with signature (−1,1, . . . ,1). The Euclidean metric on R

d will be denoted
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by h. The components T cl
ij of the stress–energy tensor are the restrictions to

the diagonal of the functions Qcl
ij(x, y) defined on M ×M by

Qcl
ij(x, y) = (∇iu)(x) ⊗ (∇ju)(y) −

1
2
gij(∇ku)(x) ⋅ ∇ku(y) −

1
2
gijm

2u(x)u(y).

The quantum field theory counterpart of Q can be written in the field algebra
as a field-algebra-valued bilinear form in the test functions f1, f2 ∈ C∞(M) as

Qij(f1 ⊗ f2) = φ(∇if1)φ(∇jf2) −
1
2
φ(∇kf1)φ(∇

kf2)gij −
1
2
gijm

2φ(f1)φ(f2).

The expectation value of Qij with respect to the state ω is then given in terms
of the two point function ω2 as

ω(Qij)(f1, f2) = ω2(∇if1 ⊗∇jf2 −
1
2
∇kf1 ⊗∇

kf2gij −
1
2
gijm

2f1 ⊗ f2).

Let K(t, x, y) be the distributional kernel of 1
2
H−1e−iHt. Then, the distribution

ω(Qij) with respect to the ground state is given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

ω(Q00)(t, t
′, x, x′) =

1

2
(∂t∂t′ +

d

∑

k=1
∂xk ∂x′k +m2

)K(t − t′, x, x′)

ω(Q0i)(t, t
′, x, x′) = (∂t′∂xi)K(t − t′, x, x′) for 1 ≤ i ≤ d

ω(Qij)(t, t
′, x, x′) = (∂x′i∂xj )K(t − t′, x, x′) for i ≠ j and 1 ≤ i, j ≤ d

ω(Qii)(t, t
′, x, x′) =

1

2
(∂t∂t′ + ∂xi∂x′i −

d

∑

k≠i

∂xk ∂x′k −m2
)K(t − t′, x, x′) for 1 ≤ i ≤ d

or in short,

ω(Qij)(t, t
′, x, x′) = [∂′i∂jK −

1
2
gij(∂

′

k∂k
+m2

)K] (t − t′, x, x′). (3)

The above expressions are formal and make sense only when paired with
test functions. We will use such formal notation throughout the paper when
there is danger of confusion. The expectation value of the stress–energy ten-
sor would correspond to the restriction of ω(Qij) to the diagonal as a dis-
tribution. Unfortunately, the distribution ω(Qij) is singular and cannot be
restricted to the diagonal in a straightforward manner. If one is interested
in relative quantities only then one can still define the renormalised expec-
tation value of the stress–energy tensor between the states. Both states ω
and ωfree are positive energy states and therefore satisfy the Hadamard condi-
tion (for example [46]*Theorem 6.3). By uniqueness of such Hadamard states,
the difference of the two-point distributions is smooth near the diagonal in
M ×M . In the present case, this can also be seen more directly as follows. Let
Kfree(t, x, y) be the kernel of 1

2
H−1freee

−iHfreet. We will consider the difference
K(t, x, y) = K(t, x, y) −Kfree(t, x, y).

Theorem 2.2. The distribution K is smooth near the set {(0, x, y) ∣ x, y ∈ X} ⊂

R ×X ×X. In particular H̆−1 − H̆−1free is smooth in X ×X.

Proof. The distribution K(t, x, y) is a solution of the wave equation

∂2
t −

1
2
(Δx +Δy)K(t, x, y) = 0
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on R ×X ×X with initial conditions

K(0, x, y) =
1
2
(H̆−1(x, y) − H̆−1free(x, y)) ,

∂tK(t, x, y)∣t=0 = 0.

By [34]*Lemma 5.1, integral kernel κλ of the resolvent difference

(−Δ + λ2
)
−1
− (−Δfree + λ2

)
−1

is smooth and satisfies on any compact subset U of X ×X a Ck-norm bound
of the form

∥κλ∥Ck
(U) ≤ Ck,U ∣ log(∣λ∣)∣�e−δ

′λ for all λ > 0 (4)

for some � ≥ 0 and δ′ > 0. Therefore, the integral representation

H−1 −H−1free =
2
π
∫

∞

m

λ
√

λ2 −m2
κλdλ

converges in the C∞(X ×X) topology. Thus, the distribution H̆−1 − H̆−1free is
smooth in X × X. Since the initial conditions are smooth the solution K is
smooth where it is uniquely determined by the initial data. This is the case in
a neighbourhood of t = 0 in R ×X ×X. ◻

Hence, the distribution ω(Qij) − ωfree(Qij) is a smooth function in a
neighbourhood of the diagonal Δ ⊂ M ×M .

Definition 2.3. The components (Tren)ij of the renormalised stress–energy ten-
sor Tren are defined to be the restriction to the diagonal of the function
ω(Qij) − ωfree(Qij).

Theorem 2.4. The renormalised stress–energy tensor is symmetric and is given
by

⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

(Tren)00 =
1
2
(H̆ − H̆free)∣Δ +

1
8
Δ[(H̆−1 − H̆−1free)∣Δ]

(Tren)ij =
1
2
[∂i∂

′

j(H̆
−1
− H̆−1free)]∣Δ −

1
8
hijΔ[(H̆−1 − H̆−1free)∣Δ]

(Tren)0i = 0

(5)

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪
⎩

(Tren)00 =
1

2
(H̆ − H̆free)∣Δ +

1

8
Δ[(H̆−1 − H̆−1free)∣Δ]

(Tren)ij = −
1

2
[∂i∂j(H̆

−1
− H̆−1free)]∣Δ +

1

4
∂i∂j[(H̆

−1
− H̆−1free)∣Δ] −

1

8
hijΔ[(H̆−1 − H̆−1free)∣Δ]

(Tren)0i = 0

for 1 ≤ i, j ≤ d. Note that here H̆−1 and H̆−1free are the integral kernels of H−1

and H−1free, respectively. Moreover, the expression Ă∣Δ means the restriction of
the integral kernel, Ă, to the diagonal (See Sect. 1.1).
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Remark 2.5. The terms of divergence forms in the renormalised stress–energy
tensor are commonly neglected in the literature, as one may naively think that
they have zero contribution when integrating over the whole space. However,
this is not the case. As it is not integrable due to the singular behaviour
near the boundary, the divergence theorem does not apply in this case. See
Appendix 7 for the simplest case. The problem disappears when we work with
the relative stress–energy tensor given in Definition 3.3.

Proof of Theorem 2.4. Let K(t, x, x′) be the kernel of
1
2
(H−1e−iHt

−H−1freee
−iHfreet

) and K (t, t′, x, x′) = K(t − t′, x, x′). We have that

(Tren)ij = [∂
′

i∂j −
1
2
gij(∂

′

k∂k
+m2

)]K ∣

Δ

, (6)

where ∂0 = ∂t, ∂′0 = ∂t′ , ∂i = ∂xi and ∂′i = ∂x′i for 1 ≤ i ≤ d. By theorem 2.2
the distribution K (t, t′, x, x′) is smooth in a neighbourhood of the diagonal
Δ ⊂ M ×M . Moreover, K(t− t′, ⋅, ⋅) is the kernel of a symmetric operator on X
with respect to the real inner product (⋅, ⋅) and therefore satisfies

K(t − t′, x, x′) =K (t, t′, x, x′) =K (t, t′, x′, x) = K(t − t′, x′, x). (7)

This implies

⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

∂0K (t, t′, x, x′) = −∂′0K (t, t′, x, x′)

∂iK (t, t′, x, x′) = ∂′iK (t, t′, x′, x)

∂i∂jK (t, t′, x, x′) = ∂′i∂
′

jK (t, t′, x′, x)

∂i∂
′

jK (t, t′, x, x′) = ∂′i∂jK (t, t′, x′, x)

for 1 ≤ i, j ≤ d . (8)

Using product rules, we have

∂i(K ∣Δ) = (∂iK )∣Δ + (∂
′

iK )∣Δ, (9)

which gives

∂i∂j(K ∣Δ) = (∂i∂jK )∣Δ + (∂i∂
′

jK )∣Δ + (∂j∂
′

iK )∣Δ + (∂
′

i∂
′

jK )∣Δ.

That is

(∂i∂
′

jK )∣Δ = ∂i∂j(K ∣Δ) − (∂i∂jK )∣Δ − (∂j∂
′

iK )∣Δ − (∂
′

i∂
′

jK )∣Δ. (10)

Applying Eq. (8) to (10), we have

⎧
⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪
⎩

(∂0∂
′

0K )∣Δ = −(∂0∂0K )∣Δ = (H̆ − H̆free)∣Δ

(∂0∂
′

iK )∣Δ = −(∂
′

0∂
′

iK )∣Δ = (∂0∂iK )∣Δ = −(∂i∂
′

0K )∣Δ for 1 ≤ i ≤ d

(∂i∂
′

jK )∣Δ =
1
2
∂i∂j(K ∣Δ) − (∂i∂jK )∣Δ for 1 ≤ i, j ≤ d

.

(11)

From Eqs. (8) and (9), we have

2∂i∂0K ∣Δ = ∂i∂0K ∣Δ + ∂′i∂0K ∣Δ = ∂i(∂0K ∣Δ) = 0 for 1 ≤ i ≤ d. (12)
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In other words, (Tren)0i = (Tren)i0 = 0 for 1 ≤ i ≤ d. Hence, equations (6), (11)
and (12) show that (Tren)ij is symmetric tensor on M . Moreover,

(Tren)ij =
1
2
∂i∂j(K ∣Δ) − (∂i∂jK )∣Δ for 1 ≤ i ≠ j ≤ d

and

(Tren)ii = [∂′i∂i −
1
2
gii(∂

′

k∂k
+m2

)]K ∣

Δ

=
1
2
∂i∂i(K ∣Δ) − (∂i∂iK )∣Δ

−
1
2
gii (

1
2
∂k∂k

(K ∣Δ) − (∂k∂kK −m2K )∣Δ) .

Since ∂k∂kK −m2K = 0, we have

(Tren)ii =
1
2
∂i∂i(K ∣Δ) − (∂i∂iK )∣Δ −

1
4
gii∂k∂k

(K ∣Δ).

When i = 0,

(Tren)00 =
1
2
(H̆ − H̆free)∣Δ +

1
8
Δ[(H̆−1 − H̆−1free)∣Δ].

Also, we have

(∂i∂jK )∣Δ =
1
2
[∂i∂j(H̆

−1
− H̆−1free)]∣Δ for 1 ≤ i, j ≤ d,

which yields the expressions for the renormalised stress–energy tensor. ◻

Theorem 2.6. The renormalised stress–energy tensor is divergence-free and in-
dependent of t.

Proof. Let K(t, x, y) and K (t, t′, x, y) be the same as the in the previous
theorem. Recall that the shorthand expression of (3) is given by

ω(Qij)(t, t
′, x, x′) = [∂′i∂jK −

1
2
gij(∂

′

k∂k
+m2

)K ] (t, t′, x, x′).

Then, we have

(Tren)ij(t, x) = ω(Qij)∣Δ = [∂
′

i∂jK −
1
2
gij(∂

′

k∂k
+m2

)K ]∣

Δ

.

Now we use product rules to get

∂i0 (∂i1⋯∂im
K ∣Δ) = (∂i0∂i1⋯∂im

K ) ∣Δ + (∂
′

i0∂i1⋯∂im
K ) ∣Δ.

In particular, we have

∂0 (∂i1⋯∂im
K ∣Δ) = 0.

Hence, one has

∂0(Tren)ij(t, x) = ∂0 {[∂
′

i∂jK −
1
2
gij(∂

′

k∂k
+m2

)K ]∣

Δ

} = 0,

which means (Tren)ij is independent of time.
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We use the same trick to show that

∂i
(Tren)ij(t, x) = ∂i

{[∂′i∂jK −

1

2
gij(∂

′

k∂k
+m2

)K ]∣
Δ

}

= (∂i∂′i∂jK + ∂′i∂′i∂jK −
1

2
∂j∂′k∂kK −

1

2
∂′j∂′k∂kK −

1

2
m2∂jK −

1

2
m2∂′jK )∣

Δ

.

Now use the symmetric properties of K in Eqs. (7) and (8), we have

(∂i∂′i∂jK + ∂′i∂′i∂jK −
1
2
∂j∂

′

k∂kK −
1
2
∂′j∂

′

k∂kK −
1
2
m2∂jK −

1
2
m2∂′jK )∣

Δ

= (∂′i∂′i∂jK −
1
2
m2∂jK −

1
2
m2∂′jK )∣

Δ

.

The function K solves the Klein–Gordon equation, i.e.

(∂′i∂′i −m2
)K = (∂i∂i −m2

)K = 0.

Altogether, we have

∂i
(Tren)ij(t, x) =

1
2
(∂′i∂′i∂jK −m2∂jK + ∂i∂i∂

′

jK −m2∂′jK )∣
Δ
= 0,

which shows the divergence-free property of the renormalised stress–energy
tensor. ◻

3. The Relative Trace-formula and the Casimir Energy

As mentioned in the introduction the renormalised stress–energy tensor Tren(x)
becomes unbounded and non-integrable when x approaches the boundary of
obstacles [14,16,19,38]. This prevents us from defining a renormalised total en-
ergy. One way to circumvent the problem is to introduce the relative framework
of [34] which we now summarise. The main advantage of this construction is
that it completely avoids ill-defined quantities and the need for regularisation.

Relative quantities are defined with respect to different obstacle config-
urations where instead of O only one obstacle Oj is present, i.e. where O is
replaced by Oj . If an operator is defined with respect to such a configuration
we use the subscript Oj , and we use the subscript O to distinguish it from
the original configuration. For instance the renormalised stress–energy tensor
Tren in Theorem 2.4 will be denoted by (Tren)O, which shows its dependence
on the presence of obstacles O = O1 ∪ ⋅ ⋅ ⋅ ∪ON . Similarly, (Tren)Oj

denotes the
renormalised stress–energy tensor when only obstacle Oj is present and Δ

Oj

denotes the Laplace operator with Dirichlet boundary condition on ∂Oj . The
operator H

Oj
is defined in the same way.

Now we introduce a relative operator

Hrel ∶= H
O
−Hfree −

N

∑

i=1

(H
Oi
−Hfree). (13)
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More generally one defines the relative operator associated with a polynomially
bounded function f ∶ [0,∞) → R, i.e.

Df,m ∶=f((−Δ
O
+m2

)
1
2 ) − f((−Δfree +m2

)
1
2 )

−

N

∑

i=1

(f((−Δ
Oi
+m2

)
1
2 ) − f((−Δfree +m2

)
1
2 )) .

Since all our operators are densely defined operators on the same Hilbert space
L2
(R

d
) this combination makes sense. As a consequence of f being polynomi-

ally bounded, the space C∞0 (X) is in the domain of Df and therefore Df has
a distribution kernel in D

′

(X ×X).
To simplify our analysis later, we absorb the dependence of mass m in the

functional f . We could write fm to emphasise the dependence on m, but the
later analysis will not be affected by m. Therefore, we omit the m-dependence
and have

Df ∶= f((−Δ
O
)

1
2 ) − f((−Δfree)

1
2 ) −

N

∑

i=1

(f((−Δ
Oi
)

1
2 ) − f((−Δfree)

1
2 )) .

The main result of [34] is that for a large class of functions f , including the
functions f(λ) =

√

λ2 and f(λ) =
√

λ2 +m2 which are of interest in our context,
the operator Df is trace-class and its trace can be computed by integrating
the kernel on the diagonal. We now explain the precise statement of this result
and its relation to the determinant of the boundary layer operator.

In the following, we will denote by G
O,λ ∈ D

′

(X ×X) the distributional
kernel of the resolvent R

O,λ = (−Δ
O
− λ2

)
−1. The kernels G

Oj ,λ = R̆
Oj ,λ and

Gfree,λ = R̆free,λ are defined in an analogous way. By elliptic regularity, these
Green’s distributions are smooth away from the diagonal x = y.

Recall that for λ ∈ C we have the single-layer potential operator

Sλ ∶ C
∞

(∂O) → C∞(E) ⊕C∞(O) ⊂ C∞(Rd
/∂O)

given by

Sλf(x) = ∫
∂O

Gfree,λ(x, y)f(y)dσ(y),

where dσ is the surface measure. Let γ ∶ Hs+ 1
2 (R

d
) → Hs

(∂O) be the Sobolev
trace operator for s > 0. Properties of the Sobolev trace operator can be found,
for instance, in [45]. One can write the above also as Sλ = Gfree,λ ○γ∗. Restric-
tion of Sλ to the boundary defines an operator

Qλf(x) = ∫
∂O

Gfree,λ(x, y)f(y)dσ(y).

The operator Qλ is known to have the following properties.
Since the boundary ∂O consists of N connected components ∂Oj , we

therefore have an orthogonal decomposition L2
(∂O) = ⊕N

j=1L
2
(∂Oj). Let pj ∶
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L2
(∂O) → L2

(∂Oj) be the corresponding orthogonal projection. Now we have

Q̃λ =

N

∑

j=1

pjQλpj , Tλ

=

N

∑

j≠k

pjQλpk and Qλ = Q̃λ + Tλ. (14)

In short, Q̃λ and Tλ are, respectively, the diagonal and off diagonal part of
Qλ. Now let Dν to be a sector in the upper half plane and it is given by

Dν ∶= {z ∈ C ∣ ν ≤ arg(z) ≤ π − ν}, (15)

where it suffices to consider 0 < ε < π
2

for our applications.
The operator Qλ is invertible for Im(λ) > 0. Moreover QλQ̃−1λ −1 is trace-

class and the Fredholm determinant det(QλQ̃−1λ ) of QλQ̃−1λ can be used to
define a function

Ξ(λ) = log det(QλQ̃−1λ )

which is holomorphic in the upper half space and for some δ′ > 0 satisfies the
bound

∣Ξ(λ)∣ = O(e−δ
′ Im(z)

).

See Theorem 1.6 of [34] for the above bound in the sector of the form {z ∣

Im(z) ≥ b∣Re(z)∣} for some δ > 0.
Assume 0 < θ < π

2
and let Sθ be the open sector

Sθ = {z ∈ C ∣ z ≠ 0, ∣arg(z)∣ < θ}.

Let Pθ be the set of functions that are holomorphic and polynomially bounded
in Sθ.

Definition 3.1. The space P̃θ is defined to be the space of functions f such
that f(λ) = g(λ2

) for some g ∈ Pθ+ε for some ε > 0 and there exists a > 0 such
that f = O(∣z∣a) if ∣z∣ < 1

We then have the following theorem (see Fig. 2 for the contour).

Figure 2. Definition of Γ̃
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Theorem 3.2 ([34], Theorems 1.6 and 1.7). Let f ∈ P̃θ. Then, Df extends
to a trace-class operator with integral kernel that is smooth on X and has
continuous inner and outer boundary values on ∂O. The trace of Df equals
the integral over the diagonal of its integral kernel over R

d. Moreover, it is
equal to

TrDf =
i

2π
∫

Γ̃
f ′(λ)Ξ(λ)dλ.

In particular, choosing the function f(λ) =
√

λ2 +m2 − m one obtains
Df = Hrel and therefore Hrel is trace-class with trace equal to

Tr(Hrel) =
1
π
∫

∞

m

ω
√

ω2 −m2
Ξ(iω)dω.

This follows immediately by deforming the contour integral using the exponen-
tial decay of Ξ in the upper half plane, considering the branch cut of

√

z +m2

at i
√

m.

Definition 3.3. The relative stress–energy tensor is the renormalised stress–
energy tensor in the relative setting and it is defined as

Trel = (Tren)O −

N

∑

i=1

(Tren)Oi
,

where (Tren)O is the renormalised stress–energy tensor for obstacle O and
(Tren)Oi

is the renormalised stress–energy tensor for obstacle Oi, which are
defined at the beginning of this section.

Remark 3.4. One can also consider other versions of a relative stress–energy
tensor. For instance, one can define OA = O1∪⋯∪Oj and OB = Oj+1∪⋯∪ON

for some 1 ≤ j < N , dropping the connectedness requirement of obstacles and
work with

Trel,A,B = (Tren)O − (Tren)OA
− (Tren)OB

.

The corresponding energy encodes the amount of work needed to separate the
two obstacle configurations A and B. This quantity can also be expressed in
terms of Trel for A and B. It is easy to see that this equals

Trel,A,B = (Trel)O − (Trel)OA
− (Trel)OB

,

and therefore working with Trel only does not result in a loss of generality.

Theorem 3.5. Trel is smooth on X and extends smoothly to E as well as to O.
The function (Trel)00 is integrable on R

d.

Proof. By Theorem 5, we have

(Trel)00 =
1
2
H̆rel∣Δ +

1
8
Δ((H̆−1)rel∣Δ).

The theorem was shown in [34] for the part 1
2
H̆rel∣Δ and the same method of

proof can also be applied to the second term. We provide the full details here
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for the sake of completeness. We use two estimates proved in [34] which we
now explain. Recall that the relative resolvent is given by

Rrel,λ ∶= R
O,λ −Rfree,λ −

N

∑

j=1

(R
Oj ,λ −Rfree,λ),

and R
O,λ = (−Δ

O
−λ2

)
−1, Rfree,λ = (−Δfree−λ2

)
−1, and R

Oi,λ = (−Δ
Oi
−λ2

)
−1.

For the integral kernel R̆rel,λ we write Grel,λ.
As shown in [34] in the proof of Theorem 1.5, the integral kernel Grel,λ

of Rrel,λ is smooth up to the boundary on E as well as to O and its Ck-norms
on compact subsets K ⊂ E × E satisfy the bound

∥Grel,λ∥Ck
(K) ≤ CK,k(log ∣λ∣)�e−δ

′ Im(λ)

for some � ≥ 0 for λ in the sector containing the imaginary axis.
We consider the operator

(H−1)rel = H−1
O
−H−1free −

N

∑

j=1

(H−1
Oj

−H−1free) =
2
π
∫

∞

m

λ
√

λ2 −m2
Rrel,iλdλ.

(16)

A similar bound holds for K ⊂ O × E , K ⊂ E × O, and K ⊂ O × O. The
log-factor in the estimate is only needed in dimension two. It then follows that
(H−1)rel has an integral kernel that extends smoothly to E as well as to O (i.e.
smooth up to the boundary).

Similarly, H̆rel is also smooth up to the boundary. Hence, by Theorem
5 and Definition 3.3, we obtain the smoothness of Trel up to the boundary.
In order to show integrability, we recall an estimate for the diagonal of the
integral kernel of the resolvent difference, in particular [34]*Theorem 2.9, Equ.
(21) and (22).

Let λ ∈Dν (See (15), i.e. a sector in the upper half plane) and k
O,λ(x, y)

denote the integral of R
O,λ −Rfree,λ, then we have

k
O,λ(x, y) = −⟨Gfree,λ(x, ⋅),Q−1λ (Gfree,λ(y, ⋅))⟩,

which implies

∣∇(k
O,λ(x,x))∣ ≤C

d

∑

j=1

(∣ (⟨∂jGfree,λ(x, ⋅),Q−1λ (Gfree,λ(x, ⋅))⟩) ∣

+ ∣ (⟨Gfree,λ(x, ⋅),Q−1λ (∂jGfree,λ(x, ⋅))⟩) ∣)

≤C ∣ (⟨∇Gfree,λ(x, ⋅),Q−1λ (Gfree,λ(x, ⋅))⟩) ∣,

and

∣Δ(k
O,λ(x,x))∣ ≤C

d

∑

j=1

∣∂j∂j (⟨Gfree,λ(x, ⋅),Q−1λ (Gfree,λ(x, ⋅))⟩) ∣

≤C
⎛

⎝
∣⟨∇Gfree,λ(x, ⋅),Q−1λ (∇Gfree,λ(x, ⋅))⟩∣
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+ ∣⟨ΔGfree,λ(x, ⋅),Q−1λ (Gfree,λ(x, ⋅))⟩∣
⎞

⎠

≤C
⎛

⎝
∥∇Gfree,λ(x, ⋅)∥

H
1
2
∥Q−1λ ∥

H
1
2→H−

1
2
∥∇Gfree,λ(x, ⋅)∥

H
1
2

+ ∥ΔGfree,λ(x, ⋅)∥
H

1
2
∥Q−1λ ∥

H
1
2→H−

1
2
∥Gfree,λ(x, ⋅))∥

H
1
2

⎞

⎠
.

Let ρ(x) = dist(x, ∂O). By Lemma A.2 of [34] we have for ρ(x)λ ≤ 1,

sup
y∈∂O

∣∂α
x ∂β

y Gfree,λ(x, y)∣ ≤ C

⎧
⎪⎪
⎨
⎪⎪
⎩

ρ−(d−2+∣α∣+∣β∣)(x) (d ≥ 3),

∣ ln(ρ(x)λ)∣ + ρ−(∣α∣+∣β∣)(x) (d = 2),

and ln(ρ(x)λ) disappears when ∣α∣ + ∣β∣ ≥ 1. Moreover, for ρ(x)λ > 1, one has

sup
y∈∂O

∣∂α
x ∂β

y Gfree,λ(x, y)∣ ≤ C ∣λ∣d−2+∣α∣+∣β∣eImλρ(x).

This shows

d ≥ 3, ρ(x) > 1 6⇒

⎧
⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪
⎩

∥Gfree,λ(x, ⋅)∥
H

1
2
≤ C1e

−C2(Imλ)ρ(x)ρ−(d−2)(x),

∥∇Gfree,λ(x, ⋅)∥
H

1
2
≤ C1e

−C2(Imλ)ρ(x)ρ−(d−1)(x),

∥ΔGfree,λ(x, ⋅)∥
H

1
2
≤ C1e

−C2(Imλ)ρ(x)ρ−d(x),

and

d = 2, ρ(x) > 1 6⇒

⎧
⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪
⎩

∥Gfree,λ(x, ⋅)∥
H

1
2
≤ C1e

−C2(Imλ)ρ(x)
∣ ln(ρ(x)λ)∣,

∥∇Gfree,λ(x, ⋅)∥
H

1
2
≤ C1e

−C2(Imλ)ρ(x)ρ−1(x),

∥ΔGfree,λ(x, ⋅)∥
H

1
2
≤ C1e

−C2(Imλ)ρ(x)ρ−2(x),

for some positive C1 and C2. By Corollary 2.8 of [34] we have

∥Q−1λ ∥
H

1
2→H−

1
2
≤ C(1 + ∣λ∣2).

Now we can conclude that

d ≥ 3, ρ(x) > 1 6⇒

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

∣k
O,λ(x,x)∣ ≤ C1ρ

−2d+4
(x)e−C2 Imλρ(x),

∣∇(k
O,λ(x,x))∣ ≤ C1ρ

−2d+3
(x)e−C2 Imλρ(x),

∣Δ(k
O,λ(x,x))∣ ≤ C1ρ

−2(d−1)
(x)e−C2 Imλρ(x),

(17)

and

d = 2, ρ(x) > 1 6⇒

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

∣k
O,λ(x,x)∣ ≤ C1e

−C2(Imλ)ρ(x)
∣ ln(ρ(x)λ)∣2,

∣∇(k
O,λ(x,x))∣ ≤ C1e

−C2(Imλ)ρ(x)
∣ ln(ρ(x)λ)∣ρ−1(x),

∣Δ(k
O,λ(x,x))∣ ≤ C1e

−C2 Imλρ(x)
∣ ln(ρ(x)λ)∣ρ−2(x).

(18)

Let hrel = (H̆
−1
)rel∣Δ. That is hrel(x) =

2
π ∫

∞

m
λ

√

λ2
−m2

Grel,iλ(x,x)dλ. For m ≠ 0,
one can use Eqs. (17) and (18) to get the decay rate of hrel(x) by integrating
over λ. That is, for ρ(x) > 1, hrel(x) has a decay of ρ−k(x)e−Cmρ(x) with
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both k and C being positive. This warrants the integrability of Δhrel(x) for
d ≥ 2, m ≠ 0 and ρ(x) > 1. Therefore, we will now focus on the case m = 0. By
integrability of the integrand we can interchange differentiation and integration
and therefore get

∇hrel(x) = ∇(
2
π
∫

∞

0
Grel,iλ(x,x)dλ) =

2
π
∫

∞

0
∇(Grel,iλ(x,x))dλ,

Δhrel(x) = Δ(
2
π
∫

∞

0
Grel,iλ(x,x)dλ) =

2
π
∫

∞

0
Δ (Grel,iλ(x,x))dλ.

Again, by integrating over λ, we have

d ≥ 2, ρ(x) > 1 6⇒

⎧
⎪⎪
⎨
⎪⎪
⎩

∣∇hrel(x)∣ ≤ Cρ−2d+2
(x),

∣Δhrel(x)∣ ≤ Cρ−2d+1
(x).

(19)

Let Ω ⊂ R
d be an open set with dist(Ω, ∂O) > 1 and ϕ ∈ C∞0 (R

d
) sat-

isfy 0 ≤ ϕ ≤ 1 and ϕ = 1 in a neighbourhood of R
d
/Ω. Then, we have the

decomposition

Δhrel = Δ[(1 −ϕ)hrel] +Δ(ϕhrel). (20)

The integrability of Δ(ϕhrel) in Eq. (20) follows from the smoothness property
of the kernel of (H̆−1)rel at the diagonal as shown above. Thereby the integra-
bility of Δhrel on R

d is equivalent to the one of Δ[(1−ϕ)hrel] on supp(1−ϕ).
This follows immediately from Eq. (19). Therefore, we have shown the inte-
grability of Δ((H̆−1)rel∣Δ) on R

d. Finally, the integrability of Trel follows from
Theorem 2.4 and the definition of relative stress–energy tensor (i.e. Definition
3.3). ◻

Definition 3.6. The relative energy is defined as

Erel = ∫
Rd
(Trel)00dx = ∫

Rd
(((Tren)O)00 −

N

∑

i=1

((Tren)Oi
)00)dx.

Theorem 3.7. We have the equality

Erel =
1
2
TrHrel =

1
π
∫

∞

m

ω
√

ω2 −m2
Ξ(iω)dω. (21)

Proof. We have

∫
Rd

Δ((H̆−1)rel∣Δ)dx = lim
r→∞

∫
Br

Δ((H̆−1)rel∣Δ)dx,

where Br is the ball of radius r centred at the origin. As Δ((H̆−1)rel∣Δ) has
only jump-type discontinuity across ∂X, we can apply the divergence theorem
to the integral on Br for sufficiently large r. That is

∫
Br

Δ((H̆−1)rel∣Δ)dx = ∫
∂Br

∂ν((H̆
−1
)rel∣Δ)dσ(x)

+∫
∂X

(∂ν((H̆
−1
)rel∣Δ))

+

dσ(x)

+∫
∂X

(∂ν((H̆
−1
)rel∣Δ))

−

dσ(x),



1418 Y-L. Fang, A. Strohmaier Ann. Henri Poincaré

where (⋅)
+

and (⋅)
−

are the exterior and interior limits, respectively. From
equation (19), we also have

∣∇[(1 −ϕ)hrel]∣(x) ≤
CΩ

(dist(x, ∂O))2d−2
,

which implies the contribution of the integral over ∂Br vanished as r →∞ and
therefore

∫
Rd

Δ((H̆−1)rel∣Δ)dx = ∫
∂X

(∂ν((H̆
−1
)rel∣Δ))

+

dσ(x)

+∫
∂X

(∂ν((H̆
−1
)rel∣Δ))

−

dσ(x).

From Eq. (16), we then have

∫
Rd
∇ ⋅ ∇((H̆−1)rel∣Δ)dx = ∫

Rd
Δ((H̆−1)rel∣Δ)dx

=
2
π
∫
Rd
∫

∞

0
[∇ ⋅ ∇(Grel,iλ∣Δ)]dλdx

=
2
π
∫
Rd
∫

∞

0
[2∇ ⋅ (∇Grel,iλ∣Δ)]dλdx

= 2∫
Rd
[∇ ⋅ (∇(H̆−1)rel∣Δ)]dx.

This shows

1
2 ∫Rd

Δ((H̆−1)rel∣Δ)dx = ∫
∂X

(∂ν(H̆
−1
)rel∣Δ)

+

dσ(x)

+∫
∂X

(∂ν(H̆
−1
)rel∣Δ)

−

dσ(x).

We start by showing that for the restrictions to ∂Oq we have the following
identity

[∂ν (H̆
−1
O
− H̆−1free − (H̆

−1
Oq

− H̆−1free))∣Δ
]
∂Oq,±

= [∂ν (H̆
−1
O
− H̆−1

Oq
)∣
Δ
]
∂Oq,±

= 0.

To see this, we temporarily denote by k(x, y) the integral kernel of (H−1
O
−H−1

Oq
).

This kernel vanishes Oq ×Oq and the interior normal derivative therefore van-
ishes trivially. We therefore only need to concern ourself with the exterior
normal derivative. As shown in the proof of Theorem 3.5 the kernel (H−1)rel
is smooth. One concludes from this, using Theorem 2.2, that (H−1

O
−H−1

Oq
) is

smooth near Oq ×Oq in E ×E . The kernel k satisfies Dirichlet boundary condi-
tions in both variables in the sense that k(x, y) = 0 if y ∈ ∂Oq or if x ∈ ∂Oq. By
the chain rule [∂ν (H̆

−1
O
− H̆−1

Oq
)∣

Δ
]
±

(x) equals (∂ν,xk(x, y) + ∂ν,yk(x, y))∣y=x,



Vol. 23 (2022) A Mathematical Analysis of Casimir 1419

which therefore vanishes on ∂Oq. We then have

∫
∂X

(∂ν(H̆
−1
)rel∣Δ)

±

dσ(x)

=

N

∑

q=1
∫

∂Oq

(∂ν(H̆
−1
)rel∣Δ)

±

dσ(x)

=

N

∑

q=1
∫

∂Oq

⎡
⎢
⎢
⎢
⎢
⎣

∂ν

⎛

⎝
H̆−1
O
− H̆−1free −

N

∑

p=1

(H̆−1
Op

− H̆−1free)
⎞

⎠

HHHHHHHHHHHΔ

⎤
⎥
⎥
⎥
⎥
⎦±

dσ(x)

=

N

∑

q=1
∫

∂Oq

⎡
⎢
⎢
⎢
⎣

−

N

∑

p≠q

∂ν (H̆
−1
Op

− H̆−1free)∣Δ

⎤
⎥
⎥
⎥
⎦
±

dσ(x).

By Theorem 2.2, we know that ∂ν (H̆
−1
Op

− H̆−1free)∣
Δ

is smooth across the
boundary ∂Oq for p ≠ q, which implies

∫
∂Oq

⎡
⎢
⎢
⎢
⎣

−

N

∑

p≠q

∂ν (H̆
−1
Op
− H̆−1free)∣Δ

⎤
⎥
⎥
⎥
⎦+

dσ(x) = −∫
∂Oq

⎡
⎢
⎢
⎢
⎣

−

N

∑

p≠q

∂ν (H̆
−1
Op
− H̆−1free)∣Δ

⎤
⎥
⎥
⎥
⎦−

dσ(x).

Hence, we have ∫Rd Δ((H̆−1)rel∣Δ)dx = 0, which verifies the first Eq. in (21).
The representation of the trace of Hrel in terms of Ξ follows via Ξ′(λ) =

−2λTr (Rrel,λ) from Theorem 4.2 in [34], Theorem 3.2 and equation (16). ◻

4. Estimates on the Relative Resolvent

In preparation for the proof of the variational formula, we will need some
additional estimates on the relative resolvent Rrel,λ, which we collect in this
section. We have the following well-known layer potential representation (see
for example [34]*Equ. (19))

R
O,λ −Rfree,λ = −SλQ−1λ S

t
λ, (22)

which gives

Rrel,λ = −Sλ(Q
−1
λ − Q̃−1λ )S

t
λ (23)

Also, let ρ be the function defined as

ρ(λ) ∶=

⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

λd−4 if 0 < λ ≤ 1 and d = 2,3,

∣ logλ∣ + 1 if 0 < λ ≤ 1 and d = 4,

1 if 0 < λ ≤ 1 and d > 4,

1 if λ > 1.

For i, j, k ∈ Z, let ρi,j;k be the functions defined as

ρi,j;k(λ) ∶=

⎧
⎪⎪
⎨
⎪⎪
⎩

(∣ logλ∣ + 1)iλj for 0 < λ ≤ 1,

λk for λ > 1.

The following proposition partially follows from [34, Proposition 2.1] and ex-
tends [34, Proposition 2.2]. Let us summarise some mapping properties of the
layer potential operators.
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Proposition 4.1. Let d ≥ 2 and −
3
2
≤ s ≤ −

1
2
. Then, we have the following

properties of Sλ for λ ∈Dν (See (15), i.e. a sector in the upper half plane).

(1) If Re(λ) ≠ 0 then ∥Sλ∥Hs
(∂O)→L2

(Rd
)
≤ Cs

√

1+∣λ∣2

Re(λ) Im(λ)
.

(2) Let χ ∈ C∞(Rd
) be supported in V , where V ⊂ R

d is an open set with
smooth boundary and dist(V, ∂O) > 0. For 0 < δ < dist(V, ∂O), we have
that χSλ ∶ H

s
(∂O) → L2

(V ) is a Hilbert–Schmidt operator whose Hilbert–
Schmidt norm is bounded by

∥χSλ∥HS(Hs
(∂O)→L2

(Rd
))
≤ Cδ,ν,k

√

ρ(Imλ)e−δ Imλ

which implies

∥Sλ∥Hs
(∂O)→L2

(Rd
)
≤ Cδ,ν,s (1 +

√

ρ(Imλ)) .

(3) ∥Q−1λ ∥
H

1
2 (∂O)→H−

1
2 (∂O)

≤ Cν(1 + (Imλ)2)2.

Proof. Recall that we could also write the single-layer potential operator as
Sλ = Gfree,λ ○ γ∗. Note that γ∗ ∶ Hs

(∂O) → Hs− 1
2 (R

d
), Gfree,λ ∶ Hs− 1

2 (R
d
) →

Hs+ 3
2 (R

d
) and the natural inclusion map ι ∶ Hs+ 3

2 (R
d
) → L2

(R
d
) are bounded

maps. For −3
2
≤ s ≤ −1

2
, their norms are bounded by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪
⎩

∥γ∗∥
Hs
→Hs− 1

2
≤ Cs,

∥Gfree,λ∥Hs− 1
2→Hs+ 3

2
≤ sup

x∈R
∣

√

1 + x2

x2 − λ2
∣ ≤

√

1 + ∣λ∣2

Re(λ) Im(λ)
,

∥ι∥
Hs+ 3

2→H0 ≤ 1.

The second bound follows from the spectral representation of −Δfree. There-
fore, we conclude the proof for part (1).

Part (3) follows immediately from the bound on the Dirichlet-to-Neumann
operator in [34]. For part (2), let O ⊂ V ′ ⊂ R

d be an open set with dist(V,V ′) >
0 and choose 0 < δ < dist(V,V ′). In particular, 0 < δ < dist(V, ∂O). Let k ∈ N.
Now we have from [34] the estimate

∥(−Δ)
k
2 Gfree,λ∥

2
L2
(V ×V ′)

≤ Cδ,ν,k

⎧
⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪
⎩

(Imλ)2k−2
(1 + (Imλ log (Imλ))

2
) e−2δ Imλ for d = 2

(Imλ)2k
(1 + log (Imλ)) e−2δ Imλ for d = 4

(Imλ)d+2k−4
(1 + ∣ Imλ∣4−d) e−2δ Imλ for d ≠ 2,4

where Δ = Δx+Δy is the Laplace operator on V ×V ′. In other words, we have

∥Gfree,λ∥
2
Hk
(V ×V ′) ≤ Cδ,ν,k (1 + (Imλ)2k

)ρ(Imλ)e−2δ Imλ.

Now by taking Sobolev trace, we have

∥Gfree,λ∥
2
Hs
(V ×∂O) ≤ Cδ,ν,k (1 + (Imλ)2s+1

)ρ(Imλ)e−2δ Imλ.
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Statement (2) follows, using the properties of the Hilbert–Schmidt norm (for
example Sect. A.3.1 in [43]). Since −3

2
≤ s ≤ −1

2
, we have

∥χSλ∥
2
HS(Hs

(∂O)→L2
(V )) ≤ C1∥χSλE

−s∥
2
HS(L2

(∂O)→L2
(V ))

≤ C2∥Gfree,λ∥
2
H−s

(V ×∂O)

≤ Cδ,ν,k (1 + (Imλ)−2s+1
)ρ(Imλ)e−2δ Imλ

≤ Cδ,ν,k ρ(Imλ)e−2δ Imλ,

(24)

where Es = (
√

−Δ∂O + 1)s. To prove the last property of Sλ, we are left with
proving the bound for φSλ, where φ ∈ C∞(V ′′) is supported in V ′′ with O ⊂

V ′ ⊂ V ′′, φ(x) = 1 on O and 1 − φ is supported in V . It suffices to bound
φGfree,λ φ ∶ Hs

(R
d
) → L2

(R
d
) for −3

2
≤ s ≤ −1

2
. Note that the explicit kernel of

φGfree,λφ, denoted by Kλ(x, y), is given by

Kλ(x, y) =
i

4
φ(x)φ(y)(

λ

2π∣x − y∣
)

d−2
2

H
(1)
d−2
2
(λ∣x − y∣),

where H
(1)
ν is the Hankel function. By the Schur test and estimates on the free

resolvent (see Appendix A for details), we have

∥φGfree,λφ∥L2
→H2 ≤ Cr0,φ {

ρ1,0;0(Imλ) for d = 2,

1 for d ≠ 2.

Taking the adjoint, we get the same bound for H−2 → L2. Finally, using the
estimate (24) with χ = 1 − φ, we obtain

∥Sλ∥Hs
(∂O)→L2

(Rd
)
≤ Cδ,ν,s (1 +

√

ρ(Imλ)) for −
3
2
≤ s ≤ −

1
2
.

◻

Remark 4.2. In the case of odd dimensions, an easier argument can be used to
provide a weaker estimate that is still sufficient for the purposes of this paper.
Using the strong Huygens principle, one deduces ( [47, Sect. 3.1])

∥φGfree,λ φ∥H−2
→L2 ≤ Cφ(1 + ∣λ∣) for λ ∈Dν , (25)

which implies

∥φGfree,λ φ∥
Hs− 1

2→L2 ≤ Cφ(1 + ∣λ∣) ≤ Cφ,ν(1 + Imλ) for −
3
2
≤ s ≤ −

1
2
.

This gives ∥φSλ∥Hs
→L2 ≤ Cφ,ν(1 + Imλ) for −3

2
≤ s ≤ −1

2
. Applying inequality

(24) for χ = 1 − φ and using −2s+1
2

≥ 1, we get

∥Sλ∥Hs
→L2 ≤ Cδ,ν,s (1 + Imλ +

√

ρ(Imλ)) for −
3
2
≤ s ≤ −

1
2
.
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5. Hadamard Variation Formula and Equivalence of Approaches
(2) and (3)

In this section, we will show that a version of Hadamard variation of the
renormalised stress–energy tensor (Tren)ij defined in Sect. 2.2 is related to
the Hadamard variation formula for the resolvent. We will follow the methods
developed in [39,41,48,49] and derive a Hadamard variation formula for the
relative resolvent, then apply it to the relative stress–energy tensor. Short
proofs of Hadamard variation formula can be found in [50,51] for the case of
bounded domains. Since we are dealing with an unbounded domain, we extend
theory to non-compact setting for the special case of boundary translation flows
(see Definition 5.1) in Theorem 5.3, which are sufficient for our purposes.

5.1. Hadamard Variation Formula

Let U be a possibly unbounded open subset in R
d with smooth compact bound-

ary and Y be a smooth vector field on R
d. The flow, denoted by ϕε and gener-

ated by Y , gives, for small ∣ε∣, a one-parameter family of smooth manifolds in
R

d, which is denoted by Uε = ϕε(U). For our application, U would be either E
or O as defined in Sect. 1 and we will only consider flows that generate rigid
translations of obstacles.

Definition 5.1. A flow ϕε associated with vector field Y is called a boundary
translation if Y is locally constant near ∂U .

Following Peetre’s derivation of Hadamard variation formula, we define
the following variational derivative.

Definition 5.2. Let uε be a (weak-∗) C1 curve of functions in D
′

(Uε). The
variational derivative at ε = 0 is given by

δY u ∶= θY u − Y u, (26)

where θY u = limε→0
ϕ∗εuε−u0

ε
is the variational derivative defined by Garabedian–

Schiffer’s in [39]. Here, the derivative θY u is understood in the weak-∗-sense
and the action of the vector field Y is understood in the sense of distribution.

Note that θY u is different from the standard (conventional) Lie derivative,
as uε may have an additional dependence on ε. In fact, the last term, Y u in
Eq. (26), should be understood as the conventional Lie derivative of u0.

The derivation of Hadamard variational formula for the resolvent as-
sociated with the Dirichlet Laplace operator usually starts with the energy
quadratic form (see [39,41,49]). The energy quadratic form associated with
the Dirichlet Laplacian −ΔUε

on Uε is given by

Eε(u, v;λ) = ∫
Uε

(∇u ⋅ ∇v − λ2uv)dx, (27)

where λ ∈ C and Imλ > 0. Using the diffeomorphism flow ϕε, one can pull-back
the quadratic form from Uε to U0 = U , which gives a one-parameter family of
quadratic forms on U , i.e.

Ẽε(u, v;λ) = ∫
U
[ϕ∗ε (∇ϕ−1∗ε (u) ⋅ ∇ϕ−1∗ε (v)) − λ2uv]ϕ∗ε (dx). (28)
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Note that the energy form (27) and the induced energy forms (28) are related
by

Eε(u, v;λ) = Ẽε(ϕ
∗

ε (u), ϕ
∗

ε (v);λ). (29)

The operator associated with the energy form (27) is the Dirichlet Laplace
operator, whereas Ẽε defines a one-parameter families of elliptic operators on
U for sufficiently small ε. Let Gλ,ε = GUε,λ be kernel of the resolvent for the
Dirichlet Laplacian on Uε. Then, from Eqs. (27), (28) and (29), we have in the
sense of distributions

⎧
⎪⎪
⎨
⎪⎪
⎩

(−Δx − λ2
)Gλ,ε(x, y) = δy(x) in Uε

Gλ,ε(x, y) = 0 for x ∈ ∂Uε

, (30)

where y is in the interior of Uε and by elliptic regularity Gλ,ε(x, y) is then
smooth at the boundary and therefore it makes sense to define its boundary
value.

As we would like to study the variation of resolvents, it is convenient
to consider the variation as distributions on U × U . In other words, for Rε ∈

D
′

(Uε ×Uε) and u, v ∈ C∞0 (U), we have, from the Schwartz kernel theorem,

ϕ∗ε Rε(u⊗ v) = Rε(ϕ
∗

−εu⊗ϕ∗
−εv) = ⟨ϕ

∗

−εu,Rεϕ
∗

−εv⟩ = ⟨u,ϕ∗ε Rεϕ
∗

−εv⟩, (31)

where the first two brackets correspond to the pairing between distributions
and test functions while the third and the forth brackets are the L2 inner
products on Uε and U , respectively. It is not hard to see that the existence of
the variational derivative of Rε in the sense of (26) is implied by the existence of
θY R. From Eq. (31), the existence of θY R = limε→0

ϕ∗εRε−R0

ε
in the weak-∗-sense

is equivalent to the existence of the standard derivative of r(ε) = ⟨u,ϕ∗ε Rεϕ
∗

−εv⟩
with respect to ε for all u, v ∈ C∞0 (U).

The following theorem is the well-known Hadamard variation formula for
the resolvent extended to case of unbounded domains in our setting.

Theorem 5.3. Let ϕε be a boundary translation flow, then the variational de-
rivative of Rλ,ε exists in the weak-∗ topology. Let Gλ,ε(x, y) be the kernel of
Rλ,ε, then its variational derivative is given by

δY Gλ,0(x, y) = ∫
∂U

∂′νGλ,0(x, z)∂νGλ,0(z, y)⟨Y, ν⟩dσ(z). (32)

Proof. Firstly, we prove the existence of θY Rλ in weak-∗-sense. We know that,
from Eq. (23), ϕ∗ε Rλ,εϕ

∗

−ε − Rfree,λ = −ϕ∗εSλ,εQ
−1
λ,εS

t
λ,εϕ

∗

−ε. We will therefore
establish differentiability of

−⟨g,ϕ∗εSλ,εQ
−1
λ,εS

t
λ,εϕ

∗

−εf⟩ = −⟨g, (ϕ∗εSλ,εϕ
∗

−ε) (ϕ
∗

ε Q−1λ,εϕ
∗

−ε) (ϕ
∗

εS
t
λ,εϕ

∗

−ε)f⟩

(33)

for any fixed test functions g, f ∈ C∞0 (U) and compute its derivative. In the last
term of Eq. (33), the operator St

λ,ε is the transpose operator to Sλ,ε obtained

from the real inner product, i.e. St
λ,εf = S

t
λ,εf . Since the free resolvent is smooth
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off the diagonal and

⟨g,ϕ∗εSλ,εϕ
∗

−εf⟩ = ∫
U
∫

∂Uε

g(x)Gfree,λ(ϕε(x), ỹ)f(ϕ−ε(ỹ))dσ(ỹ)dx

= ∫
U
∫

∂U
g(x)Gfree,λ(ϕε(x), ϕε(y))f(y)dσ(y)dx,

the kernel of Sλ,ε is smooth on U × ∂U . Here, f ∈ C∞(∂U), g ∈ C∞0 (U) and
Gfree,λ is the kernel of the free resolvent. To establish differentiability by the
product rule, it is sufficient to prove the existence of d

dε
(ϕ∗εSλ,εϕ

∗

−ε) in the C∞-
topology of integral kernels on U ×∂U , and the existence of d

dε
(ϕ∗ε Q−1λ,εϕ

∗

−ε) at
ε = 0 in the weak-∗-sense. The free resolvent kernel is smooth off the diagonal
and therefore the above formula for ϕ∗εSλ,εϕ

∗

−ε shows differentiability of the
smooth kernel in the parameter ε at ε = 0 and the classical sense. We are
thus left with proving the existence of d

dε
(ϕ∗ε Q−1λ,εϕ

∗

−ε) at ε = 0 in the weak-∗-
sense. Note that ϕ∗ε Q−1λ,εϕ

∗

−ε is a one-parameter family of maps from C∞(∂U)

to C∞(∂U), i.e. the spaces do not depend on ε. Similar to Eq. (14), we have
the splitting

Q̃λ =

N

∑

j=1

pjQλpj , Tλ =

N

∑

j≠k

pjQλpk and Qλ = Q̃λ + Tλ,

where pj are the orthogonal projections L2
(∂U) → L2

(∂Uj) and ∂Uj , j =

1, . . . ,N are the connected components of ∂U . Define Qλ,ε = ϕ∗ε Qλ,εϕ
∗

−ε, Q̃λ,ε =

ϕ∗ε Q̃λ,εϕ
∗

−ε and Tλ,ε = ϕ∗ε Tλ,εϕ
∗

−ε. By the definition of Q̃λ,ε, we have

Q̃λ,εf(xi) = ∫
∂Ui

Gfree,λ(ϕε(xi), ϕε(yi))fi(yi)ϕ
∗

ε (dσ(yi)),

where f ∈ C∞(∂U) and fi = pif . As ϕε is a boundary translation flow, we
obtain the following relationships.

Q̃λ,ε = Q̃λ,0 = Q̃λ and Q̃
−1
λ,ε = Q̃−1λ .

Now, from the decomposition of Qλ in Eq. (14), one obtains

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

d
dε
Qλ,ε =

d
dε
(Q̃λ,ε + Tλ,ε) =

d
dε
Tλ,ε,

d
dε
Q
−1
λ,ε = −Q

−1
λ,ε (

d
dε
Qλ,ε)Q

−1
λ,ε.

The family Tλ,ε is a differentiable family of smoothing operators for suffi-
ciently small ε (i.e. no obstacles are overlapping) and its derivative in ε there-
fore, by Taylor’s remainder estimate, exits as a family of smooth kernels. Hence,
Qλ,ε is differentiable in ε at ε = 0 as a family of operators from Hs

(∂U) to
Hs+1

(∂U) for any s ∈ R. We now use thatQλ,0 is invertible and the inverseQ−1λ,0

is a pseudodifferential operator of order one, and maps Hs
(∂U) to Hs−1

(∂U).
Since the space of invertible operators is open the inverses Q

−1
λ,ε exist near

ε = 0 as maps from Hs
(∂U) to Hs−1

(∂U). Hence, Q−1λ,ε is differentiable in ε at
ε = 0 as a family of operators from Hs

(∂U) to Hs−1
(∂U). In particular the
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derivatives d
dε
Qλ,ε and d

dε
Q
−1
λ,ε exist in the weak-∗-sense. Hence, the variational

derivative of Rλ,ε exists in the weak-∗ sense and it is given by

δY Rλ = θY Rλ − Y Rλ − Y ′Rλ, (34)

where Y ′ means the action of Y on the second variable. It remains to compute
the derivative. To do this, we consider the inhomogeneous problem

Eε(uε, ϕ
∗

−εv) = ∫
Uε

fε(ϕ
∗

−εv)dx. (35)

Let ν be the exterior unit normal of U , y be an interior point of U such that
ϕε(y) = ỹ and e(u, v) = ∇u ⋅ ∇v − λ2uv. By applying

{

uε(x) = Gλ,ε(x,ϕε(y)),

fε(x) = δϕε(y)(x).

to equation (35), taking derivative in ε of Eq. (35) and using Eq. (30) and
Peetre’s computations [41], one has

∫
U

e(δY u0, v)dx = ∫
U

e(u0, Y (v))dx − ∫
∂U

e(u0, v)⟨Y, ν⟩dσ. (36)

Let v(x) = Gλ,0(x, z), we have

∫
U

e(u, v)dx = u(z) + ∫
∂U

u(x)∂νGλ,0(x, z)dσ(x) . (37)

Using the symmetric property of Gλ,ε(x, y) = Gλ,ε(y, x) and Eqs. (34), (36)
and (37), we obtain

δY Gλ,0(z, y) + ∫
∂U

∂′νGλ,0(z, x)δY Gλ,0(x, y)dσ(x) = 0.

Using the boundary conditions Gλ,ε(ϕε(x), y) = 0 for x ∈ ∂U , we arrive at the
Hadamard variation formula for the Dirichlet resolvent.

δY Gλ,0(z, y) = ∫
∂U

∂′νGλ,0(z, x)∂νGλ,0(x, y)⟨Y, ν⟩dσ(x).

◻

5.2. Application of the Hadamard Variation Formula to the Relative Resolvent

We now apply the Hadamard variation formula to our setting with finitely
many obstacles, combining the above formulae for U = E and U = O. We have
from Eq. (32)

δY Gλ,0(z, y) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

∫
∂X

[(∂νGλ,0(x, y)∂νGλ,0(x, z)) ⟨Y, νX⟩]
+

dσ(x) y, z ∈ E

∫
∂X

[(∂νGλ,0(x, y)∂νGλ,0(x, z)) ⟨Y, νX⟩]
−

dσ(x) y, z ∈ O

(38)

where (⋅)
+

means taking limits from E to the boundary ∂E and (⋅)
−

means
taking limits from O to the boundary ∂O. We will now use the variational
formula for the relative resolvent to prove the following theorem. Hence, we
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define Oε = ϕε(O) and similarly Oj,ε = ϕε(Oj). In this way, we can define the
relative resolvent

Rrel,λ,ε = R
Oε,λ −Rfree,λ −

⎛

⎝

N

∑

j=1

R
Oj,ε,λ −Rfree,λ

⎞

⎠

and its integral kernel Grel,λ,ε depending on the parameter ε.

Theorem 5.4. Let ϕε be a boundary translation flow, d ≥ 2 and λ ∈ Dν . Then,
Rrel,λ,ε is for each λ ∈ Dν a C1 trace-class operator-valued function of ε near
the point ε = 0. Its derivative Ṙrel,λ,0 equals δY Rrel,λ and there exists δ > 0
such that L2-trace-norm of Ṙrel,λ,0 is bounded by

∥Ṙrel,λ,0∥1 ≤ Cνρ(Imλ)e−δ Imλ, λ ∈Dν . (39)

Its kernel, Ġrel,λ,0 =
˘̇Rrel,λ,0, is given by

Ġrel,λ,0(x, y) = ∑
N
i=1 ∫∂Oi

[(∂′νG
O,λ,0(x, z)∂νG

O,λ,0(z, y)

−∂′νG
Oi,λ,0(x, z)∂νG

Oi,λ,0(z, y))⟨Y, ν
Ei
⟩]
+

dσ(z) (40)

for x, y ∈ E or x, y ∈ O, where ν
Ei

is the exterior unit normal of Ei and Ei =

R
d
∖Oi.

Proof. We start by showing that the family is Fréchet differentiable in the
Banach space of trace-class operators with continuous derivative, i.e. the func-
tion is C1 as a trace-class operator-valued function on I, where is a fixed
sufficiently small compact interval. As in the previous section we have Rrel,λ =

−Sλ(Q
−1
λ − Q̃−1λ )S

t
λ. We can decompose its variation form as in the proof of

Theorem 5.3

Rrel,λ,ε = −Sλ,ε(Q
−1
λ,ε − Q̃−1λ,ε)S

t
λ,ε = −Sλ,εϕ

∗

−εϕ
∗

ε (Q
−1
λ,ε − Q̃−1λ,ε)ϕ

∗

−εϕ
∗

εS
t
λ,ε.

Then, we split the last term into a product of three terms, i.e. Sλ,εϕ
∗

−ε, ϕ∗ε (Q
−1
λ,ε−

Q̃−1λ,ε)ϕ
∗

−ε, and ϕ∗εS
t
λ,ε. The first operator Sλ,εϕ

∗

−ε is given by

Sλ,εϕ
∗

−εf(x) = ∫
∂Oε

Gfree,λ(x, ỹ)f(ϕ
−ε(ỹ))dσ(ỹ)

= ∫
∂O

Gfree,λ(x,ϕε(y))f(y)ϕ
∗

ε (dσ(y)).

Since ∂O is a disjoint union of the components ∂Oj the operators Sλ,εϕ
∗

−ε

splits into a sum ∑j Sj,λ,ε = ∑j Tj(ε)Sj,λ, where Sj,λ ∶ L
2
(∂Oj) → H1

(R
d
) and

Tj(ε) ∶ L
2
(R

d
) → L2

(R
d
) is the translation Tj(ε)f(x) = f(x − Zjε). Here, we

used the fact that Z is constant and equal to Zj near ∂Oj and that the free
Green’s function is translation invariant. Since Tj(ε) is C1 as a family of maps
H1

(R
d
) → L2

(R
d
), this shows that Sλ,εϕ

∗

−ε and its adjoint are C1 as families
of bounded operators L2

(∂O) → L2
(R

d
). As shown in the proof of Theorem

5.3, the operator ϕ∗ε Q̃λ,εϕ
∗

−ε is independent of ε and therefore

ϕ∗ε Qλ,εϕ
∗

−ε = Q̃λ +ϕ∗ε Tλ,εϕ
∗

−ε = Q̃λ + Tλ,ε.
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The map Tλ,ε has smooth integral kernel that depends smoothly on ε for suffi-
ciently small ε. This family is therefore C1 as a family of trace-class operators.
We temporarily denote ϕ∗ε Qλ,εϕ

∗

−ε by Jε, As Gfree,λ is translation invariant,
ϕ∗ε Q̃λ,εϕ

∗

−ε is independent of ε and hence we denote it by J̃ . Then, by the above
Jε = J0 + rε and J0 − J̃ is trace-class. Moreover, the remainder term rε is of the
form rε = J̇0ε+ρ(ε), where ∥ρ(ε)∥1 = o(ε) as ε → 0. By the Neumann series, we
have

J−1ε − J̃−1 = (1 + J−10 rε)
−1J−10 − J̃−1 = J−10 − J̃−1 − J−10 J̇0J

−1
0 ε + ρ̃(ε),

where again ∥ρ̃(ε)∥1 = o(ε). We have used here that trace-class operators form
an ideal in the algebra of bounded operators, and the norm estimate ∥AB∥1 ≤

∥A∥∥B∥1 holds. We conclude that ϕ∗ε (Q
−1
λ,ε − Q̃−1λ,ε)ϕ

∗

−ε is C1 as a family of
trace-class operators.

We now compute the derivative in ε of all the three terms. We obtain

Ṙrel,λ,0 = SλY (Q−1λ − Q̃−1λ )S
t
λ − Sλ

d
dε

(ϕ∗ε (Q
−1
λ,ε − Q̃−1λ,ε)ϕ

∗

−ε)∣
ε=0

× S
t
λ − Sλ(Q

−1
λ − Q̃−1λ )Y St

λ.

For the derivative of the second term, we have as in Theorem 5.3

Q̃λ,εf(xi) = ∫
∂Oi

Gfree,λ(ϕε(xi), ϕε(yi))fi(yi)ϕ
∗

ε (dσ(yi)),

and
d
dε

(ϕ∗ε (Q
−1
λ,ε − Q̃−1λ,ε)ϕ

∗

−ε)∣
ε=0

=
d
dε
Q
−1
λ,ε∣

ε=0

= − (Q
−1
λ,ε (

d
dε
Tλ,ε)Q

−1
λ,ε)∣

ε=0
.

Therefore, the variation of the relative resolvent is given by

Ṙrel,λ,0 = SλY (Q−1λ − Q̃−1λ )S
t
λ − SλQ−1λ

d
dε
Tλ,ε∣ε=0

Q−1λ S
t
λ − Sλ(Q

−1
λ − Q̃−1λ )Y St

λ

= SλY (Q−1λ TλQ̃−1λ )S
t
λ − SλQ−1λ Ṫλ,0Q

−1
λ S

t
λ − Sλ(Q

−1
λ TλQ̃−1λ )Y St

λ (41)

To estimate the trace-norm of Ṙrel,λ,0, note that the first term in the above
equation can be estimated by

∥SλY (Q−1λ TλQ̃−1λ )S
t
λ∥1 ≤ ∥SλY Q−1λ ∥H

1
2→L2∥E−1∥H−

1
2→H

1
2
∥E1Tλ∥1∥Q̃

−1
λ S

t
λ∥L2→H−

1
2
,

where Es = (
√

−Δ∂O + 1)s and ∥E1Tλ∥1 is the trace-norm from H−
1
2 → H−

1
2 .

Now by Proposition 4.1, we have

∥SλY (Q−1λ TλQ̃−1λ )S
t
λ∥1 ≤ C(1 + (Imλ)2)4ρ(Imλ)∥E1Tλ∥1. (42)

The third term in Eq. (41) can be bounded the same as the first term. For the
second term, one can estimate it by

∥SλQ−1λ Ṫλ,0Q−1λ S
t
λ∥1 ≤ ∥SλQ−1λ ∥H

1
2→L2∥E−1∥H−

1
2→H

1
2
∥E1Ṫλ,0∥1∥Q

−1
λ S

t
λ∥L2

→H−
1
2

≤ C(1 + (Imλ)2)4ρ(Imλ)∥E1Ṫλ,0∥1. (43)

Combining Eqs. (42) and (43), one has

∥Ṙrel,λ,0∥1 ≤ C(1 + (Imλ)2)4ρ(Imλ) (∥E1Tλ∥1 + ∥E1Ṫλ,0∥1) .
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In order to prove the bound (39), it suffices to prove that

∥Tλ,ε∥1 ≤ Ce−δ Imλ and ∥Ṫλ,ε∥1 ≤ Ce−δ Imλ.

As in Theorem 5.3, Tλ,ε is a smoothing operator that depends smoothly on ε,
as long as we have dist(∂Oj,ε, ∂Ok,ε) > 0 for all pairs of obstacles. Since the
obstacles are compact, Tλ,ε is a smoothing operator on compact domains and
hence it is also a trace-class operator from Hs

(∂O) → Hs
(∂O) for all s ∈ R.

This proves the first part of the theorem.
Also, from Theorem 5.3, we know that δY Grel,λ,0 exists in the weak-∗

sense. By Eqs. (33) and (34), we know that the kernel of Ṙrel,λ,0 coincides with
δY Grel,λ,0. In other words, the variational derivative exists in a stronger sense.
We can therefore apply the variation formula (38) to the relative resolvent,
which gives

Ṙrel,λ,0(x, y) =δY Grel,λ,0(x, y)

=δY (G
O,λ,0 −Gfree −

N

∑

i=1

(G
Oi,λ,0 −Gfree)) (x, y)

=δY G
O,λ,0(x, y) −

N

∑

i=1

δY G
Oi,λ,0(x, y; z)

=

N

∑

i=1
∫

∂Oi

[∂′νG
O,λ,0(x, q)∂νG

O,λ,0(q, y)⟨Y, ν
Ei
⟩]
+

dσ(q)

−

N

∑

i=1
∫

∂Oi

[∂′νG
Oi,λ,0(x, q)∂νG

Oi,λ,0(q, y)⟨Y, ν
Ei
⟩]
+

dσ(q)

=

N

∑

i=1
∫

∂Oi

[(∂′νG
O,λ,0(x, q)∂νG

O,λ,0(q, y)

− ∂′νG
Oi,λ,0(x, q)∂νG

Oi,λ,0(q, y))⟨Y, ν
Ei
⟩]
+

dσ(q).

Since the interior parts of G
O,λ,ε and G

Oj ,λ,ε are the same, the interior
contributions of δY G

O,λ,0 in the expression (38) cancel out with the ones of
δY G

Oj ,λ,0. Therefore, we are left with only the exterior contributions as shown
in Eq. (40). ◻

Definition 5.5. Let M be a Riemannian manifold with A be an operator on
L2
(M) with continuous kernel Schwartz kernel Ă ∈ C(M ×M). For an open

subset V ⊂ M , we define the localised trace on V as

TrV (A) = ∫
V

Ă(x,x)dVolg(x),

whenever the integral exists. If A is trace-class and has continuous kernel, the
trace of A on L2

(M) then equals TrM(A) by Mercer’s theorem. We also write
TrV (Ă).

Our next proposition gives a relationship between the trace of the varia-
tion of the relative resolvent with a local trace on the boundary.
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Proposition 5.6. The trace of the variation of the relative resolvent on L2
(X)

is also given by

TrX[δY Rrel,λ] =
1
2λ

N

∑

i=1

Tr∂Oi
[(∂ν∂′ν

∂G
O,λ

∂λ
− ∂ν∂′ν

∂G
Oi,λ

∂λ
) ⟨Y, ν⟩]

+

.

Proof. Let γ
E,ν ∶ H

3
2 (E) → L2

(∂O) be the Sobolev trace after taking the
exterior normal derivative (ν is the exterior normal vector field) and B

O,λ ∶

L2
(∂O) → L2

(R
d
) is defined as B

O,λ = R
O,λ ○ γ∗

E,ν . To see that this map is
well defined, we note that

R
O,λγ∗

E,ν = Rfree,λγ∗
E,ν − SO,λQ−1

O,λS
t
O,λγ∗

E,ν , (44)

where S
O,λ and Q

O,λ are the same as Sλ and Qλ defined in (22), but with em-
phasis on the dependence on O. Then, Rfree,λγ∗

E,ν maps L2
(∂Ω) continuously

to L2
(R

d
). The operator St

λγ∗
E,ν is the double layer operator on the boundary

∂O and maps continuously L2
(∂Ω) → L2

(∂Ω) (see for example [52]). Since
Q−1λ is a pseudodifferential operator of order one, and Sλ continuously maps
H−1(∂O) to H

1
2 (R

d
) ⊂ L2

(R
d
) we see that B

O,λ ∶ L
2
(∂O) → L2

(R
d
) is indeed

well defined and continuous.
Similarly, we define γ

Oi,ν and B
Oi,λ. Let pi be the orthogonal projec-

tion L2
(∂O) → L2

(∂Oi). Then, from (44) then have for (B
O,λ − BOi,λ)pi the

representation

(B
O,λ − BOi,λ)pi = Sλ (Q

−1
λ −Q−1

Oi,λpi)St
λγ∗
E,νpi

= Sλ (Q
−1
λ − Q̃−1λ pi)St

λγ∗
E,νpi

= Sλ (Q
−1
λ − Q̃−1λ )St

λγ∗
E,νpi +∑

k/=i

SλQ̃−1λ pkSt
λγ∗
E,νpi.

where Q
Oi,λ is the operator Qλ in Eq. (22) when O is replaced by Oi in the

definition. As in (14) we have used the decomposition Qλ = Q̃λ+Tλ. Since Tλ is
smoothing, so is Q−1λ −Q̃−1λ = −Q−1λ TλQ̃−1λ . Similarly, as the free Green’s function
is smooth off the diagonal the operator pkSt

λγ∗
E,νpi has smooth integral kernel

for k /= i. In particular, these operators are trace-class as maps from L2
(∂O)

to L2
(∂O). Since Sλ as well as SλQ̃−1λ is bounded from L2

(∂O) to L2
(R

d
) this

shows that for every i ∈ {1, . . . ,N} the operator (B
O,λ − BOi,λ)pi is nuclear.

Equation (40) can be rewritten as

δY Rrel,λ =

N

∑

i=1

(B
O,λYiB

∗

O,λ − BOi,λYiB
∗

Oi,λ
) ,
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where Yi = ⟨Y, ν
Ei
⟩∣∂Oi

is viewed as a multiplication operator acting on L2
(∂Oi)

⊂ L2
(∂O). Taking the trace, we have

Tr(δY Rrel,λ) =

N

∑

i=1

Tr (B
O,λYiB

∗

O,λ − BOi,λYiB
∗

Oi,λ
)

=

N

∑

i=1

Tr ((B
O,λ − BOi,λ)YiB

∗

O,λ + BOi,λYi (B
∗

O,λ − B
∗

Oi,λ
))

=

N

∑

i=1

Tr (B∗
O,λ (BO,λ − BOi,λ)Yi + Yi (B

∗

O,λ − B
∗

Oi,λ
)B
Oi,λ)

=

N

∑

i=1

Tr ((B∗
O,λBO,λ − B

∗

Oi,λBOi,λ)Yi) .

Here, the cyclic permutation under the trace is justified because of the nu-
clearity of (B

O,λ − BOi,λ)pi. Since B∗
O,λBO,λ =

1
2λ

γ
E,ν

d
dλ

R
O,λγ∗

E,ν its integral

kernel is 1
2λ

∂ν∂′ν
∂GO,λ

∂λ
. We then obtain

Tr(δY Rrel,λ) =

N

∑

i=1

Tr ((B∗
O,λBO,λ − B

∗

Oi,λBOi,λ)Yi)

=
1
2λ

N

∑

i=1

Tr∂Oi
[(∂ν∂′ν

∂G
O,λ

∂λ
− ∂ν∂′ν

∂G
Oi,λ

∂λ
)Yi]

+

=
1
2λ

N

∑

i=1

Tr∂Oi
[(∂ν∂′ν

∂G
O,λ

∂λ
− ∂ν∂′ν

∂G
Oi,λ

∂λ
) ⟨Y, ν⟩]

+

.

◻

By Theorem 3.2, one can define trace-class operators
grel = Df =

i
π ∫Γ̃

λf(λ)Rrel,λdλ for f(λ) = g(λ2
) and g ∈ Pθ. We now have

the following.

Proposition 5.7. Let g ∈ Pθ and ϕε be a boundary translation flow. Then, δY grel

is a C1 trace-class operator-valued function of ε near the point ε = 0. Its deriv-
ative ġrel = δY grel satisfies

Tr(δY grel) = −

N

∑

i=1

Tr∂Oi
[∂ν∂′ν(ğ

′

O
− ğ′
Oi
)⟨Y, ν⟩]

+

,

where g′(z) = dg
dz
(z).

Proof. By Theorem 5.4, the operator Rrel(z) is, for fixed z ∉ Sθ, in the Ba-
nach space C1

(I,L1) of trace-class operator-valued C1-functions on a compact
interval I containing zero. Differentiation defines a closed operator from on
C(I,L1) with domain C1

(I,L1). By Theorem 5.4, the derivative of Rrel,λ is
integrable in λ. An application of Hille’s theorem to the Bochner integral defin-
ing grel in the Banach space of trace-class operators shows that differentiation
in ε commutes with integration. We therefore know that grel is differentiable
and

δY grel =
i

2π
∫

Γ
g(z)δY Rrel(z)dz =

i

π
∫

Γ̃
λf(λ)δY Rrel,λdλ with Rrel(λ

2
) = Rrel,λ.
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Let f(λ) = g(λ2
). Using Proposition 5.6 and integration by parts in λ, we have

Tr(δY grel) =
i
π
∫

Γ̃
λf(λ)Tr(δY Rrel,λ)dλ

=
i

2π
∫

Γ̃
f(λ)

N

∑

i=1

Tr∂Oi
[(∂ν∂′ν

∂G
O,λ

∂λ
− ∂ν∂′ν

∂G
Oi,λ

∂λ
) ⟨Y, ν⟩]

+

dλ

= −

N

∑

i=1

Tr∂Oi
[∂ν∂′ν(ğ

′

O
− ğ′
Oi
)⟨Y, ν⟩]

+

.

◻

In the special case g(z) =
√

z +m2, Proposition 5.7 shows differentiabil-
ity of Hrel with respect to ε in the space of trace-class operators at ε = 0.
Using Theorem 3.7 and differentiating under the trace then gives the following
theorem.

Theorem 5.8. The variation of the relative energy is given by δY Erel =
1
2
Tr(δY

Hrel).

We will now use the Hadamard variation formula to compute this varia-
tion.

5.3. Variation of the Klein–Gordon Energy

Theorem 5.9. Let Y be a smooth boundary translation vector field. The vari-
ation of the Klein–Gordon energy generated by Y is equal to the boundary
integral of its spatial tensor contracted with Y . That is

δY Erel = −∫
∂O
(Trel)ijν

iY jdσ,

where the integration on the right-hand side is at the exterior boundary and ν
is the exterior normal for E.

Proof. From Eq. (5), we have

∫
∂O
(Trel)ijν

iY jdσ =

N

∑

p=1
∫

∂Op

(Trel)ijν
iY jdσ

=

N

∑

p=1
∫

∂Op

⎛

⎝
(Tren)O −

N

∑

q=1

(Tren)Oq

⎞

⎠
ij

νiY jdσ.

We know that
● ((Tren)Op

)ij is smooth on a neighbourhood of Oq for p ≠ q (by Theorem
2.6),

● ((Tren)Op
)ij is divergence-free (by Theorem 2.6),

● Y is constant on a neighbourhood of Oq (by assumptions) for all q ∈

{1, . . .N}.
Therefore, Fi = ((Tren)Op

)ijY
j is smooth and divergence-free on a neighbour-

hood of Oq. In other words, we have

∫
∂Oq

((Tren)Op
)ijν

iY jdσ = 0 for q ≠ p.
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That is

∫
∂O
(Trel)ijν

iY jdσ =

N

∑

p=1
∫

∂Op

((Tren)O − (Tren)Op
)ijν

iY jdσ.

As ((Tren)O − (Tren)Op
)ij is vanishing at the boundary ∂Op, we have

((Tren)O − (Tren)Op
)ijY

j
= ((Tren)O − (Tren)Op

)ijν
j
⟨Y, ν⟩ on ∂Op.

Now, from Theorem 2.4 we get
N

∑

p=1
∫

∂Op

((Tren)O − (Tren)Op
)ijν

iY jdσ

=

N

∑

p=1
∫

∂Op

((Tren)O − (Tren)Op
)ijν

iνj
⟨Y, ν⟩dσ

=

N

∑

p=1
∫

∂Op

1
2
{[[∂ν∂′ν(H̆

−1
O
− H̆−1free)]∣Δ −

1
4
Δ[(H̆−1

O
− H̆−1free)∣Δ]]

− [[∂ν∂′ν(H̆
−1
Op

− H̆−1free)]∣Δ −
1
4
Δ[(H̆−1

Op
− H̆−1free)∣Δ]]} ⟨Y, ν⟩dσ

=
1
2

N

∑

p=1
∫

∂Op

[[∂ν∂′ν(H̆
−1
O
− H̆−1

Op
)]∣Δ −

1
4
Δ[(H̆−1

O
− H̆−1

Op
)∣Δ]] ⟨Y, ν⟩dσ.

Altogether, we have

∫
∂O
(Trel)ijν

iY jdσ =
1
2

N

∑

p=1
∫

∂Op

[[∂ν∂′ν(H̆
−1
O
− H̆−1

Op
)]∣Δ

−
1
4
Δ[(H̆−1

O
− H̆−1

Op
)∣Δ]] ⟨Y, ν⟩dσ. (45)

The second term in the above equation can be expressed as

Tr∂Op
[Δ((H̆−1

O
− H̆−1

Op
)∣Δ)] = −

i
2π

∫
Γ

1
√

z
Tr∂Op

[∂k∂k((GO(z) −G
Op
(z))∣Δ)]dz

= −
i

2π
∫

Γ

1
√

z
Tr∂Op

[2∂k∂′k(GO(z) −G
Op
(z))∣Δ]dz,

where we used the properties (11) and (30) of G
O
(λ2

) = G
O,λ and G

Op
(λ2

) =

G
Op,λ. Now we obtain

Tr∂Op
[Δ((H̆−1

O
− H̆−1

Op
)∣Δ)] = 2Tr∂Op

[[∂ν∂′ν(H̆
−1
O
− H̆−1

Op
)]∣Δ] . (46)

Equations (45) and (46) imply

∫
∂O
(Trel)ijν

iY jdσ =
1
4

N

∑

p=1
∫

∂Op

[[∂ν∂′ν(H̆
−1
O
− H̆−1

Op
)]∣Δ] ⟨Y, ν⟩dσ.

Since ∫∂O(Trel)ijν
iY jdσ is integrating at the exterior boundary, we have

∫
∂O
(Trel)ijν

iY jdσ =
1
4

N

∑

p=1
∫

∂Op

[[∂ν∂′ν(H̆
−1
O
− H̆−1

Op
)]∣Δ]

+

⟨Y, ν⟩dσ. (47)
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Applying Proposition 5.7 to g(z) =
√

z +m2, we have

Tr(δY Hrel) =Tr
⎛

⎝
δY

⎛

⎝
H
O
−

N

∑

p=1

H
Op

⎞

⎠

⎞

⎠

=(Tr
E
+Tr

O
)

⎡
⎢
⎢
⎢
⎢
⎣

δY

⎛

⎝
H
O
−

N

∑

p=1

H
Op

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

= −
1
2

⎧
⎪⎪
⎨
⎪⎪
⎩

Tr∂O[∂ν∂′νH̆−1
O
⟨Y, ν⟩]

+
−

N

∑

p=1

Tr∂Op
[∂ν∂′νH̆−1

Op
⟨Y, ν⟩]

+

⎫
⎪⎪
⎬
⎪⎪
⎭

−
1
2

⎧
⎪⎪
⎨
⎪⎪
⎩

Tr∂O[∂ν∂′νH̆−1
O
⟨Y, ν⟩]

−
−

N

∑

p=1

Tr∂Op
[∂ν∂′νH̆−1

Op
⟨Y, ν⟩]

−

⎫
⎪⎪
⎬
⎪⎪
⎭

.

Now Tr∂O[∂ν∂′νH̆−1
O
⟨Y, ν⟩]

−
−∑

N
p=1 Tr∂Op

[∂ν∂′νH̆−1
Op
⟨Y, ν⟩]

−
= 0 as Y is a bound-

ary translation vector field. Therefore, we have

Tr(δY Hrel) = −
1
2

⎧
⎪⎪
⎨
⎪⎪
⎩

Tr∂O[∂ν∂′νH̆−1
O
⟨Y, ν⟩]

+
−

N

∑

p=1

Tr∂Op
[∂ν∂′νH̆−1

Op
⟨Y, ν⟩]

+

⎫
⎪⎪
⎬
⎪⎪
⎭

= −
1
2

N

∑

p=1

{Tr∂Op
[∂ν∂′νH̆−1

O
⟨Y, ν⟩]

+
−Tr∂Op

[∂ν∂′νH̆−1
Op
⟨Y, ν⟩]

+
}

= −
1
2

N

∑

p=1

{Tr∂Op
[∂ν∂′ν(H̆

−1
O
− H̆−1

Op
)⟨Y, ν⟩]

+
}

= −
1
2

N

∑

p=1
∫

∂Op

[[∂ν∂′ν(H̆
−1
O
− H̆−1

Op
)]∣Δ]

+

⟨Y, ν⟩dσ.

That is

Tr(δY Hrel) = −
1
2

N

∑

p=1
∫

∂Op

[[∂ν∂′ν(H̆
−1
O
− H̆−1

Op
)]∣Δ]

+

⟨Y, ν⟩dσ. (48)

Finally, Eqs. (47), (48) and Theorem 5.8 complete the proof. ◻

An application of an analogue of Theorem 5.9 to calculate the Casimir
force in dimension one can be found in Appendix 7. Finally, we have the
following theorem.

Theorem 5.10. Let Tren be the renormalised stress–energy tensor in Theorem
2.3 and let Y be a boundary translation flow as in Theorem 5.9. We assume
further that Y is constant near Op for some p ∈ {1, . . . ,N} and vanishes near
Oq if q /= p. Let S be any smooth hypersurface in E that is homologous to ∂Op

in E and let ν be the exterior normal vector field of S. Then, the variation of
the relative energy generated by Y is equal to

δY Erel = ∫
S
(Tren)ijν

iZjdσ,

where Z is the unique constant vector field on R
d whose restriction to ∂Oq

equals Y .
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Proof. As in the proof of Theorem 5.9, we have

∫
∂O
(Trel)ijν

iY jdσ =∫
∂Op

((Tren)O − (Tren)Op
)ijν

iZjdσ

=∫
∂Op

((Tren)O − (Tren)Op
)ijν

iνj
⟨Z, ν⟩dσ.

We also know that ∂Op is homologous to SR, a sphere with sufficiently large
radius R in R

d
/Op. Because (Tren)Op

is divergent-free, one has

∫
∂Op

((Tren)Op
)ijν

iνj
⟨Z, ν⟩dσ = lim

R→∞
∫

SR

((Tren)Op
)ijν

iνj
⟨Z, ν⟩dσ.

To get a decay property of (Tren)Op
at infinity, we first recall that

H
O
−Hfree = −

2
π
∫

∞

m
λ
√

λ2 −m2 (R
O,iλ −Rfree,iλ)dλ.

For m ≠ 0, we would have an exponential decay of e−Cmρ(x) for (H̆
O
− H̆free)

(x,x), as explained in the proof of Theorem 3.5. For m = 0, one could use the
estimates of (17) and (18) to obtain that, for d ≥ 2,

∣ (H̆
O
− H̆free) (x,x)∣ ≤ Cρ−2d+1

(x).

Moreover, estimate (19) also implies

∣ (Δ(H̆−1
O
− H̆−1free)) (x,x)∣ ≤ Cρ−2d+1

(x).

Applying the above estimates to Theorem 2.4, one concludes that

∣(Tren)Op
∣ ≤ Cρ−2d+1

(x).

This implies limR→∞ ∫SR
((Tren)Op

)ijν
iνj

⟨Y, ν⟩dσ = 0.
As (Tren)O = Tren (see Definition 2.3 and the first two paragraphs of

Section 3), this completes the proof. ◻

6. The Zeta Regularised Energy and the Equivalence of (1)
and (3)

In this section, we assume that m > 0. In that case it is well known that for
Re(s) > (d + 1)/2 the operator

(H−2s
O

−H−2s
free)

is trace-class (see for example [53]) and we can therefore define the renor-
malised zeta functions ζ

O
(s) as

ζ
O
(s) = Tr (H−2s

O
−H−2s

free) = −2s∫
∞

0
λ(λ2

+m2
)
−s−1ξ(λ)dλ

where ξ(λ) is the spectral shift function of the problem. The Birman–Krein
formula applies to this setting and we have

ξ(λ) = −
1

2πi
log det(S(λ))

where S(λ) is the stationary scattering matrix of the problem.
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One can also use the Mellin transform to write

ζ
O
(s) =

1
Γ(s) ∫

∞

0
ts−1h

O
(t)dt,

where

h
O
(t) = Tr(e−tH

2
O − e−tH

2
free) = e−m

2tTr (etΔO
− etΔfree

)

= −2te−m
2t
∫

∞

0
e−λ

2tξ
O
(λ)λdλ.

The following lemma should be well known but we could not find a reference
for the precise statement. It is a simple consequence of heat kernel expansions
[54–56] and Kac’s principle of not feeling the boundary [57,58]. We also refer
to [59,60] for more details on obstacle scattering theory and the Birman–Krein
formula.

Lemma 6.1. The function h
O
(t) is exponentially decaying as t →∞ and has a

full asymptotic expansion as t ↘ 0 of the form

h
O
(t) ∼ t−(d−1)/2

∞

∑

k=0

aktk, t → 0
+
,

where the infinite sum is understood in the sense of asymptotic summation.
The coefficients ak are integrals over ∂O of locally determined quantities ex-
pressed in terms of the extrinsic and intrinsic curvature of the boundary and
its derivatives. In particular,

a0 = −
1
4
(4π)−

d−1
2 Vold−1(∂O).

Proof. The exponential decay follows immediately from the representation by
means of the spectral shift function and m > 0. Now h

O
(t) is the trace of the

difference of the two heat operators e−tH
2
O and e−tH

2
free with integral kernels

K
O
(t, x, y) and Kfree(t, x, y), respectively. Since the difference is trace-class

and the integral kernel is smooth we have

h
O
(t) = lim

R→∞
∫
E∩BR

K
O
(t, x, x) −Kfree(t, x, x)dx,

where BR is a ball of radius R, i.e. integration is over a large ball of radius R
with the obstacles removed. The heat kernel difference satisfies not feeling the
boundary estimates. For example, a general finite propagation speed estimate
[58] gives

∣K
O
(t, x, x) −Kfree(t, x, x)∣ ≤ C (ρ(x)−d + 1) t−d−

3
2 e−

ρ(x)2

t ,

where ρ(x) = dist(x,O). This shows that

h
O
(t) = ∫

E

(K
O
(t, x, x) −Kfree(t, x, x))dx.

Let U ⊂ E be an open neighbourhood that contains ∂E , i.e. ∂E ⊂ U ⊂ E . Then,
we have for ∣t∣ < 1 that

h
O
(t) = ∫

U

(K
O
(t, x, x) −Kfree(t, x, x))dx +O(tN),
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for any N > 0. This computation is therefore purely local. Using another not
feeling the boundary estimate we can replace K

O
(t, x, x) in this integral by

the Dirichlet heat kernel on the compact manifold obtained by removing O

from the large flat torus. The coefficients are therefore the same as the heat
kernel coefficients on a domain with boundary. It is well-known that heat
kernel coefficients are determined by local invariants of the jets of the symbols
of the operators, i.e. jets of Riemannian metric and second fundamental forms
([56, Lemma 2.6] or [54, Lemma 2.1]). As our interior geometry is Euclidean,
only the first heat coefficients corresponding to the interior is nonzero. This
first coefficient is the same for both operators and therefore only boundary
terms contribute to the expansion. The first non-trivial term is given by a0 =

−
1
4
(4π)−

d−1
2 Vold−1(∂O) (see for example [54, Theorem 1.1]). ◻

Remark 6.2. The general form of the heat expansion for a compact Riemann-
ian manifold M with boundary ∂M is of the form

TretΔM
∼ t−

d
2

∞

∑

k=0

bkt
k
2 , t → 0

+
,

where the b2k are integrals of locally defined quantities over M , and the b2k+1

are integrals of locally defined quantities over ∂M which are determined by
the boundary conditions. When considering differences heat kernels of Laplace
operators with different boundary conditions the b2k terms cancel and only
the terms containing b2k+1 remain.

It follows as usual (for example [61, Sect. 1.12]) that ζ
O

has a mero-
morphic continuation to the complex plane. If d is odd then there are finitely
many poles at {d−1

2
, d−1

2
− 1, . . . ,1} with residue at d−1

2
− k determined by the

coefficients ak. In this case, the values at non-positive integers are also ex-
pressible in terms of ak. In case d is even, poles may be located at the points
{

d−1
2
− k ∣ k ∈ N0}.

Definition 6.3. The regularised energy Ereg is then defined

Ereg =
1
2
FPs=− 1

2
(ζ
O
(s)) ,

where FPz=af(z) denotes the finite part of the meromorphic function f at the
point a, i.e. the constant term in the Laurent expansion of f about the point
a.

In particular, in case d is odd we have Ereg =
1
2
ζ
O
(−

1
2
).

We can also define a zeta regularised energy Ej
reg for every object Oj .

Obviously, Ej
reg does not depend on the position of Oj in R

d and is also
invariant under active rotations of the object. Since the heat coefficients are
local quantities the relative zeta function

ζrel(s) = ζ
O
(s) −

N

∑

j=1

ζ
Oj
(s)
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is an entire function. Since the relative quantities

(H−2s
O

−H−2s
free) −

N

∑

j=1

(H−2s
Oj

−H−2s
free)

are trace-class for s < 0 we also have that Erel =
1
2
ζrel(−

1
2
) and therefore

Erel = Ereg −

N

∑

j=1

Ej
reg.

Thus, Erel − Ereg does not change if the individual objects are translated or
rotated.

7. Proof of Main Theorem

In this section, we will prove our main theorem (Theorem 1.1) by combining
the results we obtained in the previous sections.

Proof of Theorem 1.1. The differentiability of Erel(ε) follows from Theorems
5.3 and 5.4. As shown in Section 3, we have Ξ(λ) = log det(QλQ̃−1λ ) and The-
orem 3.7. Recall that equation (21), says

Erel =
1
2
TrHrel =

1
π
∫

∞

m

ω
√

ω2 −m2
Ξ(iω)dω.

By substituting Ξ(λ), one obtains Eq. (2) of our main theorem. Equation (1)
follows immediately from Theorems 5.9 and 5.10. Since the flow Φε described
right above Theorem 1.1 is exactly a boundary translation flow (see Definition
5.1), we know from the end of Sect. 6 that Ej

reg is constant if the individual
objects are translated. Hence, the fact that Erel(ε) −Ereg(ε) is constant near
ε = 0 for m > 0 follows. ◻
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Appendix A: Bounds on the Free Resolvent

In this appendix, we will give some estimates on the kernels of φGfree,λφ and
φGfree,λχ, which are denoted by Kλ(x, y) and K̃λ(x, y), respectively. They are
given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪
⎩

Kλ(x, y) =
i
4
φ(x)φ(y)(

λ

2π∣x − y∣
)

d−2
2

H
(1)
d−2
2
(λ∣x − y∣),

K̃λ(x, y) =
i
4
φ(x)χ(y)(

λ

2π∣x − y∣
)

d−2
2

H
(1)
d−2
2
(λ∣x − y∣),

where H
(1)
ν is the Hankel function. Moreover, we assume φ has compact sup-

port whereas the support of χ is unbounded with dist(suppφ, suppχ) = δ > 0.
Now we have

Kμ,ν,p,d(x;λ) = ∫
Rd
∣φ(x)φ(y)(

λ

2π∣x − y∣
)

μ

H(1)ν (λ∣x − y∣)∣

p

dy

≤ C ∫
supp(φ)

∣(
λ

2π∣x − y∣
)

μ

H(1)ν (λ∣x − y∣)∣

p

dy

≤ C ∫
Sd−1

∫

rφ

0
∣(

λ

2πr
)

μ

H(1)ν (λr)∣

p

rd−1drdω

≤ C ∫

rφ

0
∣(

λ

r
)

μ

H(1)ν (λr)∣

p

rd−1dr.

Similarly,

K̃μ,ν,p,d(x;λ) ≤ C ∫

∞

δ
∣(

λ

r
)

μ

H(1)ν (λr)∣

p

rd−1dr.

Recall that Hankel functions have the following asymptotic

For ∣z∣ < r0, ∣H(1)ν (z)∣ ≤ Cr0,ν {
∣z∣−ν if ν > 0,

∣ log(z)∣ if ν = 0.
(49)

For ∣z∣ ≥ r0, ∣H(1)ν (z)∣ ≤ Cr0,ν ∣z∣
−

1
2 e− Im z. (50)

Therefore, for small λ such that rφ∣λ∣ < r0, we have

∫

rφ

0
∣(

λ

r
)

μ

H(1)ν (λr)∣
p

rd−1dr ≤

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

C ∣λμ log(λ)∣p ∫
rφ

0
rd−μp−1

∣ log r∣pdr for ν = 0,

C∣λ∣(μ−ν)p
∫

rφ

0
rd−1−(μ+ν)pdr for ν ≠ 0.
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For large λ such that rφ∣λ∣ ≥ r0, we have

∫

rφ

0
∣(

λ

r
)

μ

H(1)ν (λr)∣

p

rd−1dr

= ∣λ∣2μp−d
∫

rφ∣λ∣

0
∣H(1)ν (

λ

∣λ∣
r)∣

p

rd−μp−1dr

= ∣λ∣2μp−d
(∫

r0

0
∣H(1)ν (

λ

∣λ∣
r)∣

p

rd−μp−1dr + ∫
rφ∣λ∣

r0

∣H(1)ν (
λ

∣λ∣
r)∣

p

rd−μp−1dr) .

The above terms can be bounded by using the asymptotic of Hankel functions
in Eqs. (49) and (50).
⎧
⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪
⎩

∣λ∣2μp−d
(∫

r0

0
∣log(

λ

∣λ∣
r)∣

p

rd−μp−1dr + ∫
rφ∣λ∣

r0

r−
1
2 e
−r Imλ

∣λ∣ rd−μp−1dr) for ν = 0,

∣λ∣2μp−d
(∫

r0

0
rd−(μ+ν)p−1dr + ∫

rφ∣λ∣

r0

r−
1
2 e
−r Imλ

∣λ∣ rd−μp−1dr) for ν ≠ 0.

Replacing rφ∣λ∣ by ∞ in the integral, we obtain

Kμ,ν,p,d(x;λ) ≤ Cr0,μ,ν,p,d∣λ∣
2μp−d for large ∣λ∣.

Combining with the asymptotic for small ∣λ∣, we have

Kμ,ν,p,d(x;λ) ≤ {
Cr0,μ,p,d ρp,μp;2μp−d(Imλ) for ν = 0,

Cr0,μ,ν,p,d ρ0,(μ−ν)p;2μp−d(Imλ) for ν ≠ 0.
(51)

For K̃μ,ν,p,d, we have

K̃μ,ν,p,d(x;λ) ≤ C ∫

∞

δ
∣(

λ

r
)

μ

H(1)ν (λr)∣

p

rd−1dr.

For small λ such that δ∣λ∣ < r0, we also have

∫

∞

δ
∣(

λ

r
)

μ

H(1)ν (λr)∣

p

rd−1dr

= ∣λ∣2μp−d
∫

∞

δ∣λ∣
∣H(1)ν (

λ

∣λ∣
r)∣

p

rd−μp−1dr

= ∣λ∣2μp−d
(∫

r0

δ∣λ∣
∣H(1)ν (

λ

∣λ∣
r)∣

p

rd−μp−1dr + ∫
∞

r0

∣H(1)ν (
λ

∣λ∣
r)∣

p

rd−μp−1dr) .

This can be bounded by

⎧
⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪
⎩

∣λ∣2μp−d
(∫

r0

δ∣λ∣
∣log(

λ

∣λ∣
r)∣

p

rd−μp−1dr + ∫
∞

r0

r−
1
2 e−r

Imλ
∣λ∣ rd−μp−1dr) for ν = 0,

∣λ∣2μp−d
(∫

r0

δ∣λ∣
rd−(μ+ν)p−1dr + ∫

∞

r0

r−
1
2 e−r

Imλ
∣λ∣ rd−μp−1dr) for ν ≠ 0.

Replacing δ∣λ∣ by 0, one has

K̃μ,ν,p(x;λ) ≤ Cμ,ν,p,d∣λ∣
2μp−d for small ∣λ∣.
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For large λ such that δ∣λ∣ ≥ r0, we have

∫

∞

δ
∣(

λ

r
)

μ

H(1)ν (λr)∣

p

rd−1dr ≤C ∫

∞

δ
∣(

λ

r
)

μ

∣λr∣−
1
2 e−r Imλ

∣

p

rd−1dr

≤C ∣λ∣μp− p
2
∫

∞

δ
rd−μp− p

2−1e−r Imλdr

≤C ∣λ∣μp− p
2 e−δ Imλ

∫

∞

0
(r + δ)d−μp− p

2−1e−r Imλdr

≤Cδ,r0,μ,p,d e−δ Imλ.

This implies

K̃μ,ν,p,d(x;λ) ≤ Cr0,μ,ν,p,d ρ0,2μp−d;0(Imλ) e−δ Imλ. (52)

By the Schur test and Eq. (51), we have

∥φGfree,λφ∥L2
→L2 ≤ sup

x∈supp(φ)
K d−2

2
, d−2

2
,1,d(x;λ) ≤ Cr0,φ

⎧
⎪⎪
⎨
⎪⎪
⎩

ρ1,0;−2(Imλ) for d = 2,

ρ0,0;−2(Imλ) for d ≠ 2.

Using the recurrence relations of Hankel functions
(H
(1)
ν )

′

(z) = −H
(1)
ν+1(z) +

ν
z
H
(1)
ν (z) and similar calculations, one has

∥∇i ○ (φGfree,λφ)∥L2
→L2 ≤ Cr0,φ {

ρ1,0;−1(Imλ) for d = 2,

ρ0,0;−1(Imλ) for d ≠ 2.

This is the same bound for ∥φGfree,λφ∥L2
→H1 . To get the bound for

∥φGfree,λφ∥L2
→H2 , we recall that (−Δ − λ2

)Gfree,λ = I, hence

∥φGfree,λφ∥L2
→H2 ≤ C∥ΔφGfree,λφ∥L2

→L2 +C∥φGfree,λφ∥L2
→L2

≤ C(1 + ∣λ∣2)∥φGfree,λφ∥L2
→L2 +C∥φ̃Gfree,λφ̃∥L2

→H1 ,

where φ̃ = 1 near suppφ and diam(supp φ̃) is bounded. Combining with the
estimates on ∥φGfree,λφ∥L2

→H1 and ∥φGfree,λφ∥L2
→L2 , we have

∥φGfree,λφ∥L2
→H2 ≤ Cr0,φ {

ρ1,0;0(Imλ) for d = 2,

1 for d ≠ 2.

For the operator χGfree,λφ, we obtain from Eq. (52) that

∥χGfree,λφ∥2HS(Hs
(∂O)→L2

(Rd
))
≤ sup

x∈supp(φ)

K̃ d−2
2 , d−2

2 ,2,d(x;λ)

≤ Cr0,φ,χ ρ0,d−4;0(Imλ)e−δ Imλ,

which gives the verification of the estimate (24).

Appendix B: The Method Illustrated for the 1-D Casimir Effect

In this appendix, we illustrate Theorem 5.9 in its simplest form, i.e. for the case
of the one-dimensional Casimir effect. This will also illustrate the advantages
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of the relative framework. Let a1 < b1 < a2 < b2, where O1 = (a1, b1) and
O2 = (a2, b2) are the obstacles. Then, we have

G
O
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

G
(−∞,a1) x, y < a1

G
(a1,b1) a1 < x, y < b1

G
(b1,a2) b1 < x, y < a2

G
(a2,b2) a2 < x, y < b2

G
(b2,+∞) x, y > b2

,

G
O1 =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

G
(−∞,a1) x, y < a1

G
(a1,b1) a1 < x, y < b1

G
(b1,+∞) x, y > b1

,

G
O2 =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

G
(−∞,a2) x, y < a2

G
(a2,b2) a2 < x, y < b2

G
(b2,+∞) x, y > b2

.

Then, Grel = G
O
−G

O1 −G
O2 +Gfree is given by

Grel =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

Gfree −G
(−∞,a2) x, y < b1

G
(b1,a2) −G

(b1,+∞) −G
(−∞,a2) +Gfree b1 < x, y < a2

Gfree −G
(b1,+∞) x, y > a2

. (53)

In particular,

Gfree(x, y;k2
) = −

eik∣x−y∣

2ik
=

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

−
e−ik(x−y)

2ik
x < y

−
e−ik(y−x)

2ik
x > y

,

G
(b,+∞)(x, y;k2

) = −
eik∣x−y∣

− eik∣x+y−2b∣

2ik
=

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

eik(y−b) sin(k(x − b))

k
x < y

eik(x−b) sin(k(y − b))

k
x > y

,

G
(−∞,a)(x, y;k2

) = −
eik∣x−y∣

− eik∣x+y−2a∣

2ik
=

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

e−ik(x−a) sin(k(a − y))

k
x < y

e−ik(y−a) sin(k(a − x))

k
x > y

,

G
(a,b)(x, y;k2

) =
cos(k(x + y − b − a)) − cos(k(b − a − ∣x − y∣))

2k sin(k(b − a))

=

⎧
⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪
⎩

sin(k(x − a)) sin(k(b − y))

k sin(k(b − a))
x < y

sin(k(y − a)) sin(k(b − x))

k sin(k(b − a))
x > y

.

For x, y > b, we have

[Gfree −G
(b,+∞)](x, y;k2

) = −
eik∣x+y−2b∣

2ik
,
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which implies

[Δ
1
2
free −Δ

1
2
(b,+∞)

](x, y) =
i
π
∫

Γ̃
k
√

k2[Gfree −G
(b,+∞)](x, y;k2

)dk

=
i
π
∫

Γ̃
k
√

k2 (−
eik∣x+y−2b∣

2ik
)dk

= −
i
π
∫
−Γ̃

k
√

k2 (−
eik∣x+y−2b∣

2ik
)dk

= −
2i
π
∫

∞

0
(ik)2 (−

ei(ik)∣x+y−2b∣

2i(ik)
)dik

= −
1

π(x + y − 2b)2
.

The same calculation yields for x, y < b. That is

[Δ
1
2
free −Δ

1
2
(b,+∞)

] (x, y) = [Δ
1
2
free −Δ

1
2
(−∞,b)

] (x, y) = −
1

π(x + y − 2b)2
.

When restricting to the diagonal, we have

[Δ
1
2
free −Δ

1
2
(b,+∞)

] (x,x) = [Δ
1
2
free −Δ

1
2
(−∞,b)

] (x,x) = −
1

4π(x − b)2
. (54)

Now for a < x, y < b, we have

[G
(a,b) −Gfree](x, y;k2

) =
cos(k(b − a − ∣x − y∣)) − cos(k(x + y − b − a))

2k sin(k(b − a))

+
eik∣x−y∣

2ik
,

which implies

[Δ
1
2
(a,b)

−Δ
1
2
free](x, y) =

i
π
∫

Γ̃
k
√

k2[G
(a,b) −Gfree](x, y;k2

)dk

= −
i
π
∫
−Γ̃

k
√

k2[G
(a,b) −Gfree](x, y;k2

)dk

= −
2i
π
∫

∞

0
(ik)2[G

(a,b) −Gfree](x, y; (ik)2)dik

= −
2
π
∫

∞

0
k2
[G
(a,b) −Gfree](x, y; (ik)2)dk.

Note that

∫

∞

0

k cosh(ak)

sinh(bk)
dk =

π2

4b2
sec2

(
aπ

2b
) for a < b

and

[G
(a,b) −Gfree](x, y; (ik)2) =

cosh(k(b − a − ∣x − y∣)) − cosh(k(x + y − b − a))

2k sinh(k(b − a))

−
e−k∣x−y∣

2k
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implies

[Δ
1
2
(a,b)

−Δ
1
2
free](x, y)

= −
2
π
∫

∞

0
k2
[G
(a,b) −Gfree](x, y; (ik)2)dk

= −
π

4(b − a)2
[csc2

(
∣x − y∣π

2(b − a)
) − csc2

(
(x + y − 2b)π

2(b − a)
)] +

1
π(x − y)2

.

When restricting to the diagonal, we have

[Δ
1
2
(a,b)

−Δ
1
2
free](x,x) = −

π

12(b − a)2
+

π

4(b − a)2
csc2

(
(x − b)π

b − a
) . (55)

Equation (53) gives

1
2
Hrel(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

1
2
[Δ

1
2
free −Δ

1
2
(−∞,a2)

] (x,x) x < b1

1
2
[Δ

1
2
(b1,a2)

−Δ
1
2
(b1,∞)

−Δ
1
2
(−∞,a2)

+Δ
1
2
free] (x,x) b1 < x < a2

1
2
[Δ

1
2
free −Δ

1
2
(−∞,b1)

] (x,x) x > a2

.

From Eqs. (54) and (55), we have

1

2
Hrel(x)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

−

1

8π(x − a2)2
x < b1

π

8(a2 − b1)2
csc2 (

(x − a2)π

a2 − b1
) −

π

24(a2 − b1)2
−

1

8π(x − a2)2
−

1

8π(x − b1)2
b1 < x < a2

−

1

8π(x − b1)2
x > a2

.

This equation shows that Hrel(x) is continuous, which is consistent with the
claim in the proof of Theorem 5.8. Integrating over R, we have

1
2
TrR(Hrel) = −

1
8π(a2 − b1)

+
6 − π2

24π(a2 − b1)
−

1
8π(a2 − b1)

= −
π

24(a2 − b1)
.

(56)

Similarly, one has the renormalised counterpart of Hrel(x), which is given by
(H
O
)ren = [Δ

1
2
O
−Δ

1
2
free]∣Δ. Note that this only corresponds to the first term in



1444 Y-L. Fang, A. Strohmaier Ann. Henri Poincaré

T00 of (5), i.e. 1
2
(H −Hfree)∣Δ. It is given by

1
2
Hren(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

1
8π(x − a1)

2
x < a1

π

8(b1 − a1)
2

csc2
(
(x − b1)π

b1 − a1
) −

π

24(a2 − b1)
2

a1 < x < b1

π

8(a2 − b1)
2

csc2
(
(x − a2)π

a2 − b1
) −

π

24(a2 − b1)
2

b1 < x < a2

π

8(b2 − a2)
2

csc2
(
(x − b2)π

b2 − a2
) −

π

24(b2 − a2)
2

a2 < x < b2

1
8π(x − b2)

2
x > b2

.

It is easy to see that Hren is not integrable. Therefore, some regularisation
schemes would be needed at this point. One way is by heat kernel regularisa-
tion (see, for instance, [19]). However, this only resolves the non-integrability
problem of the first term of T00. We also need to integrate the term 1

8
Δ[(H−1−

H−1free)∣Δ] in Eq. (5) over R. This is also ill-defined, as it is not integrable. We
will see that these problems disappear when we work in the relative setting.

Restricting Eq. (53) to the diagonal and then taking the action of Lapla-
cian, we have

Δ(Grel(x,x; (ik)2)) =
⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

2ke−2k(a2−x) x < b1

− 2k
cosh(k(2x − a2 − b1))

sinh(k(a2 − b1))
+ 2k [e−2k(a2−x)

+ e−2k(x−b1)
] b1 < x < a2

2ke−2k(x−b1) x > a2

.

Integrating spectral variable k along Γ̃ and then over the space variable x, we
have

∫
R

Δ(H−1rel ∣Δ)dx = 0, (57)

hence

Erel =
1
2
TrR(Hrel) + ∫

R

1
8
Δ(H−1rel ∣Δ)dx = −

π

24(a2 − b1)
. (58)

Note that using heat kernel regularisation, one would also obtain Erel, see [19].
Equations (56) and (58) agree with Theorem 3.7. Note that equation (57) also
shows that

∫
R

Δ[(H−1
O
−H−1free)∣Δ]dx“ = ”∫

R

Δ[(H−1
O1

−H−1free)∣Δ]dx + ∫
R

Δ[(H−1
O2

−H−1free)∣Δ]dx,
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where all the three terms are ill-defined as they are not integrable. For instance,
Δ[(H−1

O1
−H−1free)∣Δ](x) has 1

(a1−x)2
singularity when approaching x = a1. This

justifies Remark 2.5.
Now let X be a smooth vector field that generates a movement of (right)

obstacle 2 to the right with a constant speed v. Moreover, X is zero around
(left) obstacle 1. In other words, we move the obstacle 2 to the right by vε
and keep the obstacle 1 stationary. Now the variation of the relative energy is
given by δXE = v ⋅ ∂a2E. The left-hand side of Eq. in Theorem 5.8 becomes

δXErel =
vπ

24(a2 − b1)
2
. (59)

Now the identity (48) used in the proof of Theorem 5.9 says

1
2
Tr[δXHrel] = −

v

4

N

∑

p=1
∫

∂Op

[∂ν∂′ν(H
−1
O
−H−1

Op
)]∣Δdx.

It becomes
1

2
Tr[δXΔ

1
2
rel] = −

v

4
[[∂ν∂′ν(Δ

−
1
2
O
−Δ

−
1
2
O2
)](a2, a2) − [∂ν∂′ν(Δ

−
1
2
O
−Δ

−
1
2
O2
)](b2, b2)]

= −
v

4
[∂ν∂′ν(Δ

−
1
2
O
−Δ

−
1
2
O2
)] (a2, a2). (60)

Note that

∂x∂y (G(a,b) −G
(−∞,b)) (b, b;k

2
) = −ik − k cot(k(b − a)),

therefore

[∂ν∂′ν(Δ
−

1
2
O

−Δ−
1
2
O2
)](a2, a2) =

i
π
∫

Γ̃

k
√

k2
∂x∂y[G(b1,a2) −G

(−∞,a2)](a2, a2;k2
)dk

= −
i
π
∫
−Γ̃

k
√

k2
∂x∂y[G(b1,a2) −G

(−∞,a2)](a2, a2;k2
)dk

= −
2i
π
∫

∞

0
∂x∂y[G(b1,a2) −G

(−∞,a2)](a2, a2; (ik)2)idk

=
2
π
∫

∞

0
(k − k coth(k(a2 − b1)))dk

= −
π

6(a2 − b1)
2
.

(61)

Combining Eqs. (58), (60) and (61), we have verified the identity (48) in one-
dimensional cases. Moreover, Eqs. (59), (60) and (61) are consistent with The-
orems 5.8 and 5.9.
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