
This is a repository copy of StressBench: A Configurable Full System Network and I/O 
Benchmark Framework.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/178550/

Version: Accepted Version

Conference or Workshop Item:
Chester, Dean, Groves, Taylor, Hammond, Simon D. et al. (6 more authors) (2021) 
StressBench: A Configurable Full System Network and I/O Benchmark Framework. In: 
IEEE High Performance Extreme Computing Conference, 20-24 Sep 2021. 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Other licence. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



StressBench: A Configurable Full System Network

and I/O Benchmark Framework

Dean G. Chester∗, Taylor Groves†, Simond D. Hammond‡, Tim Law§, Steven A. Wright¶,

Richard Smedley-Stevenson§, Suhaib A. Fahmy‖, Gihan R. Mudalidge∗ and Stephen A. Jarvis∗∗

∗Department of Computer Science, University of Warwick, Coventry, United Kingdom
†Advanced Technologies Group, NERSC, Berkeley, USA

‡Sandia National Laboratories, Albuquerque, USA
§AWE PLC, Aldermastion, United Kingdom
¶University of York, York, United Kingdom

‖School of Engineering, University of Warwick, Coventry, United Kingdom
∗∗University of Birmingham, Birmingham, United Kingdom

Abstract—We present StressBench, a network benchmarking
framework written for testing MPI operations and file I/O
concurrently. It is designed specifically to execute MPI com-
munication and file access patterns that are representative of
real-world scientific applications. Existing tools consider either
the worst case congestion with small abstract patterns or peak
performance with simplistic patterns. StressBench allows for a
richer study of congestion by allowing orchestration of network
load scenarios that are representative of those typically seen
at HPC centres, something that is difficult to achieve with
existing tools. We demonstrate the versatility of the framework
from microbenchmarks through to finely controlled congested
runs across a cluster. Validation of the results using four proxy
application communication schemes within StressBench against
parent applications shows a maximum difference of 15%. Using
the I/O modeling capabilities of StressBench, we are able to
quantify the impact of file I/O on application traffic showing
how it can be used in procurement and performance studies.

I. INTRODUCTION

Predicting the performance of supercomputers is vitally im-

portant in evaluating their suitability for applications and for

informing the procurement process. Time to solution is usually

the primary metric of consideration, and can be impacted by

OS jitter [1], network contention [2], and resource alloca-

tion [3]. While there exist a variety of simulators focused

on modeling the computational aspects of supercomputers,

consideration of the networking infrastructure has been less

thorough. Since network contention can cause variability in

communication time [4]; it is prudent to develop a bench-

marking tool that is capable of reproducing traffic patterns

commonly seen in scientific applications, thereby allowing for

more faithful replication of these workloads on new and ex-

isting machines. By benchmarking systems using higher level

communication patterns, such a tool enables applications to

be evaluated on a variety of architectures without source code

being released, which is beneficial in the case of commercially

sensitive and/or restricted codes, where the underlying applica-

tion architecture cannot be exposed. Common MPI benchmark

tools either take a generic approach to network congestion [5]

or focus on performance of individual MPI operations [6],

[7]. This generic approach to network congestion may not be

representative of what can be expected from a shared multi-

user system.

Understanding the interactions and impact between appli-

cations on a multi-user system can be used to improve both

resource scheduling and allocation, and the communication

patterns themselves, e.g., the development of communication

avoiding algorithms such as those used within linear solver

applications [8].

In this paper we address these shortcomings with the

development of a novel network replication framework called

StressBench, that is capable of executing complex commu-

nication patterns concurrently and reproducing application

workflows. StressBench allows for user-defined, customis-

able communication patterns and interactions that can generate

representative, realistic congestion.

Specifically, this paper makes the following contributions:

• We document the development of a customisable network

and I/O benchmarking tool that uses traffic patterns to

evaluate architectures;

• We evaluate the tool against commonly used network mi-

crobenchmarks and validate application workflow repli-

cation with four proxy applications all within 15% dif-

ference;

• We replicate a full system run and use this to demonstrate

the impact of network contention on the time-to-solution

of multiple proxy applications;

• Finally, we extend our full system replication to present

a novel case study assessing communication performance

while in contention with common I/O strategies.

The remainder of this paper is structured as follows: Sec-

tion II explains the research area; Section III describes the

system architecture of StressBench; Section IV outlines a

validation study of StressBench; In Section V we present

two performance studies performed with StressBench; finally,

Section VI concludes this paper.
© British Crown Owned Copyright 2021/AWE. Published with permission of the Controller of Her Britannic Majesty’s Stationery Office. This document is of United

Kingdom origin and contains proprietary information which is the property of the Secretary of State for Defence. It is furnished in confidence and may not be copied, used or

disclosed in whole or in part without prior written consent of Defence Intellectual Property Rights DGDCDIPR-PL—Ministry of Defence, Abbey Wood, Bristol, BS34 8JH,

England.



II. RELATED WORK

The usual approach to assessing the performance of mas-

sively parallel systems consists of executing a large set of

benchmarks with a variety of differing communication pat-

terns, often sequentially. How concurrently running applica-

tions interact with a machine’s shared resources (i.e., the

interconnect and parallel file system) is usually difficult to

understand. As a result, these benchmarks fail to provide an

accurate picture of application performance as they are unable

to capture realistic network usage and highlight potential

issues such as load imbalances that may affect the performance

of collective operations [9].

ScalaBenchGen provides a way to automatically trace and

replay applications as a synthetic MPI benchmark [10]. This

approach uses the MPI Profiling layer (PMPI) to capture the

MPI events which are stored chronologically; these events

are then replayed through a custom tool. One limitation of

ScalaBenchGen is that it provides no capability to scale

communication sizes as multiple application traces must be

captured with varying sizes.

File I/O can often interfere with MPI communications as

large amounts of traffic are sent and received over the network.

Dickson et al. have studied the I/O characteristics of large

applications by replicating I/O workloads with MACSio [11].

This is achieved by capturing Darshan [12], [13] logs of appli-

cations, parsing the log files and generating input parameters

for MACSio.

Common MPI Benchmarks include the Intel MPI Bench-

marks (IMB) [6], OSU Microbenchmarks (OSU) [7], and

SKaMPI [14]. These microbenchmarks focus on the perfor-

mance of singular MPI operations: either point-to-point or

collective operations. They are useful when trying to diagnose

application performance issues as they often report the average

time for MPI operations. SKaMPI is no longer under active

development but was extended to cater for complex commu-

nication patterns [15].

The NAS Parallel Benchmarks replicate commonly used

application patterns to benchmark systems [16]. While this

benchmark suite comprises a wide variety of parallel patterns

it does not orchestrate them to show how the patterns can

interact with or affect one another.

More recent benchmarks such as GPCNeT look at testing

network performance in isolation and under load [5]. GPCNeT

provides artificial noise in a network with four congestor

patterns and is designed to stress a system rather than provide

representative communication of a specific workload.

Task Bench is a parameterised benchmark for evaluating

parallel systems [17]. It allows for rapid replication of a

variety of programming models and applications. Configurable

parameters allow the tuning of the length of the benchmark;

the degree of parallelism; the type of kernel (such as a stencil

or sweep) and tuning of any potential imbalance. This task-

based approach is a novel idea that allows for flexibility

and customisation. One drawback of this tool is that it only

focuses on one task at a time meaning that it is difficult

to understand how the chosen benchmark will perform in a

production environment.

I/O studies looking at improving performance are not

new [18]–[20]. These studies typically focus on tuning I/O

parameters for specific applications and systems. They often

fail to consider the I/O subsystem being a shared resource and

as such what contention may be affecting their performance.

Wright et al. have investigated the effects of I/O per-

formance in relation to contention of the I/O nodes within

a system [21]. They note that contention within the I/O

subsystem can result in a 13% performance decrease on a

multi-user system.

Our proposed StressBench tool overcomes the limitations

discussed above by allowing a configurable workload to be run

tailored to the applications that interest the system evaluator.

III. STRESSBENCH

StressBench was designed to be flexible and applicable to

all parallel workloads, this is done through a portable interface

that allows for extension and additions to the communication

patterns. Motifs are small implementations of communication

patterns. Multiple motifs can be chained together to create a

job which can resemble a production application. A motif is

applied in three phases:

Decomposition In this phase, StressBench breaks up the

global MPI communicator world into the relevant MPI groups

which each have multiple communication patterns associated

with them. Once the MPI groups have been constructed, the

communication patterns themselves perform a decomposition

if required to establish their nearest neighbours in the case of

a halo exchange.

Perform During the perform phase the communication

patterns execute as if they were a standalone application using

their MPI communicator to communicate. Each pattern is

timed individually and the total job is timed.

Cleanup The cleanup phase allows the patterns to safely

clean up any resources that have been consumed. Each job

also collates the timings from each of its group’s ranks and

then prints these to standard output.

These three phases are separated by global barriers to ensure

they begin at the same time such that the patterns under

test are controlled tightly to ensure that they are performed

concurrently.

Listing 1 shows an example TeaLeaf iteration with I/O write

after.

StressBench reports aggregated timings this includes the

total job time and the time of each motif within a job.

These aggregated statistics include the minimum, average and

maximum time per job and motif. Further timing can be

collected inside of a motif to provide further insight in to

behaviour, for example in the I/O motifs additional timing

information is captured so that the I/O bandwidth can be

calculated and reported in the output.

A. Communication Patterns

Motifs can be written by providing implementations for

each of the key phases of a given application. The example



Listing 1: Example StressBench Input

[JOB_NAME] TeaLeaf_CG

[NID_LIST] 6,9,17,18,33,41,58,67,

72,75,83,84,87,90,102,103

[MOTIF] AllReduce

[MOTIF] Compute -m 350000

[MOTIF] AllReduce

[MOTIF] Compute -m 350000

[MOTIF] halo2d -x 4000 -y 4000

[MOTIF] MPIIO -s 1500000 -i 1 -m 256 -f <file_path>

-n MPI_File_write_all

motifs are taken from mini-applications and can be seen in

production applications. As these patterns try to interact with

the network (a shared resource) contention increases which can

degrade application performance. These examples have been

taken from the following proxy applications; TeaLeaf [22],

CloverLeaf [23], Sweep3D [24], LULESH [25] and Hard-

ware/Hybrid Accelerated Cosmology Code (HACC) [26].

A “compute” motif is provided so that more intricate

workloads can be built. The compute motif includes the

capability to emulate load imbalance. This has been achieved

by generating a value from a specified distribution. In the case

of a Gaussian distribution the mean and standard deviation are

parameters passed to the transform function which generates

a normal deviate. The normal deviate is used as the intended

computation time.

The design of the emulated patterns depends on the commu-

nications and computation pipeline. This communication com-

putation pipeline can be extracted using an MPI tracing tool

such as Intel Trace Analyzer and Collector (ITAC) [27]. Once

the communication/computation pipeline has been extracted

the building blocks can be constructed for StressBench. In the

case of TeaLeaf there is no overlap between the communica-

tions and computation pipeline and could be implemented in-

dependent motifs. For Sweep3D the communication and com-

putation pipeline are tightly coupled so the computation has

to be integrated into the design of the motif. By understanding

the communication and computation pipeline the information

can then be built in to a motif by providing implementations to

the 3 phases. For the implementation of the 2D halo-exchange

the problem decomposition was extracted from TeaLeaf and

then rebuilt inside of the decompose functionality. The perform

functionality involved inspecting how the 2D halo-exchanges

take place and replicating the MPI library calls based upon the

provided communicator. In the deletion phase all buffers used

are freed; this is independent of the pattern being replicated.

Multiple motifs have already been implemented in Stress-

Bench:

Halo Exchanges A 2D structured halo exchange and 3D

unstructured halo exchange are provided.

AllReduce Support for two reduction operations; sum

and minimum operations.

Computation A computation motif is provided to em-

ulate computation. A distribution can be

provided to generate a load imbalance.

Incast A file I/O motif providing N-1 communi-

cations.

AllToAll An AllToAll pattern is provided in the

default package.

Sweep3D A Sweep3D motif is provided offering a

Sweep communications pattern.

PingPong A PingPong style motif is also provided

for measuring the latency while in con-

tention.

B. I/O Patterns

I/O motifs have been integrated in to StressBench to allow

the I/O subsystem to be benchmarked simultaneously to the

network. This gives the ability to understand the interactions

between I/O traffic and MPI application traffic; while these

may be configured to avoid interaction, the underlying network

has fixed resources that are shared by both types of traffic.

At present, two I/O strategies are implemented, namely N-

1 and N-N, where N is processes. These two approaches are

the most widely used within HPC applications. For example,

StressBench uses N-1 for reading input files.

Currently, these two I/O strategies can be executed through

HDF5, MPI-IO or POSIX file operations. Writes are typically

of more interest than reads but both have been developed for

StressBench.

The I/O bandwidth reported by the motifs is calculated with

Equation (1).

BW =
Bytes Read/Written

Time Taken
(1)

In an effort to validate this implementation, StressBench was

run with Darshan profiling the I/O operations. The cumulative

timings were taken from the Darshan log for the MPI-IO

operations and compared to the cumulative timings from

the the output of the motif. The ‘MPIIO F WRITE TIME’

counter from the Darshan log was used for the comparison.

The difference in the timings was less than 0.5% for 1GB

files and less than 0.01% for 10GB files. This difference is

caused by two factors: the resolution of the timers used and

the position in which the timer is placed. Darshan provides

wrappers around the I/O function calls which insert the timers

within the call while the MPI-IO motif places the timing calls

around the I/O function call which includes the calls to capture

the information for Darshan; resulting in a marginal difference

between the times reported by Darshan and MPI-IO motif.

IV. VALIDATION

A. Evaluation Hardware

We evaluate StressBench on two clusters: Tinis and Isam-

bard, that have different network architectures. Table I shows

the hardware configurations for these machines.

StressBench was compiled with GCC (8.3.0) and OpenMPI

(4.1.3) on Tinis. Isambard used the default programming

environment; Cray Compiler (9.1.3) and Cray MPI (v. 7.7.12).

Aries is Cray’s previous network generation found in Cray

XC systems. The interconnect is highly configurable and



TABLE I: Hardware Specifications

System Isambard Tinis

Node Architecture 2 × 32-core Marvell
ThunderX2 2.1 GHz

2 × 8-core Intel Xeon E5-
2630 v3 2.4 GHz

Memory per node Phase1: 256GB Phase2:
512 GB

64GB

Interconnect Cray Aries Q-Logic Infiniband

Topology Dragonfly Tapered Fat Tree

OS CLE Red Hat

scalable to many millions of endpoints. Aries has three ranks

of networks [28]. The first rank connects four nodes to a

router. The second connects four nodes inside of a group using

electrical connections; the topology inside of this is a 2D

all-to-all. The third network connects groups together using

optical links. A group is typically 384 nodes.

The fat tree in Tinis is a two level tree with a tapering of 2:1.

Tapering inside of fat trees has been studied previously [29].

Tinis comprises 212 nodes in total. Two I/O storage nodes

provide 500TB with a GPFS file system. The I/O storage nodes

sit off an additional network switch outside of the fat tree

topology. Therefore, I/O traffic must hit the root switch in

order to reach the I/O nodes.

Isambard compute nodes fit within one group connected

via electrical connections. Isambard contains 6 I/O Nodes

providing a total of 900TB of Lustre storage via a Cray

Sonexion 3000 storage cabinet.

B. Microbenchmarks

Traditional MPI benchmarks focus on peak performance.

For example, IMB and OSU are designed to run on a quiet

system.

One of the motifs built inside of StressBench is ‘PingPon-

gAllLatencies’ which runs from 0 to 4MB message sizes in

the same way as PingPong in IMB and Latency in OSU. This

motif was used in the comparison against IMB and OSU. It

is possible to measure the latency of a specific message size

inside of StressBench.

The default compiler and linker flags were used for building

the microbenchmark suites (IMB and OSU). In the case of

StressBench the default optimisation level is -O0. The latency

benchmarks were scheduled to use one core across two nodes;

each of these values were repeated 10 times across different

days to establish the average latency the benchmark may

achieve.

StressBench performed similarly to the existing MPI mi-

crobenchmarks such as PingPong resulting in slight increase

in the returned latencies.

For Tinis the average increase in the reported latency was

3.9% (maximum 11.4%) for IMB and 2.75% (maximum

8.2%) for OSU. On Isambard this average difference in the

latency was a decrease of -7.9% (maximum -26.3%) for IMB

and -29% (maximum -49.2%) for OSU. The large variability

on Isambard comes from the adaptive routing inside of the

network as each PingPong message may take a different route

to reach the desired endpoint, thus varying the latency.

Stressbench demonstrates a negligible difference between

traditional microbenchmarks and is a suitable replacement for

these traditional microbenchmarks.

C. Representative Workloads

To build a representative workload we extracted key char-

acteristics from a proxy application workflow in order to

replicate these patterns with StressBench. These key character-

istics were captured with Intel ITAC and were instrumented

to capture computation timings, using Caliper [30]. Caliper

allows for application source code to be annotated and records

snapshots during application execution.

To verify the communication patterns match they were

traced with Intel ITAC [27] and the point-to-point message

profiles captured. All point-to-point message profiles matched

the StressBench emulated version for all four proxy appli-

cations and have been left out for brevity. To further vali-

date the workload we compare the times captured inside of

StressBench with the timings from the proxy application. The

compute timings were generated using a Gaussian distribution

function parameterised to model OS jitter.

TeaLeaf is a linear solver proxy application that has a variety

of solvers. TeaLeaf solves the heat conduction equations in

both 2D and 3D using a 5 and 7 point stencil respectively. The

temperatures are cell-centred. Problem set 5 was chosen for

the selected problem and has been strong-scaled. This problem

is the crooked pipe problem in which a pipe has a lower

density than its surroundings and therefore heat travels faster

through this part of the problem domain. A Conjugate Gradient

(CG) iteration in TeaLeaf consists of two reductions with

computation and a 2D halo exchange with post computation;

this was confirmed by tracing the application with Intel ITAC

and reading through the application source code. In the case

of TeaLeaf we emulate one CG iteration.

The difference in the measured and emulated runtimes for

TeaLeaf was less than 11% difference, the average difference

was -2.7% and maximum was -10.4%. When the communica-

tion patterns were traced with Intel ITAC the message profiles

matched. The computational motif runtime provided less than

1% of the variability compared to the measured TeaLeaf run.

The large variations came from the communications, most

notably the halo exchange. In our emulation the message

packing was treated as additional computation rather than part

of the communication directly. When TeaLeaf is strong scaled

like this at larger scales the communications can dominate

the execution of an iteration; the computation roughly halves

as MPI ranks double. This occurs because the problem size

is fixed and distributed over more MPI ranks. The largest

difference between the proxy application and the emulation

is less than 11% for Tinis in the comparison.

Sweep3D is a discrete ordinates transport code [24], [31].

We have emulated a typical application run which consists of

12 iterations. The problem was weak scaled for each rank to



have a grid size of 50x50x800. The measured compute time

was 7.82ms per octant.

The average difference was -3.2% with the largest difference

-6% for 16 nodes. As the input deck was weak scaled; we felt

this was the best approach to use the average computation

time. The point-to-point message profiles for both the mea-

sured and emulation matched when compared.

LULESH is a 3D Unstructured Lagrangian Explicit Shock

Hydrodynamics proxy application [25]. As with TeaLeaf we

have emulated one iteration; we chose to emulate the 50th iter-

ation to provide some warm up iterations. We have performed

a weak scaling study across a mesh of 813. The computation

time was 0.81s for all runs. The maximum difference was

15% between the measured and emulated; this was for the

a single node with 8 MPI ranks. For multi-node runs the

average difference was -2.2%, maximum was 15% for 1 node;

the maximum multi-node difference was -3.7% for 4 nodes.

The measured message profiles matched the emulated message

profiles for LULESH.

SWFFT is a fast Fourier transform (FFT) proxy application.

This type of communication pattern features heavily in astron-

omy related simulation codes for example Hardware/Hybrid

Accelerated Cosmology Code (HACC) [26]. The FFT imple-

mentation in SWFFT is from HACC; this operates on 1D FFT

steps which are interleaved as transposition and sequential

steps. This approach reduces communication overhead. We

have emulated a forwards FFT and backwards FFT during

the emulation of the pattern. The MPI communications were

traced and the number of bytes for the point-to-point commu-

nications were recorded. The measured and emulated runtimes

for SWFFT differed by as much as 11.4% for a strong scaled

problem of 160x160x160. The average error was -7.8% for

this problem.

Wu et al. show that their application generated MPI bench-

marks from traces achieve differences within 22.1% [10].

Barrett et al. show their Message Rate MPI benchmark

shows a 30% difference when compared to OSU microbench-

marks [32]. The differences presented from StressBench are

below and comparable to similar studies. This demonstrates

that StressBench can be used to effectively emulate commu-

nication patterns found in production applications.

V. PERFORMANCE STUDIES

A. Full System Orchestration

The validated applications can be composed to mimic a rep-

resentative system workload. The mimicked workload allows

exploration of potential slowdowns as a result of job placement

and communication interactions affecting performance.

The workload we have examined utilised the communi-

cation patterns in TeaLeaf and Sweep. Applications often

perform I/O to either checkpoint or to output a visualisation.

Existing benchmark suites [5], [33] use an Incast-like

communication pattern to replicate I/O traffic. While this

communication pattern can induce similar network traffic it

often lacks the ability to replicate I/O bandwidth which means

that it could artificially clear the network. When evaluating a

mimicked workload we have used both Incast traffic and real

I/O traffic through the use of the Incast and I/O motifs.

I/O traffic patterns were added to these workloads after a

number of iterations to emulate this. The size of the I/O has

been approximated using Equation (2).

I/O Message Size =
Domain Size × variables

MPI Ranks
(2)

The system was randomly distributed to have eight jobs of

sixteen nodes each; two Sweep3D with an Incast, two TeaLeaf

with an Incast, two repeated file I/O and finally two AllToAll

Traffic. The problem domain for Sweep3D was configured

as 100
3 cube and 5 iterations. The blocking factor for the

Z dimension was set to 10 and Incast message size was set to

7,111,111 bytes per rank.

For TeaLeaf the problem was configured similarly to that

used in the above validation: a domain size of 4000×4000;

five iterations were performed with an Incast motif at the end

having a total message size of 16,000,000. The Incast jobs

used a size of 480,469 bytes per MPI rank was configured

for five iterations. The AllToAll jobs used two message sizes

2048 and 4096 bytes. The file I/O was performed using an

‘MPI File write all’ call with the MPI-IO motif.

Each job was run in isolation for 20 runs under the same

resource allocation of 128 nodes with all other nodes not

being provided jobs. All jobs were then combined to execute

concurrently across the 128 jobs 30 times.

Fig. 1 shows how each of the jobs performed in isolation and

under contention with I/O traffic on Tinis. The mean is shown

with the diamond inside of the box plots and the line represents

the median. For Sweep3D the worst case slowdown was 1.2×;

for TeaLeaf we show a 1.4× slowdown when the applications

are trying to run in contention with other applications on the

system. The AllToAll applications were slowed down by 1.2×

and the Incast application on Tinis was slowed down by 1.1×.

Fig. 2 shows the how Sweep3D and TeaLeaf performed in

isolation and under contention with I/O traffic on Isambard.

The worst case slowdown for Sweep3D was 1.02×, TeaLeaf

1.02×, the Incast application was slowed down by 1.7× and

AllToAll was 1.03×.

Chunduri et al. present a congestion impact (CI) metric [5],

shown in Equation (3).

CI =
tcongested

tisolated

(3)

As discussed previously, an Incast pattern can provide a

similar communication pattern to file I/O. As such we ran the

same jobs with the Incast motif rather than an MPI-IO Write

motif. Table II shows how the CI differs between Incast and

the use of file I/O on both systems. It is clear that the impact

of using real file I/O is greater than using an Incast motif.

Due to the transient nature of the traffic hotspots it is

possible that messages are unaffected by network contention

resulting in no congestion impact for motifs.



Sweep 1

Isol.

Sweep 1

Cont.

Sweep 2

Isol.

Sweep 2

Cont.

TL 1

Isol.

TL 1

Cont.

TL 2

Isol.

TL 2

Cont.

2

4

6

8
R

u
n

ti
m

e
[s

]

Fig. 1: Application Runtimes in Isolation and in Contention

on Tinis

Sweep 1

Isol.

Sweep 1

Cont.

Sweep 2

Isol.

Sweep 2

Cont.

TL 1

Isol.

TL 1

Cont.

TL 2

Isol.

TL 2

Cont.

0

10

20

R
u

n
ti

m
e

[s
]

Fig. 2: Application Runtimes in Isolation and in Contention

on Isambard

B. I/O Study

This study examines the interactions between I/O traffic and

application traffic, and the performance degradation of both of

these with StressBench.

There is a presumption that I/O traffic interferes with

application traffic yet no such study exists quantifying this

interference. As such, we have designed this study to cover

breadth rather than depth into a specific interaction. The

study focuses on some common communication patterns from

applications; we use the validated patterns mentioned above.

To understand the interactions between application commu-

nications and I/O traffic we have run a range of application

patterns against some large file sizes which would cause

congestion inside of the network. In order to ascertain suitable

file sizes we analysed the file sizes on four storage systems

at NERSC. The data was collected using RobinHood policy

TABLE II: Comparison of CI for Incast and File I/O for

Applications

Tinis Isambard
Pattern Incast MPIIO Incast MPIIO

Sweep 1 1.0068 1.0744 1.0146 1.4664
Sweep 2 1.0010 1.1356 1.0331 1.4266
TeaLeaf 1 1.0172 1.4094 1.0157 1.7936
TeaLeaf 2 1.0707 1.1345 1.0196 1.4392
Incast 1 1.0088 1.1314 1.0004 1.6109
Incast 2 1.0426 1.1161 1.0021 1.6868
All To All 2K 1.0157 1.1917 1.0137 1.0327
All To All 4K 1.0587 1.0000 1.2327 1.0014

Fig. 3: Job Placement, Diagonal and Hash lines represent

different applications

engine [34] and inserting the POSIX information in to a

mySQL database [35], [36]. The data provided consisted of

the size of files as reported by the inode for each file [36]. We

grouped the data in to 5 buckets: 0GB, 1GB, 10GB, 100GB

and 500GB. The largest amount of files reside in the less than

1GB bucket.

In an effort to negate background network noise the runs

performed the pattern in isolation and then in contention; each

job then completed this 10 times. This was done to ensure

that the isolated and contended runs performed as close as

possible to each other such that they would have an equivalent

background noise. These jobs were repeated at differing times

across a week to achieve best and worst case background

network noise. Each motif in the run was configured to run for

at least 30 seconds so that the network can get fully congested

and links can be exhausted. This ensures that any adaptive

routing algorithms has time to take affect on communication

patterns. Previous work has shown that system load can

interfere with latency sensitive messages [37].

The study not only looked at the the effects of pattern

and file size but also the effects on job placement. Three job

placement schemes were used; linear, interleaved and random;

Figure 3 shows how the three placement schemes differ.

For runs on Tinis 32 nodes were utilised while on Isambard

256 node runs were used. The small runs on Tinis is sufficient

to stress the network given that the fat tree is tapered and the

I/O nodes sit off the root switch. Both sets of runs consisted

of a 50:50 split between the communication pattern of interest

and offending I/O traffic.

To assess the performance degradation we compare the CI.

Table III shows how the CI differs against the four file sizes

tested for Tinis and Isambard.

In the case of Tinis the file size seems to have negligible

difference in the impact on the performance. Rather, the job

locality has a greater impact. This is due to the fat tree network



topology deployed in Tinis. Traffic that can be routed between

nodes across the same switch are unlikely to suffer because

of the file I/O traffic, such as the linear job placement. This

results in a slowdown of communication time thus increasing

the application runtime.

I/O traffic generated on Isambard has a greater effect on

application communication traffic (shown in Table III). This

is most notable with a linear placement; with this network it

is also observed that I/O traffic size impacts the application

communication traffic.

VI. CONCLUSIONS

This work demonstrates a reconfigurable tool for bench-

marking network performance for MPI applications. The ap-

proach presented allows for domain complexity to be ab-

stracted away so that the underlying network performance

can be studied using real-world communication patterns. The

patterns being studied can be implemented with MPI directly

requiring no external infrastructure. These patterns can then

be connected together to look at how applications utilise

the network while in contention with other communication

patterns.

By chaining multiple motifs together applications can easily

be replicated within StressBench, we demonstrate that runtime

differences are less than 15% for a variety of applications.

The presented orchestration of several applications running

concurrently shows that StressBench is a suitable tool for

evaluating network performance; with applications such as

TeaLeaf running 1.4× on a fat tree slower while in contention

with other applications. We also show that real I/O traffic has

a greater impact on application communication performance

resulting in larger slowdowns when compared to Incast like

application traffic. These slow downs results longer time

to solutions and more computation resources being used to

facilitate the runs as wallclock times are increased to ensure

jobs complete. This can impact on research budget where the

computation resource is fixed.

We have shown how on systems with adaptive routing that

file size affects the performance rather than the placement of

the jobs; while on systems with static routing such as those

in fat trees we have shown that job location is more likely

to cause issues with contention. To mitigate this contention

jobs could be scheduled to avoid being placed linearly and

instead interleaved; this may improve the performance of the

application communication patterns.

Possible extensions to this work include more validated

communication patterns from other scientific disciplines and

machine learning applications, as well as the addition of I/O

libraries to allow for better replication of applications.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the Scientific Com-

puting Research Technology Platform, University of Warwick,

for assistance in the research described in this paper.

This work used the Isambard UK National Tier-2 HPC

Service (http://gw4.ac.uk/isambard/) operated by GW4 and the

UK Met Office, and funded by EPSRC (EP/P020224/1).

Sandia National Laboratories is a multimission laboratory

managed and operated by National Technology and Engineer-

ing Solutions of Sandia, LLC., a wholly owned subsidiary

of Honeywell International, Inc., for the U.S. Department

of Energy’s National Nuclear Security Administration under

contract DE-NA0003525.

REFERENCES

[1] P. De, V. Mann, and U. Mittaly, “Handling os jitter on multicore
multithreaded systems,” in 2009 IEEE International Symposium on

Parallel & Distributed Processing. IEEE, 2009, pp. 1–12.
[2] A. Bhatele, A. R. Titus, J. J. Thiagarajan, N. Jain, T. Gamblin, P.-T.

Bremer, M. Schulz, and L. V. Kale, “Identifying the culprits behind net-
work congestion,” in 2015 IEEE International Parallel and Distributed

Processing Symposium. IEEE, 2015, pp. 113–122.
[3] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There goes the

neighborhood: performance degradation due to nearby jobs,” in SC’13:

Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis. IEEE, 2013, pp. 1–
12.

[4] S. Chunduri, K. Harms, S. Parker, V. Morozov, S. Oshin, N. Cherukuri,
and K. Kumaran, “Run-to-run variability on xeon phi based cray xc
systems,” in Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, 2017, pp.
1–13.

[5] S. Chunduri, T. Groves, P. Mendygral, B. Austin, J. Balma, K. Kandalla,
K. Kumaran, G. Lockwood, S. Parker, S. Warren et al., “Gpcnet:
designing a benchmark suite for inducing and measuring contention in
hpc networks,” in Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, 2019, pp.
1–33.

[6] Intel, “Intel MPI Benchmarks,” https://software.intel.com/en-us/
imb-user-guide (accessed September 20, 2020), 2020.

[7] Ohio State University, “OSU Micro-Benchmarks,” http://mvapich.cse.
ohio-state.edu/benchmarks/ (accessed September 20, 2020), 2020.

[8] E. Carson, N. Knight, and J. Demmel, “An efficient deflation technique
for the communication-avoiding conjugate gradient method,” Electronic

Transactions on Numerical Analysis, vol. 43, no. 125141, p. 09, 2014.
[9] P. Marendić, J. Lemeire, T. Haber, D. Vučinić, and P. Schelkens, “An

investigation into the performance of reduction algorithms under load
imbalance,” in European Conference on Parallel Processing. Springer,
2012, pp. 439–450.

[10] X. Wu, V. Deshpande, and F. Mueller, “Scalabenchgen: Auto-generation
of communication benchmarks traces,” in 2012 IEEE 26th International

Parallel and Distributed Processing Symposium. IEEE, 2012, pp. 1250–
1260.

[11] J. Dickson, S. A. Wright, D. Harris, S. Maheswaran, J. Herdman, M. C.
Miller, and S. A. Jarvis, “Enabling portable i/o analysis of commercially
sensitive hpc applications through workload replication,” Cray User

Group, pp. 1–14, 2017.
[12] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham,

and R. Ross, “Understanding and improving computational science
storage access through continuous characterization,” ACM Trans.

Storage, vol. 7, no. 3, Oct. 2011. [Online]. Available: https:
//doi.org/10.1145/2027066.2027068

[13] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley, “24/7
characterization of petascale i/o workloads,” in 2009 IEEE International

Conference on Cluster Computing and Workshops, 2009, pp. 1–10.
[14] R. Reussner, P. Sanders, L. Prechelt, and M. Müller, “Skampi: A

detailed, accurate mpi benchmark,” in European Parallel Virtual Ma-

chine/Message Passing Interface Users’ Group Meeting. Springer,
1998, pp. 52–59.

[15] M. Haller and T. Worsch, “Skampi—including more complex com-
munication patterns,” in High Performance Computing in Science and

Engineering’03. Springer, 2003, pp. 455–466.
[16] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,

L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber et al., “The nas parallel benchmarks,” The International

Journal of Supercomputing Applications, vol. 5, no. 3, pp. 63–73, 1991.



TABLE III: Comparison of Application Workload against Congestion Impact

Tinis Isambard
AllReduce Halo Exchange Sweep3D AllReduce Halo Exchange Sweep3D

Interleaved

1GB 1.026 1.006 1.001 1.000 1.100 1.001
10GB 1.154 1.007 1.000 1.000 1.015 1.036
100GB 1.172 1.003 1.006 1.122 1.018 1.070
500GB 1.222 1.004 1.001 1.145 1.059 1.045

Linear

1GB 1.028 1.006 1.000 1.031 2.026 1.189
10GB 1.023 1.006 1.002 1.050 1.159 1.139
100GB 1.015 1.004 1.000 1.104 1.125 1.286
500GB 1.024 1.000 1.002 1.212 1.157 1.118

Random

1GB 1.015 1.008 1.002 1.101 1.073 1.001
10GB 1.132 1.000 1.004 1.119 1.096 1.046
100GB 1.152 1.010 1.003 1.262 1.138 1.064
500GB 1.135 1.008 1.001 1.304 1.137 1.199

[17] E. Slaughter, W. Wu, Y. Fu, L. Brandenburg, N. Garcia, W. Kautz,
E. Marx, K. Morris, Q. Cao, G. Bosilca, S. Mirchandaney,
W. Lee, S. Treichler, and U. Patrick McCormick pat@lanl.gov
Los Alamos National Laboratory, “Task bench: A parameterized
benchmark for evaluating parallel runtime performance,” in 2020

SC20: International Conference for High Performance Computing,

Networking, Storage and Analysis (SC). Los Alamitos, CA, USA:
IEEE Computer Society, nov 2020, pp. 864–878. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SC41405.2020.00066

[18] A. Acharya, M. Uysal, R. Bennett, A. Mendelson, M. Beynon,
J. Hollingsworth, J. Saltz, and A. Sussman, “Tuning the performance
of i/o-intensive parallel applications,” in Proceedings of the fourth

workshop on I/O in parallel and distributed systems: part of the

federated computing research conference, 1996, pp. 15–27.
[19] W. Yu, J. S. Vetter, and H. S. Oral, “Performance characterization and

optimization of parallel i/o on the cray xt,” in 2008 IEEE International

Symposium on Parallel and Distributed Processing. IEEE, 2008, pp.
1–11.

[20] B. Behzad, H. V. T. Luu, J. Huchette, S. Byna, R. Aydt, Q. Koziol,
M. Snir et al., “Taming parallel i/o complexity with auto-tuning,” in
SC’13: Proceedings of the International Conference on High Perfor-

mance Computing, Networking, Storage and Analysis. IEEE, 2013, pp.
1–12.

[21] S. A. Wright and S. A. Jarvis, “Quantifying the effects of contention
on parallel file systems,” in 2015 IEEE International Parallel and

Distributed Processing Symposium Workshop, 2015, pp. 932–940.
[22] S. McIntosh-Smith, M. Martineau, T. Deakin, G. Pawelczak, W. Gaudin,

P. Garrett, W. Liu, R. Smedley-Stevenson, and D. Beckingsale, “Tealeaf:
a mini-application to enable design-space explorations for iterative
sparse linear solvers,” in 2017 IEEE International Conference on Cluster

Computing (CLUSTER). IEEE, 2017, pp. 842–849.
[23] A. Mallinson, D. A. Beckingsale, W. Gaudin, J. Herdman, J. Levesque,

and S. A. Jarvis, “Cloverleaf: Preparing hydrodynamics codes for
exascale,” The Cray User Group, vol. 2013, 2013.

[24] K. R. Koch, R. S. Baker, and R. E. Alcouffe, “Solution of the first-
order form of the 3-d discrete ordinates equation on a massively parallel
processor,” Transactions of the American Nuclear Society, vol. 65, no.
108, pp. 198–199, 1992.

[25] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z. DeVito,
R. Haque, D. Laney, E. Luke, F. Wang, D. Richards, M. Schulz,
and C. Still, “Exploring traditional and emerging parallel programming
models using a proxy application,” in 27th IEEE International Parallel &

Distributed Processing Symposium (IEEE IPDPS 2013), Boston, USA,
May 2013.

[26] S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, and K. Heit-
mann, “Hacc: Extreme scaling and performance across diverse architec-
tures,” in SC’13: Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis. IEEE,
2013, pp. 1–10.

[27] Intel, “Intel Trace Analyzer and Collector,” https://software.intel.com/
en-us/intel-trace-analyzer (accessed June 18, 2021), 2021.

[28] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson,
T. Johnson, J. Kopnick, M. Higgins, and J. Reinhard, “Cray cascade: a
scalable hpc system based on a dragonfly network,” in SC’12: Proceed-

ings of the International Conference on High Performance Computing,

Networking, Storage and Analysis. IEEE, 2012, pp. 1–9.
[29] P. Taffet, S. Rao, E. León, and I. Karlin, “Testing the limits of

tapered fat tree networks,” in 2019 IEEE/ACM Performance Modeling,

Benchmarking and Simulation of High Performance Computer Systems

(PMBS). IEEE, 2019, pp. 47–52.
[30] D. Boehme, T. Gamblin, D. Beckingsale, P.-T. Bremer, A. Gimenez,

M. LeGendre, O. Pearce, and M. Schulz, “Caliper: performance in-
trospection for hpc software stacks,” in SC’16: Proceedings of the

International Conference for High Performance Computing, Networking,

Storage and Analysis. IEEE, 2016, pp. 550–560.
[31] G. R. Mudalige, M. K. Vernon, and S. A. Jarvis, “A plug-and-play model

for evaluating wavefront computations on parallel architectures,” in 2008

IEEE International Symposium on Parallel and Distributed Processing.
IEEE, 2008, pp. 1–14.

[32] B. W. Barrett and K. S. Hemmert, “An application based mpi message
throughput benchmark,” in 2009 IEEE International Conference on

Cluster Computing and Workshops, 2009, pp. 1–8.
[33] Sandia National Laboratories, “Ember Communication Pattern Library,”

https://github.com/sstsimulator/ember (accessed December 17, 2020),
2018.

[34] T. M. Declerck et al., “Using robinhood to purge data from lustre file
systems,” Proceedings of the 2014 Cray User Group, Lugano, 2014.

[35] G. K. Lockwood, K. Lozinskiy, L. Gerhardt, R. Cheema, D. Hazen, and
N. J. Wright, “A quantitative approach to architecting all-flash lustre file
systems,” in International Conference on High Performance Computing.
Springer, 2019, pp. 183–197.

[36] Glenn Lockwood, “Inode sizes on NERSC’s production file systems,”
https://zenodo.org/record/2530940# (accessed December 17, 2020),
2019.

[37] D. G. Chester, S. A. Wright, and S. A. Jarvis, “Understanding com-
munication patterns in hpcg,” Electronic Notes in Theoretical Computer

Science, vol. 340, pp. 55–65, 2018.


	Introduction
	Related Work
	StressBench
	Communication Patterns
	I/O Patterns

	Validation
	Evaluation Hardware
	Microbenchmarks
	Representative Workloads

	Performance Studies
	Full System Orchestration
	I/O Study

	Conclusions
	References

