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H I G H L I G H T S  

• Monte Carlo simulations of indoor air concentrations rank input parameter importance. 
• Air exchange and ozone deposition control O3, RO2, HO2 and PAN species concentrations. 
• Accurate UV transmission/O3 deposition values reduce model uncertainty by up to 80%. 
• Increasing UV transmission reduces NO2/HONO concentrations, but increases those of organic nitrates/PAN species.  
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A B S T R A C T   

Model predictions are sensitive to a number of complex and often coupled input parameters. Some of these 
parameters have a wide range of acceptable values from literature and therefore choosing the appropriate value 
is non-trivial. In this paper, we use the INdoor Detailed Chemical Model (INDCM) to perform a Monte Carlo 
analysis, in which a wide but realistic range of model input parameter values is stochastically varied over 1000 
model runs. The model output defines the likely range of the model performance, and directly correlates input 
parameter values with predicted indoor air species concentrations. The air exchange rate or the ozone deposition 
velocity onto internal materials such as painted walls, control the predicted concentrations of ozone, hydroxyl 
and peroxy radicals and peroxyacetyl nitrate species for our study conditions. The transmission of UV light from 
outdoors showed the strongest Spearman’s rank positive correlation coefficients with predicted hydroxyl radical 
(0.92), and organic nitrate (0.95) concentrations. The deposition rate of ozone onto painted walls shows the 
strongest negative correlations with 4-oxopentanal (−0.86) and acetic acid (−0.83). Reducing the uncertainty 
around transmission of UV light indoors and ozone deposition rates onto surfaces reduces the model uncertainty 
by up to 70–80% for ozone and hydroxyl radical concentrations. Some species concentrations showed complex 
relationships with the various input parameters. For instance, maximum isoprene concentrations decreased with 
air exchange rate, but minimum isoprene concentrations were largely invariant. Emissions from human breath 
ensured that isoprene was always present in our model runs. However, its removal rate varied with the air 
exchange rate, which affected the concentrations of ozone and hydroxyl radicals (which can both chemically 
remove isoprene), and the direct removal rate by ventilation. Finally, we used our results to understand the 95% 
confidence bounds around our median predicted concentrations. For hydroxyl radicals, these were ±60% of the 
median value.   

1. Introduction 

It has been estimated that in developed countries, we spend 
approximately 90% of our time indoors (i.e. at home, in the work place 
or commuting) and consequently, this is where most of our exposure to 

air pollution occurs (Carslaw, 2007). Despite this fact, most of the 
regulation around exposure to air pollution focuses on the outdoor 
environment. Indoor air quality issues are becoming increasingly 
topical. Compared to seventy years ago, we are spending more time 
indoors, in buildings that have better insulation owing to increased 
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energy efficiency measures. Over the same time period, we have become 
an increasingly consumer-driven society bringing more items into our 
homes (and other buildings) that emit an ever increasing and varying 
mixture of indoor air chemicals (Weschler, 2009). As a result, we are 
spending more of our time in increasingly airtight buildings and with 
higher internal emissions (Weschler and Carslaw, 2018). During the 
COVID-19 pandemic has led populations in many countries to spend 
even more time in their homes, owing to the various lockdown measures 
in place. 

Indoor air quality is recognised as a multi-disciplinary phenomenon 
and can be affected by many chemical (e.g. emissions from personal care 
and cleaning products, furnishings and building materials, and products 
from chemical reactions), physical (temperature, humidity, light levels) 
and building (location, ventilation regime, building operation) factors 
(Tham, 2016). Indoor air pollutants are generated through activities 
such as cooking, cleaning and smoking, as well as emitted from building 
materials like painted walls and ceilings, furnishing and consumer 
products such as cleaning agents, air fresheners and personal care 
products (Nazaroff and Weschler, 2004; Carslaw et al., 2012). As well as 
indoor emissions, indoor air pollutants can ingress from outdoors and 
indoor environments often contain higher concentrations of some air 
pollutants than outdoors (Brown, 2002; Wolkoff et al., 2013). 

Once indoors, ozone can initiate a wide range of indoor air chemistry 
(Weschler and Carslaw, 2018). For instance, ozone-initiated reactions 
with double-bonded species such as terpenes in the gas-phase, as well as 
heterogeneous interactions with indoor surfaces, can contribute to the 
formation of secondary pollutants (Weschler and Carslaw, 2018; 
Weschler, 2011; Wolkoff, 2013; Kruza et al., 2017; Carslaw and Shaw, 
2019). There is also increasing evidence that the presence of human 
occupants indoors is highly correlated with ozone loss and enhanced 
secondary pollutant formation (Wisthaler and Weschler, 2010; Kruza 
and Carslaw, 2019; Liu et al., 2021). Furthermore, some of these sec-
ondary pollutants are likely to be harmful to human health (Weschler 
and Carslaw, 2018). 

Clearly then, the indoor environment is both physically and chemi-
cally complex and we need to better understand it if we wish to gain a 
more holistic view of an individual’s exposure to air pollution. One way 
to gain this insight is to make measurements of the species that exist in 
indoor air for typical buildings. However, identifying the numerous 
different chemical species that exist indoors is challenging, as is quan-
tifying the concentrations of many of them analytically (Terry et al., 
2014). It is also hard to define what a typical building is, as occupant 
behaviour is an important driver for indoor air pollutant concentrations 
(Weschler and Carslaw, 2018). Given all of these factors, models are 
often used to predict indoor air concentrations over a wide range of 
conditions and to provide insight into the underlying chemical 
processing. 

This paper uses a detailed chemical model for indoor air chemistry, 
to evaluate the controlling factors for predicted indoor air concentra-
tions in a typical residence. A Monte Carlo simulation study is used to 
investigate the key controlling factors for the predicted concentrations 
of several key indoor species to identify which of these factors are most 
important. The impact of varying these factors on model output are also 
explored. In this way, we identify the major model uncertainties that 
exist and suggest which of these need to be addressed most urgently to 
improve model predictions in the future. 

2. Methods 

2.1. The INDCM model overview 

The INDCM is a near explicit box model used for studying indoor air 
chemistry (Carslaw, 2007; Carslaw et al., 2012). It uses a comprehensive 
chemical mechanism called the Master Chemical Mechanism (MCM 
v3.3.1) (Jenkin et al., 1997; Jenkin et al., 2003; Saunders et al., 2003) 
and involves the degradation of 143 volatile organic compounds (VOCs). 

The degradation process of VOCs is initiated by reactions with ozone 
(O3), OH (hydroxyl) radicals, nitrate (NO3) radicals and photolysis 
where relevant. Radicals, such as oxy (RO) and peroxy (RO2) radicals, 
excited and stabilized Criegee (R’R”COO) species, are generated as in-
termediate products, as well as longer-lived species such as carbonyls, 
alcohols and organic nitrates. Eventually, water and carbon dioxide are 
produced at the end of the oxidation chain. The MCM also includes an 
inorganic scheme including reactions of O3, nitrogen oxides (NOx) and 
carbon monoxide (Jenkin et al., 1997, 2003, 2003; Saunders et al., 
2003). The INDCM also includes terms that represent photolysis (both 
indoor lighting and attenuated sunlight), deposition onto surfaces and 
indoor-outdoor exchange (Carslaw, 2007). A detailed description of the 
model has been presented elsewhere (Carslaw, 2007; Carslaw et al., 
2012; Kruza et al., 2017). Recently the INDCM has been developed to 
investigate surface interactions indoors (Kruza et al., 2017), the impact 
of cleaning with chlorine (Wong et al., 2017), the impact of occupancy 
on indoor air chemistry (Kruza and Carslaw, 2019), and gas-to-particle 
partitioning for α-pinene oxidation (Kruza et al., 2020). The modified 
INDCM includes ≈5900 species and ≈20,300 gas-phase reactions. 

2.2. Baseline model run input parameters 

The first stage in this study was to define baseline conditions. These 
are based on previous studies where we simulated an apartment in Milan 
in summertime (Kruza et al., 2017) and just serves as a background 
against which to compare our Monte Carlo results. It is not the purpose 
of this work to replicate experimental results indoors, which we have 
done extensively in the past (e.g. Carslaw et al. (2017); Zhou et al. 
(2020); Wong et al. (2017)). The apartment is assumed to have a volume 
of 168 m3 and surface to volume ratio of ≈2.0 m−1. The surface to 
volume ratio is determined by the indoor dimensions: surface coverings, 
and furnishing, such as hard furniture together with internal doors (22 
m2), soft furniture (35 m2), wooden floors (51 m2), painted walls and 
ceilings (199 m2), linoleum including in the kitchen and bathrooms (11 
m2) and countertops and tiled surfaces, including those in the kitchen 
and bathroom (19 m2). It is assumed that two adults were in the 
household, with a surface area of 2 m2 each. A detailed description of the 
case study apartment and the origin of these assumptions can be found 
in Kruza et al. (2017). 

Secondary product emissions following ozone deposition onto each 
type of internal surface are treated as described by Kruza et al. (2017) 
and Kruza and Carslaw (2019). The ozone deposition velocity onto soft 
furniture is assumed to be 0.15 cm s−1, 0.007 cm s−1 for linoleum, 0.026 
cm s−1 for painted walls, 0.005 cm s−1 for wooden furniture, 0.069 cm 
s−1 for wooden floors, 0.136 cm s−1 for countertops/tiled surfaces and 
0.285 cm s−1 for skin, based on median values (Kruza et al., 2017). The 
aldehyde yields following ozone deposition and the emissions from 
exhaled human breath were calculated following the methodology 
presented by Kruza et al. (2017) and Kruza and Carslaw (2019). 

The baseline model run assumed a temperature of 297.07 K, a rela-
tive humidity of 50% and an air exchange rate of 0.72 h−1 based on a 
literature evaluation of typical indoor values observed across a range of 
residences (Weisel et al., 2005; Colton et al., 2014; Williams et al., 2009; 
Johnson et al., 2004; Zhu et al., 2005; Zota et al., 2005; Less et al., 2015; 
Hodgson et al., 2000; Arhami et al., 2009; Gilbert et al., 2005; Chao, 
2001; Jo and Lee, 2006). We also assumed that 49.2% of visible light and 
14% of UV light was able to pass through the windows and enter the 
room based on the median values for the UV and visible light trans-
mission data reported by Blocquet et al. (2018) for a series of windows 
including their own measurements, plus data reported by Gandolfo et al. 
(2016), Kim and Jeong Tai Kim (2010) and Sacht et al. (2016). Outdoor 
concentrations of O3, NO2, NO (nitric oxide) and particulate matter 
(PM2.5) were taken from the typical summer time period in Milan and 
were based on the values available from Terry et al. (2014). The VOC 
concentrations were set at constant values outdoors as detailed in Kruza 
and Carslaw (2019). Indoor VOC emissions were taken from Sarwar 
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et al. (2002) and Zhu et al. (2013). 
The baseline simulation was run from 8am on day one until midnight 

on day two and all analysis was performed on the results from day two, 
to allow time for the simulated concentrations to reach steady-state. The 
day two indoor concentrations for OH, ozone, NO, and NO2 for the 
baseline scenario are plotted in Fig. 1 and show the diurnal variation for 
each species, with daily-averaged concentrations and mixing ratios of 
3.9 × 105 molecules cm−3, 5.7 ppb, 1.7 ppb, and 7.9 ppb respectively. 

2.3. Individual sensitivity analysis 

In order to sift the numerous model inputs for importance, an indi-
vidual sensitivity analysis was first carried out. This involved running 
simulations for the maximum and minimum values for a range of key 
input parameters individually, while maintaining baseline values for all 
others. The following parameters were varied based on their distribu-
tions from the same sources used to define the median values for the 
baseline model run in section 2.2: ozone deposition velocities for 7 
different surfaces, secondary product formation yields for 3–5 aldehydes 
from relevant surfaces, attenuated sunlight (as a %) passing indoors in 
the UV and visible wavelength regions, air exchange rate, internal 
temperature and relative humidity and VOC emission rates from exhaled 
breath. Twenty key rate coefficients for reactions between key VOCs and 
OH and ozone (if relevant) were varied within their started uncertainty 
bounds as shown in Table ST1 in the Supplementary Information. The 
surface to volume ratios of each type of surface, as well as the total 
surface area, were varied within ±10% of their baseline values. Outdoor 
ozone, NO, NO2 and particulate matter concentrations were varied from 
half their baseline values, to the concentrations experienced during a 
polluted episode during the summer of 2003 (Terry et al., 2014). The 
maximum and minimum values of all input parameters investigated 
apart from the rate coefficients are shown alongside baseline values in 
Table ST2 in the supplementary information accompanying this paper. 
This resulted in a total of 111 individual simulations. 

The outputs were examined to discover the impact of the maximum 
and minimum parameter values on the indoor concentrations of ozone, 
NO2, NO, OH, HO2, RO2, nitrous acid (HONO), total suspended particles, 
formaldehyde, limonene, α-pinene, hexanal, heptanal, octanal, nonanal, 
decanal, 4-oxopentanal, formic acid, acetic acid, acetone, methanol, 
ethanol, isopropanol and isoprene. These species reflect a range of 
lifetimes (from seconds to days) and sources (e.g. from cleaning, people, 
outdoors, surface interaction, chemical reactions), providing a good 
sense of overall model sensitivity to the input parameters. Where the 
sensitivity test results showed a minimum of 10% difference in the 
predicted daily-averaged concentrations of any of the identified 24 
species compared to the baseline run results, that particular input was 
selected for the more comprehensive Monte Carlo analysis in the next 
section. This process identified the following input parameters for 

further analysis: secondary product formation yields following ozone 
interaction with soft furniture (for hexanal, heptanal, octanal, nonanal 
and decanal) and painted walls (for octanal, nonanal and decanal), the 
surface to volume ratio for soft furniture, painted walls, linoleum, 
countertops, skin and the total surface to volume ratio, the ozone 
deposition velocity onto soft furniture and painted walls, the air ex-
change rate, the temperature, the % of UV light that ingressed through 
the windows and the isoprene emission rate from human breath. 

2.4. Monte Carlo analysis 

The 20 model input parameters identified in the previous section 
were stochastically assigned to values between the maximum and min-
imum value from their distributions as shown in Table 1. The value 
assignment for individual runs was carried out using the uniform func-
tion from the random Python library which gives an equal probability of 
any value within the given interval being chosen. Although using the 
Mersenne Twister as the core generator is technically pseudo-random, it 
is a method that is perfectly suited for this purpose (Matsumoto and 

(a)
(b)

Fig. 1. OH (a) and O3, NO2, and NO (b) concentrations for day two of the baseline model run.  

Table 1 
Minimum and maximum values of the 20 input parameters used for the Monte 
Carlo analysis.  

Parameter Minimum value 
input 

Maximum value 
input 

Hexanal yield from soft furniture 0 0.08 
Heptanal yield from soft furniture 0 0.04 
Octanal yield from soft furniture 0 0.07 
Nonanal yield from soft furniture 0 0.14 
Decanal yield from soft furniture 0 0.09 
Octanal yield from painted walls 0 0.03 
Nonanal yield from painted walls 0 0.34 
Decanal yield from painted walls 0 0.12 
Soft furniture surface to volume ratio (cm- 

1) 
0.0019 0.0023 

Painted wall surface to volume ratio (cm- 
1) 

0.0106 0.0130 

Linoleum surface to volume ratio (cm-1) 0.0006 0.0007 
Countertop surface to volume ratio (cm-1) 0.001 0.0012 
Human body surface to volume ratio (cm- 

1) 
0.0002 0.0003 

Total surface to volume ratio (cm-1) 0.0182 0.0222 
Ozone soft furnishings deposition velocity 

(cm s−1) 
0.04 0.19 

Ozone painted wall deposition velocity 
(cm s−1) 

0.01 0.17 

Internal temperature (K) 295.18 298.85 
Air exchange rate (h−1) 0.43 1.34 
Emission rate of isoprene from breath 

(molecules cm−3 s−1) 
6.41 × 105 3.1 × 107 

UV light transmission (%) 0 38  
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Nishimura, 1998). There was no relation between the random assign-
ment of one parameter and another and thus the combination of pa-
rameters for each simulation was also randomised. This process was 
used to produce 1000 model simulations in which these 20 input pa-
rameters were varied randomly across their potential range of values 
and the impact on model output explored in the next section. 

3. Results 

Outputs from the model were analysed as predicted daily-averaged 
species concentrations on day 2 versus single varied input parameters. 
As the trends were non-linear, correlation was quantified by calculating 
a Spearman’s rank correlation coefficient for each input parameter and a 
selected species concentration (Spearman, 1904), which is shown in 
Fig. 2. These coefficients allow for the general trends and sensitivities to 
be inferred. A positive coefficient indicates an increase in the species 
concentration as the input parameter value increases (red in Fig. 2), 
whilst the converse is true for a negative coefficient (blue in Fig. 2). The 
closer the absolute value of the coefficient is to 1, the stronger the cor-
relation. Values close to 0 show almost no correlation between the 
variation in input parameter and the concentration of the output species. 

From Fig. 2 there are obvious important inputs, such as the air ex-
change rate, transmission of UV light indoors and the ozone deposition 
velocity on painted walls, which show high correlation for many of the 
key species shown. Some parameters show significant correlation for 
only one species. For instance, varying the octanal yield from painted 
walls following ozone interaction only affects the predicted octanal 
concentration. Interestingly, increasing the decanal production yield 
from painted walls increases the concentration of decanal as expected, 
but also leads to reduced concentrations of octanal and nonanal, pre-
sumably as less ozone is then available to interact with the surface and 
produce the latter two species. Not surprisingly, the predicted concen-
tration of isoprene shows a strong correlation with its emission rate from 
breath. 

Looking in more detail, there is a strong positive correlation between 
ethanol (C2H5OH) and the air exchange rate as shown in Fig. 3. In the 
absence of specific indoor sources of ethanol, the concentration is 
controlled through exchange with outdoors and thus increases with the 
air exchange rate almost linearly. At higher air exchange rates, there will 

be more indoor ozone ingress from outdoors and hence more hydroxyl 
radicals produced indoors through ozone chemistry (Weschler and 
Carslaw, 2018). The OH radicals can react with ethanol albeit slowly, so 
this explains why the increase in ethanol concentrations flattens off 
slightly as the air exchange rate increases. 

In Fig. 4, a very different pattern can be seen for the isoprene con-
centration variation with air exchange rate. The maximum concentra-
tion of isoprene (C5H8) decreases with the air exchange rate while the 

Fig. 2. Spearman’s rank correlation coefficients between input variables and output concentrations. The colour scale on the right indicates the strength of the 
positive and negative correlations. A/V is the surface area to volume ratio, vd is the deposition velocity and the isoprene emission is from breath. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 3. Ethanol concentration as a function of the air exchange rate.  

Fig. 4. Isoprene as a function of the air exchange rate.  
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minimum concentration is largely unaffected. In contrast to ethanol, 
isoprene has an indoor source (from breath) and thus will always be 
present indoors with occupants. Isoprene can accumulate at lower air 
exchange rates. This is because the emissions from breath are not diluted 
as quickly under these conditions, but removal by ozone is also less 
important at the lower exchange rates, given ozone ingresses from 
outside. As the air exchange rate increases, so does the dilution rate and 
the removal rate by ozone. The spread of the data therefore decreases as 
the air exchange rate increases and the maximum indoor isoprene 
concentration converges with the outdoor concentration. 

Fig. 5a shows the relationship between ozone concentration indoors 
and air exchange rate (a) and ozone deposition velocity onto painted 
walls (b). The ozone concentration increases almost linearly with the air 
exchange rate as expected. However, as ozone is intricately involved in 
many reactions and so depends at least partially on the concentrations of 
other species, there are more scattered maximum values when compared 
to the minimum values. Ozone is involved in 233 reactions as a reactant 
within the model and thus the accuracy of its concentration has a wide 
impact on other concentrations within the model, and vice versa. This is 
clear in Fig. 2 with many species showing strong correlations with the 
ozone deposition velocity onto walls.For ozone the highest correlation is 
with the deposition velocity onto painted walls which is shown in 
Fig. 5b. The spread of the ozone concentrations only decreases slightly as 
the deposition velocity increases and is smaller than for the air exchange 
rate relationship. In all cases where there is a strong correlation, by 
obtaining and inputting a more accurate measurement of a parameter 
there will be a noticeable reduction in the potential variation in the 
simulated concentration. For instance, for the case of ozone deposition 
velocity onto painted walls, by narrowing the deposition velocity to 
between 0.161 and 0.17 cm s−1 the range of potential predicted ozone 
concentrations reduces by 68%. Similarly, at the other end of the scale a 
narrowing to between 0.009 and 0.016 cm s−1 reduces the range of 
simulated concentrations by 33%. Therefore a reduction in the uncer-
tainty in the predicted ozone concentration of between 33% and 68% 
can be achieved by having a more precise value for the deposition ve-
locity onto painted walls. 

Fig. 2 shows that there is a strong correlation between the OH con-
centration and the transmission of UV light. This relationship is explored 
in more detail in Fig. 6. OH has a very weak correlation with the other 
input variables, despite being involved in 4028 reactions in the model 
and having at least some measure of dependency on the concentrations 
of many other species. Transmission of UV light will therefore also be 
important for many of the other species that OH reacts with, or which 
are created from an OH reaction. By narrowing the UV light transmission 
variable to absolute values between 0 and 2% the range of potential OH 
concentrations decreases by 80%. By narrowing the UV photolysis ab-
solute value to between 36 and 38% the range of potential concentra-
tions decreases by 51%. Thus a reduction in the uncertainty around the 
UV light transmission variable will increase the accuracy of the OH 

predicted concentration from the model by 51–80%.The radicals OH, 
HO2 and RO2 have mechanistic links with ozone, which are represented 
in the correlations shown in Fig. 2. The weak positive correlations with 
transmission of UV light for HO2 and RO2 (0.34 and 0.28 respectively) 
can be attributed to the numerous production routes for these radicals 
from OH, which has a strong correlation with UV light transmission as 
discussed above. Shown in Fig. 7 are HO2 and RO2 correlations with the 
air exchange rate (−0.53 and −0.52 respectively) and the ozone depo-
sition velocity onto painted walls (−0.72 and −0.75 respectively). HO2 
and RO2 are produced from ozone and OH reacting with VOCs (Sarwar 
et al., 2002; Carslaw and Shaw, 2019). Their highest predicted con-
centrations are typically for simulations where the ozone deposition 
velocity onto painted walls is low and hence ozone concentration is high 
and it is readily available to react. However, we also know that ozone 
increases with the air exchange rate, so we might also expect HO2 and 
RO2 to increase, but Fig. 7 shows the opposite occurs. This can be 
explained by the NO concentrations shown in Fig. 8: NO also increases 
with the air exchange rate given it derives from outdoors in these sim-
ulations and it reacts with the HO2 and RO2 and reduces their concen-
trations. There is clearly much interconnected and complex chemistry 
occurring. 

Using the outputs from the Monte Carlo simulation, it is possible to 
determine a 95% confidence interval for each species when input vari-
ables lie within the bounds used within this study. These are presented in 
Table 2 alongside the median species concentration. The median value is 
preferred to the mean as all of the species concentrations give non- 
normal density functions and some are bi-modal, as shown in the dis-
tribution plots in figures S1-S27 in the Supplementary Information. 
Some distributions show high degrees of skew (e.g. hexanal as shown in 
figure S2) whilst other species have close to normal distributions (e.g. 
nonanal as shown in figure S6). Consequently, the median value better 
represents the distribution of the data. So for our two examples, the 
predicted median mixing ratio and the 95% confidence interval for 

(a) (b)

Fig. 5. (a) Ozone concentration as a function of air exchange rate and (b) ozone concentration as a function of ozone deposition velocity onto painted walls.  

Fig. 6. OH concentration with the UV attenuation factor.  
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nonanal is 9.2+5.8
−5.4 ppb, whilst for hexanal, it is 2.2+2.0

−0.9 ppb. 
Finally, we investigated the input conditions that gave the maximum 

concentrations of each of our individual species in the 1000 model 
outputs. For each run that produced a maximum concentration for one 
(or more) of the investigated species, we graded each of the varied input 
parameters for that run according to where it sat within the range of 
possible values for that input parameter (figure S28, SI). So if it was close 
to the maximum value in the input range it was coloured dark red, and 
dark blue if close to the minimum value. Not surprisingly, this exercise 
showed that the highest predicted ozone concentration was associated 
with a low deposition velocity of ozone onto painted walls. 

The highest concentrations of NO2 and HONO were associated with a 
run that had very low UV transmission and hence, lower photolysis rates 
for these two species. This latter relationship is shown in Fig. 9, which 

(a) (b)

Fig. 7. HO2 (a) and RO2 (b) concentrations as a function of the air exchange rate. The data in blue are simulations with an ozone deposition velocity below the 
median of all values and the orange data has above median values of ozone deposition velocity. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the Web version of this article.) 

Fig. 8. NO concentration as a function of air exchange rate.  

Table 2 
95% confidence bounds and median values for output species concentrations. 
These are shown graphically on density functions for each species in the sup-
plementary information accompanying this paper.  

Species Median Minimum bound Maximum bound 
O3 (ppb) 4.7 2.3 9.1 
NO2 (ppb) 9 5.3 12 
NO (ppb) 2.7 1.1 4.6 
OH (molecules cm−3) 4 × 105 1.6 × 105 6.4 × 105 

HO2 (ppb) 0.0016 0.00078 0.0043 
RO2 (ppb) 0.0022 0.0011 0.006 
NO3 (ppb) 1.7 × 10−6 5.5 × 10−7 4.4 × 10−6 

Total PAN species (ppb) 0.46 0.22 0.76 
Total organic nitrates (ppb) 0.29 0.094 0.58 
Hexanal (ppb) 2.2 1.3 4.2 
Heptanal (ppb) 0.39 0.18 1 
Octanal (ppb) 1.2 0.41 3.2 
Nonanal (ppb) 9.2 3.8 15 
Decanal (ppb) 2.9 0.75 8.8 
4-oxopentanal (ppb) 0.08 0.047 0.15 
Formic acid (ppb) 0.011 0.0061 0.022 
Acetic acid (ppb) 0.012 0.0065 0.021 
Acetone (ppb) 8.7 7.3 12 
Methanol (ppb) 1.7 1.4 2 
Ethanol (ppb) 13 8.7 16 
Isopropanol (ppb) 0.88 0.83 0.96 
Isoprene (ppb) 2.8 0.77 6.7 
Formaldehyde (ppb) 18 16 21 
Acetaldehyde (ppb) 4.1 3.8 4.6 
Glyoxal (ppb) 0.35 0.18 0.5 
Methylglyoxal (ppb) 0.071 0.031 0.11 
Nitrous acid (ppb) 0.56 0.35 0.73  

Fig. 9. Heatmap showing UV transmission values for simulations with 
maximum concentrations of each species. UV transmission had a minimum 
parameter value of 0% and a maximum of 38%. 
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ranks the importance of UV transmission for each of the species in the 
run that provides their maximum concentrations. It is interesting that 
potentially harmful species are present at both ends of the scale. 
Although increasing UV transmission indoors might decrease NO2 and 
HONO concentrations, it would also likely increase the concentrations of 
PAN species and organic nitrates, both also with likely health impacts 
(Carslaw and Shaw, 2019). 

4. Conclusions 

This paper has shown that the model predicted concentrations of 
several key indoor air species are sensitive to a number of factors, 
particularly to ozone deposition velocity onto different surfaces, the 
C6–C10 aldehyde formation yields, the ingress of UV light, the air ex-
change rate, temperature, humidity, the total surface to volume ratio as 
well as those for specific surfaces and VOC emission rates from breath. 
When these different input parameters were combined in a Monte Carlo 
sensitivity analysis, the air exchange rate and the ozone deposition ve-
locity onto painted walls showed the highest correlations with most of 
the predicted species concentrations, such as ozone, RO2 and HO2 rad-
icals. The ingress of UV light showed the strongest correlation with the 
predicted concentrations of OH and also with organic nitrate concen-
trations. This finding suggests that reducing the uncertainty in these 
input parameters will have the biggest impact on reducing model un-
certainty and highlights future experimental research needs. This 
finding suggests that reducing the uncertainty in these input parameters 
will have the biggest impact on reducing model uncertainty, at least for 
the conditions we studied. Clearly, if there are activities involved that 
release emissions of particular air pollutants (e.g. cooking, cleaning, or 
surface chemistry), such an analysis might produce different conclu-
sions. However, our results should be generally applicable for back-
ground conditions in a typical house. 

This research also highlights future experimental research needs, 
which fall into two different areas. The first is a list of experimental 
parameters that must be measured when indoor air measurements are 
made, in order to gain further insight from later modelling studies. These 
include parameters such as the air exchange rate and transmission of UV 
light. The second area is where measurements under controlled condi-
tions in an experimental laboratory could be useful to determine the 
properties of different surfaces indoors and in particular, how ozone 
interacts with them. As shown by Kruza et al. (2017), there is currently 
much variation in the reported values of ozone deposition velocities 
onto different surfaces and even onto the same surface types. 

Finally, there is a need to acknowledge that we can only include in 
models, the processes that we know about at any point in time. We are 
still learning much about indoor air chemistry, particularly the impacts 
of the human occupant (e.g. Weschler and Carslaw (2018)) and of in-
ternal surfaces (e.g. Liu et al. (2021)). Attempting to parameterise these 
processes in indoor models is still at a very early stage and will no doubt 
raise some interesting challenges for modellers in the coming years. 
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