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The use of stochastic processes for modelling phenomena
of interest is pervasive across engineering and scientific
disciplines. These processes, which capture the evolution of
probability distributions through time or across a domain
of interest, provide a means of describing systems that
are uncertain or which have a stochastic/random element.
Although the mathematics for describing and making in-
ferences over stochastic processes is universal, the means
in which they are employed can significantly vary, partic-
ularly when comparing a machine learning approach with
a classical mechanical one.

In this paper we will first draw comparison between ma-
chine learning and physics-based approaches to stochastic
processes before attempting to unify them by positing the
physics-based approach as a principled means of establish-
ing an informative prior for a Gaussian process regression.

Physics-informed machine learning is a growing area of
interest. In terms of Gaussian process regression, physi-
cal insight can be expressed either through the mean or
covariance function or both. Here we consider zero mean
processes and, therefore, focus on the covariance function.
The design of covariance functions to exhibit appropri-
ate/useful behaviour has been considered by a number of
researchers. Pillonetto et al. (2014) provide a review in the
context of system identification and particularly highlights
the use of a stable spline kernel for linear parameter esti-
mation (Pillonetto and De Nicolao (2010)). An alternative
means of building in insight can be achieved through the
multiple output framework, where relationships between
multivariate targets are encoded in cross-covariance terms
between standard machine learning kernels (Solin et al.
(2018); Jidling et al. (2018); Cross et al. (2019)). This pa-
per suggests an alternative approach where the covariance
⋆ The authors would like to acknowledge the support of the EPSRC,
particularly through grant reference number EP/S001565/1

1. INTRODUCTION

The fundamental elements for describing a stochastic pro-
cess are the mean and autocorrelation, which are functions
over time or the domain of interest. Considering a process
y(t), its mean µy(t) and autocorrelation φy(t1, t2) func-
tions are

µy(t) =E[y(t)]

φy(t1, t2) =E[y(t1)y(t2)]

=

∫ ∫
∞

−∞

y(t1)y(t2)g(y(t1), y(t2))dy(t1)dy(t2)

(1)

where E is the expectation operator. The autocorrelation
requires integration of the product of y(t1)y(t2) and their
joint probability density, g, at times t1 and t2. Higher order
moment functions are similarly defined.

Following on from this, the (auto)covariance of a process,
k(t1, t2), is

k(t1, t2) = E[(y(t1)− µ(t1))(y(t2)− µ(t2))] (2)

Clearly, the autocorrelation and (auto)covariance are one
in the same for a process with a zero-mean.

A Gaussian process is one where at each instance or
iteration, the value of the variable of interest follows a
normal/Gaussian distribution, with the joint distribution
of a finite collection of these also normal. It is completely
defined by its mean and the covariance function, i.e. one
need only consider the joint density between two points
(second order density).

functions are directly derived based on (partial) knowledge
of the process of interest via equations of motion. The
example shown here assumes a random excitation. A more
general, yet somewhat involved, approach avoiding this
assumption can be found in Alvarez et al. (2009), which
employs a multiple output GP.

2. STOCHASTIC PROCESSES IN PHYSICS AND
MACHINE LEARNING
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2.1 Physics-based perspective

The description of physical systems as stochastic processes
is well established; the first use of the term ‘stochastic
process’ arose in the 1930s (see Khintchine (1934); Doob
(1934)), but the response of a physical system to random
excitation had been under study since at least the turn
of the 20th century, for example, in 1905 Einstein derived
the probability distributions of the displacement through
time of particles suspended in fluid (Einstein (1905)). For
the interested reader, two review papers on Brownian
motion by Uhlenbeck and co-authors provide an excellent
discussion of the work around this time (Uhlenbeck and
Ornstein (1930); Wang and Uhlenbeck (1945)).

From the mechanistic or physics-based view point, one
may take the approach of assuming the form of the process
Y (t), and then derive the moment functions. As a simple
example, the harmonic process Y (t) = A cos(ωt+Φ), with
A and Φ random variables, will be Gaussian if A follows
a Rayleigh distribution (A ∼ R(σ)) and Φ a uniform
distribution over (−π, π). In this case, one can derive the
mean and autocorrelation functions from (1), which are
µY (t) = 0 and φY (t1, t2) = σ2 cos(τ) with τ = ti − tj .
Where a spectral representation is more appropriate, as
may often be the case, the autocorrelation may be derived
from the power spectral density of the process, as the
two are Fourier duals. In a later section we will show
the autocovariance of a linear oscillator under random
excitation before employing it as a prior in a Gaussian
process regression.

2.2 Machine-learning perspective

Stochastic processes are also a popular modelling choice
for machine learning tasks, probably the most common
of which is Gaussian process regression (Rasmussen and
Williams (2006)). Here, one adopts a Gaussian process
prior which is conditioned on a set of training data, the
conditioned posterior is then used in a regression setting
(see Appendix A for mathematical detail).

The use of Gaussian process regression is now fairly
common in any engineering research disciplines where
measured data are available from a structure or system.
In structural dynamics they are commonly used for health
monitoring tasks (Farrar and Worden (2012)), such as
predicting features of interest to enable inference over a
damage state (Bull et al. (2020); Kullaa (2011)), or to
infer unmeasured loads (Holmes et al. (2016); Rogers et al.
(2020)), for example.

In this data-driven approach the prior mean and (auto)-
covariance functions are selected as modelling choices. The
mean function is often set to zero and the covariance
function selected from either squared-exponential (SE) or
Matérn kernel classes.

The posterior GP mean is a weighted sum of observations
in the training set (see Appendix A), with the weights
determined by the covariance function. Selecting an SE or
Matérn covariance function allows the regression model
to be data-driven in nature; Figure 1a illustrates how
the influence of a training point on a prediction decays
as the distance in the input space increases when using

an SE covariance function (hyperparameters arbitrarily
selected). This shows how the covariance between points
with similar inputs will be high, as is entirely appropriate
for a data-based learner.

In the absence of training data in an area of the input
space, the mean value of the GP will return to the prior
mean (usually zero).

2.3 Physics-derived covariance functions in a machine
learning setting

A benefit of the machine learning approach described
above is that one requires little to no insight of the process
of interest. In addition, a GP with an SE prior is a uni-
versal approximator (Micchelli et al. (2006)). The implicit
assumption, however, when taking this approach is that we
have sufficient data to characterise all behaviours of inter-
est and that we are able to encompass these in our training
dataset. In areas where there is insufficient coverage of
the input domain in the training dataset, the predictive
distribution will return to its (potentially uninformative)
prior.

Although monitoring data of engineering systems and
structures are increasing in availability, in many situations
it is unlikely that we would be able to collect a fully
representative dataset of all behaviours of interest. Moni-
toring data may be sparse due to cost limitations, or where
structures operate in a complex environment, we may not
have observed extremes, for example. In a structural health
monitoring setting, one may wish to make predictions
about an ageing structure for a prognosis task, here one
most certainly would not have access to monitoring data
that would allow an entirely data-driven approach.

In such cases, using a more informative prior that is repre-
sentative of our (partial) knowledge of the process as engi-
neers seems a pragmatic and sensible approach (of course,
entirely befitting of a Bayesian view point). Happily, those
covariance functions derived under a physics-based view
point as discussed above may be readily employed in a
Gaussian process regression as the prior covariance. We
argue here that, when our prior knowledge may be en-
capsulated in a covariance function, it is appropriate and
useful to do just this.

This short paper will explore a particular example of
where a physics-derived covariance function may be used
to improve inference over a structural system. In the next
section, the covariance of a linear oscillator is derived
and employed in a regression setting. We will consider
its use for making predictions about linear systems, and
also briefly, nonlinear systems. The paper concludes with
a more general discussion of the approach suggested.

3. DERIVATION OF THE COVARIANCE FUNCTION
OF A LINEAR OSCILLATOR

Consider a linear SDOF, single-degree of freedom, oscilla-
tor (with mass, damping and stiffness parameters, m, c, k
respectively) driven by a forcing process F (t):

mÿ(t) + cẏ(t) + ky(t) = F (t) (3)

The impulse response function h(t), assuming t > t0, is
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h(t) =
e−ζωnt

mωd

sin(ωdt) (4)

where standard notation has been used; ωn =
√

k/m,

the natural frequency, ζ = c/2
√
km, the damping ratio,

ωd = ωn

√

1− ζ2, the damped natural frequency. The
response of the system, Y (t), is the convolution of the
impulse response function, h(t), and the excitation:

Y (t) =

∫ ∞

−∞

F (t− r)h(r)dr (5)

If we consider this to be a stochastic process, then the first
and second order moments are

µY (t) = E[Y (t)] = E

[
∫ ∞

−∞

F (t− r)h(r)dr

]

(6)

φY (t1)Y (t2) = E[Y (t1)Y (t2)]

= E

[
∫ ∫ +∞

−∞

F (t1 − r1)h(r1)F (t2 − r2)h(r2)dr1dr2

]

(7)
The simplest formulation of Y (t) as a stochastic process is
to consider the system as deterministic and the forcing as
a random process. Then Eq (7) simplifies to:

µY (t) =

∫ ∞

−∞

µF (t−r)h(r)dr

φY (t1)Y (t2) =

∫ ∫ +∞

−∞

φF (t1−r1)F (t2−r2)h(r1)h(r2)dr1dr2

(8)
Under a Gaussian white noise assumption, µF (t) = 0 and
φF (t1)F (t2) = σ2δ(t1 − t2) = σ2δ(τ), so µY (t) = 0 and (8)
becomes:

φY (τ) =
σ2

m2ω2
d

∫ ∞

−∞

e−ζωn(2r1−τ) sin(ωd(r1 − τ))

sin(ωdr1)dr1

(9)

For an alternative derivation we can make use of the
Fourier duality between power spectral density and au-
tocorrelation.The power spectral density, SY Y is

SY Y =
SFF

| − ω2 + i(2ζωn)ω + ω2
n|2

(10)

The autocorrelation is the Fourier transform of SY Y

φY (τ) =

∫ ∞

−∞

eiωτ σ2

| − ω2 + i(2ζωn)ω + ω2
n|2

dω, (11)

again assuming Gaussian white noise, SFF = σ2. Through
either approach the integration (which can be long winded
unless one resorts to contour integrals and the residue
theorem) leads to the covariance function:

φY (τ) =
σ2

4m2ζωn
3 e

−ζωn|τ |(cos(ωdτ) +
ζωn

ωd

sin(ωd|τ |))
(12)

See also Papoulis (1965); Caughey (1971). For comparison
with Figure 1a, Figure 1b shows the influence of an input
point on a prediction for this covariance function.

If one is able to access modal coordinates and has well
separated modes, the extension of this covariance to multi-
degrees of freedom may be gained simply through a sum
of the same covariance term over the multiple frequencies

w
(i)
n , with ζ(i) corresponding to modal damping ratios.
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Fig. 1. Measure of influence of an input point on a pre-
diction for the squared-exponential(SE) and SDOF
covariance functions

Here, for demonstration we will work with the SDOF
representation.

We are now in a position to be able to use this function as
our prior covariance a standard GP regression and will do
so in Section 4.

3.1 Related work - kernel design in machine learning

A number of researchers in machine learning have con-
sidered the design and construction of different kernel
functions and their properties to enhance regression per-
formance. A particularity interesting subset of the research
papers on this topic refer to ‘expressive kernels’. These ker-
nels have a richer spectral content than the more standard
ones, such as the squared-exponential discussed above.

In Wilson and Adams (2013), the authors use the Fourier
duality between PSD and autocorrelation (referred to
there as Bochner’s theorem) to construct the Spectral
Mixture (SM) kernel from a mixture of Gaussians in
the frequency domain. They show that this expressive
covariance is able considerably outperform the standard
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(a) Prior draws with a squared-exponential covariance

(b) Prior draws with the SDOF covariance

Fig. 2. Prior draws from different covariance functions

kernels for extrapolation. This is extended in Parra and
Tobar (2017) to the multiple output case, where phase-
lags between variables are also accounted for (see also
Boyle and Frean (2005)). The covariance structure in the
SM is similar to that shown in (12) (notably the weighted
sinusoid is absent in the SM), indicating that it is likely
that (12) will be useful in a generic regression task. This
idea is not pursued here, where the interest is much more
in what may be gained from employing physical insight of
the system in question to derive priors that are useful for
the specific regression task in hand.

4. EXPLORATION OF USING PHYSICS-DERIVED
COVARIANCE FUNCTIONS IN GPR

In this section we will explore the characteristics of the
SDOF covariance function in a regression setting.

Figure 2 shows the draws from Gaussian process priors
with a squared-exponential and the SDOF covariance func-
tion respectively (both zero mean). As is to be expected,
the draws from the SDOF covariance resemble responses
of a linear oscillator under white noise, with different am-
plitudes and phases accounted for. One can see that there
is much more structure in the prior draws of the SDOF
covariance process than from the squared-exponential.
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Fig. 3. Simulated SDOF system under random load

To explore further a simulation is employed, here a linear
oscillator with ωn = 141.4 and ζ = 0.01 is excited under
white noise with σ2 = 1e− 6. The simulation time history
is shown in Figure 3.

Gaussian process regression is attempted using subsets of
the simulation for training/conditioning. Figure 4 shows
the posterior predictions of two GPs conditioned on every
second simulation point until data point 500, one has an
SE covariance, the other the derived SDOF covariance.
One can see that both GPs have an excellent fit in the
training regime.

The potential benefits of employing the physical covariance
structure become clearer when training data are less
abundant. Figure 4b shows each GP conditioned now on
every tenth data point. The prediction accuracy of the
SDOF GP far outweighs that of the SE in this case and the
benefit of our knowledge of the physical system is brought
to bear.

The system (hyper)parameters may be fixed or learned
based on the available knowledge. The optimal hyper-
parameters are sought here via maximising the marginal
likelihood of the predictions. In this paper a particle swarm
optimisation is used following Rogers (2019). In the case
above, hyperparameter optimisation is able to reproduce
the same prediction results as when they are fixed to
match the parameters of the simulation. Although not
the focus of this paper, the authors note that accurate
parameter estimation is possible using a small number
of conditioning points, but does require adaption of the
optimisation approach. This will be the topic for a separate
paper.

The example above represents the situation where one’s
partial knowledge is of the structure of a system and
not of its parameters. Where our structural knowledge is
partial, our intention with this approach is to pursue a
combination of covariance functions for the prior, building
in additional flexibility to account for unknown behaviour.
One might envisage the combination of a covariance func-
tion representing an underlying linear system with a data-
driven covariance function to account for an unknown non-
linearity, for example. These combination will be demon-
strated in future work, however, here we briefly explore
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(a) Conditioned on every data point up until data point 500

(b) Conditioned on every 10th data point up until data point 500

Fig. 4. Comparison between SE and SDOF kernels when
conditioned on simulated vibration data

the use of the current covariance function for a nonlinear
system.

The simulation above is repeated with and without a non-
linear (cubic) spring added between ground and the mass
(the nonlinear spring has the same stiffness coefficient as
the linear one). The same random forcing was applied to
the linear and nonlinear system. Figure 5 compares the
fit to the linear simulation with that of the nonlinear
simulation (every second point up to data point 1000 was
used for training). In terms of modelling the nonlinear
system, Figure 5b shows the case when the covariance
hyperparameters are fixed to those of the known linear
system. Figure 5c shows the fit when the hyperparameters
are learned. One can see that in all cases, the fit in in-
terpolation is perfect, demonstrating the flexibility of the
covariance function. It is the extrapolative ability that is
affected by the misspecification of the hyperparameters,
where one can see that the GP defined by the linear system
parameters loses predictive capability particularly in terms
of the phase.

(a) Fit to linear simulation

(b) Fit to nonlinear simulation with hyperparameters fixed to those
of the linear system

(c) Fit to nonlinear simulation with learned hyperparameters

Fig. 5. A comparison when using the SDOF covariance for
linear and nonlinear systems. GP training in all cases
is on data points 1:2:1000.

5. DISCUSSION

The previous section highlights the usefulness of a physics-
informed prior for a regression task. The derived co-
variance function brings a structure which encodes the
expected behaviour and is able to account for missing
information in the training set. An additional benefit from
the approach is that the hyperparameters are interpretable
physically, meaning that the learning of them may now
be guided by our insight. For example, the frequency
component may be set based on prior engineering analysis,
equally a hyper-prior distribution could be set reflecting
our belief in the possible values our system may take.

The usefulness of this approach will naturally depend
on the derived covariance adopted and the particular
application. The SDOF covariance function adopted here
is expressive; it is able to represent a wide range of
behaviours, including some nonlinear behaviours. In the
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example shown, the covariance function is able to perform
well for a simulated Duffing oscillator. This indicates
that the higher order moments in the process induced
by the nonlinearity are not contributing significantly to
the response, rendering the Gaussian process assumption
useful in this case.

Future work will consider encapsulating partial knowledge
of the process of interest through combinations of derived
and data-driven covariance functions. Here, the benefits
of working in a GP framework are evident; as covariance
functions remain valid under linear operation, one can
easily manipulate and combine candidate covariance terms
to tailor the model to a particular task at hand.
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Appendix A. GAUSSIAN PROCESS REGRESSION

Here we follow the notation used in Rasmussen and
Williams (2006); k(xp,xq) defines a covariance matrix
Kpq, with elements evaluated at the points xp and xq,
where xi may be multivariate.

Assuming a zero-mean function, the joint Gaussian distri-
bution between measurements/observations y with inputs
X and unknown/testing targets y∗ with inputs X∗ is

[

y

y
∗

]

∼ N

(

0,

[

K(X,X) + σ2
n
I K(X,X∗)

K(X∗, X) K(X∗, X∗)

])

(A.1)

The distribution of the testing targets y
∗ conditioned on

the training data (which is what we use for prediction) is
also Gaussian:

y
∗|X∗, X,y ∼ N (K(X∗, X)(K(X,X) + σ2

n
I)−1

y,

K(X∗, X∗)−K(X∗, X)(K(X,X) + σ2

n
I)−1K(X,X∗))

(A.2)
See Rasmussen and Williams (2006) for the derivation.
The mean and covariance here are that of the posterior
Gaussian process.


