
This is a repository copy of An integrated dual process simulation model of alcohol use 
behaviours in individuals, with application to US population-level consumption, 1984–2012.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/178473/

Version: Published Version

Article:

Buckley, C. orcid.org/0000-0002-8430-0347, Field, M. orcid.org/0000-0002-7790-5559, Vu,
T.M. et al. (7 more authors) (2022) An integrated dual process simulation model of alcohol 
use behaviours in individuals, with application to US population-level consumption, 1984–
2012. Addictive Behaviors, 124. 107094. ISSN 0306-4603 

https://doi.org/10.1016/j.addbeh.2021.107094

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Addictive Behaviors 124 (2022) 107094

Available online 22 August 2021
0306-4603/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

An integrated dual process simulation model of alcohol use behaviours in 
individuals, with application to US population-level 
consumption, 1984–2012 
Charlotte Buckley a,*, Matt Field b, Tuong Manh Vu c, Alan Brennan c, Thomas K. Greenfield d, 
Petra S. Meier e, Alexandra Nielsen d, Charlotte Probst f,g, Paul A. Shuper f, Robin C. Purshouse a 

a Department of Automatic Control and Systems Engineering, University of Sheffield, Mappin Street, Sheffield S1 3DA, UK 
b Department of Psychology, University of Sheffield, Cathedral Court, 1 Vicar Lane, Sheffield S1 2LT, UK 
c School of Health and Related Research, University of Sheffield, 30 Regent Street, Sheffield S1 4DA, UK 
d Alcohol Research Group (ARG), Public Health Institute, 6001 Shellmound St, Emeryville, CA 94608, USA 
e MRC/CSO Social and Public Health Sciences Unit, Berkeley Square, 99 Berkeley Street, Glasgow G3 7HR, UK 
f Institute for Mental Health Policy Research, Centre for Addiction and Mental Health (CAMH), 33 Ursula Franklin Street, Toronto, On M5S 2S1, Canada 
g Heidelberg Institute of Global Health, Medical Faculty and University Hospital, Heidelberg University, Im Neuenheimer Feld, 130.3 69120 Heidelberg, Germany   

A R T I C L E  I N F O   

Keywords: 
Dual-process theory 
Theory of planned behaviour 
Simulation modelling 
Dry january 

A B S T R A C T   

Introduction: The Theory of Planned Behaviour (TPB) describes how attitudes, norms and perceived behavioural 
control guide health behaviour, including alcohol consumption. Dual Process Theories (DPT) suggest that 
alongside these reasoned pathways, behaviour is influenced by automatic processes that are determined by the 
frequency of engagement in the health behaviour in the past. We present a computational model integrating TPB 
and DPT to determine drinking decisions for simulated individuals. We explore whether this model can repro-
duce historical patterns in US population alcohol use and simulate a hypothetical scenario, “Dry January”, to 
demonstrate the utility of the model for appraising the impact of policy interventions on population alcohol use. 
Method: Constructs from the TPB pathway were computed using equations from an existing individual-level 
dynamic simulation model of alcohol use. The DPT pathway was initialised by simulating individuals’ past 
drinking using data from a large US survey. Individuals in the model were from a US population microsimulation 
that accounts for births, deaths and migration (1984–2015). On each modelled day, for each individual, we 
calculated standard drinks consumed using the TPB or DPT pathway. In each year we computed total population 
alcohol use prevalence, frequency and quantity. The model was calibrated to alcohol use data from the 
Behavioral Risk Factor Surveillance System (1984–2004). 
Results: The model was a good fit to prevalence and frequency but a poorer fit to quantity of alcohol con-
sumption, particularly in males. Simulating Dry January in each year led to a small to moderate reduction in 
annual population drinking. 
Conclusion: This study provides further evidence, at the whole population level, that a combination of reasoned 
and implicit processes are important for alcohol use. Alcohol misuse interventions should target both processes. 
The integrated TPB-DPT simulation model is a useful tool for estimating changes in alcohol consumption 
following hypothetical population interventions.   

1. Introduction 

Alcohol use is a significant concern for population health, and in 
2016 contributed to 3 million global deaths (World Health Organization, 
2018). It is important to understand alcohol consumption at a 

population level because many policies designed to alter alcohol use 
tend to target the population as a whole, for example by changing the 
price of alcohol (Babor et al., 2010). Theoretical explanations of 
drinking behaviour are often validated in smaller populations (e.g. 
heavy drinkers and college students) and explain individual behaviour 
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in specific circumstances (e.g. binge drinking). It is unclear whether 
these theories can extrapolate to explain alcohol use in wider pop-
ulations or can be used to make predictions about the expected useful-
ness of interventions to reduce alcohol-related harm. Simulation 
modelling may be a cost-effective alternative to primary research that 
can be used to test whether theoretical predictions can generalise to 
wider populations and can test hypothesised changes in population level 
behaviour following policy interventions (Guest, 2021). Simulation 
modelling can also indicate where future primary research should be 
directed. In this paper we describe a bottom-up simulation approach 
using influential theories of alcohol use that can be employed to study 
alcohol consumption at the population level. 

The Theory of Planned Behaviour (TPB) (Ajzen, 1991), is a social- 
cognitive theory that has been used extensively to model health be-
haviours including alcohol use (Zemore, 2014). According to the model, 
subjective intention is the proximal determinant of drinking behaviour, 
and intentions are determined by attitudes, subjective norms and 
perceived behavioural control. Attitudes refer to overall positive or 
negative evaluations of the behaviour and subjective norms represent a 
perception of others’ behaviour and implicit behavioural rules in soci-
ety. Perceived behavioural control describes individuals’ perception of 
their ability to perform the behaviour, for example how much a person 
believes they can reduce their drinking. Meta-analyses have confirmed 
that models using constructs from TPB are able to predict intentions and 
behaviours for health-related behaviours (McEachan et al., 2011) and 
for alcohol consumption (Cooke et al., 2016). However, perceived 
behavioural control has a small and non-significant relationship with 
both alcohol consumption (Cooke et al., 2016) and intentions (Hagger 
et al., 2016), which has prompted calls for a theoretical overhaul of TPB 
that reconsiders the role of PBC to improve its predictive validity. 
Further research has found the inclusion of past behaviour increased the 
explanatory capabilities of TPB (Hagger, 2016). Although a general 
theory, support for TPB has tended to originate from experimental 
studies of specific populations (e.g. college students) (Cooke et al., 
2016). 

It has been suggested that social-cognitive theories are not compre-
hensive explanations due to their inability to represent determinants of 
behaviour that may not be consciously accessible (Hagger, 2016). Dual 
process theories (DPT) (Strack & Deutsch, 2004) suggest that behaviours 
are determined by a conscious, reflective system and a non-conscious 
impulsive system, and alcohol use is thought to be determined jointly 
by the strength of the impulsive and reflective systems (Stacy & Wiers, 
2010). A recent study demonstrated that heavy episodic drinking was 
predicted by intentional constructs (Hamilton et al., 2020); (i.e. atti-
tudes and subjective norms) and self-reported drinking habits. Here, 
habits were defined as behaviours that are evoked automatically in 
specific contexts (stimulus–response associations) in the absence of, or 
despite alternative intentions (Orbell & Verplanken, 2010). DPT sug-
gests that past behaviour influences future behaviour at least partially 
independently of intentions (Stacy & Wiers, 2010; Tiffany, 1990). To 
date, there have been no studies investigating DPT in the general 
population. 

In our simulation approach we express key components from the-
ories as a series of dynamical equations to generate drinking for simu-
lated individuals in a model built according to a rigorous scientific 
framework (Vu et al., 2020). This enables us to model individual-level 
factors that lead to drinking and the social context of individuals. We 
use a generative approach and subject models to a test of generative 
sufficiency (Epstein, 1999), which examines whether the assumptions of 
a theory can generate the behaviour the theory is trying to explain. If a 
theory can generalise to a population, i.e. adequately reproduce the 
observed behaviour (indicated by targets calculated from representative 
data sources), our models can help to disentangle how theoretical 
components may be operating within a population, and advance theory 
building in psychological science (Guest, 2021). Simulation also allows 
individual health behaviour decisions to be linked to policies and 

interventions designed to change behaviours. These approaches can 
provide information about the potential impact of policies on alcohol 
use of individuals and populations, to inform strategies to reduce harm. 

A recent review identified 22 existing agent-based models (ABMs) of 
alcohol use focusing on a range of topics including consumption pat-
terns, injuries and violence and the density of alcohol retail outlets 
(McGill et al., 2020). Although many of these studies are theoretically 
grounded, none of them model automatic processes or integrate multiple 
theories. The TPB has previously been used to study alcohol use in a 
simulation framework (Purshouse et al., 2014), but with a limited focus 
on the dynamics of drinking frequency in a cohort of young adults in 
England. In this paper, we aim to both include automatic processes and 
take a step towards unifying multiple theories of behaviour for model-
ling alcohol use. We anticipate that more integrated–or systems-base-
d–perspectives on drinking will improve both explanatory and 
predictive modelling of alcohol use and alcohol-related harms. The 
transparent nature of the explanations encoded in an ABM can also 
directly support policy evaluation and appraisal–by indicating the logic 
by which interventions have their intended, or unintended effects. 

We present an individual-level simulation model that uses TPB and 
DPT to determine decisions to drink in simulated individuals represen-
tative of the adult population of the US. First, we present a calibration of 
our model to US level observed drinking behaviour (1984–2004), and a 
validation of the best fitting model parameters (2004–2012). Second, we 
show the calibrated parameters from theory that provide the best fit to 
empirical data and discuss how these constructs may be operating at a 
population level. Finally, we demonstrate an application of this model, 
to test the impact of a hypothetical scenario whereby a percentage of the 
population undergoes temporary abstinence from alcohol, as happens 
during “Dry January”, which is increasingly popular in the UK and the 
US (de Visser & Piper, 2020). For this scenario, we present the expected 
changes in the population when a percentage of individuals abstain from 
alcohol for a month. 

2. Method 

We briefly outline each modelled component below. A detailed 
description and rationale for each model component is available in 
supplementary material and has been written according to the Over-
view, Design concepts and Details (ODD) framework for consistent and 
logical reporting of individual and agent-based models (Grimm et al., 
2020). 

2.1. Conceptual design 

Fig. 1 provides an overview of the process each modelled individual 
follows on each day to decide whether and how much to drink. We 
extracted key components from TPB and expressed them as equations to 
generate drinking intentions (see Table 1). The decision process begins 
with the individual probabilistically behaving according to the habitual 
or intentional pathway. A pathway is triggered according to a parameter 
in the model that describes the tendency for an individual’s drinking to 
be governed by previous drinking, termed “automaticity” (Bargh, 1994). 
Automaticity is defined over the range 0 (always intentional) to 1 (al-
ways habitual). If a sampled random number between 0 and 1 is lower 
than an individual’s automaticity, they will behave according to their 
previous drinking patterns on that day. Otherwise, the intention 
pathway is triggered, and intentions will be calculated to determine the 
probability of different drinking decisions. 

2.2. Behavioural schema 

Behavioural schema are discrete behavioural categories that repre-
sent the options for drinking behaviour available every day of the 
simulation. In the model, the probabilities of instantiating each schema 
are represented using a multinomial logit equation. We defined five 
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behavioural schema, derived from World Health Organisation cate-
gories of risk based on sex and mean grams of alcohol consumed per day 
(World Health Organization, 2000). The categories are: (1) abstaining (0 
drinks); (2) 1–2 drinks (males) and 1 drink (females); (3) 3–4 drinks 
(males), 2 drinks (females); (4) 5–7 drinks (males) and 3–4 drinks (fe-
males); (5) 8–30 drinks (males) and 5–30 drinks (females). The 
maximum number of drinks a modelled individual can consume on one 
day is 30 standard drinks and within each schema, the number of drinks 
are sampled using distributions informed by US National Alcohol Survey 
(NAS) data on respondents’ number of standard drinks consumed over 
the previous month (Greenfield et al., 2015) (see Section 5;supple-
mentary material). 1 standard drink is assumed to contain 14 g of 
ethanol (Substance Abuse and Mental Health Services Administration, 
2018). 

2.2.1. The intentional pathway 
When the intentional pathway is triggered, an intention is calculated 

for each behavioural schema using the equations reported and described 
in Table 1. We used an existing individual-level simulation model, 
described in detail in (Probst et al.) to calculate attitudes and norms 
components of the intentional pathway. In this first implementation we 
have not specified mechanisms to include perceived behavioural con-
trol, as the existing model we used to inform this model only contains 
constructs for social norms and attitudes (Probst et al.). Additionally, 
meta-analyses have indicated a small and non-significant relationship 
between perceived behavioral control and intentions to consume 
alcohol (Cooke et al., 2016; Hagger et al., 2016). Following (Probst 
et al.) “autonomy” (the weight given to the desire to ignore the norms) is 

assumed to have different values for non-drinkers, medium, and heavy 
drinkers. Past behaviour influences the intentional pathway and changes 
the descriptive norms through a perception bias (Equation 3 in Table 1) 
whereby individuals perceive the norms to be closer to their own 
drinking behaviour. 

2.2.2. The habit pathway 
At baseline (simulated year 1984) each individual is allocated a 

drinking history (section 2.4.2) that describes the percentage of days 
during each year that their behaviour was classified in each schema 
category and represents their probability of drinking in that schema on 
any given day. Each time an individual follows the habitual pathway, a 
schema is sampled without replacement. Drinking history is updated 
every nth day, where n represents the number of days taken for a 
behaviour to become habitual. The value of n can vary between in-
dividuals and is allocated a value following the calibration process, with 
ranges informed by research on habit formation (Lally et al., 2010). 
Drinking history is updated by calculating the percentage of days that 
the individual drinks in each of the schema categories over the previous 
n days in the model. 

2.3. Model parameters 

2.3.1. Individual properties 
A microsimulation model was used to populate individuals in the 

model (Brennan et al., 2020). This comprises a population representa-
tive of the US between 1984 and 2015 (see supplementary material 
section 7.1), accounting for births, deaths and migration and changes in 

Fig. 1. Overview of the decision framework that each individual in the model follows on each day of the simulation to decide whether to drink and if so, how much 
to drink. 
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socio-demographic properties (marriage, employment and parenthood 
status) over time. The microsimulation uses data from the US Census 
(Manson et al., 2019) and the American Community Survey (Ruggles 
et al., 2019) and comprises a population of the US aged 18 to 80 for all 
years of the simulation. Data from the Behavioural Risk Factor Sur-
veillance System (BRFSS) (Centers for Disease Control and Prevention 
(CDC), 2015) was used to assign individuals with socio-demographic 
characteristics (age, sex, race/ethnicity, marital employment and 
parental status, highest educational attainment and household income) 
and baseline alcohol consumption (12-month drinking status, usual 
quantity and frequency of drinking). 

2.3.2. Drinking history 
Each individual is allocated a drinking history at baseline, which is 

simulated using data from the US National Alcohol Survey. The NAS 
contains information on how many days per year individuals usually 
consume 1,2,3–4,5–7, 8–11 and 12 + drinks, alongside mean quantity 
and frequency of consumption and socio-demographic properties. This 
information was used to simulate a number of drinks per day in the year 
prior to the simulation starting for each individual using information 
about their usual alcohol consumption and age and sex. 

2.4. Implementation 

The simulation was written in C++ using the Repast HPC toolkit 

(North et al., 2013) and was run using a 36-core i9 processor. The model 
is run forward in time for 20 years for calibration (1984-2004) and 8 
years for validation (2004–2012). Each model tick represents one 
simulated day. On each day, a number of drinks for each individual is 
calculated using the process described in Fig. 1. Daily drinking of each 
individual was calculated for each year, and annual sex-disaggregated 
summary statistics were collected for alcohol consumption prevalence 
(overall percentage of current drinkers), quantity of alcohol consump-
tion (mean grams of alcohol per day) and frequency of alcohol con-
sumption (mean drinking days per month). Due to model run time (up to 
2 min per run), models were calibrated using 1,000 individuals sampled 
from a representative whole population of the US. All model results and 
experiments reported use the best calibrated settings with a random 
sample of 10,000 US representative individuals. The source code for the 
simulation with the best calibrated parameters is available at bitbucket. 
org/r01cascade/integrated_dual_process_addictive_behaviors and is 
licensed under the GNU General Public License version 3. 

2.5. Model calibration 

The model was calibrated by adjusting the values of the unobserved 
parameters in the model (listed in Table 2) to match the outputs of the 
model with observed alcohol use data (targets). 

Table 1 
A description of concepts and equations used to operationalise the intentional pathway.  

No. Concept Model equation Description 
1 Descriptive norms DescriptiveNormRaw[j,g] = MeanPrevalence[j,g] The raw descriptive norm is the mean prevalence (percentage of days) 

individuals i in each age-sex subgroup g behave in each schema category j. 
2 Descriptive norms WeightedDescriptiveNorm[j,g] = Σh(Shared[j-,g,h] ×

DescriptiveNormRaw[j,g]) / ΣhShared[j,g,h] 
The weighted descriptive norm is the weighted sum of the raw descriptive 
norms for all reference groups, h, the individual belongs to (calculated using 
the operator Σ Shared), i.e. if they are an 18–24-year-old man, the norms of 
18–24-year-old men are weighted as 2, all other age categories for men are 
weighted as 1, the 18-24 year-old women category is weighted as 1, and all 
other age categories for women are weighted as 0. 

3 Descriptive norms DescriptiveNormi[j] = Perception_bias × WeightedDescriptiveNorm 
[j,gi] + (1-Perception_bias) × PrevalenceSchema-i[j] 

The weighted descriptive norm is adjusted for perception bias. This adjusts the 
descriptive norms to be biased towards the current drinking level of the 
individual. PrevalenceSchemai[j] refers to the percentage of the time 
individual i drinks in schema j. 

4 Injunctive norms 
punishment 

If HED_proportion[g] > injunctive_proportion, InjunctiveNorm[g] =
punish_adjustment × InjunctiveNorm[g] 

If the prevalence of heavy episodic drinking (defined by 
injunctive_threshold) in a particular subgroup g rises above a level 
injunctive_proportion, the injunctive norm is tightened by a factor 
punish_adjustment to make it less acceptable to drink. 

5 Injunctive norms 
relaxation 

If MeanPrevalence[j,g] > InjunctiveNorm[j,g], InjunctiveNorm[j,g] =
(1-relax_adjustment) × MeanPrevalence[j,g] + relax_adjustment ×
InjunctiveNorm[j,g] 

Mean prevalence refers to the average percentage of the time individuals in 
reference group g spend drinking in schema group j. If the average prevalence 
of individuals having at least one drink is larger than the injunctive norm over 
days_relax days, then the injunctive norm is relaxed by a factor 
relax_adjustment. 

6 Autonomy Autonomyi = exp(Autonomy_shifti × Autonomy_baselinei - 
Autonomy_shifti) 

Autonomy reflects the proportion of time individuals follow the norms. This is 
shifted for individuals according to their baseline drinking to reflect that 
heavier drinkers have different levels of autonomy over their drinking 
compared to non-drinkers and infrequent drinkers. 

7 Norms Normsi[k,j] = (1-Autonomyi) × (log(DescriptiveNormi[j] / 
DescriptiveNormi[j=0]) + log(InjunctiveNorm[j,gi] / InjunctiveNorm 
[j=0,gi])) / 2 

The norms have two components (1) descriptive norms - describe the 
prevalence of drinking in each schema, for each population age/sex sub-group 
and (2) injunctive norms - describe the perceived acceptability of drinking in 
each schema category j for each reference sub-group g. These are weighted by 
individual’s autonomy which is how much they want to comply with the 
norms. 

8 Attitudes Attitudesi[k,j]= Autonomyi × log(desirei[j] / desirei[j=0]) Attitudes refer to the overall positive or negative appraisal of drinking in each 
schema category. Here this is calculated as the individual’s desire to drink 
(when not following the norms) weighted by their autonomy. 

9 Log odds intention LogOddsIntentioni[k,j] = β_Attitude × Attitudesi[k,j] + β_Norms ×
Normsi[k,j] + β_PBC × PerceivedBehaviouralControli[k,j] 

The log odds of intention for each schema is the weighted sum of attitudes, 
norms and perceived behavioural control. PerceivedBehaviouralControli[k, 
j]=0 in this initial model. 

10 Intention Intentioni[k,j] = exp(LogOddsIntentioni[k,j] /  
ΣjLogOddsIntentioni[k,j]) 

The intention for each schema is converted into a probability of performing 
the behaviour in each schema category. 

Note: These equations contain unobserved parameters (highlighted in bold) which modify the effects of the mechanisms. These are given values following the model 
calibration process (section 2.5) which searches for the parameters that best fit historical alcohol consumption trends over time. The simulated individuals in the model 
are indexed by i and represent individual inhabitants of the US. Drinking is simulated on each day and is indexed by k. There are 5 behavioural schemas that individuals 
can select, and these are indexed by j. Reference groups for social norms are indexed by g and indicate the individual’s age and sex sub-group 
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Table 2 
A description of unobserved parameters in the model and their allocated values following the calibration process.   

Model Parameter Subgroup Calibrated value Description 
Individual level 
1 Autonomy_baselinei Female Beta(α = 1.37,β =

4.94) 
The weighting an individual assigns to what they want to do (compared to the norms). A beta distribution separately calibrated for males and females 

Male Beta(α = 3.03,β =

0.67) 
2 Automaticityi Low drinkers Beta(α = 0.91,β =

2.08) 
The tendency for individuals to follow their habits over their intentions. A beta distribution separately calibrated for low (<20 g), medium-heavy (20 g-99 g) and very 
heavy (100 g + ) drinkers. 

Medium 
drinkers 

Beta(α = 2.57,β =

2.53) 
Heavy 
drinkers 

Beta(α = 2.79,β =

2.23) 
3 Habit_intervali  N(m = 99.5, s2 =

44.2) 
The length of time habits take to update in the simulation over time. This is different for each individual but fixed over time. Assumed to be normally distributed in the 
population. Note standard deviation is not calibrated in this version of the model but informed from prior research about individual differences in habit formation ( 
Lally et al., 2010) 

Population level 
4 Autonomy_shift Abstainers 0.40 Autonomy is shifted to account for differences in drinking patterns. Abstainers are individuals that have not consumed any alcohol in the previous 30 days. Infrequent 

drinkers are defined as drinkers that have consumed alcohol on up to 4 days in the previous month. Heavy drinkers are defined as individuals that have consumed 
alcohol on 28 or more days, or have consumed over 100 drinks in the previous month. Medium drinkers are defined as drinkers that consume alcohol on more than 4, 
but less than 28 days and are assumed to represent an “average drinker” and do not have their autonomy shifted. 

Medium 
drinkers 

0.36 

Heavy 
drinkers 

0.12 

5 Injunctive_proportion  0.49 The proportion of individuals that need to be considered as heavy episodic drinkers to trigger punishment of the injunctive norms 
6 Injunctive_threshold  14.2 The number of drinks in one occasion considered as heavy episodic drinking in this model 
7 Punish_adjustment  0.81 The percentage the injunctive norms are tightened by, when they are punished 
8 Relax_adjustment  1.00 The percentage the injunctive norms are relaxed by when they are relaxed 
9 Days_punish  30 The number of days behaviour is considered over when calculating whether norms should be punished 
10 Days_relax  365 The number of days behaviour is considered over when calculating whether the norms should be relaxed 
11 Interval_punish  30 How often equation 5 is triggered to calculate whether the norms are punished 
12 Interval_relax  90 How often equation 4 is triggered to calculate whether the norms are relaxed 
13 Perception_bias  0.54 How much the descriptive norm is adjusted by to make it more similar to the individuals own drinking 
14 β_Attitude  0.89 The weighting given to attitudes when calculating intentions 
15 β_Norms  0.98 The weighting given to norms when calculating intentions 
16 β_PBC  0 The weighting given to perceived behavioural control when calculating intentions (switched off in this model) 

Note: Parameters of theoretical importance are highlighted in bold. 
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2.5.1. Targets 
Targets were derived from alcohol use data from the BRFSS for the 

years 1984–2012, adjusted to per-capita US alcohol sales data for each 
year using a triangulation method described in (Rehm et al., 2010). In 
each year, there were three alcohol use targets: (1) prevalence – the 
overall proportion of individuals reporting consuming an alcoholic 
beverage at least once during the previous year, (2) quantity – among 
drinkers the average grams of alcohol consumed per day, (3) frequency – 

among drinkers the average number of drinking days per month. All 
targets were split by sex, resulting in 6 calibration targets per year. 

2.5.2. Procedure 
Equations to calculate the intentional and habitual pathway contain 

a total of 30 parameters with unobserved values (see Table 1). A Latin- 
hypercube space-filling design was used to sample 10,000 parameter 
settings from the joint prior distribution using the lhs R package (Car-
nell, 2019). For each parameter setting, the model was run once and an 
error metric was calculated using equation (1), which describes the 
overall difference between simulated outputs and calibration target data 
(Vu et al., 2020). N is the number of observations and M is the number of 
outputs (McEachan et al., 2011). y*m[n] is the simulated data for output m 
at time n; ym[n]is the mean of empirical target data for output m at time n; 
(sm[n])2 is the standard error of the empirical target data for output m at 
time n and (dm)2 is the variance of the model discrepancy for output m, 
which is fixed at 10% of the range of each output and captures the fact 
that the model is not a perfect representation of reality. The parameter 
settings that produce the minimum value of model error represent the 
best model settings and were used for all results presented. 

error =
1

NM

∑

N

n=1

∑

M

m=1

⃒

⃒y*
m[n] − ym[n]

⃒

⃒

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(sm[n])
2 + (dm)

2

√ (1)  

2.6. Scenario experiment 

To demonstrate how the simulation model can be used for policy 

analysis, we performed an experiment to investigate the hypothetical 
impact of a percentage of the population undertaking a temporary 
period of abstinence, “Dry January”. We constrained a percentage (20% 
or 100%) of the eligible population to abstain for the first 30 days of 
each year from 2010 to 2015. Individuals were eligible if they currently 
consumed more than 3 drinks per day, as research suggests those that 
take part in Dry January in the UK tend to have higher AUDIT scores 
than the general population (de Visser & Piper, 2020). In the remaining 
months of the year, we calculated drinking prevalence, quantity, and 
frequency of the whole population. 

3. Results 

3.1. Model calibration results 

Fig. 2 shows the results of running the simulation model and 
comparing against observed drinking patterns in the US for 1984 – 2012. 
Observed prevalence of current drinkers has remained stable over the 
period and the best calibrated model follows these trends well for both 
males and females. In the observed data, quantity of drinking (grams per 
day) in males declines between 1984 and 1998 before levelling off and 
the model is not able to reproduce this trend. In females the decline in 
drinking quantity is less marked, and the model is closer to the observed 
data. The model is able to reproduce the changing trend in male fre-
quency of drinking with a steady downward decrease. Female frequency 
also decreases and then increases over this period and the model is able 
to fit this trend well with a small steady decrease in frequency over time. 

Note: the data between 1984 and 2004 was used to calibrate and 
2004 to 2012 was used for validation (separated by dashed vertical line). 
Results shown for annual drinking prevalence (percentage of current 
drinkers), frequency (mean days per month) and quantity (mean grams of 
alcohol per day), separately for males and females. 

3.2. Calibrated parameters 

Table 2 outlines unobserved parameters in the model alongside a 

Fig. 2. The best calibrated model compared to alcohol empirical alcohol use data (mean target data ± 95% confidence interval) from the BRFSS. Note: the data 
between 1984 and 2004 was used to calibrate and 2004 to 2012 was used for validation (separated by dashed vertical line). Results shown for annual drinking 
prevalence (percentage of current drinkers), frequency (mean days per month) and quantity (mean grams of alcohol per day), separately for males and females. 
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description and their value assigned in the best fitting calibrated model. 
We will focus on parameters of theoretical importance, highlighted in 
bold in Table 2: automaticity, habit interval, βAttitude, and βNorms. 
Automaticity describes the percentage of the time an individual behaves 
according to habit (as opposed to intentions) in the model. Following 
our calibration, we find the distribution of automaticity shown in 

Fig. 3A. The lightest drinkers (below 20 g of alcohol per day) have the 
lowest automaticity and behave according to habits 30% of the time. 
The medium-heavy drinkers (21–100 g per day) have an increasing level 
of automaticity and behave according to habits 51% of the time. Auto-
maticity increases to 55% in the heaviest drinkers (over 100 g of alcohol 
per day). The calibrated results for the habit update interval are shown 

Fig. 3. A. Distribution of automaticity in the model split by mean quantity of alcohol consumption per day. Each dashed line shows the mean automaticity value for 
each group – i.e. the percentage of the time they follow their habitual behaviour. B. Distribution of time taken to update habits in the population, the dashed line 
shows the mean habit update time interval and the solid line is the distribution in the population. 

Fig. 4. Mean monthly prevalence, frequency, and quantity of alcohol use following a simulation of Dry January starting in January 2010 and simulated every 
January up to 2015. 
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in Fig. 3B. Habit update interval refers to the number of days considered 
when updating each individual’s habit. The model that best fits histor-
ical data has a mean habit update interval of 99.5, meaning that on 
average, it takes individuals in the model 3 months to form new habits. 
βAttitude and βNorms describe the relative strength of attitudes and 
norms when calculating intentions. Attitudes (βAttitude = 0.89) are 
given a lower weighting compared to norms (βNorms = 0.98). 

3.3. Simulating Dry January 

Fig. 4 shows mean monthly prevalence, quantity, and frequency of 
alcohol use following a simulation of Dry January. We tested two sce-
narios: (1) 20% of eligible individuals take part in temporary abstinence; 
and (2) 100% of eligible individuals take part. 20% of individuals taking 
part induces a moderate annual change in monthly quantity and fre-
quency for males with a smaller change seen for females. In both cases, 
we see a large difference in drinking initially caused by a percentage of 
individuals in the model stopping drinking for the entire month of 
January. This recovers throughout the remainder of the year but still 
remains below the baseline model (in which no eligible individuals took 
part in “Dry January”) This effect is more marked in males, with a 
smaller difference observed among females following the intervention. 
The effect on annual population level drinking in males is much larger 
when 100% of the eligible population take part, compared to 20%. 

4. Discussion 

Previous work examining the TPB and DPT in relation to alcohol use 
has tended to focus on studying the theoretical constructs in specific sub- 
groups of the population. Here we have presented a conceptual model 
for decision making about drinking based on TPB and DPT and imple-
mented this in an individual-level simulation model of a whole popu-
lation. The model provides evidence that suggests these theories may be 
generalisable to broader alcohol use behaviours in the general popula-
tion of the US. We demonstrated that, using equations derived from 
these theories, we can represent historical trends in the prevalence and 
frequency of alcohol consumption in the US between 1984 and 2012, but 
the model is not simultaneously able to represent drinking quantity. The 
parameters from the best calibrated model can elucidate how these 
constructs may be operational for determining alcohol use in the pop-
ulation. Our model suggests that the percentage of drinking driven by 
past behaviour is likely to be higher in very heavy drinkers compared to 
medium to heavy and lighter drinkers and abstainers. The length of time 
taken to form and change habits in our model is approximately 99.5 
days. This model is useful for appraising the impact of hypothetical 
scenarios on population level drinking. A temporary abstinence inter-
vention “Dry January” in a proportion of the population affects the 
whole population’s drinking in the short-term. This has a small effect if 
20% and a moderate effect when 100% of the eligible population take 
part. The effect of Dry January is more pronounced in males, which may 
be due to the higher number of eligible individuals (currently consuming 
3+ drinks per day) in the male population. 

The relationship between increased automatic behaviour and heavy 
drinking is supported by previous research that suggests that the more 
frequently a behaviour is performed the more decoupled it becomes 
from intentional control (Hamilton et al., 2020). In our model, the 
heaviest drinkers exhibit the highest proportion of non-intentional 
behaviour suggesting that this particularly affects habitual heavy 
drinking. The length of time taken to update habits in the model was 
approximately 100 days. This is longer than suggested by previous 
research that finds a median of 66 days for a behaviour to become 
habitual (Lally et al., 2010), but does fall within the interquartile range 
(39–102) reported. Our modelling suggests that norms have a larger 
influence on intentions than attitudes, whereas meta-analyses of primary 
research have suggested that the converse is true (Cooke et al., 2016; 
Hagger et al., 2016). It is important to note that of the studies included in 

these meta-analyses, only two collected data in populations other than 
university students. One study estimated that subjective norms make a 
larger contribution than attitudes to intentions to consume alcohol (Kim 
& Hong, 2013), whereas the other estimates the opposite relationship 
(Hagger et al., 2012). These studies were conducted in Korean and Eu-
ropean populations and no studies to date have been conducted to 
explore the TPB constructs for alcohol consumption in the general US 
population. These studies highlight that the weighting of TPB variables 
can vary depending on the population studied and suggests that further 
US general population studies are required to inform models and 
intervention design. 

This model is a first iteration of the combined TPB and DPT model 
that can be built upon using our software architecture (Vu et al., 2020) 
that is robust and adaptable, allowing for the addition of new mecha-
nisms. We are able to explicitly model two fundamental components of 
alcohol use, individual-level determinants (e.g. personal attitudes) and 
social-level influences (changing societal norms). Additionally, we can 
account for an individual’s day-to-day variability in alcohol consump-
tion in a data-driven way. This provides a more nuanced understanding 
of population alcohol use and can permit the investigation of how in-
terventions might affect specific types of drinking. Further, our simu-
lated population contains detailed sociodemographic properties 
including age, race/ethnicity and educational attainment. Therefore, 
our model can be extended in future investigations to examine the 
impact of targeted interventions on the alcohol use of specific popula-
tion subgroups. 

Our model is a good, but not perfect fit to historical data and 
struggles to adequately model changes in male quantity of consumption 
over time. Currently, we only have mechanisms that represent some of 
the attitudes and norms about drinking, as well as the habitual pathway. 
These do not fully explain all aspects of alcohol use and we would expect 
models containing a richer set of mechanisms to be a better fit to the 
target data. In particular, the model does not appear to have passed the 
test of generative sufficiency for trends in male drinking quantity. In 
order to better explain these trends, we would need to integrate further 
explanatory mechanisms into the dynamical model. One candidate for 
inclusion is PBC, and future agent-based modelling work should attempt 
to include this. 

Having a limited number of mechanisms constrains the type of 
analysis and experiments we can do; however, it does demonstrate the 
types of behaviour changes we can model using this approach. When 
expressing components of a theory as an equation in a simulation model, 
it is not possible or desirable to model every nuance of the theories; it is 
necessary to reduce complexity. Therefore, some aspects of theory were 
omitted from this first model (e.g. the context-dependent nature of 
automatic behavioural responses). Additionally, the TPB is thought to be 
most predictively useful when behaviours are most proximal to the in-
tentions. To be able to predict individual drinking episodes we would 
need individuals to have a more detailed physical context (Kairouz & 
Greenfield, 2007). We plan to develop a social network model to enable 
interactions between individuals and their environments. This will aid 
the modelling of cue- and context-dependent alcohol consumption and 
the modelling of choice-architecture environmental interventions. 

These findings from the modelling can be useful for population 
health policy design because they enable theories largely developed and 
tested in limited demographics to be scaled and scrutinised at the whole 
population level. By incorporating policy logic models (formal de-
scriptions of the anticipated pathways to the effect of an intervention) 
into calibrated, theory-led models, whole population outcomes can be 
estimated. For example, a prospective programme of screening and brief 
intervention could be appraised by incorporating the mechanisms ex-
pected to alter alcohol use following a brief intervention (e.g. changes of 
perceptions of norms, changes in attitudes and habits) into the simula-
tion model (Purshouse et al., 2013). The transparent nature of ABMs can 
also help guide intervention design, e.g. if the calibrated model suggests 
habits are more important than intentions in certain groups then the 
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intervention design would want to focus on changing habits more than 
intentions. Theory-led simulation models can also be used for evalua-
tion, post implementation, by calibrating the theory parameters to 
subsequent trends in population alcohol use. 

Our simulation model is a fundamental enabling component for 
future alcohol policy modelling: it can be easily adapted, is built ac-
cording to a standard architecture that allows for the integration of other 
theories, and permits the representation of a wide variety of alcohol use 
determinants. Empirically, the model is a good fit to data (especially for 
frequency, and quantity for females), suggesting that these theoretical 
models are relevant at a population level. Our model suggests that a 
combination of habits and intentions are important determinants of 
alcohol use behaviours, and that alcohol reduction interventions should 
aim to target both types of behaviour. We anticipate that the model will 
be particularly useful as a core component in future policy simulations 
for assessing the potential impact of public health interventions 
designed to reduce population-level alcohol use. 
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