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a b s t r a c t 

Self-healing tribocoatings are being developed for aerospace applications to improve the lifetime and 

reduce the surface maintenance of components in motion. Here the tribo-induced self-healing behaviour 

of a WS 2 /a-C tribocoating has been evaluated for the first time by in-situ scanning electron microscopy 

(SEM) to evaluate the mechanisms of damage and self-recovery. In-situ SEM imaging reveals that scratch 

damage results in coating brittle fracture and spalling, and that Hertzian pressure affects healing rate 

at early stages of sliding. WS 2 nanocrystallites, formed via atomic rearrangement at flexural interfaces, 

enable the healing of irregular damages and congruently offer superlubrication in vacuum. Such damage 

control in tribo-service may make flawless coatings an unnecessary prerequisite in tribo-applications. 

© 2021 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

The development of self-healing tribocoatings for use in ex- 

treme conditions in aerospace has great potential to stabilize sur- 

face component functionality, repair damage, minimize mainte- 

nance and prolong lifetimes [ 1 , 2 ]. 

Layered WS 2 is well known for its excellent solid lubrication in 

the aerospace industry due to its highly anisotropic trigonal pris- 

matic structure [ 3 , 4 ], with each unit consisting of a layer of W 

atoms sandwiched between two layers of hexagonally stacked sul- 

phur atoms. The low shear strength along the WS 2 basal (002) ori- 

entation allows easy basal glides and results in ultralow friction[3]. 

To exploit the lubricating properties of WS 2 , WS 2 can be incor- 

porated into lubricants, coatings, and composites [5] , or formed 

in-situ from the wear of W-S containing materials [6] . Previous 

studies have demonstrated that soft crystalline WS 2 can be selec- 

tively released from a hard nanocomposite bulk [ 6 , 7 ], forming a 

WS 2 -dominated tribofilm covering the wear track and generating 

a transfer film on the sliding counterpart. The intrinsic frictional 

property of WS 2 inspires us to exploit a likewise self-healing ca- 

pability of W-S containing coating: during tribo-service WS 2 forms 

tribofilm that itself seals potential complex-shaped damages flexi- 

bly [6] . The origin damage self-healing mechanism, particularly at 
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its early stages is, however, not yet clear due to the lack of a real- 

time characterization tool. Here, novel scratching/tribotest experi- 

ments were performed via in-situ SEM, which enables concurrent 

imaging and assessment of the local damage, wear, tribofilm gen- 

eration and surface self-recovery. It is also noteworthy that SEM 

provides an ideal vacuo environment (although not ultra-high vac- 

uum (UHV) still at 10 -6 mbar) enables to explore the self-healing 

potential of a tribocoating in mimicked aerospace conditions. 

Nanocomposite WS 2 /a-C coatings were deposited on single 

crystal silicon (100) wafers via a TEER UDP400/4 closed-field un- 

balanced magnetron sputtering system (CFUMS). The substrates 

were ultrasonically cleaned in acetone prior to Ar plasma etching 

for 20 min at a negative bias voltage of 400 V (p-DC at 250 kHz). 

The nanocomposite coatings were co-sputtered from two WS 2 tar- 

gets (99.9% purity) at a current of 0.5A (p-DC at 150 kHz) and one 

graphite target (99.9% purity, 0.5 A, DC). The substrates were lo- 

cated vertically onto a carousel holder with a rotation speed of 

3 rpm in front of the targets. A ~1.6 µm thick WS 2 /a-C coating 

was deposited in an Ar deposition pressure of 0.6 Pa on the top of 

300 nm thick Cr interlayer. The coating consists of < 5 nm WS 2 
nanoplatelets embedded in an amorphous carbon matrix and has 

a hardness of 6-7 GPa. The coating microstructure was described 

in detail elsewhere [ 8 , 9 ]. 

In this study, an in-situ nano-indenter system (Alemnis AG, 

Thun, Switzerland) equipped with a 60 ° conical diamond tip 
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Fig. 1. (a) In-situ SEM examination of typical scratch induced surface damage of the WS 2 /a-C coating (a) crack initialized (b) lateral conchoidal fracture and spalling. Typical 

videos recording the in-situ scratching are enclosed in Fig. S1a-b Supplementary Information. The circle in (a, b) is an in-situ reference. 

Fig. 2. (a) Initial scratch of WS 2 /a-C nanocomposite coating. (b-h) In-situ SEM examination of partial healing process of the scratch damage by indicated 0-500 reciprocating 

sliding cycles, under a normal load of 250 mN. (i, j, k) higher magnification images of the healed scratch in (e, g, h). The arrows in (a, b) indicate the scratching/reciprocating 

rubbing directions. The circle in (a-h) is an in-situ reference. A video recording the in-situ healing process is enclosed in Fig. S1c Supplementary Information. 

(tip diameter 0.7 µm, SYNTON-MDP AG, Switzerland) was used 

inside a FEG-SEM (FEI, Nova NanoSEM 450) to locally induce 

cracks/damage on the surface of the coating by scratching (25 mN 

load), which is illustrated in the Supplementary video of Fig. S1a- 

b. A piezoelectric transducer (“SmartTip” Alemnis AG) was used to 

measure the 3-axis dynamic forces, including both the normal (z) 

and lateral forces (x, y) during the in-situ tests (see Fig. S2b). 

Afterward, micro-tribotests were conducted in the same SEM to 

trigger self-repair of the damage. Specifically, a SiC sphere (diame- 

ter 800 µm, G16, elastic modulus 410 GPa and Poisson’s ratio 0.14, 

Bearing Warehouse Ltd, UK) was rubbed across chosen scratches, 

perpendicular (at 90 °) to the original scratch direction. Two wear 

tests, with different normal loads of 250 mN and 500 mN, were 

carried out across the scratches on the coating in a reciprocal slid- 

ing movement of 100 μm stroke length at a frequency of 0.5Hz 

(100 µm/s), producing mean Hertzian pressures of around 1.0 GPa 

and 1.4 GPa on the coating, respectively. 

Supplementary video of Fig. S1c demonstrates the in-situ dy- 

namical tribo-induced healing process of the WS 2 /a-C coating. To 

evaluate the efficiency at the early stages of healing process, the 

tribotest was interrupted at 5, 10, 15, 20, 50, 100 and up to 500 re- 

ciprocating sliding cycles, respectively, for in-situ SEM microscopic 
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characterization. Transmission electron microscopy (TEM) was con- 

ducted by JEOL 2010 F (200 kV). 

Fig. 1 shows a side-view of the scratch induced damage in the 

coating. Fig. 1 a indicates the tip introduces the cracks during the 

ploughing and Fig. 1 b shows the generation of lateral cracks result 

in conchoidal brittle fracture, leading to spalling up to distance a 

few microns from a relatively deep central groove (see the videos 

in Fig. S1-2). Additionally, some scratch debris is pushed to the 

side, up the tip, and ejected up to ~5 μm from the central groove. 

Figs. 2 a (a close-view shown in Fig. S2a) and 3a both show the 

scratch damage and spallation of variable width up to around 10 

μm. At the scratch centre, a conical-shaped groove is around 1.8 

μm deep (tip displacement shown in Fig. S2b) and 1.7 μm wide 

(see Fig. S2a), indicating that the damage penetrates through the 

whole coating into the Si substrate. Note that each conchoidal frac- 

ture event during scratching is associated with both normal and 

lateral force drops (marked A-E in Fig. S2). 

Considering the microstructural evolution of the scratch dam- 

age, initiated by the perpendicular sliding of a SiC ball at 250 mN 

normal load, Fig. 2 b shows that after sliding of 5 cycles the scratch 

debris scattered on the surface shown in Fig. 2 a has been slipped 

away by the ball (see sliding process in Fig. S1c video) and some 

of the debris are refilled into the central part of the scratch. After 

10-20 cycles ( Figs. 2 (c-e, i)), there is further gradual compaction of 

debris into both the central scratch, and the surrounding sites of 

conchoidal fracture and spallation. 

After sliding to 50 and 100 cycles ( Fig 2 (f, g, j)), there is 

no more material from the original scratch debris filled into 

the scratch, but the perpendicular wear track becomes gradually 

deeper when compared to Fig. 2 b. After 500 cycles, the wear track 

becomes more apparent, with some shallow perpendicular groov- 

ing ( Fig. 2 h) (around 10 μm wide). Fig. 2 i-k are close-up images of 

the wear track after sliding 20, 100 and 500 cycles, respectively; 

it is noteworthy that although at the early stages of healing some 

further collapse of previous conchoidal fracture after scratch occurs 

at the edge of the scratch (see Fig. 2 i), the scratch damages/cracks 

do not induce further severe coating delamination or spalling fail- 

ures under the subjected sliding pressure. Instead, Figs. 2 h-j indi- 

cate that new wear debris by SiC lateral sliding are further filling 

into the scratch track, and flatten after 100 cycles. Nevertheless, 

the central healed part is still rather loose, even with several new 

cracks forming within the surface tribofilm due to dynamical dis- 

placement or splitting of the debris ( Fig. 2 k), indicating that the 

scratch damages are only partially healed after 500 sliding cycles 

under a low load of 250 mN. 

In contrast, Fig. 3 shows that using perpendicular sliding under 

a higher applied load of 500 mN, scratch damage in the WS 2 /a-C 

coating can be healed at a faster rate. 5 cycles of sliding at 500 

Fig. 3. (a) Initial scratch of WS 2 /a-C nanocomposite coating. (b-f) In-situ SEM examination of the partial healing process of the scratch damage by indicated 0-100 recip- 

rocating sliding cycles, under a higher normal load of 500 mN. The arrows in (a, b) indicate the scratching/reciprocating rubbing directions. (g, h, i) higher magnification 

images of the healed scratch in (b, d, e). The circle in (a-f) is an in-situ reference. 
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Fig. 4. Decreasing average CoF at accumulated periodic sliding cycles under normal 

loads of 250 mN and 500 mN. Note that the CoFs are calculated using the lateral 

force along the wear track axis. Each sliding re-start (after SEM imaging) generates 

a short running-in phase with a minor increase in CoF. 

mN ( Fig. 3 b and g) already yield an almost complete ‘patch’ bridg- 

ing the scratch. After 20 cycles ( Fig. 3 d and h), the edge conchoidal 

fracture of the scratch is sufficiently flattened, and the new cen- 

tral plug is compact without observable porosities. After 50 cycles 

( Fig. 3 e and i), there is an accumulated build-up of tribofilm com- 

pactly covering the scratch damage, justifying an effective repair. 

For the as-deposited WS 2 /a-C coating, during the sliding pro- 

cess, the surface asperities of the dome-like coating (Fig. S3a) 

are first truncated by SiC ball sliding (Fig. S3b), and the result- 

ing wear debris (main healing agent) are continuously transformed 

into tribofilms and pushed to infill the micro-valleys and poten- 

tially larger scratch cracks/damages, leading to a gradually flat and 

highly smoothened surface particularly under a higher sliding pres- 

sure (compare Fig. S3b with Fig. S3c). 

To examine further the perpendicular sliding and healing pro- 

cess, the average coefficient of friction (CoF) for up to 100 cycles 

of reciprocating sliding was calculated using the lateral force along 

the sliding direction (similar to that in Fig. S2b). The CoF is load- 

dependent, and the higher 500 mN normal load yields a lower 

CoF compared to 250mN, which is a typical characteristic of WS 2 
based tribocoating [10] . Under both loads, the CoF decreases with 

increasing cycles, reaching 0.02 at 50 cycles and < 0.01(a superlu- 

bricity state) around after 100 sliding cycles for 250 mN and 500 

mN, respectively. It should be noted that there are some spatial 

spikes of friction on the damaged areas of the wear track (not 

shown). The friction spikes and average CoF decrease because of 

the gradual tribofilm formation and better repair of scratch dam- 

age. A higher load builds up the tribofilm and smoothens the 

scratch faster, resulting in both a lower average CoF and an earlier 

arrival at superlubricity. Such low CoFs of the WS 2 /a-C nanocom- 

posite coating fully fulfil the criteria of solid lubricating coatings 

for aerospace applications (CoF < 0.1 as proposed [4] ). 

Under cyclic sliding, wear debris is pushed into scratch dam- 

age locations, and originally loose debris become compacted and 

transformed into tribofilms to heal the damage completely. Our 

earlier study on the same coating ex-situ healed under dry air con- 

ditions [6] showed that along the side flexural surface of the dam- 

age, WS 2 nanocrystallites are reorientated via atomic rearrange- 

ment ( Fig. 5 a) and spread conformally with the damage interface 

(see dash line in Fig. 5 a and marker in Fig. 5 b), contrasting with 

the originally randomly oriented WS 2 lamina in the bottom coating 

(see Fig. 5 a). 

This WS 2 synchronic reorientation may be enhanced with a 

higher Hertzian pressure (1.0 GPa → 1.4 GPa): higher local interfa- 

cial forces could lead to a higher interfacial commensurability (as 

verified by Fig. 3 h in comparison to Fig. 2 i for both 20 cycles under 

two loads), similar to the frictional contact of graphene [11] . Mean- 

while, under vacuum sliding WS 2 nanocrystallites in the tribofilm 

over the wear track and healed scratch can also be favourably re- 

aligned with their (002) basal planes straight parallel to the ball 

sliding direction congruently offering superlubricity (CoF < 0.01) as 

confirmed in Fig. 4 . 

On the one hand, the increase of coating hardness to 6-7 GPa 

via incorporating an amorphous carbon matrix to embed WS 2 ( < 

0.5 GPa for pure WS 2 [9] ) introduces brittleness to the nanocom- 

posite when suffering scratching (Fig. S1-2); on the other hand, 

with the cushion support from the hard fractured surface of the 

bottom coating and the direct squeeze from top SiC ball (20- 

30 GPa), intrinsically soft WS 2 are released out from WS 2 /a-C 

bulk/wear debris and are subsequently re-arranged via stacking 

faults [12] under local shear, rendering their (002) basal planes to 

extend flexibly (see Fig. S4) to heal irregular damage even with 

brittle fractures (flexible configuration forming a synchronic clo- 

sure loop as shown in the schematic of Fig. 5 b). 

The first in-situ SEM evaluation of the scratch damage and self- 

healing behaviour of a WS 2 /a-C nanocomposite coating has been 

carried out. In-situ scratching with a sharp tip reveals that the 

pristine WS 2 /a-C coating deforms by predominantly brittle fail- 

ures, with conchoidal fractures and spalling. Surface abrasion initi- 

ates surface self-healing of the scratch damage by tribofilms: WS 2 
nanocrystallites are re-arranged from bulk coating/refilled debris 

and pave conformally along the flexural surface of the complex- 

shaped damage. It is found that a higher Hertzian contact pressure 

promotes a higher healing rate as formed tribofilms ‘patch’ the 

damage more compactly: a continuously smooth surface is gener- 

ated after sliding only 20 cycles under ~1.4 GPa pressure. 

The WS 2 /a-C coating is demonstrated to exhibit both intrinsi- 

cally self-healing and superlubricity (CoF < 0.01) on tribofilm for- 

mation in vacuum conditions. The coating damage tolerance and 

Fig. 5. (a) HR-TEM image of flexibly re-arranged WS 2 along the flexural surface and as a consequence healing irregular damages without any voids/cavities left (the dash line 

plots the interface of the damage) under dry air sliding [6] ; (b) schematic illustration (not to scale) of flexible WS 2 tribofilms transformed from the pristine coating/debris 

bringing about damage-healing and offering lubrication (the coloured atoms in the magnified image: blue-W, yellow-S, grey-C). 
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self-healing potential may relax the necessity of producing flaw- 

less tribocoatings for aerospace triboapplications as tribo-induced 

self-healing initiates once damage occurs. 
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