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Abstract: Lead halide perovskite (LHP) semiconductors show exceptional optoelectronic 
properties. Important barriers for their applications, however, lie in their polymorphism, 
instability to polar solvents, phase segregation and susceptibility to the leaching of lead ions. We 
report a family of scalable composites fabricated through liquid-phase sintering of LHPs and 
metal-organic framework glasses. The glass acts as a matrix for LHPs, effectively stabilizing 10 

non-equilibrium perovskite phases by interfacial interactions. These interactions also passivate 
LHP surface defects and impart bright, narrow-band photoluminescence with a wide-gamut for 
creating white LEDs. The processable composites show high stability against immersion in water 
and organic solvents, alongside exposure to heat, light, air, and ambient humidity. These 
properties, together with their lead self-sequestration capability, can enable breakthrough 15 

applications for LHPs. 

 

One-Sentence Summary: Ultrastable and highly luminescent lead halide perovskite and metal-
organic framework glass composites 

 20 

Main Text:  

Lead halide perovskites (LHPs) exhibit tunable bandgaps, high charge carrier mobilities, and 
bright, narrow-band photoluminescence (PL) that could offer advantages for optoelectronic 
applications over conventional Si-based and binary II-VI, III-V and IV-VI semiconducting 
materials (1). However, for successful technological integration, LHPs must overcome their 25 

inherent polymorphism, decomposition upon exposure to polar solvents, oxygen, heat and light, 
the presence of trap states, and the phase segregation and leaching of toxic heavy metal ions (2, 
3). Targeted high optical absorptivity and direct band gaps optimal for photovoltaics and red-
light LEDs, for example, are found in the CsPbI3 pseudo-cubic ‘black’ phases (α-, β- and γ-
phases), but thermodynamic factors promote their conversion to the inactive nonperovskite 30 

‘yellow’ δ-phase under ambient conditions (Fig. 1A) (4). LHP materials for white light LEDs 
will critically depend on stabilization of this red emitter, ideally combined in a single broad-band 
luminescent material architecture. 

The formation of LHP composites may offer solutions to some of these problems (5), but the 
ionic nature of LHPs is not entirely conducive to composite fabrication. Functional penalties 35 

incurred include LHP aggregation and decomposition, poor mechanical stability caused by weak 
interfacial interactions with the chosen matrix, and the formation of high concentrations of trap 
states (6). Research into a subfamily of metal-organic frameworks (MOFs) called zeolitic 
imidazolate frameworks (ZIFs) has enabled access to high-temperature ZIF liquids and 
microporous glasses after quenching (7). ZIF glasses have distinct physicochemical properties in 40 

terms of their porosity, reactivity, mechanical rigidity/ductility and optical response (8–10), and 
have been used as host matrices for crystalline MOFs (11, 12). Together, these properties make 
ZIF glasses prime candidates for addressing the multiple challenges for LHP composite 
formation. 
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We describe a new class of composites, fabricated by liquid phase sintering of crystalline LHPs 
and ZIF glass matrices, and show that industrial powder processing techniques used to form 
high-performance composites can be applied to chemically dissimilar LHPs and ZIF glasses. 
ZIF-62 (Zn[(Im)1.95(bIm)0.05] (Im: imidazolate; bIm: benzimidazolate)) and CsPbI3 were first 
synthesized mechanochemically and showed the expected phase transitions (Fig. 1A, fig. S1 to 5 

S3) (13). 25 wt% CsPbI3 was then mixed with ZIF-62 glass (denoted as agZIF-62, glass 
transition temperature Tg: ~304°C, fig. S3B), and the mixtures are termed (CsPbI3)(agZIF-
62)(25/75) (11). The ex situ synchrotron powder x-ray diffraction (XRD) pattern of 
(CsPbI3)(agZIF-62)(25/75) (mixture pattern in Fig. 1B) exhibited weak Bragg peaks, ascribed to 
the nonperovskite δ-CsPbI3 phase. The mixture was sintered at different temperatures (up to 10 

350°C) and then quenched with liquid nitrogen (referred to as cryogenic quenching) under 
flowing Ar. The resultant composites, termed (CsPbI3)0.25(agZIF-62)0.75, showed XRD features 
consistent with the metastable γ-CsPbI3 phase, with gradually increasing intensity with higher 
sintering temperatures (Fig. 1B, fig. S4). Negligible weight loss was observed during sintering 
(fig. S5). 15 

The broad PL emission of agZIF-62 was reduced after mixing with CsPbI3, which we attribute to 
photon absorption by CsPbI3 (fig. S6) (14). The (CsPbI3)0.25(agZIF-62)0.75 composites started to 
show red PL emission after sintering-quenching at 175°C, with the strongest PL obtained with 
275°C (Fig. 1C). Higher sintering temperatures red-shifted the PL maxima (fig. S7), concomitant 
with an observed decrease in the optical band gaps (Fig. 1D, fig. S6C). They also led to a lower 20 

defect density and enhanced homogeneity for the CsPbI3 component, as indicated by the reduced 
PL full-widths at half-maximum (FWHM) and the longer excited-state lifetimes (fig. S8, Table 
S1) (15). Compared to a slower quenching, rapid, cryogenic quenching formed materials with 
optimal PL lifetimes and PL quantum yields (PLQY, >50%) (fig. S9 and S10, Table S1). 

Temperature-resolved high-resolution in situ synchrotron powder XRD was collected for 25 

(CsPbI3)(agZIF-62)(25/75) (Fig. 2A, fig. S11). The emerging peaks from ~170°C indicate the 
formation of α-CsPbI3 (Pm-3m). These peaks intensified at higher sintering temperatures. During 
the quenching stage, the gradual emergence of β-CsPbI3 (P4/mbm) (from ~250°C) and γ-CsPbI3 
(Pbnm) (from ~150°C) was evidenced (16). The deconvoluted α-CsPbI3 crystallite size increased 
during sintering (Fig. 2B), consistent with the changes in band gap caused by quantum-30 

confinement effects (5).  

The evolution of α-CsPbI3 crystallite size can be attributed to coarsening of CsPbI3 grains and 
the phase transition from bulkier δ-CsPbI3 crystallites, a cascade confirmed by synchrotron in 
situ small-angle x-ray scattering (SAXS). Coarsening of CsPbI3 grains mainly occurred in the 
size range smaller than the XRD deconvoluted crystallite size at <10 nm, starting from 165°C 35 

(Fig. 2C, fig. S12 to S14). Upon sintering, atoms in CsPbI3 grains became mobile from the 
Tamman temperature (TTamman ~103°C) as approximated by 0.5 Tmelt in degrees K (16, 17). A 
similar response could also be expected for agZIF-62. Characteristic of liquid-phase sintering, 
CsPbI3 grain coarsening and composite densification were observed at a temperature lower than 
the inherent Tg of agZIF-62 (~304°C) (fig. S15) (18). The emergence of an interface resulting 40 

from densification occurs analogously to surface energy-controlled transitions from δ- to α-phase 
in solvent-modulated or ligand-capped CsPbI3 quantum dots (19, 20), with the interfacial energy 
dominant for smaller grains resulting in phase transitions at lower temperatures. To examine our 
hypothesis that intimate interfacial contact is critical for phase control, we synthesized 
[Zn(Im)1.75(bIm)0.25] agZIF-62 with a higher Tmelt and higher viscosity caused by bulkier bIm 45 



Submitted Manuscript: Confidential 

Template revised February 2021 

4 

 

ligands and subsequently demonstrated the expected higher residual δ-CsPbI3 content in the 
composite (fig. S16). 

We further probed the changes in interfacial bonding within (CsPbI3)0.25(agZIF-62)0.75 by 
temperature-resolved synchrotron terahertz (THz) radiation and far-infrared (FarIR) vibrational 
spectroscopy. The 2nd-derivative spectra revealed the fine vibrational modes of Zn tetrahedra 5 

(Fig. 2D, fig. S17 and S18) (9). The modes assigned to Zn-N vibrations (~287 cm-1) and Zn-I 
stretching (~135 cm-1) within Zn(Im)2(bIm)I tetrahedra by density functional theory (fig. S19) 
began to intensify with increasing temperature from ~140°C. These changes were consistent with 
the endothermic response at ~140°C in the first heating ramp of differential scanning calorimetry 
(DSC) measurements, concomitant with changes in CsPbI3 binding observed in phonon 10 

signatures and in ex situ spectroscopy (fig. S20 to S23). 

Magic-angle-spinning nuclear magnetic resonance (MAS NMR) spectroscopy provided insights 
into the different species complementary to vibrational spectroscopy. The broader signals from 
composite 13C and 15N spectra indicated additional disorder of ZIF component over the powder 
mixture (fig. S24). The 133Cs MAS NMR spectra of (CsPbI3)(agZIF-62)(25/75) exhibited narrow 15 

signals of δ-CsPbI3 [260 parts per million (ppm)] (21) and CsI (~280 ppm). Broad, low signals 
extending between 0 and ~350 ppm can be ascribed to poorly crystalline, highly defective 
CsPbI3 (Fig. 2E, fig. S25). After sintering, the broad contributions and CsI peaks diminished, and 
the major signals stemmed from g-CsPbI3. These signals exhibited notable shoulders (160 to 80 
ppm), with shoulder intensities highly dependent on the sintering conditions. They could be 20 

assigned to Cs nuclei on or near the surface of CsPbI3 grains where structural defects, sites of the 
interaction between the g-CsPbI3 and agZIF-62, or both are abundant. We also noted that the 
signals of the δ-CsPbI3 of the same sample exhibited no shoulder, consistent with less interfacial 
contact between δ-CsPbI3 and agZIF-62. 

These observations allowed us to propose a mechanism for γ-CsPbI3 stabilization within 25 

composites (22, 23). The α-, β- and γ-phases of CsPbI3 have double-well phonon modes at the 
center of the Brillouin zone, driving the phase transition to δ-CsPbI3 in a concerted phonon 
manner (24). The interfacial bonding disrupts the local Pb-I sublattice phonon modes and 
therefore avoids the harmonic order-disorder entropy (25, 26). Together with the physical 
confinement effect offered by the matrices, these factors counter the strong thermodynamic 30 

driving force to form δ-CsPbI3. 

We evaluated this mechanism further and verified embedded nanocrystals of γ-CsPbI3 as the 
source of luminescence using microscopic measurements. After sintering the mixture of particles 
became a monolith with a smooth surface observed in scanning electron microscopy (SEM) (fig. 
S26 and S27). Annular dark-field scanning transmission electron microscopy (ADF-STEM) of 35 

(CsPbI3)0.25(agZIF-62)0.75 showed pronounced atomic number contrast between the two phases, 
further corroborated by energy-dispersive x-ray spectroscopy (STEM-EDS) elemental 
distribution mapping (Fig. 3A, fig. S28). The crystalline and amorphous regions were identified 
by scanning electron diffraction (SED) (27) with regions exhibiting Bragg diffraction 
corresponding to crystalline CsPbI3 grains (Fig. 3B). Convolutional neural network (CNN) 40 

classification identified γ-CsPbI3 as the major phase within the composite fragment. Individual 
grains were single-crystalline, whereas the speckle in the classification map arose from inherent 
ambiguities due to overlap in the diffraction peaks expected from δ- and γ-CsPbI3 (Fig. 3C, fig. 
S29 and S30). The average size of CsPbI3 from STEM was ~30 nm (fig. S31), readily modulated 
by extended ball milling before sintering, which further enhanced the composite PLQY to >65% 45 

due to a more pronounced quantum confinement effect (fig. S32) (5). 
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To probe the internal structure, we performed ADF-STEM tomography on a shard (>1 µm) of 
(CsPbI3)0.25(agZIF-62)0.75 (Fig. 3D). The voids in cross-sections of the volume are characteristic 
of densification processes in liquid phase sintering (18). Point diffraction data identified both δ-
CsPbI3 and γ-CsPbI3 within the particle. A high degree of interfacial contact was correlated with 
γ-CsPbI3, consistent with the hypothesized phase control through interfacial stabilization (fig. 5 

S33). STEM-based cathodoluminescence (CL) detected strong, narrow luminescence from 
isolated grains (<40 nm), with minor interparticle emission wavelength shifts (Fig. 3E-F, fig. 
S34). The variation of CL intensity is complex in origin, highly sensitive to the crystal quality 
and exposure to unpassivated surface states and particle size effects (28). Despite this, the CL 
spectra from individual grains provided incontrovertible evidence of luminescence from glass-10 

bound nanocrystals of γ-CsPbI3. 

Returning to the aim of achieving long device lifetimes, we evaluated the composites in diverse 
environmental and operational settings. The rigid, hydrophobic agZIF-62 provided protection for 
CsPbI3 (fig. S35 and S36), leading to stable PL emission for (CsPbI3)0.25(agZIF-62)0.75 after 
extended (~20 h) sonication in various nonpolar, polar protic, and polar aprotic organic solvents 15 

(fig. S37). The composite also exhibited stability against 10,000 hours immersion in water, 
storage under ambient conditions for 650 days, mild heating and continuous laser excitation (~57 
mW/cm2) for >5000 s (Fig.4A, fig. S38 to S40). The microporous composite design presents a 
key route to sequestration of toxic components (fig. S41 and S42), or to potential photochemical 
platforms where the CsPbI3 crystals are not electronically insulated (fig. S43). 20 

(CsPbI3)0.25(agZIF-62)0.75 made from mechanochemical precursors have similar performance 
compared with the solvothermal precursors, making the composite promising for up-scaling (fig. 
S44). Collectively, (CsPbI3)0.25(agZIF-62)0.75 offers significant advantages over LHP composites 
with other substrates (fig. S45, Table S2). 

Finally, an array of composites were formed from CsPbX3 (X=Cl, Br and mixed halide ions) and 25 

agZIF-62, showing a wide color gamut with narrow PL peaks (Fig. 4B and C, Table S3). For all 
the CsPbX3 composites, their absolute PL intensities were at least two orders of magnitude 
higher than those of the corresponding pure CsPbX3 samples, either as-synthesized or after being 
treated with identical sintering (fig. S46). These properties, together with the high processibility 
(Fig. 4D), render these monolithic materials ideal candidates for downshifting white LEDs (fig. 30 

S47). 
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Fig. 1. Fabrication of (CsPbI3)0.25(agZIF-62)0.75 composites at various sintering temperatures. (A) Phase 

transition of CsPbI3 in its pure phase and within the composites. (B) Ex situ room-temperature synchrotron powder 
XRD for (CsPbI3)(agZIF-62)(25/75) (marked as Mixture) and (CsPbI3)0.25(agZIF-62)0.75 composites fabricated with 

different sintering temperatures. (C) PL spectra and (D) Ultraviolet-visible (UV-Vis) absorption spectra for 

(CsPbI3)0.25(agZIF-62)0.75 composites fabricated at different sintering temperatures. Arrows mark two band edges 5 

attributed to δ- and γ-CsPbI3 observed for the sample prepared at 175°C. 
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Fig. 2. Structure and bonding evolution during sintering. (A) Temperature-resolved, high-
resolution in situ synchrotron powder XRD for (CsPbI3)(agZIF-62)(25/75), with the Bragg peak 
hkl indices marked for different CsPbI3 phases. The dominating phases are color-coded as: δ 
(yellow), α (red), β (blue) and γ (gray). (B) Average sizes of α-CsPbI3 deconvoluted from in situ 
powder XRD. (C) CsPbI3 particle-size evolution during sintering fitted from in situ SAXS 5 

patterns. (D) Temperature-resolved 2nd derivative in situ THz FarIR spectra for (CsPbI3)(agZIF-
62)(25/75) during the first heating ramp. (E) 133Cs MAS NMR spectra of (CsPbI3)(agZIF-
62)(25/75) and 275°C sintered (CsPbI3)0.25(agZIF-62)0.75. (* denote spinning sidebands and † 
denotes the weak signal of CsI). 
  10 
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Fig. 3. Phase distribution for the (CsPbI3)0.25(agZIF-62)0.75 composite fabricated with 300°C 

sintering. (A) ADF-STEM image, (B) SED-STEM mapping and (C) CsPbI3 crystal phase 
classification results for (CsPbI3)0.25(agZIF-62)0.75 composite. (D) Volume rendering of a 
tomographic reconstruction of (CsPbI3)0.25(agZIF-62)0.75 and a single cross-sectional plane 
extracted from the volume. Color-coded arrows highlight the regions where selected area 5 

electron diffraction data were collected. Scale bars in (A to D) are 250 nm. (E) CL-STEM 
mapping of the integrated CL intensity. The scale bar is 70 nm. (F) CL spectra acquired at each 
STEM probe position, and the sum CL spectrum of the whole region in (E). 
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Fig. 4. Stability and optical performance of the composites. (A) Change of the relative PL 
intensity for (CsPbI3)0.25(agZIF-62)0.75 immersed in the Milli-Q water. Sample was sintered at 
300°C. (B) Normalized PL intensities of the (CsPbX3)0.25(agZIF-62)0.75 composites (X=Cl, Br, I 
and mixed halide ions). (C-D) Optical photos of the composites and pure CsPbX3 under 365 nm 
UV light. Composites for (B-D) were sintered at 275°C. Scale bar in (D) is 1 cm. 5 


