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Abstract

We develop a novel approach based on the canonical correlation analysis to identify the
number of the global factors in the multilevel factor model. We propose the two consistent
selection criteria, the canonical correlations difference (CCD) and the modified canonical
correlations (MCC). Via Monte Carlo simulations, we show that CCD and MCC select
the number of global factors correctly even in small samples, and they are robust to the
presence of serially correlated and weakly cross-sectionally correlated idiosyncratic errors as
well as the correlated local factors. Finally, we demonstrate the utility of our approach with
an application to the multilevel asset pricing model for the stock return data in 12 industries
in the U.S.
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1 Introduction

The factor models have been popular as an effective tool for the dimension reduction for the big
dataset with the large number of cross-section units (N) and time periods (T ) through extracting
the comovement of the variables by a small number of common factors, e.g. Stock and Watson
(2002) and Bai (2003). Recently, the literature on the multilevel factor model, also referred to
as the panel data model with the block structure, has been growing rapidly. Here we have the
global factors that influence all the individuals as well as the local factors that only affect those
within the specific block. If the structure of the multilevel factors is ignored, the conventional
(approximate) factor approach would produce inconsistent and misleading results.

Different estimation methods have been developed: the Bayesian approach by Kose et al.
(2003) and Moench et al. (2013), the classical approach by Breitung and Eickmeier (2016) and
Choi et al. (2018), and the LASSO approach by Ando and Bai (2017) and Han (2019). Kose
et al. (2003) analyse the relative contribution of the global and regional factors to explain the
business cycle whilst Moench et al. (2013) demonstrate an important role played by the level
factors in explaining the U.S. real activities. Breitung and Eickmeier (2016) and Choi et al.
(2018) propose a canonical correlation estimator for the identification of global and local factors
in the multilevel factor model. Futhermore, Bekaert et al. (2009) examine the international
stock comovements, Ando and Bai (2014) find different factors in A share and B share in the
Chinese stock market, and Beck et al. (2016) investigate the source of price changes in Europe.

A remaining yet challenging issue is how to identify the number of the global factors and
the number of local factors, simultaneously. It is well-established that the existing information
criteria mainly developed for the single level panel data, fail to consistently estimate the number
of global factors because the weak (error) cross-section correlation condition is violated in the
presence of the multilevel factors. In this regard, most studies assume that the number of global
factors is known a priori, and develop a sequential estimation approach. For example, assuming
that the number of global factors is 1, Choi et al. (2018) apply the information criteria to each
block and estimate the number of local factors.

Let r0 (ri) be the number of global (local) factors and R the number of blocks. A few studies
have attempted to deal with an important issue of consistently estimating r0 under the multi-
level setting. Wang (2008) proposes a sequential procedure by applying the existing information
criteria to the whole data and to the data in each block, consequently, and estimating r0 by
the cardinal difference. Chen (2012) and Dias et al. (2013) propose the modified information
criteria by penalising ri more heavily than r0. Andreou et al. (2019) apply the canonical cor-
relation analysis to estimate global and local factors in a two-group model and develop a novel
inference on r0. Han (2019) proposes a shrinkage estimator that can estimate the global and
local factors/loadings, and determine the number of factors, jointly. As R rises, however, an
implementation of these approaches would be almost impractical or infeasible due to the heavy
computational burdens as well as uncertainty of the final outcomes.

In this paper, as the main contribution, we propose a novel approach based on the canonical
correlation analysis to identify the number of global factors which can be easily applied to the
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models with a fixed number of blocks and with R → ∞. To this end, we first apply the principal
component (PC) estimation to the data in each block and obtain the rmax factors, which are
consistent for the factor space spanned by the global and local factors jointly, where rmax is the
(common) maximum number of factors allowed in each block (i = 1, · · · , R). Next, we evaluate
the rmax canonical correlations between estimated factors from any two blocks. Then, using
R(R− 1) pairwise canonical correlations, we construct the cross-block average of the canonical
correlations, denoted ξ(r).

We first develop the canonical correlation difference criterion, denoted CCD(r), which is
constructed by the difference between the consecutive cross-block averages. Then, r0 can be
estimated consistently by maximising CCD(r) over r = 0, 1, ..., rmax. But, in the presence of
correlated local factors, we need to impose the upper bound condition on the largest average
canonical correlation between the local factors across R blocks, in order to ensure that CCD is
maximised at r = r0. In this regard we develop the alternative estimator, called the modified
canonical correlation (MCC(r)) using the nondegenerate distribution of 1−ξ(r) for r ≤ r0, that
can remain consistent without imposing the upper bound condition. Then, r0 can be estimated
consistently by maximising r such that 1− ξ(r) is below a certain threshold.

We derive asymptotic properties of pairwise canonical correlations and the cross-block av-
erage, and show that CCD and MCC are consistent selection criteria for identifying r0. Next,
via Monte Carlo simulations, we investigate their finite sample properties together with two
existing approaches advanced by Chen (2012) and Andreou et al. (2019). Overall, we find that
both CCD and MCC select r0 even in small samples, outperforming the other approaches in
the presence of serially correlated and weakly cross-sectionally correlated idiosyncratic errors.
Only if the correlations among the local factors are deemed to be relatively weak on average (say,
less than 1/2), we recommend the use of CCD because it is very simple to implement without
requiring any tuning parameter. Given that the overall performances of CCD and MCC are
qualitatively similar whilst MCC does not need to meet the upper bound condition, in general,
we prefer the use of MCC.

Once r0 is consistently estimated by CCD and MCC, we remove the global factors from
the data in each block, and apply the existing criteria, such as BIC3 by Bai and Ng (2002) and
ER by Ahn and Horenstein (2013), to consistently estimating the number of local factors.

Our proposed approach possesses a number of advantages. First, it is simple to apply as
it involves the standard PC and CCA methods, unlike other approaches that require to assess
many tuning and control parameters, e.g. Han (2019). Second, even if the number of blocks
is substantially large, our approach is computationally feasible as it only evaluates the cross-
block average of R(R−1)/2 pairwise canonical correlations, unlike other approaches that will be
computationally infeasible, e.g. Chen (2012) and Andreou et al. (2019). More importantly, our
approach is shown to be robust to the presence of serially correlated and weakly cross-sectionally
correlated idiosyncratic errors as well as the correlated local factors.

We demonstrate the utility of our framework with an application to the multilevel asset
pricing model for the weekly stock return data for the twelve industries in the U.S. over the
period, Jan. 2015 to Dec. 2016. First, both CCD and MCC find that there is only one
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global factor, which comoves closely with the market factor, with correlation of 0.95. Then, we
apply BIC3 to the defactored data in each group and find one local factor in NoDur, Enrgy,
Hlth and Money, and two local factors in Utils. On average, the global factor, local factors and
idiosyncratic components can explain 22.6%, 5.8% and 70.8% of the total variation, respectively.
The global factor tends to display a higher relative importance ratio for the cyclical industries,
suggesting that the higher within-correlations observed for these industries are likely to reflect
the higher loadings to the global factor. On the other hand, the influence of the local factors are
more important than the global factor for some industries such as Enrgy, Utils and Hlth. For
these industries, the high within-industry correlations are likely to reflect co-movements with
local/industry factors, suggesting that the local factors should be taken into account to avoid
any misleading asset allocation in portfolio management, e.g. Bekaert et al. (2009).

The rest of the paper is structured as follows. Section 2 provides an overview of the related
literature. Section 3 presents the multilevel factor model with the underlying assumptions.
Section 4 develops CCD and MCC criteria for selecting the number of global factors and
derives the asymptotic theory. Section 5 presents Monte Carlo simulation evidence. Section
6 provides an empirical application. Section 7 offers concluding remarks. The mathematical
proofs are relegated to Appendix. Additional simulation results and theoretical derivations are
provided in the Online Appendix.

2 Related Literature

For the single-level panel data model with the approximate factor structure, there have been
two main approaches for identifying the number of unobserved common factors. The first is the
information criteria proposed by Bai and Ng (2002), which take a form: PC(r) = V (r, F̂ ) +
rg(N,T ), where V (r, F̂ ) is the sum of squared residuals, F̂ is a T ×r matrix of factors estimated
by the principal components and g(N,T ) is a penalty function of the number of cross-section
units, N and the number of time periods, T .

Another popular approach attempts to make use of the fact that for the data with r0 latent
factors, the first r0 eigenvalues of the covariance matrix of the data diverge while the rest of
the eigenvalues are bounded and clustered. Onatski (2010) develops the edge distribution (ED)
estimator based on the difference between the adjacent eigenvalues arranged in descending order
such that r̂0 = max1≤r≤rmax{r|µr − µr+1 ≥ δ}, where µr is the r-th largest eigenvalue and δ is a
threshold value, which is calibrated from the empirical distribution of the eigenvalues and rmax

is the maximum value of r. Ahn and Horenstein (2013) propose the eigenvalue ratio (ER) given
by r̂0 = argmax1≤r≤rmax{µr/µr+1}.

Choi and Jeong (2019) have conducted a comprehensive simulation study on approximate
factor models, and documented evidence that BIC3 by Bai and Ng (2002) and ER by Ahn and
Horenstein (2013) outperform other competing estimators. Interestingly, Breitung and Pigorsch
(2013) propose a canonical correlation-based selection procedure that consistently estimate the
number of dynamic factors using the static factor representation of the dynamic factor model.
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See also Hallin and Liska (2007), Alessi et al. (2010) and Kapetanios (2010).
In the presence of the multilevel factors, the existing selection criteria may fail to identify

the number of the global factors. Let r0 (ri) be the number of global (local) factors and R
the number of blocks. If we apply existing approaches to the T × Mi data matrix, Yi in each
block i = 1, . . . , R, respectively, we can consistently estimate only the sum, r0 + ri, but not
r0 or ri, separately. Suppose that we apply the existing criteria to the whole data matrix,
Y = [Y1,Y2, . . . ,YR] by ignoring the multilevel structure. If R is fixed (and small), then the
existing selection criteria mainly developed for the single level panel data, fail to consistently es-
timate r0 because the weak (error) cross-section correlation condition is violated in the presence
of the local factors. As R → ∞, however, the impacts of the local factors would be asymptot-
ically negligible. In this case Han (2019) conjectures that the number of global factors can be
consistently estimated asymptotically by the existing selection criteria (see Remark 4).

In Section I in the Online Appendix we examine the finite sample performance of the four
criteria, ICp2 and BIC3 by Bai and Ng (2002), ED by Onatski (2010) and ER by Ahn and
Horenstein (2013), through applying them directly to the whole data matrix. We find that these
approaches tend to produce unreliable inference. If R = 2, all of the four criteria select the total
number of factors, r0+

∑R
i=1 ri, not r0. For sufficiently large R, they tend to select r0. However,

for the moderate value of R, e.g. R = 5 or 10, they select the intermediate value between r0
and r0 +

∑R
i=1 ri. Next, their performances are all adversely affected in small samples by the

presence of cross-sectionally and serially correlated errors. Finally and importantly, even for
large R, they overestimate r0 significantly in the presence of even moderate correlations among
the local factors.

A few studies have attempted to develop a consistent estimator of the number of global factors
under the multilevel setting. Wang (2008) proposes to determine the model specification based
on the principle of inclusion–exclusion for set cardinality.1 The above simulation evidence shows
that Wang’s sequential procedure is unreliable. For large R, it would significantly overestimate
by selecting r0+

∑R
i=1 ri/R instead of r0. Further, Han (2019) provides the simulation evidence

that this can lead to even negative estimates of both r0 and ri in small samples for R = 3.
Chen (2012) and Dias et al. (2013) modify the information criteria advanced by Bai and Ng

(2002), and include the number of local factors as arguments in the PC(r) objective function.
The main modification is to penalise the global factors less than the local factors for their
parsimonious structure. As R rises, however, the computation will be almost infeasible since
the number of candidate models increases drastically.

Andreou et al. (2019) (AGGR) apply the canonical correlation analysis to estimate global
and local factors in a two-group factor model with mixed frequency data, and develop a novel
inference on r0 via canonical correlations. AGGR first apply the existing information criteria
to each of two groups and obtain the estimates, r̂0 + r1 and r̂0 + r2. They extract the T × rmin

matrix of factors, K̂i, from the data, Yi for i = 1, 2, where rmin = min{r̂0 + r1, r̂0 + r2}. They

1Using the two blocks, for example, one can apply the information criteria to the whole data and obtain
̂r0 + r1 + r2. Next, using the data for each block, one can estimate r̂0 + ri, i = 1, 2. Then, the number of global

factors can be estimated by the difference, r̂0 + r1 + r̂0 + r2 − ̂r0 + r1 + r2.
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compute the sum of the r largest canonical correlations between K̂1 and K̂2, and derive the
scaled and centered test statistic. Next, by imposing the strong assumption that idiosyncratic
errors are neither serially nor cross-sectionally correlated, AGGR can derive that the test follows
the standard normal distribution asymptotically under the null hypothesis, r = r0.

2 This
procedure can be used for model selection only if the critical value diverges at a certain rate, γ
with 0 < γ < 1. A sequential test can be performed for r = rmax, rmax−1, . . . , 1 backwards, and
r̂0 is the largest r when the null is not rejected. Finally, they propose to estimate the number
of local factors by r̂0 + ri − r̂0 for i = 1, 2. However, it would be complicated to analytically
extend their approach to cover the case with R > 2.

Han (2019) proposes an adopted LASSO estimator that can consistently estimate the fac-
tors/loadings, and determine the number of factors, simultaneously. The number of global (local)
factors can be estimated by the number of non-zero columns in their respective factor loading
matrices. But, this approach requires the selection of tuning parameters by imposing different
penalty terms for different blocks. Consequently, for large R, a large number of candidate tuning
parameters need to be selected coherently. Further, as the shrinkage estimation is not invariant
to the order of the blocks, we need to apply the additional information criteria to determine
which block is ordered first. Hence, an extension to the model with large R would be almost
infeasible due to the heavy computational burden as well as uncertainty of the final outcomes.
More importantly, the shrinkage estimator is shown to be consistent only if the local factors are
mutually uncorrelated, though it is challenging to develop a shrinkage estimator fully robust to
the local factors correlations.3

In the next Section we propose a novel approach based on the canonical correlation analysis.
Our method differentiates from the existing approaches in two main aspects. First, our approach
can be easily applied to the models with a fixed number of blocks and with R → ∞. Next, our
approach will be shown to be valid in the presence of serially correlated and weakly cross-
sectionally correlated idiosyncratic errors as well as the correlated local factors.

3 The Model and Assumptions

Consider the multilevel factor model:

yijt = γ ′
ijGt + λ′

ijFit + eijt, i = 1, ..., R, j = 1, ...,Mi, t = 1, ..., T (3.1)

where Gt = [Gt1, ..., Gtr0 ]
′ comprises the r0 × 1 global factors, Fit = [Fit1, ..., Fitri ]

′ is the ri × 1
vector of local factors in the block i = 1, · · · , R, γij and λij are factor loadings and eijt is the
idiosyncratic error. Stacking (3.1) across individuals in block i, we have:

yit = ΓiGt +ΛiFit + eit, (3.2)

2Andreou et al. (2019) argue that their test would work in the presence of limited correlation among errors,
but also discuss how to relax this assumption.

3From Table 5 in Han (2019), we find that the shrinkage estimator severely overestimates (underestimates)
the number of global (local) factors, even if the correlation between the local factors is as small as 0.1.
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where Mi is the number of individuals in the block i,

yit
Mi×1

=




yi1t
...

yiMit


 , eit

Mi×1
=




ei1t
...

eiMit


 , Γi

Mi×r0

=




γ ′
i1
...

γ ′
iMi


 , Λi

Mi×ri

=




λ′
i1
...

λ′
iMi


 .

The model can also be written as
Yt = Λ+F+

t + et,

where

Yt
N×1

=




y1t
...

yRt


 , et

N×1
=




e1t
...

eRt


 , F+

t

r+×1

=




Gt

F1t
...

FRt


 , Λ+

N×r+
=




Γ1 Λ1 0 · · · 0
Γ2 0 Λ2 · · · 0
...

...
...

. . .
...

ΓR 0 0 · · · ΛR




with N =
∑R

i=1Mi and r+ = r0 +
∑R

i=1 ri. Further, the model is written in a matrix form:

Y = F+Λ+′ + e, (3.3)

where

Y
T×N

=



Y ′
1
...

Y ′
T


 , F+

T×r+
=



F+′
1
...

F+′
T


 and e

T×N
=



e′1
...
e′T


 .

Alternatively, stacking (3.1) over time, we can rewrite the model as

Yij = Gγij + Fiλij + eij , (3.4)

where

Yij
T×1

=




yij,1
...

yij,T


 , eij

T×1

=




eij,1
...

eij,T


 , G

T×r0
=




G′
1
...

G′
T


 , Fi

T×ri

=




F ′
i1
...

F ′
iT




For each block i, we then have
Yi = GΓ′

i + FiΛ
′
i + ei (3.5)

where Yi = [Yi1,Yi2, . . . ,YiMi
] and ei = [ei1, ei2, . . . , eiMi

].
Following Bai and Ng (2002) and Choi et al. (2018), we make the following assumptions.

Assumption A. Let M be a finite constant.

1. E(eijt) = 0 and E(|eijt|8) ≤ M for all i, j and t.
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2. Let E( 1
N

∑R
i=1

∑Mi

j=1 eijseijt) = ωN (s, t). Then, |ωN (s, t)| < M for all s, and

1

T

T∑

s=1

T∑

t=1

|ωN (s, t)| ≤ M.

3. Let E(emjtehkt) = τ(mj),(hk),t, with |τ(mj),(hk),t| ≤ |τ(mj),(hk)| < M for all t. In addition,

1

N

R∑

m=1

R∑

h=1

Mm∑

j=1

Mh∑

k=1

|τ(mj),(hk)| ≤ M

4. Let E(emjtehks) = τ(mj),(hk),(ts) with

1

NT

R∑

m=1

R∑

h=1

Mm∑

j=1

Mh∑

k=1

T∑

t=1

T∑

s=1

|τ(mj),(hk),(ts)| ≤ M

5. For every t, s, i and j

E



∣∣∣∣∣∣

1√
N

N∑

i=1

Mi∑

j=1

[eijseijt − E(eijseijt)]

∣∣∣∣∣∣

4
 ≤ M

Assumption B.

1. Gt, F1t,. . . ,FRt are zero-mean, stationary processes that satisfy the conditions for the
law of large numbers and the central limit theorem, which can be applied to their self- and
cross-products.

2. E(‖Kit‖4) < ∞, where Kit = (G′
t,F

′
it)

′.

3. T−1
T∑
t=1

GtG
′
t

p−→ ΣG, where ΣG is a positive-definite matrix.

4. For every i, T−1F ′
iFi

p−→ ΣFi
where ΣFi

is a positive-definite matrix;

5. For i, j and t,

E


 1

Mi

Mi∑

j=1

∥∥∥∥∥
1√
T

T∑

t=1

Fiteijt

∥∥∥∥∥

2

 ≤ M;E


 1

N

R∑

i=1

Mi∑

j=1

∥∥∥∥∥
1√
T

T∑

t=1

Gteijt

∥∥∥∥∥

2

 ≤ M

Assumption C.
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1. ‖γij‖ ≤ γ̄ < ∞ and ‖λij‖ ≤ λ̄ < ∞ for all i and j, where γ̄ and λ̄ are constants.

2. N−1
∑R

i=1 Γ
′
iΓi −→ ΣΓ, where ΣΓ is a positive-definite matrix.

3. ΣΓΣG has distinct eigenvalues.

4. For every i = 1, · · · , R,

(a) rank([Γi,Λi]) = r0 + ri;

(b) 1
Mi

[
Γ′
iΓi Γ′

iΛi

Λ′
iΓi Λ′

iΛi

]
−→

[
ΣΓi

ΣΓiΛi

Σ′
ΓiΛi

ΣΛi

]
which is a positive-definite matrix;

(c) 1
Mi

Λ′
iΛi −→ ΣΛi

, where ΣΛi
is a positive-definite matrix

(d)

[
ΣΓi

ΣΓiΛi

Σ′
ΓiΛi

ΣΛi

] [
ΣG 0
0 ΣFi

]
has distinct eigenvalues;

(e) ΣΛi
ΣFi

has distinct eigenvalues.

Assumption D.

1. The global factors are orthogonal to the local factors; E(GtF
′
it) = 0 for all i and t.

2. The local factors, F1t,. . . ,FRt are mutually uncorrelated; that is, E(FmtF
′
ht) = 0 for all t

and m 6= h.

Assumption A is an extended version of Assumption C in Bai and Ng (2002), which implies
that the idiosyncratic errors are allowed to be serially and (weakly) cross-sectionally correlated.
Assumptions B1–B4 are standard in the literature. Assumption B5 allows weak correlation be-
tween global/local factors and idiosyncratic errors. Assumption C is also standard. Assumption
C2 allows global factors to have non-trivial contributions to the variance of all the individuals
while Assumption C4(c) allows the local factors to have non-trivial contributions to the individ-
ual variances within the corresponding block. Assumption D1 ensures that the global factors
and local factors can be separately identified. Initially, we make Assumption D2, but we will
provide an extension in Subsection 4.1.1 where we allow nonzero correlation between the local
factors. We focus on the practical case with a fixed number of blocks, R though our approach
is still valid even as R → ∞.

4 Canonical Correlation-based Model Selection

4.1 Estimation of the Number of Global Factors

Using the model (3.5), we describe the estimation algorithms as follows: Let Ki = [G,Fi] for
i = 1, . . . , R. We first select a sufficiently large and common rmax, satisfying rmax ≥ max{r0 +
r1, . . . , r0 + rR}. As r0 and ri are finite for all i = 1, · · · , R, rmax is also finite and does not
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necessarily grow with R. We then apply the PC estimation to (3.5) for any two blocks, m and

h, and obtain the estimates of Km and Kh, denoted K̂m and K̂h, where K̂m is
√
T times

eigenvectors corresponding to the rmax largest eigenvalues of the T × T matrix, YmY ′
m, and

similarly for K̂h. Under Assumptions A–D, K̂m and K̂h contain the factor spaces spanned by
[G,Fm] and [G,Fh], respectively. See Lemma 4 in Appendix.

Next, we construct the sample variance/covariance matrices for K̂m and K̂h by Ŝab (a, b =
m,h) and the characteristic equation by

(ŜmhŜ
−1
hh Ŝhm − ℓŜmm)v = 0 (4.1)

Let ℓmh,r be the r-th largest characteristic root of (4.1), which is the r-th largest sample squared

canonical correlation between K̂m and K̂h.

Lemma 1. Under Assumptions A–D, as Mm,Mh, T → ∞, the sample squared canonical corre-
lation, ℓmh,r converges in probability to the population counterpart:

ℓmh,r
p−→
{

1
0

for r = 1, . . . , r0
for r = r0 + 1, . . . , rmax

(4.2)

Since the blocks, m and h, share the r0 global factors, the r0 characteristic roots from (4.1)
are equal to one, and the remaining rmax − r0 roots are 0. Hence, ℓmh,r will be close to 1 if
r ≤ r0, and close to 0 otherwise. As this holds for every block-pair, we construct the cross-block
average of the sample squared canonical correlations as

ξ(r) =
2

R(R− 1)

R−1∑

m=1

R∑

h=m+1

ℓmh,r

and a canonical correlation difference (CCD) as

CCD(r) = ξ(r)− ξ(r + 1) for r = 0, 1, . . . , rmax.

We then propose to estimate the number of global factors consistently by

r̂0,CCD = argmax
0≤r≤rmax

CCD(r).

To cover the cases with zero global factor and zero local factor for all i = 1, . . . , R, we set two
mock squared canonical correlations, ℓmh,0 = 1 at the beginning and ℓmh,rmax+1 = 0 at the end.4

We present the asymptotic properties of ξ(r) and CCD in Lemmas 2 and 3.

4Ahn and Horenstein (2013) set a mock eigenvalue at the beginning to cover the possibility of zero factor
in the 2D model. Hence, we set ℓmh,0 = 1 to cover the possibility of r0 = 0. Similarly, we may need to set
ℓmh,rmax+1 = 0 to cover the special case where ri = 0 for all i = 1, ..., R. For instance, consider R = 2 with
two global factors and zero local factor for i = 1, 2. Then, we find ℓmh,0 = 1, ℓmh,1 = 1 and ℓmh,2 = 1 for
m = 1 and h = 2. Following the practical guideline of selecting the common maximum number of factors by
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Lemma 2. Under Assumptions A–D, as M1, ...,MR, T → ∞, then

ξ(r)
p−→
{

1
0

for r = 0, ..., r0
for r = r0 + 1, ..., rmax

Lemma 2 shows under Assumptions A–D that ξ(r) is equal to 1 for r ≤ r0 while ξ(r) is 0
for r > r0, asymptotically.

Lemma 3. Suppose that Assumptions A–D hold.
(i) For r0 > 0, as M1, ...,MR, T → ∞, then

CCD(r)
p−→





0
1
0

for r = 0, ..., r0 − 1
for r = r0

for r = r0 + 1, ..., rmax

(ii) For r0 = 0, as M1, ...,MR, T → ∞, then

CCD(r)
p−→
{

1
0

for r = 0
for r > 0

The following theorem shows that r̂0,CCD is a consistent model selection criterion.

Theorem 1. Suppose that Assumptions A–D hold. Then,

lim
M1,...,MR,T→∞

Pr(r̂0,CCD = r0) = 1.

It is intuitive to apply a canonical correlation-based approach to identify the number of
global factors. Our approach shares the similar idea with AGGR by developing the consistent
selection criteria through using the fact that the r0 canonical correlations are equal to one
while the remaining rmax − r0 ones are strictly less than 1. AGGR attempted to derive the
asymptotic distribution of the test statistic that is nonstandard due to a parameter being at
the boundary and involves a nontrivial bias correction. Only by re-centering and re-scaling
of the statistic and by imposing the strong assumption that idiosyncratic errors are neither
serially nor cross-sectionally correlated, they can derive that the rescaled test statistic follows
the standard normal distribution asymptotically under the null hypothesis, r0 = r. AGGR’s
approach is developed only for two blocks while our approach easily extends to more than two
blocks. Further, we share the similar idea with Onatski (2010) by employing the difference
between adjacent canonical correlations as the selection criterion. But, CCD does not require
calibrating any threshold because the r0 largest canonical correlations are all bounded by unity.

r∗max = max{r̂0 + r1, . . . , ̂r0 + rR} as described in Section 5, we select r∗max = 2 for i = 1, 2. Then, we only obtain:
CCD(0) = CCD(1) = 0 but CCD(2) is undefined such that r0 = 2 cannot be identified. Setting the zero mock
canonical correlation at the end (ℓmh,3 = 0), we obtain CCD(2) = 1 and select two global factors. This may not
be a unique solution. In the special case where we select the same number of factors for all i = 1, ..., R, we may
employ r∗max + 1 instead of r∗max. But, it is simpler to set ℓmh,r∗

max
+1 = 0 because the canonical correlation for

any redundant factor is asymptotically zero. Of course, we don’t need to set the zero mock canonical correlation
at the end if we select the different number of factors for i = 1, ..., R.

11



4.2 Non-zero correlation between the local factors

Kose et al. (2003), Beck et al. (2016), Choi et al. (2018) and Han (2019) assume that the local
factors are all mutually uncorrelated. Wang (2008), Breitung and Eickmeier (2016) and Andreou
et al. (2019) do not rule out correlation between the local factors. Chen (2012) allows the local
factors to be arbitrarily correlated by assuming that both global and local factors are spanned
by an aggregate pervasive factor space.

We now allow the local factors to be mutually correlated. Let ρmh,r be the r-th population
canonical correlation between Km and Kh. By construction we have: 1 = ρmh,0 = ρmh,1 = · · · =
ρmh,r0 > ρmh,r0+1 ≥ · · · ≥ ρmh,r0+rm ≥ 0 = ρmh,r0+rm+1 = · · · = ρmh,rmax+1, where ρmh,r0+1 is
the largest population canonical correlation between local factors in group m and h. Define the
block average by ρ̄r =

2
R(R−1)

∑R−1
m=1

∑R
h=m+1 ρmh,r. Then, ρ̄r0+1 represents the largest average

canonical correlation between the local factors across R blocks.
We provide the following Lemmas, which are extensions of Lemmas 1–3 (see the proofs in

Section VII in the Online Appendix).

Lemma 1∗. Under Assumptions A–D1, as Mm,Mh, T → ∞, then the sample squared canonical
correlation, ℓmh,r, converges in probability to the population counterpart:

ℓmh,r
p−→
{

1
ρmh,r

for r = 0, 1, . . . , r0
for r = r0 + 1, . . . , rmax

Lemma 2∗. Under Assumptions A–D1, as M1, ...,MR, T → ∞, then

ξ(r)
p−→
{

1
ρ̄r

for r = 0, ..., r0
for r = r0 + 1, ..., rmax

Lemma 3∗. Suppose that Assumptions A–D1 hold.
(i) For r0 > 0, as M1, ...,MR, T → ∞, then

CCD(r)
p−→





0
1− ρ̄r0+1

ρ̄r − ρ̄r+1

for r = 0, ..., r0 − 1
for r = r0

for r = r0 + 1, ..., rmax

(ii) For r0 = 0, as M1, ...,MR, T → ∞, then

CCD(r)
p−→
{

1− ρ̄1
ρ̄r − ρ̄r+1

for r = 0
for r > 0

.

From Lemma 3∗ we find that the largest population canonical correlation among local factors
should be bounded in order to ensure that CCD is maximised at r = r0. Thus, we need to
impose a condition, ρ̄r0+1 < η for the consistency of CCD, where η = 1− dmax(r) is the upper
bound with dmax(r) = maxr0+1≤r≤rmax(ρ̄r − ρ̄r+1). It still allows some pairs to have canonical
correlation larger than η, but the average across all pairs cannot exceed η.
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Theorem 2. Suppose that Assumptions A–D1 hold. Further, we allow non-zero correlations
among the local factors and impose the upper bound on the largest average population correlation
among the local factors by ρ̄r0+1 < η where η = 1−dmax(r) with dmax(r) = maxr0+1≤r≤rmax(ρ̄r −
ρ̄r+1). Then, we have:

lim
M1,...,MR,T→∞

Pr(r̂0,CCD = r0) = 1

Theorem 2 implies that if the largest block-average of canonical correlations among the local
factors is smaller than η, then CCD is still a consistent selection criterion. We may argue
that the correlations between the local factors should not be set too high, because such strong
correlations imply that the local factors in block m would directly influence the individuals in
block h, and vice versa. In such case it may be difficult to distinguish between the roles played
by the global and local factors in the multilevel factor model. Notice that the upper bound
condition is trivially satisfied if ρ̄r0+1 <

1
2 .

CCD is very simple to implement without requiring any tuning parameters, but the cost
may be the boundedness condition in the presence of nonzero local factors correlation. In this
regard we develop the alternative estimator that can remain consistent without imposing the
upper bound condition. Notice that ξ(r) ≤ 1 and 1 − ξ(r) is monotonically increasing with r.
From Lemma 2*, it follows that

1− ξ(r)
p−→
{

0 for r = 0, . . . , r0
1− ρ̄ (r) for r = r0 + 1, . . . , rmax

Let δ2MT denote the convergence rate of 1 − ξ(r) such that δ2MT (1 − ξ(r)) has a nondegenerate

distribution for r ≤ r0, where δMT = min(
√
M,

√
T ) and M = min{M1,M2, . . . ,MR} (see the

proof of Lemma 1∗, where we show that δ2MT is the convergence rate of the canonical correlation).
Now, it is easily seen that

1− ξ(r) = Op(δ
−2
M,T ) for r ≤ r0.

and
Pr(1− ξ(r) > M) → 1 for r > r0 and for some constant M > 0.

On the basis of this finding, we propose to estimate r0 by the following modified canonical
correlation (MCC) criterion:

r̂0,MCC = max{0 ≤ r ≤ rmax : 1− ξ(r)− C × P (M,T ) < 0}

where P (M,T ) is a threshold determined by a function of M and T and C is a (data-dependent)
tuning constant. As long as P (M,T ) → 0 and δ2MTP (M,T ) → ∞, then r̂0 is consistent for r0.
The MCC estimator can be expressed equivalently as

r̂0,MCC = max{0 ≤ r ≤ rmax : δ2M,T (1− ξ(r))− C × δ2M,TP (M,T ) < 0}

Then, it is easily seen that for r ≤ r0,

δ2M,T (1− ξ(r))− C × δ2M,TP (M,T )
p−→ Op(1)−∞ < 0.
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Hence, for r ≤ r0, we expect that 1−ξ(r) vanishes faster than P (M,T ) with a slower rate towards
zero such that 1−ξ(r)−CP (M,T ) remains negative. On the contrary, for r > r0, as N,T → ∞,

we still have Pr ((1− ξ(r))− C × P (M,T ) > M) = 1 because 1 − ξ(r)
p−→ 1 − ρ̄(r) > 0 and

P (M,T ) → 0. The positive value of 1− ρ̄(r) dominates the vanishing penalising term, and this
confirms the presence of local factors if 1− ξ(r)− CP (M,T ) becomes positive.

We now summarise these results in Theorem 3.

Theorem 3. Suppose that Assumptions A–D1 hold. Further, we allow non-zero correlations
among the local factors, and assume that the following conditions hold: (i) P (M,T ) → 0 and
(ii) δ2M,TP (M,T ) → ∞, where δMT = min(

√
M,

√
T ) and M = min{M1,M2, . . . ,MR}. Then,

lim
M,T→∞

Pr(r̂0,MCC = r0) = 1.

To implement the MCC criterion, we propose the use of the following penalty function:

P (M,T ) =
lnM + lnT√

MT
ln ln(MT ). (4.3)

that satisfies the condition that P (M,T ) → 0 and δ2MTP (M,T ) → ∞. In practice, the different
penalty functions may lead to the different performance, e.g. Bai and Ng (2002) and Breitung
and Pigorsch (2013). We may consider the popular penalty function in BIC3 given by

BIC3 =
M + T

MT
ln(MT ). (4.4)

In Section III in the Online Appendix, we provide the simulation results for MCC using BIC3

in (4.4). Overall, its performance is relatively satisfactory for most cases, but it is outperformed
by MCC using P (M,T ) in (4.3). Since BIC3 does not always guarantee consistency,5 we thus
recommend the use of P (M,T ).

Another important issue is that the estimation precision of canonical correlations is adversely
affected by the noise-to-signal ratio. If the data is noisier, then we need a larger threshold,
especially in small samples. Hence, we propose the following data-dependent tuning constant:6

C = exp(σ̄2
e/σ̄

2
y)

5Consider an extreme case with M = exp (T ). Then, BIC3
p

−→ 1, and 1 − ξ(r) − C × BIC3 < 0 with
probability 1 for r = 0, 1, . . . , rmax. This implies that we always overestimate r̂0 = rmax even if the sample size is
large. By contrast, P (M,T ) is not subject to this issue.

6Following Hallin and Liska (2007) and Alessi et al. (2010), we have also implemented the subsampling
approach to selecting the tuning constant, C such that the selected model becomes a stable function of the second
stability interval. But, we have encountered the two crucial issues. First, the subsampling procedure takes a
huge amount of time because we need to run the subsampling (at least) 30 times for each candidate of C. For
example, if there are 50 grids for C, then we have to evaluate MCC, 1500 times. Second and more importantly,
this approach fails to provide the second stability interval for the large samples though it works fine for the small
samples. For example, if R = 10, M = 100 and T = 100, we find that the variations of r̂0 from the subsamples
become all flat at zeros, implying that we cannot identify r0. We leave this issue for future research.
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where σ̄2
e/σ̄

2
y is the average noise-to-signal ratio,

σ̄2
e =

1

NT

R∑

i=1

Mi∑

j=1

T∑

t=1

(
yijt − θ̂′

ijK̂it

)2
, σ̄2

y =
1

NT

R∑

i=1

Mi∑

j=1

T∑

t=1

y2ijt,

N =
∑R

i=1Mi, K̂it are the estimated rmax factors and θ̂ij the corresponding factor loadings. As
C is bounded between 1 and e, it does not affect the asymptotic property of MCC.

4.3 Estimation of the Number of Local Factors

Once the number of global factors is consistently estimated by r̂0, the global factors can be
consistently estimated by Ĝ = K̂mV r̂0

m , where V r̂0
m is an rmax × r̂0 matrix consisting of the

characteristic vectors associated with the r̂0 largest characteristic roots of (4.1). Ĝ from any
block-pair would provide a consistent estimator for G, but, in practice, we suggest to use the
block-pair that yields the maximum value of ℓmh,1.

Next, we concentrate Ĝ out in each block by Y Ĝ
i = M ĜYi for i = 1, . . . , R where M Ĝ =

IT − Ĝ(Ĝ′Ĝ)Ĝ′. Then, we apply the existing approaches by Bai and Ng (2002) and Ahn and

Horenstein (2013) to Y Ĝ
i , with the maximum number of factors set to ri,max = rmax − r̂0, and

estimate the number of the local factors consistently by r̂i.
7 We apply the PC estimation to Y Ĝ

i

and obtain F̂i for i = 1, ..., R.
Finally, the factor loadings, γ̂ij and λ̂ij , can be estimated by the OLS regression of yijt on

Ĝt and F̂it.

4.4 Estimation of Global and Local Factors and Loadings

In Sections 4.1–4.3, we have obtained the consistent estimates, r̂0 and r̂i. Given the initial
estimates, Ĝ, Γ̂i, F̂i and Λ̂i for i = 1, ..., R, we follow a sequential approach by Choi et al.
(2018) and update the factors and loadings as follows:

First, construct Y F̂ = [Y F̂
1 , . . . ,Y F̂

R ] where Y F̂
i = Yi − F̂iΛ̂

′
i for i = 1, ..., R. We then apply

the PC estimation to Y F̂ , and obtain G̃ as
√
T times the eigenvectors corresponding to the r̂0

largest eigenvalues of the T × T matrix, Y F̂Y F̂ ′. The global factor loadings are then estimated

by Γ̃ = G̃′Y F̂ /T .

Next, for each i, construct Y G̃
i = Y − G̃Γ̃′

i where Γ̃i is the T × Mi submatrix of Γ̃ =

[Γ̃1, . . . , Γ̃R]. The local factors, F̃i are estimated by
√
T times the eigenvectors corresponding

to the r̂i largest eigenvalues of the T × T matrix, Y G̃
i Y G̃′

i . The local factor loadings are then

estimated by Λ̃i = F̃ ′
iY

G̃
i /T .

7Alternatively, we can estimate the number of local factors directly by r̂i = r̂0 + ri − r̂0. Via (unreported)
simulations, we find that our proposed approach outperforms this approach, because the smaller ri,max can be
selected in the sequential approach.
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5 Monte Carlo Simulation

We construct the multilevel factor model by the following data generating process (DGP):

yijt = γ ′
ijGt +

√
θi1λ

′
ijFit +

√
κθi2eijt

=

r0∑

z=1

γijzGtz +
√

θi1

ri∑

z=1

λijzFitz +
√
κθi2eijt

where we generate global factors/loadings, local factors/loadings and idiosyncratic errors by

Gt = φGGt−1 + vt, vt ∼ iidN(0, Ir0)

Fit = φFFi,t−1 +wt, wt ∼ iidN(0, Iri)

γijz ∼ iidN(0, 1) for z = 1, . . . , r0, λijz ∼ iidN(0, 1) for z = 1, . . . , ri

eijt = φeeij,t−1 + εijt + β
∑

1≤|h|≤8

εi,j−h,t, εijt ∼ iidN(0, 1)

We allow global and local factors to be serially correlated, and idiosyncratic errors to be serially
and cross-sectionally correlated.

We control the noise-to-signal ratio by κ. We first set κ = 1. Then, the variances associated
with the global factors, local factors and idiosyncratic errors are respectively given by

V ar(γ ′
ijGt) =

r0∑

z=1

V ar(γijzGtz) =
r0

1− φ2
G

,

V ar(λ′
ijFit) =

ri∑

z=1

V ar(λijzFitz) =
ri

1− φ2
F

and V ar(eijt) =
1 + 16β2

1− φ2
e

.

Following Choi et al. (2018) and Han (2019), we make the variance contribution of each compo-
nent equalised. For r0 > 0, we set

θi1 =

(
r0

1− φ2
G

)(
ri

1− φ2
F

)
and θi2 =

(
r0

1− φ2
G

)/(
1 + 16β2

1− φ2
e

)
.

For r0 = 0, we set

θi1 = 1 and θi2 =

(
ri

1− φ2
G

)/(
1 + 16β2

1− φ2
e

)
.

We consider the following sample sizes: R ∈ {2, 5, 10}, M ∈ {20, 50, 100, 200} with M1 =
· · · = MR = M and T ∈ {50, 100, 200}. The number of replications for each simulation experi-
ment is set at 1,000. We focus on the estimation of r0, and report the results only for the cases
with φG = φF = 0.5 to save space (We obtain qualitatively similar results for φG = φF = 0).
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For comparison, we consider the alternative selection criteria proposed by Chen (2012) and
Andreou et al. (2019), denoted by ICChen and AGGR, respectively.8 When implementing ICchen

and AGGR in the simulation, for simplicity, we assume that the true number of factors, r0 + ri
is known. This prevents us from selecting too many candidate models for ICchen.For AGGR,
the null hypothesis is sequentially tested from k = r0 + ri to 0 until rejected.

It is well-established that if the maximum number of factors is set too high, the redundant
factors are likely to be selected.9 Hence, we propose a practical selection guideline. We first
apply BIC3 to the data Yi in each block with a sufficiently large rmax (by fixing rmax = 10),
and obtain the consistent estimate of r0 + ri, denoted r̂0 + ri for i = 1, ..., R. Then, we select
the common maximum number of factors by r∗max = max{r̂0 + r1, . . . , ̂r0 + rR}. This procedure
selects r∗max ≤ rmax, while ensuring that Pr(r∗max ≥ r0 + ri)

p−→ 1 for all i = 1, ..., R.10 In what
follows, we report the simulation results for CCD and MCC obtained by applying the common
r∗max for each block, i = 1, ..., R.

In the first experiment, we fix the number of factors as (r0, ri) = (2, 2) for i = 1, . . . , R. Panel
A of Table 1 reports the simulation results for the benchmark case with (β, φe, κ) = (0, 0, 1). The
average of r̂0 over 1,000 replications are reported together with the figures inside the parenthesis,
(O|U), indicating the percentage of overestimation and underestimation. For example, (0|0)
implies that r0 is perfectly correctly estimated. Both CCD and MCC perform very well for all
the sample sizes. ICChen performs reasonably well for R = 2, but underestimates by detecting
only one global factor for R = 5 and R = 10. AGGR overestimates r0 if M is small, but its
performance improves only for large M and T .

The second case is the same as the first one, except we allow serial correlation and cross-
section correlation in idiosyncratic errors by setting (β, φe, κ) = (0.1, 0.5, 1). The simulation
results presented in Panel B of Table 1 demonstrate that the performance of ICChen and AGGR
deteriorates substantially as compared to the first case. In particular, AGGR produces imprecise
estimates because their approach is not valid in the case where idiosyncratic errors are serially
and/or cross-sectionally correlated (see Assumption A9 and Theorem 2 in AGGR). Both CCD
and MCC select r0 correctly in almost all cases while CCD slightly outperforms MCC if M and
R are small. In line with our theoretical prediction, the performances of CCD and MCC are
mostly invariant to the presence of serially and cross-sectionally correlated idiosyncratic errors.

The third case is a very noisy DGP with κ = 3 in which the variance share explained by
the global factors becomes only 20%, which matches closely with empirical evidence reported in

8See Section VI in the Online Appendix for the detailed estimation algorithms. Unfortunately, we are unable
to implement Han’s (2019) algorithm because his code can only be run on Matlab R2013b and R2014a, but not
on the later versions.

9Ahn and Horenstein (2013) show via simulations that both BIC3 and ED estimators are quite sensitive to
the choice of rmax in the single level factor model.

10In Section II in the Online Appendix we report the simulation results for CCD and MCC using r∗max together
with the fixed rmax = 10. In particular, if idiosyncratic errors are serially correlated, then the impact of the large
rmax on the performance of CCD is non-negligible (overestimating r0 for small T . The performance of MCC is
also adversely affected by the presence of both cross-sectional and serial correlation in errors if T is small. On the
other hand, both CCD and MCC with r∗max, select the number of global factors correctly even in small samples.
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Table 6. The other setups are the same as in the second case. From Panel C of Table 1, we find
that all approaches are adversely affected, especially if M is small. The performance of AGGR
is unreliable in all cases. The performance of ICChen improves with M or T only for R = 2, but
it severely underestimates r0 for R = 5 and R = 10 even in large samples. CCD underestimates
r0 for small M . MCC tends to overestimate r0 for small M and small T while underestimating
r0 for small M and large T . The performance of CCD and MCC improves sharply with M or
T for all values of R. Overall CCD slightly outperforms.

Table 1 about here

In the second experiment we consider the model with uneven block sizes. To this end, we
set (M1 = 50,M2 = 100) for R = 2, (M1 = 20,M2 = 40,M3 = 60,M4 = 80,M5 = 100) for
R = 5, and (M1 = 20,M2 = 30,M3 = 40,M4 = 50,M5 = 60,M6 = 70,M7 = 80,M8 = 90,M9 =
100,M10 = 110) for R = 10, respectively. The results in Table 2 display that CCD performs
satisfactory, selecting r0 precisely in almost all cases. The performance ofMCC is comparable to
that of CCD, except when the data become noisier. Especially for small T , MCC significantly
overestimates r0 in the presence of cross-sectionally and serially correlated errors together with
the higher noise-to-signal ratio. On the other hand, ICChen underestimates r0 while AGGR
overestimates r0 in almost all cases.

Tables 2 about here

In the third experiment we allow the number of global factors to vary from 0 to 3 by setting
(r0, ri) ∈ {(0, 2), (1, 1), (3, 3)} for i = 1, ..., R and (β, φe, κ) = (0.1, 0.5, 1). First, the results for
the case with (r0, ri) = (0, 2), are reported in Panel A of Table 3. CCD, MCC and AGGR
tend to select zero global factor correctly, but CCD outperforms if both M and T are small. On
the other hand, ICchen always selects one factor incorrectly. Second, turning to the case with
(r0, ri) = (1, 1) in Panel B of Table 3, we find that CCD and ICchen estimate r0 = 1 correctly.
If M and T are small, MCC overestimates r0 while AGGR tends to underestimate r0. Finally,
the results for (r0, ri) = (3, 3) presented in Panel C, display that for R = 2 the performance of
CCD, MCC and ICchen is satisfactory and improves sharply with the sample sizes, but CCD
slightly outperforms for small M . By contrast, the performance of AGGR is unreliable unless
both M and T are large. Next, for R = 5 and 10, the performance of CCD and MCC remains
satisfactory whereas ICchen severely underestimates r0.

Tables 3 about here

In the fourth experiment we use the same DGP in the benchmark experiment but allow the
local factors to be mutually correlated. We generate the local factors by

Ft = ΦFFt−1 +wt, wt ∼ iidN(0,ΩF )
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where Ft = [F ′
1t, . . . ,F

′
Rt]

′, wt = [w′
1t, . . . ,w

′
Rt]

′ and ΦF is a diagonal matrix with the common
elements, 0.5. We set the common diagonal elements of ΩF at 1, and the common off-diagonal
elements (denoted ωF ) at 0.2, 0.4, 0.6 and 0.8, respectively. We report these results in Table
4.11 If the correlation among the local factors are relatively weak, i.e. ωF = (0.2, 0.4), then the
performance of CCD is satisfactory, and improves sharply with M and T . However, if the local
factors correlation becomes stronger, i.e. ωF = (0.6, 0.8), then CCD overestimates r0 even in
large samples. This is line with Theorem 2 that consistency of CCD requires the upper bound
condition, ρ̄r0+1 < η to be met. Next, we find that the performance of MCC is satisfactory
for ωF = (0.2, 0.4). Even if ωF = 0.6, its performance improves sharply with M and T . Only
in the presence of the stronger correlation among the local factors (ωF = 0.8), MCC tends to
overestimate r0 in most sample sizes, but it becomes consistent for substantially large M and
T . This is line with Theorem 3.12

Table 4 about here

In Section V in the Online Appendix, we have conducted the additional simulations for
estimating the number of the local factors, after r0 is consistently estimated by CCD and MCC.
Overall results suggest that BIC3 by Bai and Ng (2002) and ER by Ahn and Horenstein (2013)
outperform the other existing approaches.

Finally, in Section VI in the Online Appendix, we follow the anonymous referee’s suggestion
and split the whole data with R > 2 groups into the two wide groups. This simple modification
enables us to apply the AGGR’s procedure for estimating the number of global factors even if
R > 2. Furthermore, this scheme may improve the finite sample performance of CCD and MCC
estimators by increasing the number of cross-section observations used in the estimation of the
number of global factors, r0 and the global factors, G. We explore the performance of AGGR,
CCD andMCC with the two wide-group division, denoted respectively by AGGRw, CCDw and
MCCw, via additional Monte Carlo experiments. We consider the same DGP employed under
Experiments 1 and 3, and draw the three main conclusions. First, we can apply the AGGR
approach to the multilevel panel with R > 2, though its performance becomes satisfactory only
if both M and T are substantially large. But, its performance is unreliable, especially if T is
small. Second, CCD and MCC still outperform CCDw, MCCw and AGGRw in most cases.
Third, there is a trade-off between the use of more cross-section observations and a selection
of the larger r∗max. We find that CCDw and MCCw can significantly improve the estimation
precision of r0 for the multilevel panel with R > 2, especially if T is sufficiently large and M is
much smaller than T . On the other hand, if T is small, then CCDw and MCCw overestimate r0.
Hence, we may recommend this 2-wide groups modification in practice, only if T is sufficiently
large and M is much smaller than T .

11The performances of ICChen and AGGR are qualitatively similar to those in the first experiment. These
results are available upon request.

12In Section IV in the online Appendix, we have conducted the additional simulations to examine the perfor-
mance of CCD and MCC under experiments with heterogeneous correlations among local factors and uneven
block sizes. We have obtained qualitatively similar results.
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Overall, the simulation results demonstrate that CCD and MCC tend to select the number
of global factors correctly even in small samples while outperforming other existing methods even
in the presence of serially correlated and weakly cross-sectionally correlated idiosyncratic errors.
Only if the correlations among the local factors are deemed to be relatively weak on average (say,
less than 1/2), we recommend the use of CCD because it is very simple to implement without
requiring any tuning parameter and its performance is robust against noisier idiosyncratic errors.
Given that the overall performances of CCD and MCC are qualitatively similar but MCC does
not need to meet the upper bound condition, in general, we prefer the use of MCC.

6 Empirical Application

We demonstrate the utility of our approach in the context of the multilevel asset pricing model.
The standard literature on asset pricing models suggests a linear relation between stock returns
and common factors, e.g. Sharpe (1964), Connor and Korajczyk (1988) and Fama and French
(1993). However, the studies investigating the role of industry factors explicitly in asset pric-
ing model are relatively few. Fama and French (1997) provide evidence that both CAPM and
the three factor models are unable to precisely estimate the cost of equity for industry portfo-
lios. Lewellen et al. (2010) demonstrate that the asset pricing models are rejected for industry
portfolios. Chou et al. (2012) find that the residuals of stocks from the same industry share a
non-negligible correlation even after controlling for the common factors. Moskowitz and Grin-
blatt (1999) find that industry momentum contributes substantially to the momentum strategy
such that the winners and the losers tend to belong to the same industry. These studies reveal
the fact that stocks in the same industry share a strong comovement, which cannot be explained
by the common factors alone. In this regard, it would be an important issue of investigating
whether there is any industry-specific factor driving the within-industry comovement as well as
how important they are relative to global factors and idiosyncratic disturbances.

We collect the weekly return data of stocks listed on NYSE and NASDAQ from Jan. 2015
to Dec. 2016 from CRSP database.We follow Fama and French (1997) and use the SIC codes to
categorise the stocks into twelve industries, listed in the first column of Table 5.13 We consider
a balanced block panel data with unequal block sizes and include stocks that have the complete
return data during the sample period. Following Fama and French (1993) we require the stocks
to be listed on NYSE and NASDAQ for two years prior to Jan. 2015. We end up with twelve
industries (R = 12), 2618 firms (N = 2618) and 105 weeks (T = 105). The number of stocks in
each industry is reported in the second column of Table 5.

We first report the within correlations and between correlations. The former is evaluated
as the average pairwise correlation of individual stock returns within the same industry while

13These are Consumer Non-Durable, Consumer Durable, Manufacturing, Energy, Chemicals, Business Equip-
ment, Telecommunication, Utilities, Shops, Health, Money and Others. The definitions of the industries can
be found on Kenneth French’s website: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_

library.html.

20



the latter is the average correlation between individual returns across two different industries.
We visualise them through a heat map in Figure 1, where the diagonal elements represent the
within correlations and the off-diagonal elements are the between correlations. Both correlations
are positive and substantial across all industries. Overall, the within correlation is higher than
the between correlation for all industries. For example, for Enrgy, Utils and Money, the within
correlations are 0.36, 0.45 and 0.31, and the between correlations are 0.19, 0.11 and 0.21. Such
differences imply that there may be some local/industry factors, rendering the assets comove
within the same industry.

Figure 1 about here

Next, we explore the correlation structure using the multilevel factor model. We standardise
the data following Bai and Ng (2002) and Ahn and Horenstein (2013). First, we follow the
practical guideline for r∗max as described in Section 5. In our application we only need to run
BIC3 12 times using rmax = 10 for i = 1, ..., 12, and select r∗max = max{r̂0 + r1, . . . , ̂r0 + r12} =
3. We then apply CCD and MCC with r∗max = 3. Both select only one global factor, which
is in line with Trzcinka (1986) and Bailey et al. (2020).14 Then, we apply BIC3 with r∗i,max =
r∗max − r̂0 = 2 to the defactored data in each block by concentrating out the global factor. We
find that there is one local factor in NoDur, Enrgy, Hlth and Money, two local factors in Utils,
and zero factor in other industries. Finally, we apply the estimation method described in Section
4.4, and report the full estimation results in Table 5.

Table 5 about here

We evaluate the relative importance ratios of the global factor, the local/industry factors and
idiosyncratic errors,15 that are summarised in columns 4 - 6 in Table 5. On average, the global
factor and local factors can explain 22.6% and 5.8% of the total variation whereas idiosyncratic
disturbance components still account for 70.6% of the total variation. The global factor tends to

14For the robustness check, we have tried the different values of rmax = 5, 10, 20 directly applied to CCD and
MCC, finding that they always select one global factor.

15The time series variance decomposition for the individual stock return is given by
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The average relative importance ratios across the market for these three components can be evaluated as
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display the higher relative importance ratios for the cyclical industries such as Durbl (32.8%),
Manuf (32.1%), Chems (30%) and Money (27.4%), suggesting that the higher within correlations
observed in these industries are likely to reflect the higher loadings to the global factor. On the
other hand, the influence of the global factor is below average for the non-cyclical industries
such as NoDur (16.5%), Utils (8.3%) and Hlth (10.5%). Interestingly, local factors are more
important than the global factor for Enrgy (23.2%) and Utils (54.2%). The variance share
explained by the local factors are also non-negligible for NoDur (9.3%), Hlth (9.6%) and Money
(10.1%).

Next, we examine the within and between correlations after concentrating out the global
and local factors, respectively. Figure 2 displays the results constructed using the residuals from
a regression of the return data on the global factor only. In contrast to Figure 1, the between
correlations decline drastically for all industries, indicating that the market-wide comovement
of the individual stock returns is well-captured by the global factor. Notice, however, that the
within correlations for NoDur, Enrgy, Utils, Hlth and Money are still non-negligible, which
implies that such comovements may be captured by the local factors. We further project out
the local factors such that the resulting residuals would be purely idiosyncratic. Figure 3 shows
that both correlations are almost negligible, suggesting that the local/industry factors are an
important driver behind the higher within correlations for NoDur, Enrgy, Utils, Hlth and Money.

Figures 2 and 3 about here

Figure 4 displays that the estimated global factor comoves closely with the market factor
with correlation of 0.95,16 though the latter is slightly more volatile. This is a well-known result
since Brown (1989) that the market index plays a predominant role in the asset pricing model.
However, it is more challenging to find out which financial indicators measuring local economic
and financial conditions, can be connected closely to the local/industry factors. For example,
we find that the local factor in Enrgy is highly correlated with the changes in WTI (an oil price
index) with the correlation of 0.7. Further, we observe that the average (absolute) pairwise
correlation among the local/industry factors is 0.21, which may provide an empirical support
for the upper bound condition imposed in Theorem 2.

Figure 4 about here

Finally, in Figure 5, we plot the density of the factor loadings associated with one global
factor and with six local factors. As the estimated factors/loadings are subject to a rotation
and sign indeterminacy, we focus on whether the loadings have the same sign or not. The same
sign indicates that the returns comove with the corresponding factors, and vice versa. First,
almost all individual stock returns are positively loaded on the global factor, suggesting that
they comove with the global factor. Next, turning to the local factor loadings, we find that the
majority of the stock returns in NoDrl, Enrgy, Money, and Hlth are loaded wih the same sign. In
Utils with two local factors, the majority of the returns are negatively loaded on the first factor

16We download the weekly data of the Fama-French three factors from the Kenneth French Website.
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while they are symmetric around 0 for the second factor. This confirms that the local/indistry
factors are an important source of the within-industry comovement.

Figure 5 about here

7 Conclusion

We have developed a novel procedure for identifying the number of the global factors and the
number of the local factors jointly in a multilevel factor model. We first apply the principal
component (PC) estimation to the data in each block and estimate the factors. We then eval-
uate the canonical correlations between factors in any two blocks and develop the canonical
correlations difference (CCD) and the modified canonical correlations (MCC) criteria.

We show that both CCD and MCC are a consistent model selection criterion. Via Monte
Carlo simulations, we demonstrate that CCD and MCC consistently select the number of global
factors even in small samples. Further, they outperform other competing approaches even in
the presence of serially correlated and weakly cross-sectionally correlated errors as well as the
correlated local factors. We have also considered the simple modification by splitting the whole
data with R > 2 groups into the two wide groups. We find that this modification can improve
the estimation precision of r0, especially if T is sufficiently large and the number of individuals
in each group is much smaller than T .

We demonstrate the utility of our approach with an application to the multilevel asset pricing
model for the weekly stock return data of twelve industries in the U.S. over the period, Jan.
2015 to Dec. 2016. By applying CCD and MCC, we find that there is only one global factor,
which comoves closely with the market factor. Next, by applying BIC3, we find that the local
factors explain non-trivial proportions of the return variations in 5 out of 12 industries.

We note in passing that the global factors can be common only to the blocks within a region,
say emerging or advanced markets, e.g. Hallin and Lǐska (2011) and Chen (2012), which may
be empirically more relevant. This factor structure can be regarded as the multilevel model
with the regional factors rather than the global factors. This is similar to the three-level or
overlapping factor models considered by Breitung and Eickmeier (2016) and Beck et al. (2016).
Our approach can be easily extended to these cases given that the block membership within
different layers is known.

In principle, if the (unknown) group membership as well as the number of the groups are
(consistently) estimated using any exiting approaches (e.g. Su et al. (2016) and Ando and Bai
(2017)), then we can apply our proposed section criteria to consistently estimate the number
of global factors and the number of local factors in each group, jointly.Notice that there is a
growing literature on weak factor model that is closely related to the multi-level factor model.
In the 2-dimensional model, weak factors are harder to detect than strong factors. A number
of recent papers have developed some novel but complex techniques, e.g. Lettau and Pelger
(2020), Bailey et al. (2020) and Uematsu and Yamagata (2020). On the other hand, consistent
estimation of both global and local factors and their loadings can be easily achieved in the
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the multi-level factor model, using the canonical-correlations-based approach as described in
the paper. In this regard, we expect that the joint analysis of our proposed approach and the
unknown group membership will shed further lights on enhancing our understanding of weak
factor models, especially in relation to the recent asset pricing models following the factor zoo
criticism raised by Cochrane (2011), see also Bailey et al. (2020) and Lettau and Pelger (2020).
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Appendices

A Proofs of Lemmas and Theorem

Lemma 4. Let K̃i =
1

MiT
YiY

′
i K̂i. Under Assumption A–D, as Mi, T → ∞, we have:

K̃i −KiHi = Op

(
1

δMiT

)
, i = 1, ..., R,

where Hi is the rmax× (r0+ ri) rotation matrix, δMiT = min
{√

Mi,
√
T
}
and Mi is the number

of individuals in block i.

Proof. Since Assumptions A–D in Bai and Ng (2002) are satisfied, the stated result follows
directly from Theorem 1 of Bai and Ng (2002). Q.E.D

For any two blocks m and h, we apply the PC estimator to (3.5), and obtain consistent

estimators of Km = [G,Fm] and Kh = [G,Fh], denoted K̂m and K̂h. Let ℓmh,r be the r-th

largest squared canonical correlation between K̂m and K̂h, which is given by the rth largest
characteristic root of

(ŜmhŜ
−1
hh Ŝhm − ℓŜmm)v = 0,

where Ŝab (a, b = m,h) denotes the sample variance/covariance matrices for K̂m and K̂h. Since

(1/
√
T )K̂m is the eigenvector matrix corresponding to the rmax largest eigenvalues of YmY

′

m,
we have:

1

MmT
YmY

′

m

1√
T
K̂m =

1√
T
K̂mVm

where Vm is an rmax × rmax diagonal matrix consisting of the rmax largest eigenvalues of YmY
′

m

in descending .order divided by MmT . This implies that K̂mVm = K̃m. Similarly, we obtain
K̂hVh = K̃h for block h. Since rmax < min {Mm, T} (rmax < min {Mh, T}), the diagonal
elements of Vm (Vh) are non-zero. This implies that Vm (Vh) is of full rank, though some

diagonal elements may be very small. The canonical correlations between K̂m and K̂h are equal
to those between K̃m and K̃h, because the canonical correlations between two sets of variables
are invariant to full rank transformations, see Theorem 12.2.2 in Anderson (2003). Therefore,

we will study the limiting behaviour of the canonical correlations between K̃m and K̃h instead
of those between K̂m and K̂h. This enables us to employ Lemma 4 subsequently.
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Proof for Lemma 1. For any two blocks m and h, the population covariance between Kmt

and Kht can be expressed as

V ar

(
Kmt

Kht

)
=

[
Σmm Σmh

Σhm Σhh

]
=




ΣG 0 ΣG 0

0 ΣFm 0 0

ΣG 0 ΣG 0

0 0 0 ΣFh


 (A.1)

where ΣG, ΣFm and ΣFh
are defined in Assumption C. Without loss of generality, we assume

rm ≤ rh. Using (A.1), we can rewrite the characteristic equation,

(
ΣmhΣ

−1
hhΣhm − ρΣmm

)
v = 0 (A.2)

as [
ΣG − ρΣG 0

0 −ρΣFm

]
v = 0,

where ρmh,r is the r-th largest squared canonical correlation between Km and Kh. It is clear
that ρmh,1 = · · · = ρmh,r0 = 1 are the characteristic roots with multiplicity r0, while ρmh,r0+1 =
· · · = ρmh,rm = 0 are the characteristic roots with multiplicity, rm. Since this holds for all m
and h, we simply let ρr = ρmh,r. The characteristic vector corresponding to the rth eigenvalue is
vr = [0, . . . , 0, 1, 0, . . . , 0], which is the unit vector with the rth element being 1 and 0 otherwise.

Since rmax ≥ r0 + ri for all i by construction, Hm and Hh are not of full column rank. This
renders the variance-covariance matrices for the rotated factors H ′

mKmt and H ′
hKht, becoming

singular as follows:

V ar

([
H ′

mKmt

H ′
hKht

])
=

[
H ′

mΣmmHm H ′
mΣmhHh

H ′
hΣhmHm H ′

hΣhhHh

]
(A.3)

where both H ′
mΣmmHm and H ′

hΣhhHh are the singular matrices. Consider the characteristic
equation between the rotated factors as

[
H ′

mΣmhHh

(
H ′

hΣhhHh

)−
H ′

hΣhmHm − ρH ′
mΣmmHm

]
u = 0 (A.4)

where (H ′
hΣhhHh)

− is the Moore-Penrose inverse of H ′
hΣhhHh. Using the property of Moore-

Penrose inverse, we have:17

Hh

(
H ′

hΣhhHh

)−
H ′

h = Σ−1
hh

which holds if Hh has full row rank. Then, (A.4) becomes:

H ′
m

(
ΣmhΣ

−1
hhΣhm − ρΣmm

)
Hmu = 0. (A.5)

17We use two properties of the Moore-Penrose inverse. (1) Let A ∈ Rm×n and B ∈ Rn×p. If A has full column
rank and B has full row rank, then (AB)− = B−A−. (2) If A has full column rank, then A−A = I. If A has full
row rank, then AA− = I.
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Using (A.1), we rewrite (A.5) as

H ′
m

[
ΣG − ρΣG 0

0 −ρΣFm

]
Hmu = 0

which shows that both (A.2) and (A.4) will produce the same non-zero eigenvalues.
We now consider the following spectral decompositions:

H ′
mΣmmHm = P∆mP ′ and H ′

hΣhhHh = Q∆hQ
′

where ∆m(∆h) is a diagonal matrix of eignevalues of H ′
mΣmmHm(H ′

hΣhhHh), P (Q) is an
orthogonal matrix whose columns are standardized eigenvectors associated with the diagonal
entries of ∆m(∆h). As the rank of H ′

mΣmmHm(H ′
hΣhhHh) is r0 + rm ≤ rmax(r0 + rh ≤ rmax)

asymptotically, we rewrite the above equation as

H ′
mΣmmHm =

[
P1 P2

] [∆2
1 0

0 0

] [
P1 P2

]′

H ′
hΣhhHh =
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Q1 Q2

] [∆2
2 0

0 0

] [
Q1 Q2

]′
(A.6)

where P1 and P2 are rmax×(r0+rm) and rmax× [rmax−(r0+rm)] orthogonal matrices, and simi-
larly forQ1 andQ2. Now, consider the (r0+rm)×(r0+rh) matrix, ∆−1

1 P ′
1 (H

′
mΣmhHh)Q1∆

−1
2 ,

whose singular value decomposition is given by (see Rao (1981))

∆−1
1 P ′

1

(
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mΣmhHh
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Q1∆

−1
2 = W

[
R

1
2 0

]
D′ (A.7)

whereW is an (r0+rm)×(r0+rm) orthonormal matrix, D an (r0+rh)×(r0+rh) orthonormal ma-
trix andR the (r0+rm)×(r0+rm) diagonal matrix given byR = diag(ρ1, ..., ρr0 , ρr0+1, ..., ρr0+rm) =
diag(1, ..., 1, 0, ..., 0).18

Define the full rank matrices,

A =
[
P1∆

−1
1 W ,P2

]
and B =

[
Q1∆

−1
2 D,Q2

]
(A.8)

Combining (A.6), (A.7) and (A.8), it is straightforward to show that

V ar

([
A′H ′
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Ir0+rm 0 R
1
2 0 0
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1
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(A.9)

18Notice that R contains the same non-zero roots as in (A.4), see Rao (1981).
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From (A.9), we obtain the characteristic equation between A′H ′
mKmt and B′H ′

hKht by
[
A′H ′

mΣmhHhB
(
B′H ′

hΣhhHhB
)−

B′H ′
hΣhmHmA− ρA′H ′

mΣmmHmA
]
u = 0

which can be simplified as



[
R

1
2 0 0

0 0 0

]

Ir0+rm 0 0

0 Irh−rm 0

0 0 0





R

1
2 0

0 0

0 0


− ρ

[
Ir0+rm 0

0 0

]
u = 0

Hence, ([
R 0

0 0

]
− ρ

[
Ir0+rm 0

0 0

])
u = 0 (A.10)

Obviously, (A.10) has the same characteristic roots from (A.4) and the same non-zero charac-
teristic roots from (A.2), consequently.

Now, we consider the sample covariance matrix for K̃m and K̃h given by

V ar

(
K̃m

K̃h

)
=

1

T

[
K̃

′

mK̃m K̃
′

mK̃h

K̃
′

hK̃m K̃
′

hK̃h

]
=

[
S̃mm S̃mh

S̃hm S̃hh

]

Consider the full rank transformation K̃mA and K̃hB, whereA andB are defined in (A.8). The

canonical correlations between them are equivalent to those between K̃m and K̃h. By Lemma
4, we obtain: A′S̃mmA

p−→ A′H ′
mΣmmHmA, B′S̃hhB

p−→ B′H ′
hΣhhHhB and A′S̃mhB

p−→
A′H ′

mΣmhHhB. Let M = min{Mm,Mh} and δMT = min{√M,
√
T}. Applying (A.9) and

Lemma 4, we can rewrite these transformed variance/covariance matrices as

A′S̃mmA =

[
Ir0+rm +Op(δ

−2
MT ) Op(δ

−2
MT )

Op(δ
−2
MT ) Op(δ

−2
MT )

]

B′S̃hhB =



Ir0+rm +Op(δ

−2
MT ) Op(δ

−2
MT ) Op(δ

−2
MT )

Op(δ
−2
MT ) Irh−rm +Op(δ

−2
MT ) Op(δ

−2
MT )

Op(δ
−2
MT ) Op(δ

−2
MT ) Op(δ

−2
MT )




and

A′S̃mhB =

[
R

1
2 +Op(δ

−2
MT ) Op(δ

−2
MT )

Op(δ
−2
MT ) Op(δ

−2
MT )

]

Notice that the Moore-Penrose inverse of the lower [rmax − (r0 + rm)]× [rmax − (r0 + rm)] block

of B′S̃hhB does not converge to

[
Irh−rm 0

0 0

]
, because

rank

([
Irh−rm +Op(δ

−2
MT ) Op(δ

−2
MT )

Op(δ
−2
MT ) Op(δ

−2
MT )

])
6= rank

([
Irh−rm 0

0 0

])
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Similarly,
(
B′S̃hhB

)−
does not converge to



Ir0+rm 0 0

0 Irh−rm 0

0 0 0


. See Theorem 1 in Karabiyik

et al. (2017). But, the Moore-Penrose inverse follows the Banachiewicz-Schur form.19 Thus,

[
Irh−rm +Op(δ

−2
MT ) Op(δ

−2
MT )

Op(δ
−2
MT ) Op(δ

−2
MT )

]−
=

[
Irh−rm +Op(δ

−2
MT ) −Op(1)

−Op(1) Op(δ
2
MT )

]
= Op(δ

2
MT ) (A.11)

Also,
(
B′S̃hhB

)−
follows the Banachiewicz-Schur form, from which we obtain:

(
B′S̃hhB

)−
=

[
Ir0+rm +Op(δ

−2
MT ) −Op(1)

−Op(1) Op(δ
2
MT )

]
. (A.12)

Using the above results, we obtain:

A′S̃mhB
(
B′S̃hhB

)−
B′S̃hmA =

[
R

1
2 +Op(δ

−2
MT ) Op(δ

−2
MT )

Op(δ
−2
MT ) Op(δ

−2
MT )

][
Ir0+rm +Op(δ

−2
MT ) −Op(1)

−Op(1) Op(δ
2
MT )

][
R

1
2 +Op(δ

−2
MT ) Op(δ

−2
MT )

Op(δ
−2
MT ) Op(δ

−2
MT )

]

=

[
R+Op(δ

−2
MT ) Op(δ

−2
MT )

Op(δ
−2
MT ) Op(δ

−2
MT )

]

Therefore, the characteristic equation between K̃mA and K̃hB,
[
A′S̃mhB

(
B′S̃hhB

)−
B′S̃hmA− ℓA′S̃mmA

]
ξ = 0

can be rewritten as ([
R 0

0 0

]
− ℓ

[
Ir0+rm 0

0 0

]
+Op(δ

−2
MT )

)
ξ = 0

which is analogous to (A.10) with a small perturbation term.

Finally, by the continuity of the characteristic roots, we have ℓmh,r
p−→ 1 for r = 1, . . . , r0

and ℓmh,r
p−→ 0 for r = r0 + 1, . . . , rmax as T,Mm,Mh → ∞. Q.E.D

Proof for Lemma 2 Using Lemma 1, it is straightforward to show that ξ(r)
p−→ 1 for

0 ≤ r ≤ r0 and ξ(r)
p−→ 0 otherwise. Q.E.D

19Let M =

[
A B

C D

]
. Under some conditions, the MP inverse of M is given as M− =

[
A− +A−CS−BA− −A−CS−

−S−BA− S−

]
, where S = D − BA−C. We check that the required conditions hold in our

case. See Tian and Takane (2009) and Castro-González et al. (2015)
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Proof for Lemma 3. By applying Lemma 1 to the definition of CCD(r), it is straightfor-
ward to derive the main results in Lemmas 3. Q.E.D

Proof for Theorem 1. We need to show that

Pr(CCD(r) < CCD(r0)) −→ 1 as M1, . . . ,MR, T −→ ∞

for r 6= r0 and r ≤ rmax. By Lemma 3, it is easily seen that for r0 < r ≤ rmax we have:

CCD(r)− CCD(r0)
p−→ −1 < 0

while for 0 ≤ r < r0:
CCD(r)− CCD(r0)

p−→ −1 < 0.

Next, consider the case with r0 = 0. Then, for r0 < r ≤ rmax, it is straightforward to show that

CCD(r)− CCD(r0)
p−→ −1 < 0.

Q.E.D
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B Simulation results

Table 1: Average estimates of the number of global factors for Experiment 1 with (φG, φF ) = (0.5, 0.5), (r0, ri) = (2, 2) and
r∗max = max{r̂0 + r1, . . . , ̂r0 + rR}

CCD MCC ICchen AGGR CCD MCC ICchen CCD MCC ICchen

Panel A: (β, φe, κ) = (0, 0, 1)
M T R = 2 R = 5 R = 10
20 50 1.98(0.6|2.1) 1.98(0|1.8) 2.02(2.9|1.2) 2.83(65.3|2.3) 2(0|0.2) 2(0|0.1) 1(0|100) 2(0|0) 2(0|0) 1(0|100)
50 50 2(0.1|0) 2(0|0) 2(0.2|0) 1.98(0|2.2) 2(0|0) 2(0|0) 1.24(0|75.8) 2(0|0) 2(0|0) 1(0|100)
100 50 2(0|0) 2(0|0) 2(0|0) 2(0|0.4) 2(0|0) 2(0|0) 2(0|0.2) 2(0|0) 2(0|0) 1.02(0|97.6)
200 50 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
20 100 2(0|0.3) 1.97(0|2.7) 1.95(0.1|5.1) 2.56(53.5|4.7) 2(0|0) 2(0|0) 1(0|100) 2(0|0) 2(0|0) 1(0|100)
50 100 2(0|0) 2(0|0) 2(0|0) 2.29(29.5|0.3) 2(0|0) 2(0|0) 1(0|100) 2(0|0) 2(0|0) 1(0|100)
100 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 1.79(0|21.5) 2(0|0) 2(0|0) 1(0|100)
200 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 1.29(0|71.3)
20 200 2(0|0) 1.95(0|5.5) 1.92(0|7.9) 2.39(45.9|7.1) 2(0|0) 1.99(0|1.3) 1(0|100) 2(0|0) 2(0|0.4) 1(0|100)
50 200 2(0|0) 2(0|0) 2(0|0) 2.2(19.9|0.4) 2(0|0) 2(0|0) 1(0|100) 2(0|0) 2(0|0) 1(0|100)
100 200 2(0|0) 2(0|0) 2(0|0) 2.09(9|0) 2(0|0) 2(0|0) 1(0|100) 2(0|0) 2(0|0) 1(0|100)
200 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0.3) 2(0|0) 2(0|0) 1(0|100)

Panel B: (β, φe, κ) = (0.1, 0.5, 1)
M T R = 2 R = 5 R = 10
20 50 2.16(13.6|1.7) 2.24(22.9|0) 1.76(0.2|24) 2.61(65.2|16.5) 2(0.4|0.2) 2.2(19.6|0) 1(0|100) 2(0|0) 2.21(21|0) 1(0|100)
50 50 2.03(3|0) 2.01(0.9|0) 2(0.3|0.5) 1.62(0|35) 2(0|0) 2(0|0) 1.11(0|89.3) 2(0|0) 2(0|0) 1(0|100)
100 50 2.02(1.9|0) 2(0.3|0) 2(0|0) 1.88(0|11) 2(0|0) 2(0|0) 1.94(0|6.1) 2(0|0) 2(0|0) 1.01(0|99.4)
200 50 2(0.1|0) 2(0|0) 2(0|0) 1.95(0|4.7) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 1.93(0|6.7)
20 100 1.99(0|0.8) 1.99(0|1.5) 1.64(0|36.3) 2.26(53.6|25.4) 2(0|0) 2(0|0) 1(0|100) 2(0|0) 2(0|0) 1(0|100)
50 100 2(0|0) 2(0|0) 1.99(0|0.7) 2.18(31.1|11.7) 2(0|0) 2(0|0) 1(0|100) 2(0|0) 2(0|0) 1(0|100)
100 100 2(0|0) 2(0|0) 2(0|0) 1.92(0|8.1) 2(0|0) 2(0|0) 1.5(0|50.1) 2(0|0) 2(0|0) 1(0|100)
200 100 2(0|0) 2(0|0) 2(0|0) 1.98(0|2.3) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 1.18(0|81.9)
20 200 1.99(0|0.8) 1.86(0|13.5) 1.54(0|46) 2.01(43.9|32.3) 2(0|0) 1.97(0|3) 1(0|100) 2(0|0) 2(0|0.3) 1(0|100)
50 200 2(0|0) 2(0|0) 1.99(0|1.2) 2.02(43.9|16.1) 2(0|0) 2(0|0) 1(0|100) 2(0|0) 2(0|0) 1(0|100)
100 200 2(0|0) 2(0|0) 2(0|0) 2.02(8.2|6.3) 2(0|0) 2(0|0) 1(0|99.7) 2(0|0) 2(0|0) 1(0|100)
200 200 2(0|0) 2(0|0) 2(0|0) 2.02(0|1.9) 2(0|0) 2(0|0) 1.97(0|3.4) 2(0|0) 2(0|0) 1(0|100)

Panel C: (β, φe, κ) = (0.1, 0.5, 3)
M T R = 2 R = 5 R = 10
20 50 1.77(23.7|37.8) 2.18(23.3|5.8) 1.65(2.7|37.9) 3.12(96.2|1.5) 1.34(5.5|41.7) 2.22(22.4|0) 1(0|100) 1.33(0.5|37.8) 2.28(28.4|0) 1(0|100)
50 50 1.94(9.8|16.1) 1.89(2.3|13.3) 1.94(7.3|13.4) 0.66(0|95.5) 1.92(0.3|7.4) 1.97(0|2.9) 1(0|100) 1.95(0|4.5) 1.98(0.1|1.7) 1(0|100)
100 50 1.99(6.3|8) 1.92(0.5|8.4) 2.16(16.1|0.3) 0.95(0|84) 1.97(0|3.1) 1.93(0|6.7) 1.07(0|93.2) 1.99(0|1.2) 1.98(0|2.3) 1(0|100)
200 50 1.96(0.5|4.6) 1.95(0|5.4) 2.12(12.4|0) 1.21(0|69) 1.99(0|1.3) 1.98(0|2.2) 1.85(0|14.7) 1.99(0|0.8) 1.98(0|1.8) 1.01(0|99.4)
20 100 1.2(0|50.9) 1.22(0|71.9) 1.29(0.1|71.6) 2.89(92|3.6) 1.34(0|36.8) 1.26(0|26.2) 1(0|100) 1.46(0|28.8) 1.28(0|72) 1(0|100)
50 100 1.81(0.1|16.2) 1.6(0|39) 1.69(0|31.4) 2.21(60.2|25.6) 1.93(0|6.1) 1.67(0|33.1) 1(0|100) 1.96(0|4) 1.73(0|27.1) 1(0|100)
100 100 1.99(0|1.5) 1.93(0|6.6) 2(0|0.4) 1.12(0|75.4) 2(0|0.5) 1.97(3.4|0) 1(0|99.9) 2(0|0.1) 1.97(0|3.2) 1(0|100)
200 100 2(0|0) 2(0|0.1) 2(0|0) 1.55(0|42.8) 2(0|0) 2(0|0.1) 1.74(0|26.5) 2(0|0) 2(0|0) 1(0|100)
20 200 0.99(0|63.8) 0.63(0|97.8) 1.14(0|85.6) 2.78(87.2|6.7) 0.92(0|58.8) 0.7(0|99.7) 1(0|100) 0.96(0|54) 0.78(0|99.9) 1(0|100)
50 200 1.82(0|15.3) 1.21(0|70.9) 1.57(0|43.5) 1.79(44.2|40.4) 1.96(0|3.2) 1.25(0|74.6) 1(0|100) 1.99(0|0.8) 1.21(0|78.7) 1(0|100)
100 200 2(0|0.1) 1.95(0|5) 2(0|0.3) 1.42(21.7|55.5) 2(0|0) 1.99(0|1.4) 1(0|99.6) 2(0|0) 1.99(0|0.8) 1(0|100)
200 200 2(0|0) 2(0|0) 2(0|0) 1.75(0|23.9) 2(0|0) 2(0|0) 1.02(0|98.3) 2(0|0) 2(0|0) 1(0|100)

The average of r̂0 over 1,000 replications is reported together with the figures inside the parenthesis, (O|U), indicating the percentage of overesti-
mation and underestimation. r0 and ri are the true number of global factors and true number of local factors in group i. We set r1 = r2 = · · · = rR,
where R is the number of groups. Mi is the number of individuals in group i. In Experiments 1, 3 and 4, we set Mi = M for all i. T is the
number of time periods. φG and φF are the AR coefficients for the global and local factors. β, φe and κ control the cross-section correlation,
serial correlation and noise-to-signal ratio. For ICchen and AGGR, we assume that the true number of factors, r0 + ri is known. We still allow the
estimation uncertainty in implementing CCD and MCC using the r∗max.
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Table 2: Average estimates of the number of global factors for Experiment 2 with
uneven block sizes, (φG, φF ) = (0.5, 0.5) and r∗max = max{r̂0 + r1, . . . , ̂r0 + rR}

β φe κ T CCD MCC ICChen AGGR

Panel A: R = 2
0 0 1 50 2(0.2|0.5) 2(0|0) 1.01(0|99.1) 3.93(99.8|0)
0 0 1 100 2(0|0.2) 2(0|0) 1(0|100) 3.77(98.8|0)
0 0 1 200 2(0|0) 2(0|0) 1(0|100) 3.66(97|0)
0.1 0.5 1 50 2.15(11.8|0.2) 2.03(2.7|0) 1.02(0|98.4) 3.78(97.1|0)
0.1 0.5 1 100 2(0|0.1) 2(0|0) 1(0|100) 3.53(90.5|0.2)
0.1 0.5 1 200 2(0|0.3) 2(0|0) 1(0|100) 3.3(84.2|0.1)
0.1 0.5 3 50 2.21(25.9|15.3) 2(5.3|5.8) 1(0|99.9) 4(100|0)
0.1 0.5 3 100 1.7(0.2|25.6) 1.78(0|21.5) 1(0|100) 4(100|0)
0.1 0.5 3 200 1.6(0|33.7) 1.66(0|33.5) 1(0|100) 3.98(99.9|0)

Panel B: R = 5
0 0 1 50 2(0|0) 2(0|0) 1(0|100)
0 0 1 100 2(0|0) 2(0|0) 1(0|100)
0 0 1 200 2(0|0) 2(0|0) 1(0|100)
0.1 0.5 1 50 2(0|0) 2.36(35.6|0) 1(0|100)
0.1 0.5 1 100 2(0|0) 2(0|0) 1(0|100)
0.1 0.5 1 200 2(0|0) 2(0|0) 1(0|100)
0.1 0.5 3 50 2(3|3) 2.75(70.8|0) 1(0|100)
0.1 0.5 3 100 1.96(0|3.5) 1.97(0|3.1) 1(0|100)
0.1 0.5 3 200 1.94(0|4.8) 1.72(0|27.9) 1(0|100)

Panel C: R = 10
0 0 1 50 2(0|0) 2(0|0) 1(0|100)
0 0 1 100 2(0|0) 2(0|0) 1(0|100)
0 0 1 200 2(0|0) 2(0|0) 1(0|100)
0.1 0.5 1 50 2(0|0) 2.55(54.4|0) 1(0|100)
0.1 0.5 1 100 2(0|0) 2(0|0) 1(0|100)
0.1 0.5 1 200 2(0|0) 2(0|0) 1(0|100)
0.1 0.5 3 50 1.99(0|1) 3.1(98.2|0) 1(0|100)
0.1 0.5 3 100 2(0|0.5) 2(0|0) 1(0|100)
0.1 0.5 3 200 2(0|0.1) 2(0|0.5) 1(0|100)

We set (M1 = 50,M2 = 100) for R = 2, (M1 = 20,M2 = 40,M3 = 60,M4 =
80,M5 = 100) for R = 5, and (M1 = 20,M2 = 30,M3 = 40,M4 = 50,M5 =
60,M6 = 70,M7 = 80,M8 = 90,M9 = 100,M10 = 110) for R = 10. See also
footnotes to Table 1.
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Table 3: Average estimates of the number of global factors for Experiment 3 with (φG, φF ) = (0.5, 0.5), (β, φe, κ) =
(0.1, 0.5, 1) and r∗max = max{r̂0 + r1, . . . , ̂r0 + rR}

CCD MCC ICchen AGGR CCD MCC ICchen CCD MCC ICchen

Panel A: (r0, ri) = (0, 2)
M T R = 2 R = 5 R = 10
20 50 0.05(3.6|0) 0.9(74.6|0) 1(100|0) 0.33(32.1|0) 0(0|0) 1.04(95.8|0) 1(100|0) 0(0|0) 1.11(99.6|0) 1(100|0)
50 50 0.03(2.1|0) 0.09(9.1|0) 1(100|0) 0(0|0) 0(0|0) 0.02(1.7|0) 1(100|0) 0(0|0) 0.01(0.7|0) 1(100|0)
100 50 0.02(2.1|0) 0.01(0.9|0) 1(100|0) 0(0|0) 0(0|0) 0(0|0) 1(100|0) 0(0|0) 0(0|0) 1(100|0)
200 50 0.01(0.8|0) 0(0|0) 1(100|0) 0(0|0) 0(0|0) 0(0|0) 1(100|0) 0(0|0) 0(0|0) 1(100|0)
20 100 0(0|0) 0(0|0) 1(100|0) 0.25(24.6|0) 0(0|0) 0(0|0) 1(100|0) 0(0|0) 0(0|0) 1(100|0)
50 100 0(0|0) 0(0|0) 1(100|0) 0.15(15|0) 0(0|0) 0(0|0) 1(100|0) 0(0|0) 0(0|0) 1(100|0)
100 100 0(0|0) 0(0|0) 1(100|0) 0(0|0) 0(0|0) 0(0|0) 1(100|0) 0(0|0) 0(0|0) 1(100|0)
200 100 0(0|0) 0(0|0) 1(100|0) 0(0|0) 0(0|0) 0(0|0) 1(100|0) 0(0|0) 0(0|0) 1(100|0)
20 200 0(0|0) 0(0|0) 1(100|0) 0.19(19.2|0) 0(0|0) 0(0|0) 1(100|0) 0(0|0) 0(0|0) 1(100|0)
50 200 0(0|0) 0(0|0) 1(100|0) 0.08(8|0) 0(0|0) 0(0|0) 1(100|0) 0(0|0) 0(0|0) 1(100|0)
100 200 0(0|0) 0(0|0) 1(100|0) 0.03(2.5|0) 0(0|0) 0(0|0) 1(100|0) 0(0|0) 0(0|0) 1(100|0)
200 200 0(0|0) 0(0|0) 1(100|0) 0(0|0) 0(0|0) 0(0|0) 1(100|0) 0(0|0) 0(0|0) 1(100|0)

Panel B: (r0, ri) = (1, 1)
M T R = 2 R = 5 R = 10
20 50 1.09(7.2|0) 1.45(42|0) 1(0|0) 0.93(4.7|11.3) 1(0|0) 1.54(53.4|0) 1(0|0) 1(0|0) 1.66(66.2|0) 1(0|0)
50 50 1.03(2.4|0) 1.02(1.8|0) 1(0|0) 0.92(0|8.1) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
100 50 1.02(2|0) 1(0.4|0) 1(0|0) 0.96(0|3.9) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
200 50 1.01(0.6|0) 1(0|0) 1(0|0) 0.99(0|0.9) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
20 100 1(0|0) 1(0|0) 1(0|0) 0.87(0.4|13.1) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
50 100 1(0|0) 1(0|0) 1(0|0) 0.97(0.1|3.1) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
100 100 1(0|0) 1(0|0) 1(0|0) 0.98(0|1.8) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
200 100 1(0|0) 1(0|0) 1(0|0) 0.99(0|0.6) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
20 200 1(0|0) 1(0|0) 1(0|0) 0.83(0.1|17.6) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
50 200 1(0|0) 1(0|0) 1(0|0) 0.96(0|4.2) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
100 200 1(0|0) 1(0|0) 1(0|0) 0.98(0|2.4) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
200 200 1(0|0) 1(0|0) 1(0|0) 1(0|0.1) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)

Panel C: (r0, ri) = (3, 3)
M T R = 2 R = 5 R = 10
20 50 3.16(23.7|14.8) 3.02(9.7|8.2) 2.92(10.5|18.6) 4.9(88.1|7) 2.97(4.1|7.1) 3.03(3|0.5) 1(0|100) 2.99(0.1|1.5) 3.02(2.3|0.1) 1(0|100)
50 50 3.05(7.1|2.9) 2.98(0.7|3.2) 3.04(6.1|2.1) 2.1(0.6|74.1) 3(0.2|0.4) 2.99(0|0.7) 1.17(0|99.7) 3(0|0) 3(0|0.1) 1(0|100)
100 50 3.01(1.4|0.4) 2.99(0.2|0.9) 3.03(3.3|0) 2.58(0.7|40.7) 3(0|0.1) 3(0|0) 2.7(0|28.2) 3(0|0.1) 3(0|0.2) 1.01(0|100)
200 50 3(0.4|0.2) 3(0|0.2) 3.02(1.6|0) 2.82(0.4|18.7) 3(0|0) 3(0|0) 3(0|0.1) 3(0|0) 3(0|0) 2.64(0|32.3)
20 100 2.78(0.2|19) 2.38(0|57.7) 2.54(0.5|44.3) 4.25(76.9|13.9) 2.94(0|5.7) 2.45(0|55) 1(0|100) 2.98(0|1.5) 2.54(0|46) 1(0|100)
50 100 2.99(0|0.8) 2.93(0|7) 2.96(0|3.9) 3.72(55.6|20.7) 3(0|0) 2.98(0|1.6) 1(0|100) 3(0|0) 3(0|0.5) 1(0|100)
100 100 3(0|0) 3(0|0) 3(0|0) 2.66(0|30.9) 3(0|0) 3(0|0) 1.89(0|78) 3(0|0) 3(0|0) 1(0|100)
200 100 3(0|0) 3(0|0) 3(0|0) 2.91(0|8.8) 3(0|0) 3(0|0) 3(0|0) 3(0|0) 3(0|0) 1.21(0|98.3)
20 200 2.71(0|23.6) 1.78(0|91) 2.29(0|64.2) 3.88(69|20.3) 2.95(0|4.7) 1.98(0|96.8) 1(0|100) 2.99(0|1.1) 1.97(0.7|0) 1(0|100)
50 200 3(0|0.2) 2.81(0|19.2) 2.94(0|6.5) 3.29(40.1|27.6) 3(0|0) 2.91(0|8.6) 1(0|100) 3(0|0) 2.98(0|2.5) 1(0|100)
100 200 3(0|0) 3(0|0) 3(0|0) 3.21(22.6|14.1) 3(0|0) 3(0|0) 1.01(0|100) 3(0|0) 3(0|0) 1(0|100)
200 200 3(0|0) 3(0|0) 3(0|0) 2.95(0|4.9) 3(0|0) 3(0|0) 2.87(0|12.6) 3(0|0) 3(0|0) 1(0|100)

See footnotes to Table 1.
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Table 4: Average estimates of the number of global factors for Experiment 4 with correlated local factors, (φG, φF ) = (0.5, 0.5),
(r0, ri) = (2, 2), (β, φe, κ) = (0, 0, 1) and r∗max = max{r̂0 + r1, . . . , ̂r0 + rR}

ωF = 0.2 ωF = 0.4 ωF = 0.6 ωF = 0.8
R M T CCD MCC CCD MCC CCD MCC CCD MCC

2 20 50 2.02(4.9|2.8) 2(0.9|1) 2.26(29.5|2.9) 2.1(10.9|0.6) 2.75(75.5|1) 2.57(56.8|0.1) 2.97(96.9|0.1) 2.93(93.4|0)
2 50 50 2.01(1.3|0.1) 2(0.1|0) 2.23(23.4|0) 2.04(4.3|0.1) 2.79(78.4|0) 2.45(44.8|0) 3(99.8|0) 2.97(97.1|0)
2 100 50 2.01(1|0) 2(0|0.1) 2.19(19.2|0) 2.01(1.3|0) 2.76(76.1|0.1) 2.25(25.2|0.1) 3(99.7|0) 2.93(92.7|0)
2 200 50 2(0.3|0) 2(0|0) 2.18(17.6|0) 2(0.3|0.1) 2.74(73.8|0) 2.11(10.5|0) 3(100|0) 2.79(78.9|0)
2 20 100 2(0|0.2) 1.98(0|1.7) 2.2(21.5|1) 1.99(0.2|1.1) 2.85(85.8|0.5) 2.17(17.8|0.4) 2.99(99.2|0) 2.88(87.9|0)
2 50 100 2(0|0) 2(0|0) 2.1(10.3|0) 2(0|0) 2.84(84.3|0) 2.1(10|0.1) 3(100|0) 2.94(94.1|0)
2 100 100 2(0|0) 2(0|0) 2.07(6.8|0) 2(0|0) 2.82(81.7|0) 2.02(1.5|0) 3(100|0) 2.85(84.5|0)
2 200 100 2(0|0) 2(0|0) 2.07(6.5|0) 2(0|0) 2.8(80.2|0) 2(0|0) 3(100|0) 2.58(58.2|0)
2 20 200 2(0|0.3) 1.96(0|4) 2.07(9.3|1.7) 1.93(0|7.3) 2.89(90.1|0.7) 1.93(0.1|6.6) 2.99(99.3|0) 2.58(58.9|0.7)
2 50 200 2(0|0) 2(0|0) 2.02(1.5|0) 2(0|0) 2.9(90.4|0) 2(0.1|0) 3(100|0) 2.79(79|0)
2 100 200 2(0|0) 2(0|0) 2.01(1.4|0) 2(0|0) 2.9(89.6|0) 2(0|0) 3(100|0) 2.44(43.5|0)
2 200 200 2(0|0) 2(0|0) 2.01(1.1|0) 2(0|0) 2.88(87.9|0) 2(0|0) 3(100|0) 2(0|0)
5 20 50 2(0.1|0.5) 2(0|0) 2.19(19.8|0.8) 2.02(2.2|0) 2.87(87|0.2) 2.58(57.8|0) 3(100|0) 2.98(98.2|0)
5 50 50 2(0|0) 2(0|0) 2.12(11.7|0) 2(0.4|0) 2.88(87.6|0) 2.39(39.3|0) 3(100|0) 2.99(99.4|0)
5 100 50 2(0|0) 2(0|0) 2.08(7.5|0) 2(0|0) 2.86(86.1|0) 2.17(16.6|0) 3(100|0) 2.97(97.4|0)
5 200 50 2(0|0) 2(0|0) 2.08(7.7|0) 2(0|0) 2.83(83.4|0) 2.02(1.9|0.1) 3(100|0) 2.9(89.6|0)
5 20 100 2(0|0) 2(0|0.2) 2.1(10.5|0.1) 2(0|0) 2.95(94.5|0) 2.08(8.1|0) 3(100|0) 2.96(96|0)
5 50 100 2(0|0) 2(0|0) 2.03(2.8|0) 2(0|0) 2.92(92.3|0) 2.02(1.7|0) 3(100|0) 2.98(98.1|0)
5 100 100 2(0|0) 2(0|0) 2.01(1|0) 2(0|0) 2.9(89.6|0) 2(0|0) 3(100|0) 2.93(93.1|0)
5 200 100 2(0|0) 2(0|0) 2.01(0.8|0) 2(0|0) 2.89(88.7|0) 2(0|0) 3(100|0) 2.57(56.6|0)
5 20 200 2(0|0) 1.99(0|0.8) 2.02(1.8|0) 1.99(0|0.8) 2.99(99|0) 1.99(0|0.8) 3(100|0) 2.62(37.8|0)
5 50 200 2(0|0) 2(0|0) 2(0|0) 0(0.2|100) 2.97(97.2|0) 2(0|0) 3(100|0) 2.83(82.6|0)
5 100 200 2(0|0) 2(0|0) 2(0.2|0) 2(0|0) 2.94(94.2|0) 2(0|0) 3(100|0) 2.44(43.6|0)
5 200 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2.94(94.2|0) 2(0|0) 3(100|0) 2.03(2.6|0)
10 20 50 2(0|0.3) 2(0|0) 2.18(18.4|0.3) 2.01(1|0) 2.89(89.4|0) 2.6(60|0) 3(99.8|0) 2.99(99.1|0)
10 50 50 2(0|0) 2(0|0) 2.07(6.8|0) 2(0.2|0) 2.89(88.6|0) 2.38(38.1|0) 3(100|0) 3(99.7|0)
10 100 50 2(0|0) 2(0|0) 2.05(5.3|0) 2(0|0) 2.88(87.8|0) 2.1(10.1|0) 3(100|0) 2.99(98.5|0)
10 200 50 2(0|0) 2(0|0) 2.05(4.5|0) 2(0|0) 2.85(85.2|0) 2.01(1.3|0) 3(100|0) 2.89(89.3|0)
10 20 100 2(0|0) 2(0|0) 2.08(7.6|0) 2(0|0.1) 2.97(96.6|0) 2.05(5.3|0) 3(100|0) 2.99(98.7|0)
10 50 100 2(0|0) 2(0|0) 2.02(1.7|0) 2(0|0) 2.93(93.1|0) 2.01(0.8|0) 3(100|0) 2.99(98.6|0)
10 100 100 2(0|0) 2(0|0) 2(0.3|0) 2(0|0) 2.93(92.5|0) 2(0|0) 3(100|0) 2.95(94.8|0)
10 200 100 2(0|0) 2(0|0) 2.01(0.6|0) 2(0|0) 2.91(91.4|0) 2(0|0) 3(100|0) 2.59(59|0)
10 20 200 2(0|0) 2(0|0.2) 2.02(1.7|0) 2(0|0.5) 2.99(99.1|0) 2(0|0.2) 3(100|0) 2.67(67|0)
10 50 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2.97(96.9|0) 2(0|0) 3(100|0) 2.86(85.5|0)
10 100 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2.97(97.2|0) 2(0|0) 3(100|0) 2.4(40.2|0)
10 200 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2.96(96.1|0) 2(0|0) 3(100|0) 2.01(1.2|0)

We generate the local factors by Ft = ΦFFt−1 +wt with wt ∼ iidN(0,ΩF ), where Ft = [F ′
1t, . . . ,F

′
Rt]

′, wt = [w′
1t, . . . ,w

′
Rt]

′ and ΦF

is a diagonal matrix with the common elements, 0.5. We set the common diagonal elements of ΩF at 1, and the common off-diagonal
elements (denoted ωF ) at 0.2, 0.4, 0.6 and 0.8, respectively. See also footnotes to Table 1.
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C Empirical Results

Table 5: The main empirical results

Mi r̂i RIG RIF RIE
NoDur 131 1 0.165 0.093 0.737
Durbl 63 0 0.328 0 0.672
Manuf 244 0 0.321 0 0.679
Enrgy 92 1 0.199 0.232 0.562
Chems 67 0 0.3 0 0.7
BusEq 368 0 0.222 0 0.778
Telcm 69 0 0.221 0 0.779
Utils 79 2 0.083 0.542 0.373
Shops 242 0 0.222 0 0.778
Hlth 240 1 0.105 0.096 0.776
Money 525 1 0.274 0.101 0.602
Other 498 0 0.214 0 0.786

Avg/Total 2618 0.226 0.058 0.708

Mi is the number of firms in each industry. r̂i is the
estimated number of local factors. RIG, RIF and RIE
stand for the relative importance ratios for the global,
local factors and idiosyncratic components, respectively.
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Figure 1: Average pairwise correlations of returns

Figure 2: Average pairwise correlations of residuals after concentrating out Ĝ
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Figure 3: Average pairwise correlations of residuals after concentrating out Ĝ and F̂i’s
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Figure 4: The global factor and market factor

Figure 5: Density plots of the global and local factor loadings
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