
This is a repository copy of wrBench: Comparing Cache Architectures and Coherency 
Protocols on ARMv8 Many-Core Systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/178390/

Version: Accepted Version

Article:

Gao, W-R, Fang, J-B, Huang, C et al. (2 more authors) (2023) wrBench: Comparing 
Cache Architectures and Coherency Protocols on ARMv8 Many-Core Systems. Journal of 
Computer Science and Technology, 38 (6). pp. 1323-1338. ISSN 1000-9000 

https://doi.org/10.1007/s11390-021-1251-x

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Wanrong Gao et al. wrBench: Comparing Cache Architectures and Coherency Protocols on ARMv8 Many-Core Systems.
JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 33(1): 1–18 January 2018. DOI 10.1007/s11390-015-0000-0

wrBench: Comparing Cache Architectures and Coherency Protocols
on ARMv8 Many-Core Systems

Wan-Rong Gao1, Jian-Bin Fang1,∗, Chun Huang1, Chuan-Fu Xu1, and Zheng Wang2

1College of Computer Science, National University of Defense Technology, Changsha 410073, China
2School of Computing, University of Leeds, Leeds LS2 9JT, UK

E-mail: {gaowanrong, j.fang, chunhuang, xuchuanfu}@nudt.edu.cn; z.wang5@leeds.ac.uk

Received July 15, 2018 [Month Day, Year]; accepted October 14, 2018 [Month Day, Year].

Abstract Cache performance is a critical design constraint for modern many-core systems. Since the cache often works
in a “black-box” manner, it is difficult for the software to reason about the cache behavior to match the running software
to the underlying hardware. To better support code optimization, we need to understand and characterize the cache
behavior. While cache performance characterization is heavily studied on traditional x86 architectures, there is little work
for understanding the cache implementations on emerging ARMv8 based many-cores. This paper presents a comprehensive
study to evaluate cache architecture design on three representative ARMv8 multi-cores, Phytium 2000+, ThunderX2, and
Kunpeng 920 (KP920). To this end, we develop the wrBench, a micro-benchmark suite to measure the realized latency
and bandwidth of caches at different memory hierarchies when performing core-to-core communications. Our evaluation
provides extensive quantified results of the cache and its coherence protocol for ARMv8 many-cores and reveals interesting
undocumented features. Our paper also provides discussions and guidelines for optimizing memory access on ARMv8
many-cores.

Keywords ARMv8 Many-Cores, Cache Architecture, Microbenchmark, Core-to-Core Communication

1 Introduction

In recent years, ARMv8-based many-core CPUs

are emerging as a compelling alternative for building

high-performance computing (HPC) systems [1–3]. Ex-

amples of such use cases include Phytium 2000+ for

China’s exascale supercomputer prototype [4, 5], and

ThunderX2 in the Astra supercomputer [6]. Studies

suggest that ARMv8-based HPC systems can achieve

comparable performance as the traditional HPC hard-

ware and are thus strong contenders in the market of

next-generation HPC servers [7].

In an era where the CPU hits the memory wall [8],

the cache is a key CPU component for achieving high

performance. Cache performance is important for HPC

many-cores because workloads running on such systems

often incur frequent inter-core communications that can

dominate the program execution time. To unlock the

potential hardware performance, an important task of

software optimization is to match the memory access

pattern to the underlying cache architecture and coher-

ence protocol. Unfortunately, doing so is non-trivial as

Regular Paper
Special Section of APPT 2021
This work is partially funded by the National Key Research and Development Program of China under Grant No. 2018YFB0204301,

and the National Natural Science Foundation of China under Grant Nos. 61972408 and 61872294.
∗Corresponding Author
1Ohttps://jcst.ict.ac.cn/EN/column/column107.shtml, May 2020.
©Institute of Computing Technology, Chinese Academy of Sciences 2021



2 J. Comput. Sci. & Technol., January 2018, Vol., No.

the cache typically works as a “black box” with many

implementation details unavailable to the software de-

velopers. To support code and performance optimiza-

tion for many-core systems, it is highly attractive to

have a way to help developers evaluate, characterize

and understand the cache behavior of the underlying

hardware to adapt their code accordingly.

Micro-benchmarks are an effective way of reveal-

ing the hardware implementation to allow software

developers obtain hardware insights. Indeed, micro-

benchmarks have been widely used to characterize and

evaluate the memory hierarchy system on the conven-

tional x86 multi-cores. Examples of such benchmarks

include the STREAM benchmark suite, which focuses on

measuring the memory throughput, i.e., data access-

ing bandwidth with multi-cores [9]. The lmbench suite

quantifies the performance of various computer compo-

nents [10]. They use a pointer-chasing approach to mea-

sure the overhead of moving data across cache levels on

a single core. However, lmbench ignores the communi-

cation overhead of transferring cachelines across differ-

ent hardware cores, which is essential to optimize par-

allel programs concerning shared memory accesses. For

this, Molka et al. provide a set of micro-benchmarks

(BenchIT) to characterize such performance behav-

iors [11]. This tool has proven extremely valuable for

quantifying core-to-core communication [12,13]. While

memory performance characterization is a heavily stud-

ied field for the x86 CPUs, there is little work for un-

derstanding the memory hierarchy design for ARMv8

high-performance many-core systems. As ARMv8 is

emerging as an important class of CPUs in the HPC

domain, it is desired to have a dedicated benchmark

suite designed for characterizing the memory hierarchy

of ARMv8 many-cores.

This work aims to close the gap of lacking ARMv8

memory characterization benchmarks. To this end, we

have extended the BenchIT benchmark suite to adapt

it to ARMv8 systems in terms of obtaining architecture

parameters, setting cacheline states, enabling the clock-

wise timing, and using the cache-related instructions

(Section 3). Our porting leads to a new, open-source

benchmark suite, namely wrBench1.

We demonstrate the benefit of wrBench by applying

it to three representative ARMv8 many-core systems:

Phytium 2000+, ThunderX2, and KP920. We showcase

that wrBench is useful in characterizing the underlying

memory hirechy of ARMv8 systems. With wrBench,

we measure the core-to-core communication perfor-

mance of moving cachelines between distinct cores in

terms of latency and bandwidth (Section 3). We obtain

undisclosed performance data and reveal many micro-

architecture details of the many-core systems on both

latency (Section 4) and bandwidth (Section 5). With

the extensive, quantified results in place, we compare

different cache architecture design of the three ARMv8

processors. We then give quantitative guidelines for

optimizing software memory accesses on ARMv8 many-

core systems (Section 6).

Our evaluation results provide a quantitative refer-

ence for analyzing, modeling, and optimizing parallel

programs on ARMv8 many-core systems. To the best

of our knowledge, this is the first effort of systematically

dissecting the memory hierarchy of ARMv8 many-core

systems.

2 System Architectures

This section describes the three ARMv8 many-core

CPUs target in this work. Table 1 summarizes the evlu-

ation platforms used in this work.

1Available at https://github.com/WanrongGao/wrBench



First Author et al.: Shortened Title Within 45 Characters 3

Table 1. System configuration of the three CPUs

Phytium 2000+ 2x ThunderX2 99xx 2x KP920-6426
Microarchitecture Mars II (Phytium) Vulcan (Cavium ) TaiShan v110 (HiSilicon)
Core frequency 2.2 GHz 2.5 GHz 2.6 GHz
Processor Interconnect / CCPI2 Hydra Interface
#Cores 1x 64 2x 32 2x 64
L1 cache(I/D) 32 KB/32 KB(per core) 32 KB/32 KB(per core) 64 KB/64 KB(per core)

L2 cache 2MB(per core group, shared
, inclusive) 256 KB(per core) 512 KB(per core)

L3 cache / 32 MB(per chip, shared, exclusive) 64 MB(per chip, shared)
DRAM Support 8x DDR4-2400 8x DDR4-2666 8x DDR4-2933
Operating system Linux kernel version 4.19.46 Linux kernel version 4.19.46 Linux kernel version 4.19.46
Compiler gcc 9.3.0 gcc 8.2.1 gcc 8.2.1

2.1 Phytium 2000+ Architecture

Fig.1. A high-level view of the Phytium 2000+ architecture. The
64 processor cores are groups into eight panels (a), where each
panel contains eight ARMv8 based xiaomi cores (b).

Figure 1 gives a high-level view of Phytium 2000+

based on the Mars II architecture. It features 64

ARMv8 compatible processing cores, which are orga-

nized into eight panels. Note that each panel connects

a memory control unit (MCU).

Each panel has eight xiaomi cores, and each core has

a private L1 cache of 32KB for data and instructions,

respectively. Every four cores form a core group and

share a 2MB L2 cache. Given that the L1 read port is

128 bits in width and runs at 2.2GHz, we calculate that

the theoretical L1 read bandwidth is 35.2GB/s.

Each panel contains two directory control units

(DCU) and one routing cell. The DCUs on each panel

act as dictionary nodes of the entire on-chip network.

With these function modules, Mars II conducts a hier-

archical on-chip network. Phytium 2000+ uses a home-

grown Hawk cache coherency protocol to implement a

distributed directory-based global cache coherency.

2.2 ThunderX2 Architecture

ThunderX2 is built based on the Vulcan microar-

chitecture. Figure 2 shows a two-socket Vulcan system.

There are 32 cores per socket operating at 2.5GHz, each

with a 32KB data cache, a 32KB instruction cache, and

a 256KB L2 cache. All the cores within a socket share

a 32MB last level cache (L3), arranged as 2MB slices

via a dual-ring on-chip bus. The L3 cache is exclusive,

filling up with evicted L2 cachelines. This ring bus

is connected to the 2nd-generation Cavium’s Coherent

Processor Interconnect (CCPI2). There are two load-

store units, each capable of moving 128-bit of data per

core. We calculate that the theoretical peak L1 read

bandwidth is 80GB/s.

Fig.2. The ThunderX2 architecture.



4 J. Comput. Sci. & Technol., January 2018, Vol., No.

2.3 KP920 Architecture

The KP920 system has two 64-bit ARMv8 proces-

sors designed by HiSilicon based on the TaiShan v110

microarchitecture. The two sockets are connected with

Hydra interface ports. Each socket has two Super CPU

Cluster (SCCL) and one Super IO Cluster (SICL), con-

nected with an interchip ring bus. There are eight CPU

Clusters (CCLs) within an SCCL, and each CCL has

four cores running at 2.6GHz. Besides, SCCL has its

memory controllers and an L3 cache slice. Each SCCL

works as a NUMA node. That is, the two-socket KP920

can be seen as four NUMA nodes.

The overview of the whole TaiShan v110 microar-

chitecture is shown in Figure 3. Each core features

64KB private L1 instruction and data caches as well as

512KB of private L2. All the 64 cores in one SCCL

share 64MB of the last level cache. Four cores within a

CCL are accompanied with an L3 cache tag partition.

Fig.3. The KP920 architecture.

3 Benchmarking Methodology

Nowadays, many-core CPUs feature a memory sys-

tem hierarchy to hide memory latencies and improve

memory bandwidths. But these architectural features

are transparent for programmers, and only limited soft-

ware control is available. It is challenging to design

micro-benchmarks that can reveal the detailed perfor-

mance properties of a given cache architecture. There-

fore, we carefully design a suite of memory micro-

benchmarks (wrBench) to characterize and compare

the cache architectures of representative ARMv8 many-

core systems.

3.1 Benchmark Design

This benchmark is extended based on the work [11,

14], mainly targeted the x86 architectures. Due to

the architecture and ISA differences between x86 and

ARMv8, we have heavily extended this memory bench-

mark to support the ARMv8 systems, aiming to be

a versatile cross-architecture modeling tool for cache-

coherent many-core architectures.

Overview. Figure 4 shows that wrBench has six mea-

surement steps (S1–S6). We use three threads (T0, Tn,

and Tx), each pinned to a distinct hardware core (C0,

Cn, and Cx). S1 ensures that all the required TLB en-

tries for the current measurement are present in C0.

We synchronize the threads at S2 and S4. S3 prepares

data in the specified cache level of Cn in a well-defined

coherency state (modified, exclusive, or shared). We

have to flush the caches at S5. Because the memory

benchmarks often show a mixture of effects from dif-

ferent cache levels rather than just one. To separate

these effects, we explicitly place data in certain cache

levels [14]. S6 is the latency/bandwidth measurement

step, which always runs on C0.



First Author et al.: Shortened Title Within 45 Characters 5

Fig. 4. The measurement steps with three threads (or cores).
Note that T0 denotes a thread running core 0 (C0) and Tn de-
notes a thread running on core n (Cn). S1–S6 represent the six
measurement steps, respectively.

(a) (b)

Fig.5. Different memory access pattern supported by wrBench:
accessing randomly linked data elements to measure latency (a),
and accessing contiguous data elements to measure bandwidth
(b). Here, “ran” represents arbitrary data contents.

We use pointer-chasing to measure the latency of

moving a cacheline by randomly accessing discontin-

uous data elements (Figure 5(a)). Each cacheline is

accessed only once to avoid data reuse. No consecu-

tive cachelines are accessed to eliminate the influence

of the adjacent line prefetcher. By contrast, we measure

the sustainable bandwidth by continuously accessing a

chunk of data elements (Figure 5(b)).

Setting cacheline states. Tn places data in the

caches in a well-defined coherency state at S3. These

states are generated as follows: (1) Modified state: Tn

writing the data, invalidating all copies in other cores.

(2) Exclusive state: Tn first writing to the memory to

invalidate copies in other caches, then invalidating its

cache (dc instruction), and then reading the data. (3)

Shared state: Tn caching data in exclusive state, and

then reading the data from Cx.

Enabling the clock-wise timing. For each mea-

surement, we need a high-resolution timer to mea-

sure durations. We can enable the clock-wise timing

with the Performance Monitors Cycle Count Regis-

ter (PMCCNTR_EL0) on the ARMv8-based architecture.

But this register is only accessible in the kernel mode.

Thus, we use a kernel module to activate the perfor-

mance monitoring unit. The critical steps of this ker-

nel module are summarized as follows: (1) Reading

the contents of the control register PMCR_EL0, (2) Ac-

tivating the user mode by writing PMUSERENR_EL0, (3)

Resetting all hardware counters by writing PMCR_EL0,

and (4) Enabling the performance counter by writ-

ing PMCNTENSET_EL0. With this kernel module, the

PMCCNTR_EL0 register is accessible via the mrs instruc-

tion in the user mode.

Using the vector instructions. We use the vec-

tor instructions to read/write data from/to the mem-

ory system. The ARMv8-based architecture extends

NEON with 32 128-bit vector registers while keeping

the same mnemonics as general registers [15]. In as-

sembly instructions, the register can identify the vec-

tor format including Vn (128-bit scalar), Vn (.2D, .4S,

.8H, .16B) (128-bit vector), and Vn (.1D, .2S, .4H, .8B)

(64-bit vector). We use the ld1/st1 instruction on the

ARMv8 architecture when moving data between regis-

ters and memory. The selected vector format is four

single-precision floating-point words (.4S).

Using special instructions. Besides the general in-

structions, we use special ARMv8 instructions. dc

civac is used to invalidate specified cachelines. It is

useful when controlling the initial coherency state of



6 J. Comput. Sci. & Technol., January 2018, Vol., No.

cachelines. To put target data into the right cache

level, we use dmb to ensure that the ARMv8 proces-

sors perform no optimizations on the execution order

of the fetch instructions. In addition, we use the align

instruction to avoid unaligned memory accesses.

3.2 Benchmark Portability

Our work targets the widely used ARMv8 many-

core processors. This architecture is used by several

high-performance computing systems, including Astra,

Isambard, and Fugaku. Recently, ARM has announced

the release of the ARMv9 architecture but there are cur-

rently no commercial off-the-shelf ARMv9 processors

available. We believe wrBench can be easily ported to

ARMv9. Doing so would require using ARMv9-specific

assembly instructions for loads and stores as well as

providing routines for obtaining system parameters on

frequency and cache organization. Other than these,

the majority part of wrBench can remain unchanged.

Our future work will look into the memory characteri-

zation of ARMv9.

4 Latency Results

In this section, we analyze and compare the la-

tency results of the three ARMv8 architectures. We

measure the latency of c0 loading cachelines which are

exclusive, modified, or shared in different cores and

different cache levels. The data set size is set from half

of the L1 cache (16KB or 32KB) to 200MB to cover

each memory level. We find that the latency results

show a visible phase change as the size of the data set

increases. And this phase change is consistent with the

capacity of each cache level.

4.1 On Phytium 2000+

The cores on Phytium 2000+ are organized into

eight panels. We measure the latency when c0 is ac-

cessing cores on panel1 to panel7, respectively. For

each panel, we choose to use the first core. Besides,

the “local” latency means accessing data that has been

prepared in c0 locally. The “same core group” means

the accessed core and caches are located on the same

core group with c0, sharing the same L2 cache slice.

The results are shown in Figure 6 and Table 2.

Local accesses. From Figure 6, we see that the local

accessing latency is independent of the coherency state

of the accessed data. The local latency changes twice

during the whole process, i.e., at 32KB (the size of L1

cache) and 2MB (the size of L2 cache). The latencies of

accessing the local L1 and L2 cache are 1.8ns (4cycles)

and 9.1ns (20cycles), respectively. The specification of

Mars I describes that accessing the local L1 and L2

takes 2ns and 8ns, respectively, which is identical to

our measured results [3].

Within a core group. Every four cores on

Phytium 2000+ share a local L2 cache slice and form a

core group. Thus, the accessing latency to the L2 cache

is the same as the local one (9.1ns). For the remote L1

cache, we observe the latency reduces from 18.6ns to

9.1ns when the cacheline is shared. This change shows

that c0 can directly obtain data from the L2 cache. It

can be inferred that the L2 cache is inclusive. Cachlines

can be modified in the L1 cache without being written

back to the L2 cache because of the write-back policy

adopted on Phytium 2000+. This feature leads to a

larger overhead (18.6ns versus 9.1ns) when accessing

the modified data located in the remote L1.

Across core group. The hardware cores on a differ-

ent core group from c0 will not share the same L2 cache

slice. Accessing data across these cores must be for-

warded by the routing cell. As a result, the latency

numbers will be larger. The specific latency numbers

are determined by the distance of these core groups to



First Author et al.: Shortened Title Within 45 Characters 7

0 

50 

100 

150 

200 

250 

300 

350 

400 

16k 32k 64k 256k 2M 16M 128M

la
te

nc
y 

[c
yc

le
s]

data set size [Byte]

local
same core group

panel 0
panel 1
panel 2
panel 3
panel 4
panel 5
panel 6
panel 7

(a) Exclusive or Modified

0 

50 

100 

150 

200 

250 

300 

350 

400 

16k 32k 64k 256k 2M 16M 128M

la
te

nc
y 

[c
yc

le
s]

data set size [Byte]

local
same core group

panel 0
panel 1
panel 2
panel 3
panel 4
panel 5
panel 6
panel 7

(b) Shared (other cores)

0 

50 

100 

150 

200 

250 

300 

350 

400 

16k 32k 64k 256k 2M 16M 128M

la
te

nc
y 

[c
yc

le
s]

data set size [Byte]

local
same core group

panel 0
panel 1
panel 2
panel 3
panel 4
panel 5
panel 6
panel 7

(c) Shared (c3)

Fig.6. Read latencies for accessing different locations on Phytium 2000+.

Table 2. Latencies (ns(cycle)) for accessing different locations on Phytium 2000+

Exclusive/Modified Shared(other cores) RAML1 L2 L1 L2
local 1.8(4) 9.1(20) 1.8(4) 9.1(20) 122.3(269)same core group(c1) 18.6(41) 9.1(20)

panel 0(c4) 45(99)-49.1(108) 42.3(93) 37.3(82)-39.5(87) 42.3(93)
panel 1(c8) 53.6(118)-59.5(131) 54.1(119) 44.5(98)-50.9(112) 54.1(119) 138.2(304)
panel 2(c16) 75.5(166)-80.5(177) 76.3(168) 68.2(150)-72.3(159) 76.3(168) 158.2(348)
panel 3(c24) 65.5(144)-70.5(155) 65.5(144) 57.7(127)-61.8(136) 65.5(144) 154.6(340)
panel 4(c32) 62.7(138)-67.3(148) 61.4(135) 53.6(118)-58.2(128) 61.4(135) 140(308)
panel 5(c40) 70.9(156)-77.3(170) 72.7(160) 60.5(133)-88.8(147) 72.7(160) 162.7(358)
panel 6(c48) 92.3(203)-99.1(218) 95.5(210) 80.9(178)-87.3(192) 95.5(210) 174.5(384)
panel 7(c56) 82.7(182)-88.6(195) 84.5(186) 74.5(164)-80(176) 84.5(186) 167.3(368)

c0. The latency difference between c0 accessing the two

core groups on a remote panel is around 3ns. We choose

to use the core group with a smaller latency to represent

the entire panel in this context. It is worth noting that

Phytium 2000+ adopts a unique strategy when access-

ing shared cachelines. c0 obtains data neither from the

most recently visited copy (like the MESIF protocol)

nor from the nearest copy (the strategy used by Thun-

derX2). If a third copy is in the same core group with

c0, it can be obtained directly from the shared local L2

cache . In this situation, when the size of the data set is

smaller than the L2 cache, the latencies to access data

are equal to the local L2 latency (9.1ns). The data

beyond the L2 cache size can only be obtained from

the remote memory module. Thus, the latency shows a

leap at 2MB, displayed in Figure 6(c). Otherwise, data

can be obtained only from the first copy rather than

a closer copy (Figure 6(b)). The latencies of access-

ing the shared cachelines in the remote L2 caches are

consistent with the exclusive. Besides, the cores on the

same panel are connected directly to the same memory

module and incur a similar latency. The latencies to

other panels increase over the panel distance.

4.2 On ThunderX2

The latency measurement results on ThunderX2 are

shown in Figure 7 and Table 3. The “local” has the

same meaning as that in Section 4.1. The “same socket”

refers to loading data from cores that share the same L3

cache with c0. And here, we choose to use c1. The re-

sults labeled as “another socket” denote accesses to data

that is located in the core-caches of the other socket.

And here we choose to use c32.

Local accesses. The three turning points of the local

latency are consistent with the sizes of the three cache

levels of ThunderX2. The latencies are 1.2ns (3cycles),



8 J. Comput. Sci. & Technol., January 2018, Vol., No.

0 

100 

200 

300 

400 

500 

600 

16k 32k 64k 256k 2M 32M 128M

la
te

nc
y 

[c
yc

le
s]

data set size [Byte]

local
same socket
another socket

(a) Exclusive or Modified or Shared(c40)

0 

100 

200 

300 

400 

500 

600 

16k 32k 64k 256k 2M 32M 128M

la
te

nc
y 

[c
yc

le
s]

data set size [Byte]

local
same socket
another socket

(b) Shared(c8)

Fig.7. Read latencies for accessing different locations on ThunderX2.

Table 3. Latencies (ns(cycle)) for accessing different locations on ThunderX2

Exclusive/Modified/Shared(c40) Shared(c8) RAML1 L2 L3 L1 L2 L3
local 1.2(3) 4.00(10) 24.00(60) 1.2(3) 4.00(10)

24.00(60) 95.6(239)
same socket 18.0(45)-

26.0(65) ∼31.2(78) 18.0(45)-
26.0(65) ∼31.2(78)

another socket 78.0(195)-
112.4(281) ∼140.7(352) 140.7(352) 212.3(531)

4ns (10cycles), and 24ns (60cycles), respectively. These

results are consistent with the numbers we measured

with lmbench (1.6ns, 4.4ns and 25.8ns).

Within a socket. As c1 shares the same L3 slice with

c0, the data located in the L3 cache of c1 can be ac-

cessed directly while accessing the local L3 cache (24ns).

Since L3 in ThunderX2 is exclusive, it does not contain

data placed in the higher caches. Therefore, when c0

accesses data in the remote L1 or L2 caches, it must first

load data from the higher-level caches. This operation

is independent of the coherency states (7.2ns).

Another socket. Access to another socket is through

the CCPI2 link. Transferring data from the L3 cache of

c32 takes around 140.7ns (352cycles). We obtain that

the latency of walking through this link is 116.7ns by

comparing the latency numbers of accessing c1 and c32.

When the cachelines are shared with c8 (Figure 7(b)),

the latencies of loading them from caches of c32 be-

come the same as that from c1. When the second copy

is placed on c40 (Figure 7(a)), transferring the shared

cachelines has no difference from the exclusive state.

These indicate that the memory controller is able to

fetch the nearest copy.

4.3 On KP920

As we have shown in Section 2.3, KP920 has four

NUMA nodes. To measure the latency across NUMA

nodes, we choose to use the first core of each remote

node. We also measure the latency numbers of c0 ac-

cessing c0 (local), c1 (the same CCL), and c4 (the same

SCCL) within a NUMA node. The results are shown

in Figure 8 and Table 4. It should be noted that the

L3 columns in the table only lists stable values.

Within a NUMA node. The first two turning points

of the local latency occur at 64KB and 512KB, i.e.,

the private L1 and L2 cache size per core. The last

change is at 64MB, which is the LLC size on a socket.

The accessing latencies of the local L1 and L2 caches

are 1.15ns (3cycles) and 2.7ns (7cycles), respectively.



First Author et al.: Shortened Title Within 45 Characters 9

0 

100 

200 

300 

400 

500 

600 

32k 64k 512k 2M 16M 64M

la
te

nc
y 

[c
yc

le
s]

data set size [Byte]
local

same CCL(node 0)
same SCCL(node 0)

node 1
node 2
node 3

(a) Exclusive or Modified

0 

100 

200 

300 

400 

500 

600 

32k 64k 512k 2M 16M 64M

la
te

nc
y 

[c
yc

le
s]

data set size [Byte]
local

same CCL(node 0)
same SCCL(node 0)

node 1
node 2
node 3

(b) Shared(node 0)

Fig.8. Read latencies for accessing different locations on KP920.

Table 4. Latencies (ns(cycle)) for accessing different locations on KP920

Exclusive or Modified Shared RAML1 L2 L3 L1 L2 L3
local 1.15(3) 2.7(7) 14.2(37) 1.15(3) 2.7(7) 14.2(37) 91.5(238)same
CCL 11.9(31) 14.2(37) 11.9(31) 14.2(37)

same
SCCL 39.2(102)-45(122) 45(122) 44.2(115) 39.2(102)-45(122) 45(122) 44.2(115)

node 1 68.1(177)-75(195) 75(195) 43.8(144)-61.5(160) 61.5(160) 61.5(160)
-75(195) 102.3(264)

node 2 146.9(382)-158.1(411) 164.2(427) 28.1(73)-30.4(79) 31.2(81) 189.2(492)
node 3 161.2(419)-176.5(459) 183.5(477) 208.5(542)

The lmbench measurement results are 1.5ns and 3.1ns,

which are basically consistent with ours. For the remote

L1 and L2 caches, we observe that the latencies are close

to accessing the corresponding L3 caches. This obser-

vation indicates that the L3 cache of KP920 is inclusive.

As shown in Figure 8, the latency of accessing L3 varies

a lot. The specific changing process is shown in Table 5.

c1 is suited in the same CCL with c0, sharing the same

L3 Tag Partition. Thus, its latency should be the same

as “local” in the L3 stage. We mainly compare “local”

and “same SCCL” latency (Figure 8(a)). We see that

both of them keep steady before 8MB. After that, the

former increases (from 14.2ns to 38.5ns) as the dataset

grows while the latter decreases (from 44.2ns to 38.5ns).

Finally, they meet at 32MB and continue to increase till

64MB. The difference before 32MB illustrates the LLC

of KP920 has an affinity to the cores. That is, differ-

ent CCLs correspond to different L3 cache slices. The

accessed data is prioritized to be placed in their corre-

sponding local L3 slice, which differs from ThunderX2.

Table 5. Latencies (ns(cycle)) for accessing LLC on KP920

-8MB 8-32MB 32-64MB
local 14.2(37) 14.2(37)-38.5(100) 38.5(100)-53.5(139)same CCL

same SCCL 44.2(115) 44.2(115)-38.5(100)
node 1 75(195) 75(195)-85(221)
node 2 164.2(427) 164.2(427)-171.2(445)
node 3 183.5(477) 189.2(492)-183.5(477)



10 J. Comput. Sci. & Technol., January 2018, Vol., No.

The latency of accessing the L3 cache on ThunderX2

does not vary from core to core, while the LLC is also

divided into slices. The latencies eventually reach the

same before the whole 32MB LLC is filled. Thereafter,

the data will be placed in another L3 cache on node1.

The more dataset is over 32MB, the larger overhead

the remote access incurs. The latency increases from

38.5ns to 53.5ns.

Across NUMA nodes. Accessing exclusive or mod-

ified cachelines on the remote nodes requires walking

through the interchip bus (node1) or the Hydra link

(node2 and node3). As a result, the latency numbers

are larger compared with “same SCCL”. From Table 4,

we see that the latencies across SCCLs and sockets are

approximately 10.8ns and 86.9ns, respectively.

When the cachelines are shared (suppose that the

second copy is in node0), the latencies across the

NUMA node show a significant difference (Figure 8(b)).

The latencies of accessing cores in another socket

(node2 and node3) decrease significantly to the same

value (31.2ns). It is even smaller than the latency of ac-

cessing “same SCCL” (local node, 44.2ns). It is possible

because c0 accesses the copy in node0 rather than nodes

of another socket. For a core on the same socket but in

another SCCL (node1), the latency also decreases but

with a very small difference. It does not reach the value

of accessing the local node. We argue that the data is

still transferred through the interchip bus.

5 Bandwidth Results

In this section, we focus on the read bandwidth.

The experimental settings are the same as those for the

latency measurement. Our following analysis will show

that the read bandwidth results are consistent with the

latency results, with only several exceptions.

5.1 On Phytium 2000+

As shown in Figure 9, the read bandwidth of the lo-

cal L1 cache is 33.6 GB/s, which is close to its theoret-

ical peak (35.2 GB/s). Meanwhile, reading data from

the local L2 cache can reach a bandwidth of 18.2 GB/s.

The read bandwidth to the L2 cache of c1 is the same

as that reading from the local L2 cache of c0. It is

because the two cores share the same L2 cache slices.

But the bandwidth is reduced to be around 13.3 GB/s

when c0 loads exclusive or modified cachelines suited

in c1’s L1 cache. This is because a check operation is

required. The bandwidths of accessing the L1 and L2

caches of the remote cores have a similar trend. The

specific bandwidth numbers can be found in Table 6. If

the cachelines are shared, it is unnecessary to perform

this check step. Thus, the remote L1 bandwidth reaches

the same number as that accessing the corresponding

L2 cache.

Table 6. Bandwidth (GB/s) on Phytium 2000+

Exclusive/Modified Shared RAML1 L2 L1 L2
local 33.6 18.2 33.6 18.2 6.5same core
group 13.3 13.3

panel 0 11.9 12.5 12.5 11.8
panel 1 10.5 11.5 11.4 11 5.6
panel 2 8.3 9 8.8 9 5
panel 3 9 10 9.8 10 5
panel 4 9.4 10.5 10.8 10.5 5.3
panel 5 8.5 9.5 9.6 9.5 4.5
panel 6 6.9 7.8 7.7 7.8 4
panel 7 7.6 8.4 8.3 8.4 4.3

Because c0, c1, c4 are located on the same panel,

they are connected directly to the same memory mod-

ule. When accessing data in the local memory module,

the bandwidth can reach around 6.5 GB/s. The band-

width of accessing the remote memory modules varies

from panel to panel. The farther a panel is located from

panel 0, the smaller bandwidth we will have.



First Author et al.: Shortened Title Within 45 Characters 11

0 

5 

10 

15 

20 

25 

30 

35 

16k 32k 64k 256k 2M 16M 128M

ba
nd

w
id

th
 [G

B
/s

]

data set size [Byte]

local
same core group

panel 0
panel 1
panel 2
panel 3
panel 4
panel 5
panel 6
panel 7

(a) Exclusive or Modified

0 

5 

10 

15 

20 

25 

30 

35 

16k 32k 64k 256k 2M 16M 128M

ba
nd

w
id

th
 [G

B
/s

]

data set size [Byte]

local
same core group

panel 0
panel 1
panel 2
panel 3
panel 4
panel 5
panel 6
panel 7

(b) Shared

Fig.9. Read bandwidth for accessing different locations on Phytium 2000+.

0 

10 

20 

30 

40 

50 

60 

70 

80 

16k 32k 64k 256k 2M 32M 128M

ba
nd

w
id

th
 [G

B
/s

]

data set size [Byte]

local
same socket

another socket

(a) Exclusive

0 

10 

20 

30 

40 

50 

60 

70 

80 

16k 32k 64k 256k 2M 32M 128M

ba
nd

w
id

th
 [G

B
/s

]

data set size [Byte]

local
same socket

another socket

(b) Modified

0 

10 

20 

30 

40 

50 

60 

70 

80 

16k 32k 64k 256k 2M 32M 128M

ba
nd

w
id

th
 [G

B
/s

]

data set size [Byte]

local
same socket

another socket

(c) Shared(c8)

0 

10 

20 

30 

40 

50 

60 

70 

80 

16k 32k 64k 256k 2M 32M 128M

ba
nd

w
id

th
 [G

B
/s

]

data set size [Byte]

local
same socket

another socket

(d) Shared(c40)

Fig.10. Read bandwidth for accessing different locations on ThunderX2.

Table 7. Bandwidth (GB/s) on ThunderX2

Exclusive Modified Shared(c8) Shared(c40)
L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 RAM

c0 78.3 35.5 78.3 35.5 73.3 35.5 67.8 51.7
c1 19.5 24.3 18.5 19.5 24.3 19.5 24.3 19.5 24.3 9

c32 5.8 6.3 5.8 6.3 16.2-17.7 19 22.4 5.8 6.3 4.2

5.2 On ThunderX2

Figure 10 and Table 7 give a high-level view of the

bandwidth numbers on ThunderX2.

The read bandwidth to the local L1 cache can reach



12 J. Comput. Sci. & Technol., January 2018, Vol., No.

78.3 GB/s. The measurement result is basically con-

sistent with the theoretical value (80 GB/s). Reading

data from the local L2 cache and L3 cache can reach a

bandwidth of 35.5 GB/s and 24.3 GB/s, respectively.

However, the local L1 read bandwidth drops when ac-

cessing the shared cachelines (73.3 GB/s on c8 and 67.8

GB/s on c40). And it fluctuates significantly while an-

other copy is suited on the remote socket.

As we have mentioned above, only when the ac-

cessed data is located in the L3 cache, c0 can load data

from the L3 cache directly. In such a case, the read

bandwidth to c1 is the same as accessing the local L3

cache slice, reaching 24.3 GB/s. Otherwise, the data

must be loaded from the remote L1 or L2 caches. When

the cacheline is exclusive or shared, it can be loaded di-

rectly from the remote L2 caches (19.5 GB/s). When

the cacheline is modified, it has to be loaded from the

remote higher level cache (18.5 GB/s).

c32 is located on another socket, not sharing a com-

mon L3 cache slice with c0. As a result, the read band-

width of accessing L1 or L2 cache of c32 is 5.8 GB/s,

and accessing L3 yields is larger bandwidth, staying

around 6.3 GB/s. The bandwidth of accessing data in

the local memory module can reach 9 GB/s, whereas ac-

cessing data from another memory module stays around

4.2 GB/s.

5.3 On KP920

The specific bandwidth numbers are listed in Ta-

ble 8. The local L1 bandwidth is 81.2GB/s, and the

L2 bandwidth is 51.8GB/s. It can be seen from Fig-

ure 11 that the L3 bandwidth in node0 exhibits a com-

plicated trend. For “local” and “same CCL” cores (c0

and c1), the bandwidth first stays at 21.4GB/s and

then decreases to 16.5GB/s at 32MB. On the contrary,

the bandwidth of “same CCL” (c4) first stabilizes at

14.7GB/s and then increases to 16.5GB/s. From 32MB

to 64MB, both of them decrease to the memory band-

width (11.6GB/s). The variation of bandwidth is due

to the affinity of the L3 cache slices, as we have analyzed

in Section 4.3.

The “node1” core (c32) is located on another SCCL

with c0 but still within the same socket. Therefore,

the bandwidth loading data from the remote caches is

almost the same as c4. Similarly, the bandwidth of

“node2” is close to “node3”, while they are also in the

same socket. These explain that the interchip connec-

tions within a socket do not affect the bandwidth per-

formance.

When cachelines are shared (Figure 11(b)) , c0 can

load data from a copy in a local node rather than one

from a different socket. So the bandwidth of the remote

caches in node2 or node3 can reach the same as “same

CCL”. While the accessed node is in the same socket

with c0 (node1), the bandwidth result shows that c0

still uses the copy in the remote node rather than the

local node.

The bandwidth of accessing the local memory mod-

ule is 11.6 GB/s. When accessing the remote memory

module on other nodes, the bandwidth will decrease sig-

nificantly. The difference in memory bandwidth within

a socket is much smaller than the across-socket one.

The former is as low as 1.3 GB/s (11.6 GB/s vs 10.3

GB/s), while the latter can reach 5.2 GB/s (11.6 GB/s

vs 6.4 GB/s).

6 Discussion

Our results have revealed significant differences in

intra-core and inter-core communication performance

of the three ARMv8 many-core systems. Their perfor-

mance results are compared in terms of the cache or-

ganization and the coherency protocols in Section 6.1.

We then summarize optimization guidelines based on

the comparison and analysis (Section 6.2).



First Author et al.: Shortened Title Within 45 Characters 13

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

32k 64k 512k 2M 16M 64M

ba
nd

w
id

th
 [G

B
/s

]

data set size [Byte]

local
same CCL(node 0)

same SCCL(node 0)
node 1
node 2
node 3

(a) Exclusive or Modified

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

32k 64k 512k 2M 16M 64M

ba
nd

w
id

th
 [G

B
/s

]

data set size [Byte]

local
same CCL(node 0)

same SCCL(node 0)
node 1
node 2
node 3

(b) Shared(node 0)

Fig.11. Read bandwidth for accessing different locations on KP920.

Table 8. Bandwidth (GB/s) on KP920

Exclusive or Modified Shared RAML1 L2 L3 L1 L2 L3
local 81.2 51.8 21.4-16.5 81.2 51.8 21.4-16.5 11.6same CCL 28

same SCCL 15.3 14.7 14.7-16.5 17.5 16.8 15.2-16.5
node 1 13.3-14.0 14.1 13.3 13.2-12.8 10.3
node 2 7 7-7.8 16.4 16.8 15.2-16.5 6.4
node 3 6.7 6.4-7.3 6.1

6.1 Comparing Communication Performance

Intra-Core Cache Organization. Each core of

Phytium 2000+ or ThunderX2 has a private 32KB L1

data cache. KP920 owns a larger private L1 data cache

per core, twice as large as the former. Accessing the lo-

cal L1 cache on the three platforms is very fast, taking

around 3 cycles. But in terms of the read bandwidth,

Phytium 2000+ can achieve around half of that on the

other two platforms (33.6GB/s on Phytium 2000+ vs.

78.3GB/s on ThunderX2 and 81.2GB/s on KP920). It

is because Phytium 2000+ can load 32 bytes per cy-

cle, while ThunderX2 and KP920 can load 64 bytes per

cycle. ThunderX2 and KP920 have private L2 cache

slices. By contrast, the L2 cache of Phytium 2000+

is a shared last-level cache, which will be discussed in

the following subsection. Both the local L2 latencies

of ThunderX2 and KP920 are small, 4ns and 2.7ns, re-

spectively. But the L2 size of ThunderX2 is only half

of that of KP920. Moreover, the L2 read bandwidth of

KP920 is much larger than that on Thunder (51.8 GB/s

vs. 35.5GB/s). Thus, in general, the performance of

KP920’s L2 cache is better than that of ThunderX2.

Inter-Core Cache Organization. We compare the

shared LLC cache organization and analyze the inter-

core LLC latencies. Table 9 summarizes the LLC la-

tencies for c0 accessing other core on three ARMv8

platforms. In addition, we measure the inter-core LLC

latency between 64 cores. We use heat maps to vi-

sualize the measurement results in Figure 12, where

the three platforms use a uniform color band for the

intuitive comparison. It is easy to see that the LLC

latency between cores is symmetrical. The LLC size

of Phytium 2000+ is the smallest (i.e., 2MB sharing

among four cores and thus 32MB in total), while the

latency is minimal (9.1ns). The latency of the local LLC

on Phytium 2000+ is minimal (9.1ns) because there is

only one private cache between the core and the local



14 J. Comput. Sci. & Technol., January 2018, Vol., No.

Table 9. LLC latencies (ns) for c0 accessing other cores on three platforms

core 0-3 4-7 8-15 16-23 24-31 32-39 40-47 48-55 56-63
Phytium 2000+ 9.1 42.3 54.1 76.3 65.5 61.4 72.7 95.5 84.5

ThunderX2 24 140.7
KP920 14.2-38.5-53.5 44.2-38.5-53.5 75-85

LLC. But its size is too small, with 2MB sharing by four

cores. When a core accesses other LLCs, the latency

varies from 42.3ns to 95.5ns according to the distance

between panels. On ThunderX2, each core can access

another core sharing with the LLC with the same la-

tency (24ns). It is because the 32 cores on a single chip

are connected through a uniform ring bus. The latency

number increases to 140.7ns when accessing the LLC

on another socket, which is the largest among the three

platforms. Contrary to ThunderX2, the LLC of KP920

is partitioned and has an affinity to hardware cores, re-

sulting in nonuniform latency. In general, the latency

can be divided into three levels according to the core

layout of CCL, SCCL, and socket. Its advantage com-

pared with ThunderX2 is that the 64 cores are located

on the same socket, so the maximum latency is smaller.

But due to the affinity, its LLC latency is unstable as

the data size grows, which has been analyzed in Sec-

tion 4.3.

Cache-Coherency Protocols. We compare the three

systems in terms of coherency protocols. We observe

that the three processors show no difference between

the exclusive and the modified states. It is probably be-

cause they all use directory-based protocols. The most

noticeable difference between them is how they handle

the shared data. When there are multiple shared copies

on distinct cores, ThunderX2 adopts a straightforward

policy – the accessing core can obtain data from the

nearest copy. Meanwhile, Phytium 2000+ will fetch

data from the first copy if no copy is in the same core

group with the accessing core. It may lead to a large

latency because the first copy can have the farthest dis-

tance. Besides, ThunderX2 uses an exclusive LLC pol-

icy when managing the multi-level caches. In this case,

cachelines from the remote higher-level caches must be

fetched from the remote cores or main memory. It is

because no copy exists in the exclusive L3 cache. From

the measurement results (Figure 7(a)), we observe that

it chooses to use the former. Compared with the in-

clusive policy adopted by KP920, ThunderX2 shows no

performance loss but increases the effective capacity of

the relevant cache slices.

6.2 Optimization Suggestions

Based on our measurement results and the analysis,

we summarize three optimization suggestions for pro-

grammers on the three ARMv8 many-core systems.

OS1: Our performance numbers can be used to iden-

tify the communication bottleneck of the parallel algo-

rithms. The efficiency of inter-core communication on

many-core processors is an important factor restrict-

ing the performance of parallel programs. Identify-

ing the communication bottleneck is the basis of opti-

mizing parallel algorithms. Through abstracting inter-

core communication into the read and write operations

on shared variables, we can build a communication

model for the ARMv8 platforms with the latency num-

bers measured from wrBench. For example, the syn-

chronization barrier is a typical parallel algorithm re-

stricted by inter-core communication. Different barrier

algorithms such as dissemination and tournament algo-

rithms have different communication patterns. We can

use the communication model to determine the bottle-

neck of each algorithm on the ARMv8 platforms for the



First Author et al.: Shortened Title Within 45 Characters 15

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63
0
3
6
9
12
15
18
21
24
27
30
33
36
39
42
45
48
51
54
57
60
63

0

25

50

75

100

125

150

(a) Phytium 2000+

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63
0
3
6
9

12
15
18
21
24
27
30
33
36
39
42
45
48
51
54
57
60
63

0

25

50

75

100

125

150

(b) ThunderX2

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63
0
3
6
9

12
15
18
21
24
27
30
33
36
39
42
45
48
51
54
57
60
63

0

25

50

75

100

125

150

(c) KP920

Fig.12. Core-to-core LLC latencies (ns) for 64 cores on three platforms. Lighter color represents a smaller latency.

following optimization.

OS2: We recommend that programmers pin a group of

threads that access the same shared variables to cores

that share the same LLC slices. Our experimental re-

sults show that the cost of obtaining data from cores

sharing the same LLC slices is generally smaller than

other cores. Taking the tree-based barrier as an exam-

ple, a group of threads shares a shared integer variable

to achieve synchronization. Controlling each group of

threads shares the same LLC slices as far as possible

can avoid expensive remote accesses. The same idea

can also be used to optimize other collective communi-

cation algorithms such as broadcast and reduction. In

particular, some processors like KP920 may have non-

uniform LLCs. Therefore, it is better to place threads

in four cores in a CCL. And the size of the data shared

by multiple threads should be controlled within 8MB

for fast local accesses.

OS3: Programmers should keep an eye on the panel

distances. When there must be access across NUMA

nodes, it is crucial to select the right nodes to minimize

the cross-node overhead. Taking running SpMV (sparse

matrix-vector multiplications) on Phytium 2000+ as

an example, programmers should pay attention to the

distance between panels. It is because using multi-

ple threads for SpMV involves core-to-core communi-

cation to achieve the sharing of the dense input vector.

Many hypergraph-based algorithms have been proposed

to minimize the inter-thread communication.

7 Related Work

Although the effective use of the memory systems

is essential to obtain the best performance, vendors sel-

dom provide the details of the memory hierarchy or the

achieved performance. For this reason, researchers have

to obtain such performance results and implementation

details through measurements.

Babka et al. [16] propose experiments that inves-

tigate detailed parameters of the x86 processors. The

experiment is built on a general benchmark framework

and obtains the required memory parameters by per-

forming one or a combination of multiple open-source

benchmarks. It focuses on detailed parameters, includ-

ing the address translation miss penalties, the param-

eters of the additional translation caches, the size of

cacheline, and the cache miss penalties.

McCalpin et al. [9] present four benchmark kernels

(Copy, Scale, Add, and Triad), STREAM, to access mem-

ory bandwidth for current computers, including unipro-

cessors, vector processors, shared-memory systems, and

distributed-memory systems. STREAM is one of the most

commonly used memory bandwidth measurement tools

in Fortran and C. But it focuses on throughput mea-

surement without considering the latency metric.



16 J. Comput. Sci. & Technol., January 2018, Vol., No.

Molka et al. [11] propose a set of benchmarks,

including studying the performance details of the

Nehalem architecture. Based on these benchmarks,

they obtain undocumented performance data and ar-

chitectural properties. It is the first to to measure the

core-to-core communication overhead, but it is only ap-

plicable to the x86 architectures. Fang et al. extend

the microkernels to Intel Xeon Phi [13]. Ramos et

al. [12] propose a state-based modeling approach for

memory communication, allowing algorithm designers

to abstract away from the architecture and the detailed

cache coherency protocols. The model is built based on

the measurement numbers of the cache-coherent mem-

ory hierarchy.

Besides the x86 processors, researchers have de-

signed microbenchmarks for other many-core processors

to demystify their microarchitectures and memory hi-

erarchies. Wong et al. [17] developed a set of CUDA

microbenchmarks and measured the architectural char-

acteristics of the NVIDIA GT200 (GTX280) GPU. Mei

et al. [18] proposed a fine-grained pointer chasing mi-

crobenchmark to investigate the throughput and access

latency of GPU’s global memory and shared memory.

They investigated the GPU memory hierarchy of three

recent NVIDIA GPUs: Fermi, Kepler, and Maxwell.

Lin et al. [19] presented a microbenchmark suite called

swCandle to evaluate the key micro-architectural fea-

tures of the SW26010 many-core processor. This evalu-

ation work targets specialized accelerators, e.g., GPG-

PUs or SW26010, rather than the cache-coherent many-

core architectures.

There exist some performance analysis works on

the ARMv8-based high-performance computing (HPC)

systems. Mantovani et al. [20] analyzed the per-

formance and energy consumption of Dibona, a sys-

tem powered by ThunderX2. Simon et al. [21] pre-

sented performance results of Isambard, which com-

bines ThunderX2 CPUs with Cray’s Aries interconnect.

These works focus on the performance behaviors of the

entire system rather than the cache architectures.

8 Conclusion

The ARMv8 many-core architectures have been

widely used to build the current and next-generation

HPC systems, but they feature a variety of cache orga-

nizations and coherency protocols, which makes them

complicated to understand and hard-to-use. Given that

the cache architecture is a critical factor affecting over-

all performance, it is significant to understand its work-

ing mechanism behind the “black-box”. This article

focuses on comparing the cache architecture and its co-

herent protocols of three representative ARMv8 archi-

tectures with microbenchmarks. For this, we have heav-

ily extended and refined a set of benchmarks (wrBench)

to measure the intra-core and inter-core communication

performance of the ARMv8 systems.

We have chosen three representative ARMv8 sys-

tems as our experimental platforms to demonstrate the

potential of wrBench, including Phytium 2000+, Thun-

derX2, and KP920. Experimental results show that our

wrBench can provide a detailed and quantitative per-

formance description of the ARMv8 many-core memory

hierarchy. By comparing and analyzing the commu-

nication performance, we summarize and analyze the

pros and cons of the three ARMv8 processors in cache

organization and coherency protocol. We also provide

guidelines on improving the performance of parallel pro-

grams by optimizing memory accesses.

For future work, we will extend our wrBench to

ARMv9 machines once they are available.

References
[1] M. A. Laurenzano, A. Tiwari, A. Cauble-Chantrenne,

A. Jundt, W. A. W. Jr., R. L. Campbell, and L. Carrington,



First Author et al.: Shortened Title Within 45 Characters 17

“Characterization and bottleneck analysis of a 64-bit armv8
platform,” in 2016 IEEE International Symposium on Per-
formance Analysis of Systems and Software, ISPASS 2016,
Uppsala, Sweden, April 17-19, 2016. IEEE Computer So-
ciety, 2016, pp. 36–45.

[2] N. Stephens, “Armv8-a next-generation vector architecture
for HPC,” in 2016 IEEE Hot Chips 28 Symposium (HCS),
Cupertino, CA, USA, August 21-23, 2016. IEEE, 2016, pp.
1–31.

[3] C. Zhang, “Mars: A 64-core armv8 processor,” in 2015 IEEE
Hot Chips 27 Symposium (HCS). IEEE, 2015, pp. 1–23.

[4] X. You, H. Yang, Z. Luan, Y. Liu, and D. Qian, “Perfor-
mance evaluation and analysis of linear algebra kernels in the
prototype tianhe-3 cluster,” in Supercomputing Frontiers -
5th Asian Conference, SCFA 2019, Singapore, March 11-
14, 2019, Proceedings, ser. Lecture Notes in Computer Sci-
ence, D. Abramson and B. R. de Supinski, Eds., vol. 11416.
Springer, 2019, pp. 86–105.

[5] J. Fang, X. Liao, C. Huang, and D. Dong, “Performance
evaluation of memory-centric armv8 many-core architec-
tures: A case study with phytium 2000+,” J. Comput. Sci.
Technol., vol. 36, no. 1, pp. 33–43, 2021.

[6] K. T. Pedretti, A. J. Younge, S. D. Hammond, J. H. L.
III, M. L. Curry, M. J. Aguilar, R. J. Hoekstra, and
R. Brightwell, “Chronicles of astra: challenges and lessons
from the first petascale arm supercomputer,” in Proceed-
ings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2020,
Virtual Event / Atlanta, Georgia, USA, November 9-19,
2020, C. Cuicchi, I. Qualters, and W. T. Kramer, Eds.
IEEE/ACM, 2020, p. 48.

[7] F. Mantovani, M. Garcia-Gasulla, J. Gracia, E. Stafford,
F. Banchelli, M. Josep-Fabrego, J. Criado-Ledesma, and
M. Nachtmann, “Performance and energy consumption of
HPC workloads on a cluster based on arm thunderx2 CPU,”
Future Gener. Comput. Syst., vol. 112, pp. 800–818, 2020.

[8] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore
era,” IEEE Computer, vol. 41, no. 7, pp. 33–38, 2008.

[9] J. D. McCalpin et al., “Memory bandwidth and machine bal-
ance in current high performance computers,” IEEE com-
puter society technical committee on computer architecture
(TCCA) newsletter, vol. 2, no. 19–25, 1995.

[10] L. W. McVoy and C. Staelin, “lmbench: Portable tools for
performance analysis,” in Proceedings of the USENIX An-
nual Technical Conference, San Diego, California, USA,
January 22-26, 1996. USENIX Association, 1996, pp. 279–
294.

[11] D. Molka, D. Hackenberg, R. Schöne, and M. S. Müller,
“Memory performance and cache coherency effects on an
intel nehalem multiprocessor system,” in PACT 2009, Pro-
ceedings of the 18th International Conference on Parallel
Architectures and Compilation Techniques, 12-16 Septem-
ber 2009, Raleigh, North Carolina, USA. IEEE Computer
Society, 2009, pp. 261–270.

[12] S. Ramos and T. Hoefler, “Modeling communication in
cache-coherent smp systems: a case-study with xeon phi,” in
Proceedings of the 22nd international symposium on High-
performance parallel and distributed computing, 2013, pp.
97–108.

[13] J. Fang, H. J. Sips, L. Zhang, C. Xu, Y. Che, and A. L.
Varbanescu, “Test-driving intel xeon phi,” in ACM/SPEC
International Conference on Performance Engineering,
ICPE’14, Dublin, Ireland, March 22-26, 2014, K. Lange,
J. Murphy, W. Binder, and J. Merseguer, Eds. ACM, 2014,
pp. 137–148.

[14] D. Hackenberg, D. Molka, and W. E. Nagel, “Comparing
cache architectures and coherency protocols on x86-64 mul-
ticore SMP systems,” in 42st Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO-42 2009),
December 12-16, 2009, New York, New York, USA, D. H.
Albonesi, M. Martonosi, D. I. August, and J. F. Martínez,
Eds. ACM, 2009, pp. 413–422.

[15] A. ARM, “Neon programmer‘s guide,” 2013. [Online]. Avail-
able: https://developer.arm.com/documentation/den0018/
a

[16] V. Babka and P. Tuma, “Investigating cache parameters of
x86 family processors,” in Computer Performance Evalua-
tion and Benchmarking, SPEC Benchmark Workshop 2009,
Austin, TX, USA, January 25, 2009. Proceedings, ser. Lec-
ture Notes in Computer Science, D. R. Kaeli and K. Sachs,
Eds., vol. 5419. Springer, 2009, pp. 77–96.

[17] H. Wong, M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos, “Demystifying gpu microarchitecture through
microbenchmarking,” in 2010 IEEE International Sympo-
sium on Performance Analysis of Systems Software (IS-
PASS), 2010, pp. 235–246.

[18] X. Mei and X. Chu, “Dissecting gpu memory hierarchy
through microbenchmarking,” IEEE Transactions on Par-
allel and Distributed Systems, vol. 28, no. 1, pp. 72–86, 2017.

[19] L. James, Z. Xu, L. Cai, A. Nukada, and S. Matsuoka,
“Evaluating the sw26010 many-core processor with a micro-
benchmark suite for performance optimizations,” Parallel
Computing, vol. 77, 06 2018.

[20] F. Mantovani, M. Garcia-Gasulla, J. Gracia, E. Stafford,
F. Banchelli, M. Josep-Fabrego, J. Criado-Ledesma, and
M. Nachtmann, “Performance and energy consumption of
hpc workloads on a cluster based on arm thunderx2 cpu,”
Future Generation Computer Systems, vol. 112, 06 2020.

[21] S. McIntosh-Smith, J. Price, T. Deakin, and A. Poenaru,
“Comparative benchmarking of the first generation of hpc-
optimised arm processors on isambard,” 2018.

Wan-Rong Gao is a mas-
ter student in computer sci-
ence at National University of
Defense Technology (NUDT).
Her research interests are high-
performance computing, system soft-
ware, and performance optimiza-
tion.

Jian-Bin Fang is an assistant professor
in computer science at National Univer-
sity of Defense Technology (NUDT). He
obtained his Ph.D. from Delft University
of Technology in 2010. His research in-
terests include parallel programming for

many-cores, parallel compilers, performance modeling, and
scalable algorithms. He is a member of CCF.

Chun Huang is a full processor in
computer science at National University of
Defense Technology (NUDT). Her research
interests are high-performance comput-
ing, system software, parallel compilers,
parallel programming, performance opti-

mization, and high-performance math libraries.



18 J. Comput. Sci. & Technol., January 2018, Vol., No.

Chuan-Fu Xu is an asso-
ciate professor in computer sci-
ence at National University of De-
fense Technology (NUDT). He ob-
tained his Ph.D. from NUDT in
2011. His research interests in-
clude parallel computing and applica-
tions.

Zheng Wang is an as-
sociate professor at School
of Computing at the Uni-
versity of Leeds. His re-
search interests include com-
piler optimization, parallel pro-
gramming and systems secu-
rity.


