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Abstract

Originating from Kamenica and Gentzkow (Am Econ Rev 101(6):2590–2615, 2011),

we analyze multi-receiver Bayesian persuasion games with heterogeneous beliefs

without strategic interactions among receivers, which we call unlinked. We show that

given the receivers’ best-responses, the sender’s rationalizable strategies are obtained

from a single linear programming problem.

Keywords Bayesian persuasion · Multiple receivers · Heterogeneous beliefs ·

Rationalizability

JEL Classification C72 · D83

1 Introduction

In this paper, we extend the analysis of Kamenica and Gentzkow (2011) to a broader

class of games. In their seminal study, Kamenica and Gentzkow (2011) added a new

dimension to the literature on strategic information transmission by introducing a

novel type of message space. In the pioneering work of Crawford and Sobel (1982),

the sender chooses different messages depending on the states the sender privately

observes. The departure in Kamenica and Gentzkow (2011) is that, while the messages

still depend on the states, the sender commits herself to a (verifiable) distribution over
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the messages conditional on the unknown state. This implies that both the sender’s

belief and the receiver’s belief regarding the states play important roles. Examples of

such a communication method include examinations and experiments. Kamenica and

Gentzkow (2011) analyzed games with this type of communication methods: Bayesian

persuasion games.

In Kamenica and Gentzkow (2011), there is one sender and one receiver who share

a common (initial) belief regarding the states. After observing the sender’s strategy

and the message, the receiver updates her belief about the states and chooses a best-

response. By identifying the receiver’s best-response for each strategy and message,

the sender chooses a strategy which maximizes her expected payoff. The sender influ-

ences the receiver’s behavior through the receiver’s belief update. Kamenica and

Gentzkow (2011) provide a condition under which the sender benefits from persua-

sion and analyze optimal strategy. Their technical contribution is that for the sender’s

optimization problem, she can only focus on the interim (updated) belief which needs

to satisfy a consistency condition called Bayes plausibility.1

The purpose of our study is to generalize their framework. Namely, we analyze

multi-receiver Bayesian persuasion games with heterogeneous beliefs where there is

no strategic interaction among receivers. We call such games unlinked.2 Kamenica

and Gentzkow (2011, Section VI) suggested that their approach could be extended to

Bayesian persuasion games with multiple receivers where (i) the sender’s preferences

are separable with respect to the receivers’ actions, and (ii) each receiver only cares

about her action. While (ii) is assumed in our study, (i) is not, implying that the

approach in Kamenica and Gentzkow (2011) cannot be readily applied. Given that

there are cases naturally arising with multiple audiences and heterogeneous beliefs,

the development of the framework to analyze such scenarios is of great importance.

Our main result (Sect. 4) shows that the identification of optimal strategies for the

sender in any unlinked game can be seen as a single linear programming problem.3

In addition to the computational tractability, this immediately implies that the sender

has the unique rationalizable strategy generically.

Since our focus is on unlinked games, each receiver’s optimization is rather a single-

person decision problem at the second stage. In addition, we first analyze the second

stage (receivers), and then the first stage (sender). Thus, the approach resembles back-

1 This is also known as the concavification approach. See Aumann and Maschler (1995).

2 Regarding heterogeneous beliefs, one can solve the sender’s optimization problem as if they share the

common prior since in the sender’s and the receivers’ payoff functions, π—sender’s strategy—is multiplied

by their priors. There is no need for such a detour in our approach. See Alonso and Câmara (2016a) for

heterogenous priors with one receiver. Alonso and Câmara (2016b), Yun (2013), Chan et al. (2019) analyze

voting games with multiple receivers. For the literature on cheap talk (a closely related field), see Farrell and

Gibbons (1989) and Goltsman and Pavlov (2011) for multiple receivers and Miura and Yamashita (2020)

for the notion of maximal miscommunication.

3 Studies with similar approaches include the following. By assuming a linear-quadratic specification,

Tamura (2018) uses the semidefinite programming approach. Kolotilin (2018) assumes (i) both the sender

and the receiver have their own types with supports that are compact (and the sender’s type is realized only

after her message is sent), (ii) the receiver’s action space is binary, (iii) one action leads to a payoff of

zero (normalization) for both the sender and the receiver, and (iv) the single-crossing assumption for the

receiver’s preferences from the other action; there exists a threshold of her private information with which

her expected payoff is zero. The sender only needs to make sure that the receiver’s expected payoff from

the other action is zero.
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Bayesian persuasion in unlinked games

ward induction (with incomplete information). This allows us to deviate in two aspects.

First, given its close relationship to backward induction (e.g., Battigalli (1997)), our

linear programming approach directly corresponds to the notion of �-rationalizability,

introduced and developed by Battigalli and Siniscalchi (2003).4 In particular, �-

rationzalibility explicitly allows heterogeneous beliefs. Second, instead of dealing

with the receivers’ interim beliefs as the variables for the sender, as in Kamenica and

Gentzkow (2011), we directly look at the sender’s strategies—distributions over the

set of messages conditional on the states—which implies that there is no need to check

whether the solution satisfies the Bayes plausibility condition.

Given the relationship between Nash equilibrium and linear programming for

zero-sum games, for example, one may suspect that our main result is rather a

straightforward exercise.5 Given the structure of unlinked games, however, we need

to establish several results to reach our main result. Our approach takes the following

steps. First, given an action profile for the receivers, we identify the set of strategies

for the sender which induce the receivers to choose the corresponding action profile.

If the set is nonempty, the sender can identify an optimal strategy within this set. This

set can be seen as a “constraint” for the sender, and the identification of the sender’s

optimal strategy under the “constraint” can be seen as a linear programming problem.

Second, we show that the sender can indeed identify her rationalizable strategy via a

single linear programming problem with the “largest constraint”, implying that there

is no need to solve the sender’s optimization problem for each possible constraint.

There are two main hurdles. First, the sets of strategies for the sender which induce

the receivers to choose certain action profiles (which we called “constraints” above)

are not closed, implying the possibility that rationalizable strategies for the sender do

not exist. Although the sender’s optimization problem becomes well-defined by taking

the closure of each “constraint”, this still does not guarantee the existence of solutions.

We show that taking the closure of each constraint is indeed sufficient to identify the

sender’s rationalizable strategies (Sect. 4.1). Second, the argument suggests that we

need to consider multiple optimization problems (for all the non-empty constraints).

We show the existence of the largest constraint under which a single optimization

problem leads to the identification of rationalizable strategies for the sender (Sect. 4.2).

Our result also shows how the largest constraint can be constructed.

As shown in Kamenica and Gentzkow (2011), the receivers may be indifferent

among multiple actions after observing certain messages. The receivers nevertheless

choose the actions which the sender intends for them in our solutions. Kamenica and

Gentzkow (2011) utilized the notion of sender-preferred equilibrium, which ensures

that given the receiver’s (sender-preferred) best-response, the sender’s expected payoff

is upper-semicontinuous in the interim belief, implying the existence of the sender’s

optimal strategy. We do not impose such restrictions. This is because if the receivers

are expected to choose other (unintended) actions, there is simply no corresponding

4 Given a rationalizable strategy for the sender in an unlinked game, the corresponding strategy profile can

also be supported as a Bayesian Nash equilibrium. As a by-product, the employment of rationalizability

provides a solid epistemic foundation for our solutions; see, for example, Dekel and Siniscalchi (2015).

The notion of forward induction implied by rationalizability can give a sharper prediction when there are

strategic interactions among the receivers. See Shimoji (2016).

5 See for example Adler (2013).
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rationalizable strategy for the sender (Sect. 4.3).6 We also investigate the properties

of the constraints (Sect. 4.4)

There are several recent studies on Bayesian persuasion, some of which utilize

similar strategy spaces for the sender. Brocas and Carrillo (2007) consider a model

with two states where instead of choosing signal distributions conditional on the states,

the sender chooses the number of times (binary) signals are revealed given the pre-

fixed signal distribution conditional on the states. Rayo and Segal (2010) consider a

model in which the set of actions is binary: “accept” or “reject”. The sender chooses

the distribution of signals conditional on the states (prospects). If the receiver accepts,

players’ payoffs depend on the state. If the receiver rejects, she receives the realization

of her uniformly distributed reservation payoff (she knows the value when she chooses

her action) while the sender’s payoff is pre-determined. Ostrovsky and Schwarz (2010)

consider job matchings between students and potential employers. It is the school that

knows the students’ types and controls the information revelation to the potential

employers. Hörner and Skrzypacz (2016) analyze the model with multiple rounds of

persuasion stages. Kolotilin et al. (2017) study persuasion when the receiver privately

observes her type (different from the state). Bergemann and Morris (2016) consider

correlated equilibrium for games with incomplete information under a common prior

and show that their approach can analyze Bayesian persuasion games with multiple

receivers. The decision rule (mediator) which recommends actions would correspond

to the message in the current paper. Other recent applications include Hernández and

Neeman (2021), Lipnowski and Mathevet (2018) and Taneva (2019). See Bergemann

and Morris (2019) and Sobel (2013) for further discussions.

After providing the set-up in Sect. 2, we show several examples in Sect. 3 to

demonstrate how our approach works. The examples also highlight some of the results

in the paper. In Sect. 4, we establish the results of the linear programming approach

for unlinked games.

2 Preliminaries

There is one sender. Let N be the finite set of receivers with |N | = n ≥ 1. The finite set

of states is � with θ being a typical element. Let p0
S be the sender’s (commonly known)

initial belief over �. Likewise, for each receiver i ∈ N , let p0
i be her (commonly

known) initial belief over �. We assume that p0
S(θ) > 0 for each θ ∈ � and p0

i (θ) > 0

for each θ ∈ � and i ∈ N . We allow heterogeneous beliefs. It is important to specify

the beliefs not only for the receivers but also for the sender. This is because (i) the

sender chooses her strategy without knowing the actual state, and (ii) difference in

beliefs could lead to different outcomes. The examples in Sect. 3 demonstrate the latter

point.

At the first stage, the sender chooses her strategy while the receivers choose their

actions at the second stage. Let Ai be the finite set of actions for receiver i ∈ N

with ai being a typical element and A = × j∈N A j . The sender’s payoff function is

6 A similar observation can be found in the ultimatum game with the continuous action space for the first

mover, for example.
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uS : A × � → R while for each receiver i ∈ N , we have ui : Ai × � → R. Note

that each receiver’s payoff does not depend on the other receivers’ actions. We call

this class of games unlinked.

First stage A message for each receiver is simply a recommendation of which action

to take.7 We thus take Ai as the set of messages for each receiver i ∈ N as well. The

sender’s strategy is a distribution over A conditional on �, denoted by π . Let � be

the set of the sender’s strategies. Given π ∈ �, for each i ∈ N , let

Ai (π) = {ai ∈ Ai | π(ai , a−i | θ) > 0 for some a−i ∈ A−i and θ ∈ �} .

In other words, Ai (π) is the set of realizable messages for receiver i ∈ N under π .

Note that by choosing π , the sender is also choosing the set of messages, A(π) =

× j∈N A j (π). Note also that given π ∈ �, there may exist a ∈ A(π) which will not

be realized, since (i) A(π) is a product set and (ii) π allows correlations.

Second stage We assume (i) that the sender’s strategy π is observable to the receivers,

and (ii) that the realized message, ai ∈ Ai (π), is private information for each receiver

i ∈ N . For each i ∈ N , let Mi ⊂ � × Ai be such that for any (π, ai ) ∈ Mi ,

ai ∈ Ai (π).8 Given π , the marginal π(ai | θ) =
∑

a−i ∈A−i
π((ai , a−i ) | θ) for

each ai ∈ Ai (π) and θ ∈ � is computed for each receiver i ∈ N . After observing

(π, ai ) ∈ Mi , each receiver i ∈ N revises her belief regarding each θ ∈ � via Bayes’

rule:

pπ
i (θ | ai ) =

π(ai | θ)p0
i (θ)

∑

θ̃∈� π(ai | θ̃ )p0
i (θ̃)

.

Each receiver i ∈ N then simultaneously chooses her action under her interim

(updated) belief, pπ
i (· | ai ). Let (i) si : Mi → Ai be a pure strategy for receiver

i ∈ N with Si being the set of strategies for receiver i ∈ N , and (ii) si (π, ai ) ∈ Ai be

receiver i’s action after observing (π, ai ) ∈ Mi . Note that the message itself has no

meaning for the receivers who only care about their interim beliefs. This means that

any permutation of Ai as the set of messages works as well as Ai itself. To simplify

our analysis, our focus is on the case where the receivers follow the messages. We will

discuss this in Sect. 4.

The sender’s strategy π is called null for player i ∈ N if it induces an interim belief

identical to the initial belief for each message.9 If π is null for each player i ∈ N ,

we say that π is null, which is denoted by π0. For each receiver i ∈ N , let A0
i ⊆ Ai

be the set of actions which are best-responses to her initial belief. For any i ∈ N , if

|A0
i | = 1, we simply let A0

i = {a0
i }, i.e., a0

i is the unique best-response for receiver

i’s initial belief.

7 Kamenica and Gentzkow (2011) call such strategies straightforward.

8 Remember that π ∈ � uniquely determines Ai (π) and an element of Ai (π) is chosen by nature.

9 This is the case if Ai (π) is singleton, or for each ai ∈ Ai (π), π(ai | θ ′) = π(ai | θ ′′) for each

θ ′, θ ′′ ∈ �. Note that since the sender chooses π over A �= ∅, the receivers always observe a message.
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Our approach follows the notion of �-rationalizability (Battigalli and Siniscalchi

2003). In this approach, “�” corresponds to players’ initial (possibly heterogeneous)

beliefs which are p0
S and p0

i for each i ∈ N in the current study. In general, (i) the set of

rationalizable strategies is obtained by iteratively eliminating strategies which are not

best-responses for each player, and (ii) as a consequence, the application of rationaliz-

ability is considered to be challenging. For the current context (i.e., unlinked games),

the identification of rationalizable strategies for each receiver is rather straightforward

since each receiver’s optimization problem is a single-person decision problem. The

identification of rationalizable strategies for the sender thus takes into account each

receiver’s decision à la backward induction. This order of operation is indeed what

we have for the linear programming approach, which is discussed in Remark 5.10

3 Examples

In this section, we consider three examples to demonstrate how our approach works.

In particular, we show (i) that by utilizing one example from Kamenica and Gentzkow

(2011), our approach chooses the same outcome as theirs, (ii) that heterogeneity in

beliefs would lead to different outcomes, and (iii) that our approach can handle multiple

receivers.

3.1 Examples: one receiver

In this subsection, we first use the example from Kamenica and Gentzkow (2011) to

demonstrate that our approach also chooses the equilibrium outcome identified in their

example. Second, in the modified example, we demonstrate that outcomes could be

substantially different depending on players’ heterogeneous beliefs. The two exam-

ples share the same discussion for the receiver’s behavior, which we provide below.

Differences in the two examples are (i) the sender’s preferences and (ii) heterogeneity

in beliefs.

Receiver 1 has two actions, A1 = {a′
1, a′′

1 }. There are two states, � = {θ ′, θ ′′}. Let

p0
S and p0

1 be the probabilities assigned to θ ′ for the sender and receiver 1 respec-

tively. The sender chooses π ∈ �. We assume that u1(a
′
1, θ

′) = u1(a
′′
1 , θ ′′) = 1 and

u1(a
′
1, θ

′′) = u1(a
′′
1 , θ ′) = 0.

Receiver’s behavior This part is shared by the first two examples we discuss below.

First, consider the case where |A1(π)| = 1 (i.e., only one message is realized) as the

benchmark. Receiver 1 chooses

{

a′
1

a′′
1

}

only if p0
1

{

≥

≤

}

1
2
.

Second, consider the case where A1(π) = A1. After observing π and ã1 ∈ A1(π),

receiver 1’s expected payoffs are

10 The application of �-rationalizability can also be seen as that of conditional dominance (Shimoji and

Watson 1998) with incomplete information.
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{

pπ
1 (θ ′ | ã1)u1(a

′
1, θ

′) + pπ
1 (θ ′′ | ã1)u1(a

′
1, θ

′′) = pπ
1 (θ ′ | ã1)

pπ
1 (θ ′ | ã1)u1(a

′′
1 , θ ′) + pπ

1 (θ ′′ | ã1)u1(a
′′
1 , θ ′′) = pπ

1 (θ ′′ | ã1)

}

from choosing

{

a′
1

a′′
1

}

.

Thus, receiver 1 chooses

{

a′
1

a′′
1

}

only if pπ
1 (θ ′ | ã1)

{

≥

≤

}

pπ
1 (θ ′′ | ã1)

or equivalently

{

a′
1

a′′
1

}

only if π(ã1 | θ ′′)

{

≤

≥

}[

p0
1

1−p0
1

]

π(ã1 | θ ′).

Receiver 1 follows the realized message, i.e., choosing a′
1 after observing a′

1 and a′′
1

after observing a′′
1 only if

π(a′
1 | θ ′′) ≤

[

p0
1

1−p0
1

]

π(a′
1 | θ ′)

π(a′′
1 | θ ′′) ≥

[

p0
1

1−p0
1

]

π(a′′
1 | θ ′).

(1)

Depending on the value of p0
1 , (1) is visualized in Fig. 1. Since there are two states

and two actions, the sender chooses two parameters, corresponding to one message

for each state; e.g., π(a′
1 | θ ′) and π(a′

1 | θ ′′). While we can then modify (1) by

substituting π(a′′
1 | θ ′) = 1 − π(a′

1 | θ ′) and π(a′′
1 | θ ′′) = 1 − π(a′

1 | θ ′′) to have

only two variables, we can also use the box diagram to illustrate the expressions in

(1), as shown in Fig. 1. Each side is equal to one, and any point in the box diagram

represents the sender’s strategy π . Note that we exclude the origins since we have

A1(π) = A1. In other words, we cannot have π(a′
1 | θ ′) = π(a′

1 | θ ′′) = 0 and

π(a′′
1 | θ ′) = π(a′′

1 | θ ′′) = 0. The first expression in (1) has the origin in the bottom-

left corner while the second expression in (1) has the origin in the top-right corner.

For each expression, the slope is equal to
p0

1

1−p0
1

(and hence the two lines in each box

diagram are parallel to each other).

Figure 1 includes three qualitatively different cases: (a) p0
1 < 1

2
, (b) p0

1 = 1
2

, and (c)

p0
1 > 1

2
. The line from each origin indicates the set of π ’s with which the corresponding

expression holds with equality. The set of π ’s under which each expression holds

with strict inequality is indicated by the corresponding arrow. The intersection of two

inequalities is therefore the set of π ’s with which the sender can make the receiver

choose the intended actions, depending on the realized messages.

Sender’s behavior We provide two examples. The first example is from Kamenica

and Gentzkow (2011), with which we demonstrate that our approach chooses the
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(a) p0

1
< 1

2
(b) p0

1
= 1

2
(c) p0

1
> 1

2

π(a′

1
| θ′)

π(a′

1
| θ′′)

π(a′′

1
| θ′)

π(a′′

1
| θ′′)

π(a′

1
| θ′)

π(a′

1
| θ′′)

π(a′′

1
| θ′)

π(a′′

1
| θ′′)

π(a′

1
| θ′)

π(a′

1
| θ′′)

π(a′′

1
| θ′)

π(a′′

1
| θ′′)KG

Fig. 1 Visualization of (1)

same outcome. In the second example, we show that heterogenous beliefs could lead

to different outcomes.

Example 1: Kamenica and Gentzkow (2011) This corresponds to the original exam-

ple from Kamenica and Gentzkow (2011, p. 2591). The sender’s payoffs are such

that uS(a′
1, θ) = 0 and uS(a′′

1 , θ) = 1 for each θ ∈ �; her payoffs are state-

independent. Let p0
S = p0

1 = 0.7, corresponding to Fig. 1c. Receiver 1 chooses a′
1

without persuasion, which the sender avoids. The sender’s expected payoff is higher

if the chance of a′′
1 is higher; i.e, towards the southwest. The sender therefore chooses

π(a′′
1 | θ ′) = 1−0.7

0.7
= 3

7
and π(a′′

1 | θ ′′) = 1, consistent with the solution in Kamenica

and Gentzkow (2011).

Remark 1 If receiver 1 observes a′
1, corresponding to the worst action from the sender’s

point of view, she knows that the state is θ ′ since π(a′
1 | θ ′′) = 0. This observation is

reflected in Proposition 4 of Kamenica and Gentzkow (2011).11 We will discuss this

for the case of multiple receivers in Example 4.

Example 2: Heterogeneous beliefs The sender’s payoffs are such that uS(a
′
1, θ

′′) =

uS(a′′
1 , θ ′) = 1 and uS(a′

1, θ
′) = uS(a′′

1 , θ ′′) = 0; two players have completely

opposite preferences. Assume that p0
1 < 1

2
, corresponding to Fig. 1a. Receiver 1

chooses a′′
1 without persuasion, in which case the sender’s expected payoff is p0

S .

Suppose instead that the sender employs two distinct messages and makes the receiver

follow the realized message. The sender then chooses π to maximize

π(a′
1 | θ ′′)[1 − p0

S] + π(a′′
1 | θ ′)p0

S ⇔ π(a′
1 | θ ′′)[1 − p0

S] + [1 − π(a′
1 | θ ′)]p0

S .

Note (i) that the higher π(a′
1 | θ ′′) and π(a′′

1 | θ ′) are, the higher the sender’s expected

payoff is (i.e., moving towards the northwest in the box diagram), and (ii) the slope of

the sender’s “indifference curve” is
dπ(a′

1|θ
′′)

dπ(a′
1|θ

′)
=

p0
S

1−p0
S

. Three possibilities depending

on the sender’s prior are visualized in Fig. 2:

11 Strictly speaking, the receiver may not know the state if there are multiple states where the corresponding

(worst) action is the unique best-response for the receiver.
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(a) p0

S
= p0

1

π(a′

1
| θ′)

π(a′

1
| θ′′)

π(a′′

1
| θ′)

π(a′′

1
| θ′′)

(b) p0

S
< p0

1

π(a′

1
| θ′)

π(a′

1
| θ′′)

π(a′′

1
| θ′)

π(a′′

1
| θ′′)

(c) p0

S
> p0

1

π(a′

1
| θ′)

π(a′

1
| θ′′)

π(a′′

1
| θ′)

π(a′′

1
| θ′′)

Fig. 2 Heterogeneous beliefs

(a) p0
S = p0

1 or
p0

S

1−p0
S

=
p0

1

1−p0
1

: There is a continuum of solutions. Since π(a′
1 | θ ′′) =

[

p0
S

1−p0
S

]

π(a′
1 | θ ′), the sender’s expected payoff is p0

S . The sender is indifferent

between this strategy and π0.

(b) p0
S < p0

1 or
p0

S

1−p0
S

<
p0

1

1−p0
1

: Since receiver 1 overestimates the possibility of θ ′, it

is costly for the sender to confuse receiver 1 when the state is θ ′; π(a′′
1 | θ ′) = 0.12

In return, the sender makes sure that π(a′
1 | θ ′′) takes the highest possible value,

π(a′
1 | θ ′′) =

p0
1

1−p0
1

. The expected payoff for the sender is
p0

1 [1−p0
S ]

1−p0
1

. Since

p0
1[1−p0

S ]

1−p0
1

− p0
S =

p0
1−p0

S

1−p0
1

> 0,

the sender strictly prefers this strategy to π0. Note that the constraint for a′
1 binds.

(c) p0
S > p0

1 or
p0

S

1−p0
S

>
p0

1

1−p0
1

: No solution exists within the “constraint”. It turns out

that the sender’s expected payoff with this strategy is strictly less than p0
S . The

sender’s rationalizable strategy is π0 (i.e., no persuasion) with which receiver 1

choose a′′
1 .

Remark 2 In the last scenario, while (c) of Fig. 2 suggests one of the origins is the

solution, it does not belong to the constraint, as noted above. In addition, the sender’s

expected payoff from any π in the constraint is strictly lower than the expected payoff

from no persuasion, and thus we can simply dismiss this constraint. We generalize

this observation in Lemma 2.

12 Since π(a′′
1 | θ ′) = 0, receiver 1 knows the state (θ ′′) when the message is a′′

1 .
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(a) Payoffs

θ = A

1

a1

b1

θ = B
2

a2 b2

1, 1, 1 0, 1, 0

0, 0, 1 2, 0, 0
1

a1

b1

2

a2 b2

0, 0, 0 0, 0, 1

0, 1, 0 1, 1, 1

(b) Conditional Probabilities

θ = A

π(a1 | A)

π(b1 | A)

π(a2 | A) π(b2 | A)

wa xa

ya za

θ = B

π(a1 | B)

π(b1 | B)

π(a2 | B) π(b2 | B)

wb xb

yb zb

Fig. 3 Multiple receivers: Example 3

3.2 Examples: two receivers

In the following examples, we have two receivers. The purpose of these examples is

to show that our approach can handle the case of multiple receivers.

Example 3: Numerical example There are two possible states � = {A, B}. Receivers

1 and 2 have two actions Ai = {ai , bi } for each i ∈ {1, 2}. The payoffs are summarized

in (a) of Fig. 3 where the first payoff in each cell is for the sender while the second and

third payoffs are for receivers 1 and 2 respectively. Note that receiver i ∈ {1.2} will

choose (i) ai only if the probability of A is at least 1
2

and (ii) bi only if the probability

of B is at least 1
2

. We assume that p0
1(A) = 8

10
and p0

2(A) = 6
10

for receivers 1 and

2 respectively and p0
S(A) = 1

10
for the sender. Thus, without further information,

each receiver i ∈ {1, 2} will choose ai , in which case the sender’s expected payoff is

1 ·
(

1
10

)

+ 0 ·
(

9
10

)

= 1
10

.

Given that there are two actions for each receiver, we assume that the sender uses

either one message or two messages from {ai , bi } for each receiver i . In this example,

we explicitly demonstrate how the iterative process for rationalizability works.

First round

Sender That no strategy has been eliminated for each receiver yet implies that for

each π ∈ �, we can construct a belief for the sender regarding the receivers’ behavior
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(a) ai is realized

π(ai | A)

π(ai | B)

π(bi | A)

π(bi | B)

bi

ai

(b) bi is realized

π(ai | A)

π(ai | B)

π(bi | A)

π(bi | B)

bi

ai

(c) Combining (a) and (b)

π(ai | A)

π(ai | B)

π(bi | A)

π(bi | B)

ba

aa

ab

Fig. 4 Receiver’s best-responses

to which π is a best-response; e.g., for any combination of π ∈ � and the realized

message, each receiver i chooses bi , which is the best scenario from the sender’s

point of view. That we identify the optimal π only after identifying the receivers’

best-responses implies that the iterative process requires multiple rounds.

Receivers Since there is no strategic interaction between the receivers, we analyze a

representative receiver’s behavior. For the following argument, we consider all possible

“information sets” for the representative receiver; i.e., any combination of π ∈ � and

the realized message.

One message If only one message is employed, e.g., π(bi | θ) = 1 for each θ ∈ {A, B},

receiver i ∈ {1, 2} makes her decision with her initial belief. In this case, receiver

i ∈ {1, 2} will choose ai , as noted above.

Two messages Suppose instead that both messages are employed, i.e., for each message

x ∈ {ai , bi }, there exists θ ∈ {A, B} such that π(x | θ) > 0.13 Given the initial beliefs

specified above, after observing the realized message x ∈ {ai , bi }, each receiver

i ∈ {1, 2} chooses

{

ai

bi

}

only if pπ
i (A | x) =

π(x |A)p0
i (A)

π(x |A)p0
i (A)+π(x |B)p0

i (B)

{

≥

≤

}

1
2
.

By noting p0
i (B) = 1 − p0

i (A), the inequalities above can be rewritten as

π(x | B)

{

≤

≥

} [

p0
i (A)

1−p0
i (A)

]

π(x | A) (2)

where
p0

i (A)

1−p0
i (A)

> 1 if p0
i (A) ∈ ( 1

2
, 1), which is the case for each i ∈ {1, 2}.

Based on the inequalities in (2), we first show how the behavior of receiver i ∈ {1, 2}

depends on π for each possible realized message from {ai , bi }:

13 As noted earlier, this implies that we exclude the two origins in each box diagram in Fig. 4.
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• ai is observed (x = ai ). This case is shown in (a) of Fig. 4 where (i) the origin is the

bottom-left corner and (ii) the line represents π(ai | B) =

[

p0
i (A)

1−p0
i (A)

]

π(ai | A),

i.e., x = ai . After observing ai , receiver i chooses (i) ai if (π(ai | A), π(ai | B))

is below (south-east) the line, including any point on the line (except the origin),

and (ii) bi otherwise.14

• bi is observed (x = bi ). This case is shown in (b) of Fig. 4 where (i) the origin is

the top-right corner and (ii) the line represents π(bi | B) =

[

p0
i (A)

1−p0
i (A)

]

π(bi | A),

i.e., x = bi . After observing bi , receiver i chooses (i) bi if (π(bi | A), π(bi | B))

is below (south-east) the line, including any point on the line (except the origin)

and (ii) ai otherwise.

The box diagram (c) of Fig. 4 is obtained by combining (a) and (b) of Fig. 4. The

diagram shows how receiver i’s behavior would depend on π and the realized message.

There are three areas in (c) of Fig. 4:

ba : Receiver i chooses (i) bi if the message ai is realized and (ii) ai if the message

bi is realized.

aa : Receiver i chooses ai regardless of the realized message.

ab : Receiver i chooses (i) ai if the message ai is realized and (ii) bi if the message

bi is realized.

Receiver i’s behavior in the two areas ba and ab are qualitatively equivalent. While

receiver i follows the realized message in the area ab, she chooses the action which

is the opposite of the realized message in the area ba.15

The discussion above describes each receiver i’s best response, which determines

the sender’s best-response in the next round.

Second round

Receivers No further elimination of strategies given the arguments in the first round.

Sender We partition � into three different sets, depending on how the receivers behave

after observing the realized messages.

Case 1 First, we consider π ’s with which the receivers choose the same action inde-

pendent of the realized message. If the sender chooses π corresponding to the area

aa in (c) of Fig. 4 for each receiver i ∈ {1, 2} so that she chooses ai regardless of

the realized message, the sender’s expected payoff is 1
10

, which is equal to that of the

case where only one message is used (and thus each receiver i ∈ {1, 2} chooses ai ).

Since our focus is on the cases where the receivers follow the realized messages, we

take π(ai | θ) = 1 for each θ ∈ {A, B} for each receiver i ∈ {1, 2} for the current

14 As discussed earlier, we assume that the receivers follow the realized messages if they are indifferent

between two actions. We will discuss this point in Sect. 4.3.

15 The diagram in (c) of Fig. 4 implies that it is not possible for the sender to persuade receiver i to choose

bi independent of the realized message. This is because p0
i
(A) > 1

2 for each i ∈ {1, 2}.
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case instead of (i) π ’s corresponding to the area aa in (c) of Fig. 4 for each receiver

i ∈ {1, 2} and (ii) π(bi | θ) = 1 for each θ ∈ {A, B} for each receiver i ∈ {1, 2}.

Case 2 Next, we consider π ’s with which receiver i ∈ {1, 2} chooses ai independent of

the realized message while the action receiver j �= i chooses depends on the realized

message. This implies that it is not possible to observe (b1, b2) for each state. Unless

θ = A and the receivers choose (a1, a2) in which case the sender will receive a payoff

of one, the sender’s payoff is zero. Thus, the sender’s expected payoff in this case does

not exceed that of the case discussed above.

Case 3 Lastly, we consider π ’s with which each receiver i chooses a different action

depending on the realized message. Since the area ba is qualitatively equivalent to the

area ab as pointed out above, given that our focus is on the cases where the receivers

follow the realized messages, we consider the area ab for the current case.16 We

consider the following parameters for the sender’s strategy, which are also shown in

(b) of Fig. 3:

π(a1, a2 | A) = wa π(a1, b2 | A) = xa π(b1, a2 | A) = ya π(b1, b2 | A) = za

π(a1, a2 | B) = wb π(a1, b2 | B) = xb π(b1, a2 | B) = yb π(b1, b2 | B) = zb

where wa + xa + ya + za = 1 and wb + xb + yb + zb = 1, and thus

π(a1 | A) = wa + xa π(b1 | A) = ya + za π(a2 | A) = wa + ya π(b2 | A) = xa + za

π(a1 | B) = wb + xb π(b1 | B) = yb + zb π(a2 | B) = wb + yb π(b2 | B) = xb + zb.

Given the inequalities in (2), receiver i ∈ {1, 2} follows the realized message only if

π(a1 | B) = (wb + xb) ≤

[

8
10

1− 8
10

]

π(a1 | A) = 4(wa + xa) (3)

π(b1 | B) = (yb + zb) ≥

[

8
10

1− 8
10

]

π(b1 | A) = 4(ya + za) (4)

for receiver 1 who has p0
1(A) = 8

10
and

π(a2 | B) = (wb + yb) ≤

[

6
10

1− 6
10

]

π(a2 | A) = 3
2
(wa + ya) (5)

π(b2 | B) = (xb + zb) ≥

[

6
10

1− 6
10

]

π(b2 | A) = 3
2
(xa + za) (6)

for receiver 2 who has p0
2(A) = 6

10
. The sender maximizes her expected payoff

[π(a1, a2 | A) + 2π(b1, b2 | A)] p0
S(A) + π(b1, b2 | B)p0

S(B)

= [wa + 2za]
(

1
10

)

+ zb

(

9
10

)

(7)

16 While there are two inequalities to be satisfied for the area ab in (c) of Fig. 4, note that the inequality

for the message bi implies that of the message ai . We discuss this observation in Sect. 4.4.

123



M. Shimoji

subject to the inequalities (3), (4), (5) and (6) as well as the assumptions on the

parameters; i.e., they are non-negative and add up to one for each state. It is important

to note that the expression (7) implies (i) that the sender’s expected payoff is strictly

increasing in wa , za and zb, and (ii) that the coefficient of za is strictly higher than

that of wa .

We now solve this constrained maximization problem. First, the inequalities (3) and

(5) imply that the solution has wb = 0. Given this observation, let zb = 1− (xb + yb).

The inequalities above can then be modified as

xb ≤ 4(wa + xa) 1 − xb ≥ 4(ya + za) yb ≤ 3
2
(wa + ya) 1 − yb ≥ 3

2
(xa + za)

which imply that the solution has xb = yb = 0, and thus zb = 1. The inequalities

above can then be modified further as

0 ≤ 4(wa + xa) 1 ≥ 4(ya + za) 0 ≤ 3
2
(wa + ya) 1 ≥ 3

2
(xa + za).

The first and the third inequalities hold. The second and the fourth inequalities imply

xa = ya = 0. We then have

0 ≤ 4wa 1 ≥ 4za 0 ≤ 3
2
wa 1 ≥ 3

2
za .

Given that the “marginal utility” from za is higher than that of wa in (7), the second

constraint binds, implying za = 1
4

and thus wa = 3
4

.17 We have (wa, xa, ya, za) =

( 3
4
, 0, 0, 1

4
) and (wb, xb, yb, zb) = (0, 0, 0, 1), and thus

π(a1 | A) = π(a2 | A) = 3
4

π(b1 | A) = π(b2 | A) = 1
4

π(a1 | B) = π(a2 | B) = 0 π(b1 | B) = π(b2 | B) = 1

under which the receivers know that the state is A if they observe ai .

The following observations confirm that the receivers follow the realized messages.

Receiver 1’s updated beliefs after observing x ∈ {a1, b1} are:

pπ
1 (A | a1) =

π(a1|A)p0
1(A)

π(a1|A)p0
1(A)+π(a1|B)p0

1(B)
=

(

3
4

)(

8
10

)

(

3
4

)(

8
10

)

+0·
(

2
10

) = 1 ⇒ pπ
1 (B | a1) = 0

pπ
1 (A | b1) =

π(b1|A)p0
1(A)

π(b1|A)p0
1(A)+π(b1|B)p0

1(B)
=

(

1
4

)(

8
10

)

(

1
4

)(

8
10

)

+1·
(

2
10

) = 1
2

⇒ pπ
1 (B | b1) = 1

2
.

Likewise, Receiver 2’s updated beliefs after observing x ∈ {a2, b2} are:

pπ
2 (A | a2) =

π(a2|A)p0
2(A)

π(a2|A)p0
2(A)+π(a2|B)p0

2(B)
=

(

3
4

)(

6
10

)

(

3
4

)(

6
10

)

+0·
(

4
10

) = 1 ⇒ pπ
2 (B | a2) = 0

17 That the last constraint holds with strict inequality is due to the fact that we allow for heterogenous

beliefs.
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(a) Payoffs

θ = A

1

a1

b1

θ = B
2

a2 b2

1, 1, 0 0, 1, 1

−ε, 0, 0 1, 0, 1
1

a1

b1

2

a2 b2

1, 0, 1 0, 0, 0

−ε, 1, 1 1, 1, 0

(b) Conditional Probabilities

θ = A

π(a1 | A)

π(b1 | A)

π(a2 | A) π(b2 | A)

wa xa

ya za

θ = B

π(a1 | B)

π(b1 | B)

π(a2 | B) π(b2 | B)

wb xb

yb zb

Fig. 5 Multiple receivers: Example 4

pπ
2 (A | b2) =

π(b2|A)p0
2(A)

π(b2|A)p0
2(A)+π(b2|B)p0

2(B)
=

(

1
4

)(

6
10

)

(

1
4

)(

6
10

)

+1·
(

4
10

) = 3
11

⇒ pπ
2 (B | b2) = 8

11
.

These expressions imply that receiver i ∈ {1, 2} chooses (i) ai after observing the

message ai and (ii) bi after observing the message bi .

Since the sender’s expected payoff is [( 3
4
) + 2 · ( 1

4
)]( 1

10
) + ( 9

10
) = 41

40
> 1

10
, the

solution to the constrained optimization problem corresponds to the sender’s best-

response, implying that the sender uses two messages instead of one.

Rationalizable strategies

Receivers Each receiver i’s rationalizable strategy is such that while receiver i chooses

ai if one message is employed, if two messages are used, receiver i’s behavior depends

on both π ∈ � and the realized message and is summarized in (c) of Fig. 4.

Sender The distribution π with two messages described above, namely

π(a1, a2 | A) = 3
4

π(a1, b2 | A) = 0 π(b1, a2 | A) = 0 π(b1, b2 | A) = 1
4

π(a1, a2 | B) = 0 π(a1, b2 | B) = 0 π(b1, a2 | B) = 0 π(b1, b2 | B) = 1

is the sender’s rationalizable strategy.
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Example 4: Multiple receivers There are two possible states � = {A, B}. Receivers

1 and 2 have two actions Ai = {ai , bi } for each i ∈ {1, 2}. The payoffs are summarized

in (a) of Fig. 5 where the first payoff in each cell is for the sender while the second and

third payoffs are for receivers 1 and 2 respectively. We assume that ε > 0 is an arbitrary

small number. Regarding the receivers, note (i) that there is no strategic interaction

between the receivers, and (ii) that each receiver has a strictly dominant action for each

state. Regarding the sender, note (i) that the sender’s payoffs are state-independent,

and (ii) that (b1, a2) is the worst action profile from the sender’s point of view.

Let p0
S(A) = p0

S and p0
i (A) = p0

i for each i ∈ {1, 2}. Receivers 1 and 2 will choose

(a1, a2) if p0
1 > 1

2
> p0

2 or (b1, b2) if p0
1 < 1

2
< p0

2 , in which case the sender simply

chooses π0. If min{p0
1, p0

2} > 1
2

or 1
2

> max{p0
1, p0

2}, the sender attempts to change

their beliefs so that there would be a chance that they will coordinate. We focus on

the former, i.e., min{p0
1, p0

2} > 1
2

. Without persuasion, receiver 1 chooses a1 while

receiver 2 chooses b2, implying that the sender’s payoff is zero.

The question is then whether the sender can achieve a higher expected payoff by

persuading the receivers. The sender randomizes the messages, i.e., Ai (π) = Ai

for each i ∈ {1, 2}. The set of non-negative parameters the sender chooses (i.e.,

probabilities conditional on the states) is shown in (b) of Fig. 5 where wa + xa + ya +

za = 1 and wb + xb + yb + zb = 1. Note that we allow correlations.

The condition under which each receiver follows the realized message is

π(a1|A)p0
1

π(a1|A)p0
1+π(a1|B)(1−p0

1)
≥

π(a1|B)(1−p0
1)

π(a1|A)p0
1+π(a1|B)(1−p0

1)

π(b1|A)p0
1

π(b1|A)p0
1+π(b1|B)(1−p0

1)
≤

π(b1|B)(1−p0
1)

π(b1|A)p0
1+π(b1|B)(1−p0

1)

or

π(a1 | B) ≤

[

p0
1

1−p0
1

]

π(a1 | A)

π(b1 | B) ≥

[

p0
1

1−p0
1

]

π(b1 | A)

(8)

for receiver 1 and

π(a2 | B) ≥

[

p0
2

1−p0
2

]

π(a2 | A)

π(b2 | B) ≤

[

p0
2

1−p0
2

]

π(b2 | A)

(9)

for receiver 2. The notations in (b) of Fig. 5 modify (8) and (9) as

(wb + xb) ≤
p0

1

1−p0
1

(wa + xa)

p0
1

1−p0
1

(ya + za) ≤ (yb + zb)
(10)
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and

p0
2

1−p0
2

(wa + ya) ≤ (wb + yb)

(xb + zb) ≤
p0

2

1−p0
2

(xa + za).
(11)

respectively. The sender maximizes

(wa + za − εya)pS + (wb + zb − εyb)(1 − pS)

subject to (10) and (11).

For example, suppose p0
S = 0.8, p0

1 = 0.7, p0
2 = 0.6, and ε = 0.01. In this case, the

solution is (wa, xa, ya, za) = ( 2
3
, 0, 0, 1

3
) and (wb, xb, yb, zb) = ( 2

9
, 0, 7

9
, 0). Hence,

we have

(π(a1 | A), π(b1 | A)) =
(

2
3
, 1

3

)

(π(a1 | B), π(b1 | B)) =
(

2
9
, 7

9

)

(π(a2 | A), π(b2 | A)) =
(

2
3
, 1

3

)

(π(a2 | B), π(b2 | B)) = (1, 0).

The sender’s expected payoff is 8
10

+ 2
10

[ 2
9

+ 7
9
(−ε)] = 1

45
(38 − 7ε) ≈ 0.84.18 The

receivers always coordinate when θ = A (wa + za = 1), while the chance that they

will coordinate when θ = B is 2
9

(

wb + zb = 2
9

)

.

Remark 3 While receiver 1 never knows the state, receiver 2 knows the state if she

observes b2 (θ = A). Since yb > 0, it is possible that receiver 1 chooses b1 and

receiver 2 chooses a2 when θ = B, leading to the worst payoff for the sender, −ε.

Remember that the original example from Kamenica and Gentzkow (2011) shows that

if the receiver chooses the worst action (from the sender’s point of view), she knows the

state (Remark 1). In this example, when they choose the worst action profile (b1, a2),

they do not know θ = B.

4 Linear programming approach

We first describe our main result (Proposition 1). In the following subsections, we

establish the existence of rationalizable strategies for the sender (Sect. 4.1) and show

that a single linear programming problem leads to rationalizable strategies for the

sender (Sect. 4.2). We further discuss the issue of multiple best-responses (Sect. 4.3)

and the property of the constraints (Sect. 4.4).

18 If the sender persuades only receiver 1, her expected payoff is p0
S

[

1−p0
1

p0
1

]

+ (1 − p0
S
) = 19

35
≈ 0.54

while it is p0
S

[

1−p0
2

p0
2

]

+ (1 − p0
S
) = 11

15
≈ 0.73 if the sender persuades only receiver 2.
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In our approach, we identify the set of rationalizable strategies for the sender and

the receivers á la backward induction.

Second stage The second stage only concerns the receivers’ decision problems. Given

π ∈ � and ai ∈ Ai (π) for each i ∈ N , let s+
i (π, ai ) ∈ Ai be such that

∑

θ∈�

ui (s
+
i (π, ai ), θ)pπ

i (θ | ai ) ≥
∑

θ∈�

ui (a
′
i , θ)pπ

i (θ | ai )

or

∑

θ∈�

[

ui (s
+
i (π, ai ), θ) − ui (a

′
i , θ)

]

π(ai | θ)p0
i (θ) ≥ 0 (12)

for each a′
i ∈ Ai . Let s+

i be the corresponding best-response strategy for receiver

i ∈ N . The presence of multiple best-responses is possible, and we also use s+
i (π, ai )

as a best-response correspondence (abuse of notation). In our analysis, we pay our

attention to the case where the receivers follow the sender’s recommendation.

Definition 1 We say that π implements Ã = × j∈N Ã j where Ã j ⊆ A j for each

j ∈ N if

1. Ai (π) = Ãi for each i ∈ N , and

2. for each i ∈ N and ai ∈ Ai (π), ai ∈ s+
i (π, ai ).

Let

�( Ã) =
{

π ∈ � | π implements Ã
}

.

We say that Ã is implementable if �( Ã) �= ∅.19 For the following analysis, our focus is

on the collection of implementable sets, meaning that the receivers follow the realized

messages.20 Note that some message profiles in Ã may not be realized for certain

states, since Ã is a product set and π permits correlations. That π0 ∈ �(A0) means

that there always exists an implementable set. Since our focus is on implementable

sets, for each i ∈ N , if ai ∈ A0
i is implemented, π0(ai | θ) = 1 for each θ ∈ �.

Remark 4 The latter point in Definition 1 implies that the sender makes receiver i

follow the realized message. If there are multiple best-responses, however, she may

choose a different action a′
i ∈ s+

i (π, ai ). We will discuss this point in Sect. 4.3.

First stage For each implementable set Ã, the sender identifies π ∈ �( Ã) which

maximizes her expected payoff—the optimization problem under the constraint �( Ã).

Note that for each ai ∈ Ãi , �( Ã) does not contain π such that π(ai | θ) = 0 for each

θ ∈ �. This can be seen in the exclusion of the origins in the box diagrams in the

previous examples. This implies (i) that �( Ã) is not closed, and thus (ii) that there

19 For example, {a1} × {b2}, A1 × {b2}, {a1} × A2, and A1 × A2 are implementable in Example 4.

20 This means that we do not consider the permutations of Ãi .
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may not be a solution. For each implementable Ã, we instead look at the closure of

�( Ã), denoted by �̄( Ã).21 For each implementable Ã, the sender identifies

argmax
π∈�̄( Ã)

∑

θ∈�

∑

a∈A(π)

uS(a, θ)π(a | θ)p0
S(θ). (13)

Since (13) and (12) are linear in π , this constrained maximization problem can be seen

as a linear programming problem. Among the solutions for all implementable sets,

the ones which reach the highest expected payoff for the sender are the rationalizable

strategies for the sender.

Note (i) that the consideration of �̄( Ã) suggests a possibility that the set of ratio-

nalizable strategies for the sender can be empty, and (ii) that the procedure above leads

to a set of linear programming problems (corresponding to different implementable

sets). We show (i) that there always exists a rationalizable strategy for the sender

(Sect. 4.1), and (ii) that a single linear programming problem leads to the identifi-

cation of rationalizable strategies for the sender (Sect. 4.2). Regarding the latter, we

show that there exists the largest implementable set Ã♯ = × j∈N Ã
♯
j under which the

sender’s optimization problem is solved. For the identification of Ã♯, we show that for

each i ∈ N , Ã
♯
i ⊆ Ai is the set of actions for receiver i , which are best-responses to

some distributions over �.

A solution for the sender’s optimization problem under �̄( Ã♯), denoted by π∗,

may be that π∗ ∈ �̄( Ã♯)\�( Ã♯). In such a case, there exists an implementable set

Ã∗ ⊂ Ã♯ such that π∗ is the solution of the sender’s optimization problem under

�( Ã∗). We do not need to take the closure for �( Ã∗). We prove Proposition 1 below

in the Sects. 4.1 and 4.2.

Proposition 1 The sender’s rationalizable strategy π∗ is

π∗ ∈ argmaxπ∈�̄(A♯)

∑

θ∈�

∑

a∈A(π)

uS(a, θ)π(a | θ)p0
S(θ).

There exists an implementable set Ã∗ = × j∈N Ã∗
j ⊆ A♯ such that

π∗ ∈ argmax
π∈�( Ã∗)

∑

θ∈�

∑

a∈A(π)

uS(a, θ)π(a | θ)p0
S(θ).

One immediate implication of Proposition 1 is that if π∗ /∈ �(A0), π∗ is generically

unique.22

Remark 5 In our linear programming approach, we first identify each receiver’s best-

response (rationalizable strategy), and then the sender’s rationalizable strategy. This

is exactly the order of eliminations of strategies for rationalizability: In the first round,

(i) no strategy for the sender is eliminated, and (ii) a best-response is identified for

21 For each π ∈ �̄( Ã)\�( Ã), there exist i ∈ N and ai ∈ Ãi such that π(ai | θ) = 0 for each θ ∈ �.

22 For the uniqueness of the solution, see Mangasarian (1979).
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each receiver. In the second round, given each receiver’s best-response, the sender can

identify her rationalizable strategy. Note that given that there is no strategic interaction

at the second stage (unlinked), the argument above immediately implies a similarity

between our approach and backward induction.

Remark 6 Our result on the largest implementable set holds since π is freely chosen

by the sender. In other words, π is practically tailor-made for each receiver, implying

that the constraints for different receivers do not interact. If there is a restriction on π

and the constraints for different receivers interact, we may not be able to use the largest

implementable set since this would imply the discontinuity of the sender’s expected

payoff in π . In such cases, we consider different constraints separately.

4.1 Existence

We first establish the existence of a rationalizable strategy for the sender. As discussed

above, the issue is that for each Ã with | Ãi | > 1 for some i ∈ N , �( Ã) is not closed,

implying the possibility that no rationalizable strategy for the sender exists. In Example

2 (c), for the sender’s optimization problem with �(A1), π(a′
1 | θ ′) = π(a′

1 | θ ′′) = 0

is the “solution”, which does not belong to �(A1). This corresponds to the concern

above. Note, however, that the sender’s unique rationalizable strategy is π0 and actually

corresponds to the “solution” above. This suggests that given a constraint, once the

“origin” is identified as a solution, we can find another constraint in which there exists

a strategy for the sender identical to the “origin” in the original constraint. We show

that this is always the case. This approach also allows us to use the closures of the

constraints to include the origins.

In Example 2 (c), (i) we reduced the constraint from A1 to {a′′
1 }, and (ii) while

the “origin” for a′
1 is contained in �̄(A1), the one for a′′

1 is not. We generalize this

observation for the reduction of constraints. Given Ã, for each i ∈ N , let

Ã⊳
i =

{

ai ∈ Ãi | there exists π ∈ �̄( Ã) such that π(ai | θ) = 0 for each θ ∈ �

}

.

In other words, �̄( Ã) contains the “origin” for each ai ∈ Ã⊳
i . We first establish the

following result.

Lemma 1 Given Ã, for any i ∈ N with | Ãi | > 1, take any a′
i ∈ Ã⊳

i and let

Ã′ = Ãi\{a
′
i }. Then, (i) Ã′

i × Ã−i is implementable, and (ii) �( Ã′
i × Ã−i ) ⊂

�̄( Ã)\�( Ã).

Proof Take any π ′ ∈ �̄( Ã)\�( Ã) such that π ′(a′
i | θ) = 0 for each θ ∈ �. Since

this does not change (12) with respect to the comparison of any pair in Ã′
i , receiver i

follows the observed message for each ai ∈ Ã′
i . Let π ′(a j | θ) = π(a j | θ) for each

j �= i , a j ∈ Ã j , and θ ∈ �. This implies that Ã′
i × Ã−i is implementable. The last

part is immediately established by reversing the argument above. ⊓⊔

Lemma 1 implies the following result, which was mentioned in Remark 2. It says

that given Ã, once the sender finds a solution in �̄( Ã)\�( Ã), she can find a smaller
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implementable set Ã′ (i.e., the reduction of the implementable set) and π ′ ∈ �( Ã′)

such that her expected payoff with π ′ is weakly higher than the ones with any π ∈

�( Ã), as in Example 2 (c).23 If it is strictly higher, Ã can simply be dismissed.

Lemma 2 Given Ã, if a solution for (13), π , is such that π ∈ �̄( Ã)\�( Ã), there exists

an implementable set Ã′ � Ã with which there exists π ′ ∈ �( Ã′) such that

∑

θ∈�

∑

a∈A(π ′)

uS(a, θ)π ′(a | θ)p0
S(θ) =

∑

θ∈�

∑

a∈A(π)

uS(a, θ)π(a | θ)p0
S(θ). (14)

Proof Given π , for each i ∈ N , identify B̃i ⊆ Ã⊳
i such that for each a′

i ∈ B̃i ,

π(a′
i | θ) = 0 for each θ ∈ �. Let Ã′

i = Ãi\B̃i for each i ∈ N . Lemma 1 says that

Ã′ = × j∈N Ã′
j is implementable. For each i ∈ N and ai ∈ Ã′

i , let π ′(ai | θ) = π(ai |

θ) for each θ ∈ �. It is then immediate (i) that π ′ ∈ �( Ã′) and (ii) that (14) holds. ⊓⊔

Note that for any implementable Ã and π ∈ �( Ã), there exist i ∈ N , ai ∈ Ãi , and

θ ∈ � such that π(ai | θ) > 0, meaning that any reduction of Ã never leads to an

empty set. Since Ai is finite for each i ∈ N , Lemma 2 implies the existence result.

Proposition 2 There exist Ã∗ and π∗ ∈ �( Ã∗) such that π∗ is a rationalizable strategy

for the sender.

The results above seemingly suggest that to obtain π∗, it is necessary to solve (13)

with respect to all possible implementable sets. The results in the next section show (i)

that there exists the largest implementable set Ã♯ under which a solution to (13) is π∗,

and (ii) how we can construct Ã♯. The former implies that a single linear programming

problem leads to π∗.

4.2 Largest implementable set

In this subsection, we show the existence of the largest implementable set Ã♯ under

which we can solve (13) to show a rationalizable strategy for the sender, π∗.

Let (i) σ ∈ �(�) be a distribution over �, and (ii) σ(θ) ∈ [0, 1] be a probability

assigned to θ ∈ � by σ . For each i ∈ N , let

A
♯
i =

{

ai ∈ Ai |
there exists σ ∈ �(�) such that for each a′

i ∈ Ai
∑

θ∈� ui (ai , θ)σ (θ) ≥
∑

θ∈� ui (a
′
i , θ)σ (θ)

}

.

and A♯ = × j∈N A
♯
j . In other words, A

♯
i is the set of actions for receiver i ∈ N which are

best-responses to some distributions over �. For each ai ∈ A
♯
i , let (i) σ(ai ) ∈ �(�) be

a distribution to which ai is a best-response, and (ii) σ(θ, ai ) ∈ [0, 1] be a probability

assigned to θ ∈ � by σ(ai ) (and hence
∑

θ∈� σ(θ, ai ) = 1). For each i ∈ N , let

A
♯,1
i =

{

ai ∈ A
♯
i | there exists θ ∈ � such that σ(θ, ai ) = 1

}

.

23 Note that Example 2 (a) is also consistent with this.
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In other words, A
♯,1
i is the set of actions for receiver i ∈ N which are best-responses

to some degenerate distributions over �.

Given the way A♯ is constructed, if the largest implementable set Ã♯ exists, it

immediately follows that Ã♯ ⊆ A♯. We have the consequent strong result, which

immediately implies the existence of Ã♯.

Lemma 3 Ã♯ = A♯.

Proof We construct π such that π ∈ �(A♯), which immediately implies Ã♯ = A♯.

First, consider A
♯,1
i . For each ai ∈ A

♯,1
i , let

�(ai ) = {θ ∈ � | there exists σ(ai ) such that σ(θ, ai ) = 1} .

Note (i) that for each θ ∈ �, there exists ai ∈ A
♯,1
i such that θ ∈ �(ai ), and (ii) that

for each ai ∈ A
♯,1
i , |�(ai )| ≥ 1. For each i ∈ N and ai ∈ A

♯,1
i , let

π(ai | θ) =

{

α(ai , θ)

0

}

for each θ

{

∈

/∈

}

�(ai )

where α(ai , θ) ∈ (0, 1] is an arbitrary constant, which we will discuss later. Note that

for each θ ∈ �, pπ
i (θ | ai ) > 0 if and only if θ ∈ �(ai ); i.e., for any α(ai , θ) ∈ (0, 1],

ai is a best-response after observing the message ai .
24 ⊓⊔

Next, consider A
♯
i \A

♯,1
i . It is possible that A

♯
1\A

♯,1
1 is empty. For each i ∈ N and

ai ∈ A
♯
i \A

♯,1
i , let

π(ai | θ) = β(ai )σ (θ, ai )

where β(ai ) ∈ (0, 1] is again an arbitrary constant which will be discussed later. Since

pπ
i (θ | ai ) =

β(ai )σ (θ,ai )
∑

θ̃∈�
β(ai )σ (θ̃ ,ai )

= σ(θ, ai ),

for any β(ai ) ∈ (0, 1], ai is a best-response after observing the message ai .

For each θ ∈ �, consider

∑

ai ∈Ai

π(ai | θ) =
∑

ai ∈A
∗,1
i

π(ai | θ) +
∑

ai ∈A∗
i \A

∗,1
i

π(ai | θ)

=
∑

ai ∈A
♯,1
i

α(ai , θ) +
∑

ai ∈A
♯
i \A

♯,1
i

β(ai )σ (θ, ai ).

Note that while the second term may be zero (i.e., A
♯
i \A

♯,1
i = ∅), the first term is strictly

positive since for each θ ∈ �, there exists ai ∈ A
♯,1
i such that θ ∈ �(ai ). We need to

have
∑

ai ∈Ai
π(ai | θ) = 1. For each ai ∈ A

♯
i \A

♯,1
i , make β(ai ) ∈ (0, 1] sufficiently

small so that the second term is strictly less than one. For each ai ∈ A
♯,1
i and each

24 If |�(ai )| > 1, receiver i does not know the actual state, and only knows the state is in �(ai ).
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Fig. 6 Multiple best-responses:

Example 1 revisited

π(ξ′

1
| θ′)

π(ξ′

1
| θ′′)

π(ξ′′

1
| θ′)

π(ξ′′

1
| θ′′)

θ ∈ �(ai ), choose α(ai , θ) ∈ (0, 1] so that
∑

ai ∈Ai
π(ai | θ) = 1. Remember that

for each ai ∈ A
♯
i , there exists θ ∈ � such that π(ai | θ) > 0. This implies that

π ∈ �(A♯), completing the proof. �

Lemmas 2 and 3 lead to Proposition 1.

4.3 Multiple best-responses

As discussed in Remark 4, if a receiver is indifferent about choosing between two

actions, our focus is on the case where the receiver follows the realized message.

However, the receiver may as well choose another best-response. The notion of sender-

preferred equilibrium in Kamenica and Gentzkow (2011) avoids this. What would

happen if such a restriction is not imposed? It turns out that the argument does not

change. The question is simply whether such reversals of the receivers’ behavior

would create more rationalizable strategies for the sender. Remember that when such

indifferences matter, it is because π∗ lies on the boundaries of the constraints. Consider

again Example 1 and suppose instead that receiver 1 chooses a′
1 when she is indifferent

between a′
1 and a′′

1 after observing the message a′′
1 , which is visualized in Fig. 6. If

this is the case, there is simply no corresponding rationalizable strategy for the sender.

Again, this is because the sender’s expected payoff is not uppersemicontinuous at the

points on the boundary of the constraint.25 As this example suggests, the reversals of

the receivers’ behavior creates no additional rationalizable strategy for the sender.

4.4 Parallel constraints

In the box diagrams of the examples in Sect. 3.1, not only are the two constraints

parallel with each other, but also one implies the other. We now show that this is true

25 See, for example, Dufwenberg and Stegeman (2002).
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by taking into account the probabilities assigned to two messages. Given A♯, take

i ∈ N with |A
♯
i | ≥ 2, and a′

i , a′′
i ∈ A

♯
i with a′

i �= a′′
i . For each π ∈ �(A♯), we have

∑

θ∈�

[

ui (a
′
i , θ) − ui (a

′′
i , θ)

]

π(a′
i | θ)p0

i (θ) ≥ 0 (15)

∑

θ∈�

[

ui (a
′
i , θ) − ui (a

′′
i , θ)

]

π(a′′
i | θ)p0

i (θ) ≤ 0. (16)

Let c(a′
i , a′′

i | θ) = π(a′
i | θ) + π(a′′

i | θ) for each θ ∈ �, and consider the

following expression:

∑

θ∈�

[

ui (a
′
i , θ) − ui (a

′′
i , θ)

]

c(a′
i , a′′

i | θ)p0
i (θ). (17)

Note that (15) and (16) can be rewritten as

∑

θ∈�

[

ui (a
′
i , θ) − ui (a

′′
i , θ)

]

c(a′
i , a′′

i | θ)p0
i (θ)

≥
∑

θ∈�

[

ui (a
′
i , θ) − ui (a

′′
i , θ)

]

π(a′′
i | θ)p0

i (θ) (18)

∑

θ∈�

[

ui (a
′
i , θ) − ui (a

′′
i , θ)

]

c(a′
i , a′′

i | θ)p0
i (θ)

≤
∑

θ∈�

[

ui (a
′
i , θ) − ui (a

′′
i , θ)

]

π(a′
i | θ)p0

i (θ). (19)

We show that the relationship of (15) and (16) depends on the sign of (17), using the

following definition.

Definition 2 (15) is said to imply (16) if every π ∈ �(A♯) satisfying (15) satisfies

(16). (16) is said to imply (15) if every π ∈ �(A♯) satisfying (16) satisfies (15).

We first show the following result, which states that (17) is zero if and only if (15)

and (16) hold simultaneously with equalities. Let

�′(A♯) =
{

π ∈ �(A♯) | (15) holds with equality
}

�′′(A♯) =
{

π ∈ �(A♯) | (16) holds with equality
}

.

Lemma 4 �′(A♯) = �′′(A♯) if and only if (17) is zero.

Proof (only if) Assume �′(A♯) = �′′(A♯) and take any π ∈ �′(A♯) = �′′(A♯) for

which (15) and (16) and hence (18) and (19) hold with equalities. Suppose that (17) is

positive. Then, the right-hand side of (19) is positive, contradicting (15) with equality.

Likewise, suppose that (17) is negative. Then, the right-hand side of (18) is negative,

contradicting (16) with equality. Hence, if �′(A♯) = �′′(A♯), (17) is zero.
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[if] Assume that (17) is zero. Suppose �′(A♯) �= �′′(A♯). First, suppose that there

exists π ′ ∈ �′(A♯) such that π ′ /∈ �′′(A♯). For any such π ′, (18) holds with equality.

That (17) is zero then implies π ′ ∈ �′′(A♯), thus producing a contradiction. Likewise,

suppose instead that there exists π ′′ ∈ �′′(A♯) such that π ′′ /∈ �′(A♯). For any

such π ′′, (19) holds with equality. That (17) is zero then implies π ′′ ∈ �′(A♯), thus

producing a contradiction. Hence, if (17) is zero, �′(A♯) = �′′(A♯). ⊓⊔

If one of the two actions a′
i or a′′

i is not a best-response to the prior, we have the

following result.

Proposition 3 Given A♯, take receiver i ∈ N with |A
♯
i | ≥ 2 and a′

i , a′′
i ∈ A

♯
i . Then,

• (17) is non-positive if and only if (15) implies (16), and

• (17) is non-negative if and only if (16) implies (15).

Proof The following argument applies to the first part. The similar argument applies

to the second part, which we omit. [only if] Suppose that (17) is non-positive. If (15)

holds, so does (18). That (17) is non-negative means that (16) holds. [if] Suppose

that (15) implies (16). That both (16) and (18) hold simultaneously means that (17) is

non-positive. ⊓⊔

We have the following immediate result.

Corollary 1 Suppose that there exists i ∈ N such that Ã∗
i = {a′

i , a′′
i } (i.e., | Ã∗

i | = 2)

where a′
i ∈ A0

i . Then, (16) implies (15).

Proof Since | Ã∗
i | = 2, c(a′

i , a′′
i | θ) = 1 for each θ ∈ �. That a0

i ∈ A0
i implies that

(17) is non-negative. Proposition 3 then implies the result. ⊓⊔

Given Ã∗ and π∗ ∈ �( Ã∗), for each i ∈ N and any pair of a′
i , a′′

i ∈ Ã∗
i , (17) is

generically non-zero. This is because while fixing the marginals for the other receivers,

the sender’s expected payoffs corresponding to a′
i and a′′

i are generically different. The

sender simply shifts theπ ’s from one action to the other to increase her expected payoff.

5 Conclusion

In this paper, we analyzed the Bayesian persuasion games from Kamenica and

Gentzkow (2011). We showed that it is possible to analyze multiple-receiver Bayesian

persuasion games with heterogeneous beliefs. Our departure from Kamenica and

Gentzkow (2011) is that we directly analyze the sender’s messages. With our approach,

the sender’s optimization problem turns to the examination of a single linear program-

ming problem for unlinked Bayesian persuasion games.26

In unlinked games, there is no strategic interaction at the second stage. Once strate-

gic interactions among the receivers are introduced, the framework would no longer

26 If the stage game exhibits a Bayesian potential, the sender can utilize the potential function to analyze

the receivers’ behavior via Bayes Nash equilibrium. The definition of potential games is by Monderer and

Shapley (1996). For Bayesian potential games, see van Heumen et al. (1996) and Ui (2009).
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accept the linear programming approach discussed in this paper. Such frameworks

would be at least as relevant as linked games. Further theoretical developments as

well as applications are needed to improve our understanding.27
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A Notation

• N : finite set of receivers with |N | = n ≥ 1.

• �: finite set of states with θ being a typical element.

• p0
S : sender’s initial belief over � with p0

S(θ) > 0 for each θ ∈ �.

• p0
i : initial belief for receiver i ∈ N with p0

i (θ) > 0 for each θ ∈ �.

• Ai : finite set of (i) actions and (ii) messages (recommendation) for receiver i ∈ N

with A = × j∈N A j .

• uS : A × � → R: sender’s payoff function.

• ui : Ai × � → R: payoff function for receiver i ∈ N—it depends on Ai , not A.

• π : sender’s strategy = a distribution over A conditional on � with � being the set

of sender’s strategies.

• Ai (π): set of realizable messages for receiver i ∈ N under π

Ai (π) = {ai ∈ Ai | π(ai , a−i | θ) > 0 for some a−i ∈ A−i and θ ∈ �}

with A(π) = × j∈N A j (π).

• Mi : set of possible observations receiver i ∈ N can have

Mi ⊂ � × Ai such that for any (π, ai ) ∈ Mi , ai ∈ Ai (π).

• π(ai | θ): the marginal over ai conditional on θ

π(ai | θ) =
∑

a−i ∈A−i

π((ai , a−i ) | θ).

• pπ
i (θ | ai ): interim belief for receiver i ∈ N after observing (π, ai ) ∈ Mi

pπ
i (θ | ai ) =

π(ai | θ)p0
i (θ)

∑

θ̃∈� π(ai | θ̃ )p0
i (θ̃)

.

27 In one example in Shimoji (2016), we showed a model in which “silence” has some meaning by utilizing

the notion of forward induction from rationalizability.
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• si : Mi → Ai : pure strategy for receiver i ∈ N with Si being the set of strategies

for i .

• si (π, ai ) ∈ Ai : receiver i’s action after observing (π, ai ) ∈ Mi

• π0: null message (interim belief = prior for each receiver)

• A0
i ⊆ Ai : set of actions which are best-responses to p0

i . If Ai is singleton, a0
i

represents the unique best-response to p0
i .

• s+
i (π, ai ): (i) best-response after observing (π, ai ), and (ii) best-response corre-

spondence if there are multiple best-responses (abuse of notation)

• Ã: implementable set—see Definition 1—with Ã = × j∈N Ã j .

• �( Ã): set of sender’s strategies which implement Ã

�( Ã) =
{

π ∈ � | π implements Ã
}

with �̄( Ã) being the closure of �( Ã).

• Ã♯: largest implementable set

• π∗: sender’s rationalizable strategy, maximizing her expected payoff under �̄( Ã♯)

• Ã∗
i ⊆ Ã

♯
i : set of actions for receiver j ∈ N which will be played with a positive

probability under π∗ with Ã∗ = × j∈N Ã∗
j .

• Ã⊳
i : Ã⊳

i ⊆ Ãi where each element ai ∈ Ã⊳
i is such that the “origin” corresponding

to ai is included in �̄( Ã)

• �(�): the set of distributions over � with σ(θ) being a probability assigned to θ

by σ .

• A
♯
i : set of actions which are best-responses to some σ ∈ �(�)

• σ(ai ) ∈ �(�): distribution to which ai ∈ A
♯
i is a best-response with σ(θ, ai )

being a probability assigned to θ ∈ � by σ(ai )

• A
♯,1
i : A

♯,1
i ⊆ A

♯
i where each element ai ∈ A

♯,1
i is a best-response to some degen-

erate distribution.

B Example 4

In this section, we demonstrate how to solve the sender’s optimization problem in

Example 4—of course, by using standard software, one can obtain the same conclusion.

With p0
S = 8

10
, p0

1 = 7
10

and p0
2 = 6

10
, the sender maximizes

1

5
[4(wa + za − εya) + (wb + zb − εyb)]

subject to

(wb + xb) ≤ 7
3
(wa + xa)

7
3
(ya + za) ≤ (yb + zb)
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Fig. 7 Best scenario for sender:

wa + za = 1 and wb + zb = 1

za

wb

wa

zb

(wa, za) = (2

3
, 0)

and

3
2
(wa + ya) ≤ (wb + yb)

(xb + zb) ≤ 3
2
(xa + za).

First, since ya and xb appear only on the left-hand sides, we have ya = 0 and

xb = 0, the latter of which implies yb = 1 − (wb + zb). We can then rewrite (with

rescaling) the objective function as well as the constraints as

4(wa + za) + (1 − ε)(wb + zb) − ε

subject to

3wb ≤ 7(1 − za)

7za ≤ 3(1 − wb)
or

7za + 3wb ≤ 7

7za + 3wb ≤ 3
⇒ 7za + 3wb ≤ 3

and

3wa ≤ 2(1 − zb)

2zb ≤ 3(1 − wa)
or

3wa + 2zb ≤ 2

3wa + 2zb ≤ 3
⇒ 3wa + 2zb ≤ 2

Even though there are still three parameters for each state, we can visualize how to

solve this optimization problem.

First, let wa + za = 1 (and thus xa = 0) and wb + zb = 1 (and thus yb = 0).

Note that given the sender’s objective function, this is the best scenario for her. Figure

7 shows the corresponding box diagram; (i) the bottom-left origin corresponds to the

first inequality, 7za + 3wb ≤ 3, with za on the horizontal axis and wb on the vertical

axis, and (ii) the top-right origin corresponds to the second inequality, 3wa +2zb ≤ 2,

with wa on the horizontal axis and zb on the vertical axis. Note that the length of

the horizontal axis is wa + za and the length of the vertical axis is equal to wb + zb,
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za

wb

wa

zb

(wa, zb) = (2

3
, 0)

(za, wb) = (1

3
, 2

9
)

Fig. 8 Alternative scenario: wa + za = 1 and wb + zb = 2
9

implying that the sender’s objective in this box diagram is to stretch both sides as

much as possible. That wa + za = 1 and wb + zb = 1 implies that each side of the box

diagram in Fig. 7 is equal to one. As Fig. 7 shows, the combination of wa + za = 1

and wb + zb = 1 does not satisfy the inequalities above.

Next, consider a case in which while wa + za = 1 (and thus xa = 0) is maintained,

we let wb +zb < 1 (and thus yb > 0) so that the two inequalities above are satisfied, as

shown in Fig. 8. This can be seen as moving the top-right origin downwards so that two

lines, which have different slopes, just touch each other. The sender’s corresponding

strategy is (wa, xa, ya, za) = ( 2
3
, 0, 0, 1

3
) and (wb, xb, yb, zb) = ( 2

9
, 0, 7

9
, 0).

Then, the question is whether this is the sender’s optimal strategy. The only direction

the sender can choose is to increase wb + zb (the length of the vertical axis) while

decreasing wa + za (the length of the horizontal axis)—still maintaining two lines
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touching each other in the same manner. Given the sender’s objective function, the

marginal rate of substitution between these two values is

−
d(wb + zb)

d(wa + za)
=

4

1 − ε
> 4

meaning that the sender can give up one unit of wa + za with a compensation of

a greater than four unit increase in wb + zb. Note however (the absolute value of)

the slope of 7za + 3wb = 3 (or wb = − 7
3

za + 1) is 7
3

< 4, implying that such

a compensation is unfeasible. This means that (wa, xa, ya, za) = ( 2
3
, 0, 0, 1

3
) and

(wb, xb, yb, zb) = ( 2
9
, 0, 7

9
, 0) is indeed the solution for the sender’s optimization

problem.
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