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Abstract
The notion of a τ -exceptional sequence was introduced by Buan and Marsh in (2018) as a
generalisation of an exceptional sequence for finite dimensional algebras. We calculate the
number of complete τ -exceptional sequences over certain classes of Nakayama algebras. In
some cases, we obtain closed formulas which also count other well known combinatorial
objects, and exceptional sequences of path algebras of Dynkin quivers.
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1 Introduction

Let A be a finite dimensional algebra over a field F, where F is algebraically closed. Let
mod A be the category of finitely generated left A-modules. A left A-module M is called
exceptional if Hom(M,M) ∼= F and ExtiA(M,M) = 0 for i ≥ 1. A sequence of inde-
composable modules (M1, M2, . . . , Mr) is called an exceptional sequence if for each pair
(Ml,Mj ) with 1 ≤ l < j ≤ r , we have that Hom(Mj ,Ml) = ExtiA(Mj , Ml) = 0 for i ≥ 1,
and each Mk is exceptional for 1 ≤ k ≤ r . Exceptional sequences were first introduced in
the context of algebraic geometry by [6], [15] and [14].

Exceptional sequences exhibit some interesting behaviours. It was shown by Crawley-
Boevey [10] and Ringel [25] that there is a transitive braid group action on the set of
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exceptional sequences. Igusa and Schiffler give [16] a characterisation of exceptional
sequences for hereditary algebras using the fact that the product of the corresponding reflec-
tions is the inverse Coxeter element of the Weyl group. The exceptional sequences for
modAr , where Ar is the path algebra of a Dynkin type A quiver are classified in [12] using
combinatorial objects called strand diagrams. The exceptional sequences over path algebras
of type A, were also characterised using non-crossing spanning trees in [3]. A natural ques-
tion for exceptional sequences is to ask how many there are. The number of them has been
computed for all the hereditary Dynkin algebras in [28] and [22].

Exceptional sequences have been subject to a number of generalisations. Igusa and
Todorov introduced the signed exceptional sequences in [17]. More recently, weak excep-
tional sequences were introduced and studied by Sen in [30]. Finally, Buan and Marsh
introduced in [7] the signed τ -exceptional sequences and τ -exceptional sequences. It is τ -
exceptional sequences which are the subject of this paper. An A-module M is called τ -rigid
if Hom(M, τM) = 0, see Definition 0.1 in [2]. The τ -perpendicular category of M in
mod A is the subcategory J (M) = M⊥ ∩ ⊥(τM), see Definition 3.3 in [18]. A sequence of
indecomposable modules (M1,M2, . . . , Mr) in mod A is called a τ -exceptional sequence if
Mr is τ -rigid in mod A and (M1,M2, . . . , Mr−1) is a τ -exceptional sequence in J (Mr).

Our main results are derivations of closed formulas for the number of complete τ -
exceptional sequences in the module categories of certain Nakayama algebras. Most
notably, we see that the complete τ -exceptional sequences over the linear radical square zero
Nakayama algebras �2

n are counted by the restricted Fubini numbers Fn,�2 [21]. The num-
bers Fn,�2 count the number of ordered set partitions of the set {1, 2, . . . , n} with blocks of
size at most two. In the case for the cyclic Nakayama algebra �n

n, we get that the complete
τ -exceptional sequences are counted by the sequence nn. We remark that this sequence also
counts the number of complete exceptional sequences for the hereditary Dykin algebras of
quivers of type B and C, as shown in [22], and full weak exceptional sequences over �n

n,
see [29, Theorem 3.5]. In fact, we show that the complete τ -exceptional sequences over �n

n

coincide with the full weak exceptional sequences over �n
n, see Corollary 6.13.

We remark that Buan and Marsh showed in [7] that there is a bijection between complete
signed τ -exceptional sequences and basic ordered support τ -tilting modules over a finite
dimensional algebra. So, one way of counting signed τ -exceptional sequences would be to
count ordered support τ -tilting modules, but this would not give the number of (unsigned)
τ -exceptional sequences, which is what we consider here. In this direction, Asai [4] gave
a recurrence relation for the number of support τ -tilting modules over Nakayama algebras
with a linearly oriented type A quiver. Adachi [1] also gave a recurrence relation for the
number of τ -tilting modules over the same algebras as Asai. More recently Gao and Schif-
fler [11] have extended the recurrence relations of Adachi and Asai to τ -tilting modules and
support τ -tilting modules over Nakayama algebras whose quiver is an oriented cycle. In a
paper of Sen [29], the number of exceptional sequences over the linear radical square zero
Nakayama algebras �2

n are counted. However, to date the number of exceptional sequences
for other classes of Nakayama algebras have not been counted.

This paper is organised as follows: In Section 2 we fix some notation and recall def-
initions. In Section 3, we state and prove preliminary results which we use in the latter
sections to prove our main results of the paper. Our main results of this section state that
under certain assumptions, the τ -exceptional sequences of mod A are obtained by interleav-
ing τ -exceptional sequences of certain subcategories of mod A. In Section 4, we count the
number of complete τ -exceptional sequences for the linear radical square zero Nakayama
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algebras �2
n. We derive a recurrence and closed formula for the number of complete τ -

exceptional sequences in this case. In Section 5, we deal with the case of cyclic radical
square zero Nakayama algebras �2

n. We derive a closed formula for the number of complete
τ -exceptional sequences in this case. We also derive a formula for the number of complete
τ -exceptional sequences of �2

n in terms of the number of complete τ -exceptional sequences
of �2

n. In Section 6, we count the number of complete τ -exceptional sequences over the
cyclic Nakayama algebras �n

n. We derive a recurrence and closed formula for the number
of complete τ -exceptional sequences in this case. Section 7 deals with the linear Nakayama
algebras �n−1

n . We derive a recurrence relation for the number of complete τ -exceptional
sequences in this case, and show that the corresponding exponential generating function
satisfies a certain first order linear ordinary differential equation involving Lambert’s W
function. Section 8 concludes the paper by giving a justification of why we only consider
the above the classes of Nakayama algebras.

2 Definitions and Notation

Let A be a basic finite dimensional algebra over a field F which is algebraically closed.
Let mod A be the category of finite dimensional left A-modules. Denote by P(A) the full
subcategory of projective objects in mod A. If T is a subcategory of mod A, we say an A-
module M in T is Ext-projective in T if Ext1A(M,T ) = 0; that is to say Ext1A(M, T ) = 0
for all T ∈ T . We will then write P(T ) to denote the direct sum of the indecomposable
Ext-projective modules in T . In everything that follows, we make the assumption that all
subcategories are full, and closed under isomorphism. We will also take all objects to be
basic where possible, and they will be considered up to isomorphism.

For an additive category C, and an object X in C, we denote by add X the additive
subcategory of C generated by X. This is the subcategory of C with objects the direct sum-
mands of direct sums of copies of X. For a subcategory X ⊆ C, we define ⊥X := {Y ∈
C : Hom(Y,X) = 0 for all X ∈ X } and we similarly define X⊥. If C is skeletally small
and Krull-Schmidt, we denote by ind(C) the set of isomorphism classes of indecomposable
objects in C. For any basic object X in C, let δ(X) denote the number of indecomposable
direct summands of X. We fix δ(A) to be n, where n ≥ 1 is a positive integer.

Let τ denote the Auslander-Reiten translate of mod A.

Definition 2.1 τ -rigid and τ -tilting [2, Definition 0.1]. A left A-module M is said to be
τ -rigid if Hom(M, τM)=0. If furthermore δ(M) = n, we say that M is τ -tilting.

Definition 2.2 τ -perpendicular category [18, Definition 3.3]. Let M be a basic τ -rigid
left A-module. The τ -perpendicular category associated to M is the subcategory of mod A

given by Jmod A(M): = M⊥ ∩ ⊥(τM). If there is no risk of ambiguity, we will write J (M)

for the subcategory Jmod A(M).

Definition 2.3 τ -exceptional sequence [7, Definition 1.3]. Let k be a positive integer. A
sequence of indecomposable modules (M1,M2, . . . , Mk) in mod A is called a τ -exceptional
sequence in mod A if Mk is τ -rigid in mod A and (M1,M2, . . . , Mk−1) is a τ -exceptional
sequence in J (Mk). If k = n we say that the sequence is a complete τ -exceptional sequence.

Let Q be a finite quiver on n vertices labelled by the set {1, 2, . . . , n}. A path p in Q

from the vertex v1 to the vertex vm is a sequence of vertices p = (v1, v2, v3, . . . , vm−1, vm)
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such that (vj , vj+1) is an arrow in Q for all 1 ≤ j ≤ m − 1. The positive integer m is
called the length of p and it is denoted by l(p). The path algebra FQ of the quiver Q is the
F-algebra with basis all paths of Q, and multiplication is defined by concatenation of paths.
The the arrow ideal RQ of FQ is defined to be the two-sided ideal generated by all arrows
in Q. The arrow ideal has a vector space decomposition given by,

RQ = FQ1 ⊕ FQ2 ⊕ · · · ⊕ FQl ⊕ . . .

where FQl is the subspace of FQ with basis the set Ql of paths of length l. The lth power
of the arrow ideal, denoted by Rl

Q is given by,

Rl
Q =

⊕

m≥l

FQm,

it has a basis consisting of all paths of length greater than or equal to l.
For a positive integer n ≥ 1, let An denote the linearly oriented quiver with n vertices,

1 2 3 . . . n − 1 n.
α1 α2 α3 αn−2 αn−1

Let Cn be the linearly oriented n-cycle.

. . .

3

2

1

n

n − 1

αn−1

αn−2

αn

α3

α2

α1

We denote by �t
n the Nakayama algebra FAn/R

t
Q and by �t

n the self injective Nakayama
algebra FCn/R

t
Q where 2 ≤ t ≤ n. Throughout the text, we will write Pi for the indecom-

posable projective module at vertex i of the underlying quiver of the algebra A in question.
Likewise we will write Si for the simple A-module at vertex i.

Definition 2.4 [27, Definition 3.1]. Let Q be a finite quiver.

1. Two paths p = (v1, v2, . . . , vm) and p′ = (v′
1, v

′
2, . . . , v

′
m′) in Q are called parallel if

v1 = v′
1 and vm = v′

m′ .
2. A relation ρ in Q is an F-linear combination ρ = ∑

c λcc of parallel paths with l(c) ≥
2, and λc ∈ F.

For a positive integer n ≥ 1, we will write (a)n to stand for a modulo n. We will also
write [i, j ]n for the set {(i)n, (i + 1)n, . . . , (j − 1)n, (j)n}.

3 Preliminary Results

In this section, we will state and prove results which will be used in later sections to calculate
the number of τ -exceptional sequences over the algebras �t

n and �t
n. However, our main

results are much more general and they apply to other finite dimensional algebras. For this
section, we fix an arbitrary finite dimensional F-algebra A.
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Proposition 3.1 [2, Theorem 2.10]. Let M be a τ -rigid A-module. Then the following
holds:

1. The moduleM is Ext-projective in ⊥(τM), which is to say thatM is in add(P(⊥(τM))).
2. The module TM := P(⊥(τM)) is a τ -tilting A-module.

The A-module TM is called the Bongartz completion of M in mod A.

Example 3.2 Let A be the algebra �2
3 given by the quiver

1 2 3,
α1 α2

subject to the relation αβ = 0. The Auslander-Reiten quiver of mod �2
3 is as follows,

3 2 1

2
3

1
2

.

For the �2
3-module M = 1, ind(⊥(τ1)) = ind(⊥2) = {3, 1

2, 1}. Therefore it is easy to

see that T1 = P(⊥(τ1)) = 3 ⊕ 1
2 ⊕ 1. It is also easy to observe that T1 is indeed a τ -tilting

�2
3-module.

Proposition 3.3 [2, Lemma 2.1]. Let I be an ideal of A, and let M,N be A/I -modules.
Then we have the following:

1. If HomA(M, τN) = 0 then HomA/I (M, τA/IN) = 0.
2. If I = 〈e〉 for some idempotent e ∈ A, then it is the case that HomA(M, τN) = 0 if

and only if HomA/I (M, τA/IN) = 0.

The following lemma is well known and it will be important in this paper.

Lemma 3.4 Let Q be a finite simple quiver with vertex set {1, 2, . . . , n}. Let I be the ideal
of FQ generated by relations on Q where each relation is a path in Q and take A = FQ/I .
For some j ∈ {1, 2, . . . , n} let Q(j) be the quiver obtained from Q by removing the vertex j

and any arrows incident to j . Let I (j) ⊂ I be the ideal of FQ generated by the generating
relations of I defined by paths of Q not containing the vertex j and take B = FQ(j)/I j .
Then B ∼= A/〈ej 〉 as an F-algebra , where ej is the idempotent at vertex j of FQ.

Theorem 3.5 [18, Theorem 3.8]. Let A be a finite dimensional algebra and M a basic τ -
rigid A-module. Let TM be the Bongartz completion of M in modA. Let EM = EndA(TM)

and DM = EM/〈eM 〉, where eM is the idempotent corresponding to the projective EM -
module HomA(TM,M). Then there is an additive exact equivalence of categories between
the category J (M), (the τ -perpendicular category of M in modA) and the category
modDM . Moreover, if M is indecomposable we have that δ(DM) = δ(A) − 1.

We now prove some results which will be crucial in our strategy for calculating the
number of τ -exceptional sequences in mod A.

Definition 3.6 Interleaving. Let X = (X1, X2, . . . , Xs) and Y = (Y1, Y2, . . . , Yt ) be
sequences. An interleaved sequence of X and Y is a sequence Z = (Z1, Z2, . . . , Zs+t ) with
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Zi ∈ {Xj : 1 ≤ i ≤ s} ∪ {Yj : 1 ≤ j ≤ t} such that the subsequence of Z containing only
elements X or Y is precisely X or Y respectively.

Example 3.7 Let X =
(

5, 4
5, 6

)
and Y =

(
2, 1

2

)
be sequences in mod �2

6. The sequence

Z =
(

2, 5, 4
5, 1

2, 6

)
is an interleaved sequence of X and Y . However W =

(
4
5, 5, 2, 6, 1

2

)
is

not an interleaved sequence of X and Y because the subsequence containing only elements
of X is not equal to X.

Let A and B be finite-dimensional F-algebras and let mod A and mod B be the categories
of finitely generated left A-modules and left B-modules respectively. We may consider the
category mod A ⊕ mod B, the direct product category of mod A and mod B. The objects of
mod A ⊕ mod B are pairs (M,N) with M ∈ mod A and N ∈ mod B. A morphism between
a pair of objects, (M1, N1) and (M2, N2) in mod A ⊕ mod B is a pair of morphisms (f :
M1 → M2, g : N1 → N2) where f ∈ mod A and g ∈ mod B. The indecomposable objects
of mod A⊕mod B are pairs (M, 0) and (0, N) where M and N are indecomposable in their
respective categories. The category mod A ⊕ mod B is an abelian category, in fact, there is
an exact, additive equivalence to mod(A × B). The category mod A ⊕ mod B also has an
Auslander-Reiten translate τA,B which acts in the obvious way i.e. τA,B(M, 0) = (τAM, 0)

and τA,B(0, N) = (0, τBN). It is easy to see that the above exact equivalence preserves the
Auslander-Reiten translations, since irreducible morphisms, left minimal almost split and
right minimal almost split morphisms are preserved under equivalence of categories. Let M

be an A-module, we identify M with the object (M, 0) in mod A ⊕ mod B. We like wise
identify the B-module N with the object (0, N) in mod A ⊕ mod B. It is easy to observe
that (M, 0) is τ -rigid in mod A ⊕ mod B if and only if M is τ -rigid in mod A. The similar
statement for (0, N) and N is also true.

Theorem 3.8 Let A and B be finite dimensional F-algebras. Suppose X =
(X1, X2, . . . , Xs) is a τ -exceptional sequence in modA and Y = (Y1, Y2, . . . , Yt ) is a
τ -exceptional sequence in modB. Suppose Z = (Z1, Z2, . . . , Zs+t ) is an interleaved
sequence of X and Y . Then Z is a τ -exceptional sequence in modA ⊕ modB.

Proof We prove this by induction on s + t . For the base case, suppose s + t = 1. Without
loss of generality suppose t = 0, so Z = (X1). By assumption, X1 is τ -rigid in mod A, so
it is τ -rigid in mod A ⊕ mod B. This completes the base case.

Suppose the statement is true for s+ t = m. We consider the s+ t = m+1 case. Suppose
the sequence Z = (Z1, Z2, . . . , Zm+1) is an interleaved sequence of X = (X1, X2, . . . , Xs)

and Y = (Y1, Y2, . . . , Yt ), where X is a τ -exceptional sequence in mod A and Y is a τ -
exceptional sequence in mod B. Suppose without loss of generality that Zm+1 is in X i.e.
Zm+1 = Xs . To show that Z is a τ -exceptional sequence in mod A ⊕ mod B, we need to
show that Zm+1 is τ -rigid in mod A ⊕ mod B and that (Z1, Z2, . . . , Zm) is a τ -exceptional
sequence in J(A,B)(Zm+1), the τ -perpendicular category of Zm+1 in mod A ⊕ mod B. By
assumption, Zm+1 is τ -rigid in mod A, so it is τ -rigid in mod A ⊕ mod B. Observe that
Hommod A⊕mod B(Xs, N) = Hommod A⊕mod B(N, τXs) = 0 for all N ∈ mod B, so it follows
that

J(A,B)(Zm+1) = {U ∈ mod A ⊕ mod B : Hommod A⊕mod B(Xs , U) = Hommod A⊕mod B(U, τAXs) = 0}
= Jmod A(Xs) ⊕ mod B,

1076



Counting the Number of τ -Exceptional Sequences...

where Jmod A(Xs) is the τ -perpendicular category of Xs in mod A. By Theorem 3.5,
Jmod A(Xs) is equivalent to a category of modules over some finite dimensional F-algebra.
By assumption, X is a τ -exceptional sequence in mod A, thus X′ = (X1, X2, . . . , Xs−1) is a
τ -exceptional sequence in Jmod A(Xs). Moreover, Z′ = (Z1, Z2, . . . , Zm) is an interleaved
sequence of X′ and Y , so it follows by the inductive hypothesis that Z′ is a τ -exceptional
sequence in Jmod A(Xs) ⊕ mod B = J(A,B)(Zm+1), hence Z is a τ -exceptional sequence in
mod A ⊕ mod B. This completes the proof.

We now prove the converse statement.

Theorem 3.9 Let A and B be finite dimensional F-algebras. Suppose Z =
(Z1, Z2, . . . , Zm) is a τ -exceptional sequence in modA ⊕modB. Then Z is an interleaved
sequence of some X = (X1, X2, . . . , Xs) and Y = (Y1, Y2, . . . , Ym−s), where X is a
τ -exceptional sequence in modA and Y is a τ -exceptional sequence in modB.

Proof We prove this by induction on m.
For the base case, suppose m = 1, so Z = (Z1) is a τ -exceptional sequence in mod A ⊕

mod B. The module Z1 either lies in mod A or mod B. Suppose without loss of generality
that Z1 ∈ mod A. So we define the sequence X := (Z1) and the sequence Y to be the
empty sequence. The sequence Z is trivially an interleaved sequence of X and Y . As Z is a
τ -exceptional sequence in mod A ⊕ mod B, by definition Z1 is τ -rigid in mod A ⊕ mod B,
so Z1 is τ -rigid in mod A. This completes the base case.

Now suppose the statement is true for m = k. We consider the m = k + 1 case. The
sequence Z = (Z1, Z2, . . . , Zk+1) is a τ -exceptional sequence in mod A ⊕ mod B, so by
definition, Zk+1 is τ -rigid in mod A ⊕ mod B and the sequence Z′ = (Z1, Z2, . . . , Zk)

is a τ -exceptional sequence in J(A,B)(Zk+1), the τ -perpendicular category of Zk+1 in
mod A ⊕ mod B. Suppose without loss of generality that Zk+1 ∈ mod A. We then observe
that Hommod A⊕mod B(Zk+1, N) = Hommod A⊕mod B(N, τZk+1) = 0 for all N ∈ mod B, so
it follows that

J(A,B)(Zm+1) = {U ∈ mod A ⊕ mod B : Hommod A⊕mod B(Xs , U) = Hommod A⊕mod B(U, τAXs) = 0}

= Jmod A(Zk+1) ⊕ mod B,

where Jmod A(Zk+1) is the τ -perpendicular category of Zk+1 in mod A. By theorem
3.5 we have that Jmod A(Zk+1) is equivalent to a category of modules over some finite
dimensional F-algebra. So we may apply the inductive hypothesis to Z′, hence Z′ is an
interleaved sequence of some X′ = (X1, X2, . . . , Xs) and Y = (Y1, Y2, . . . , Yk−s), where
X′ is a τ -exceptional sequence in Jmod A(Zk+1) and Y is a τ -exceptional sequence in
mod B. Since Zk+1 is τ -rigid in mod A ⊕ mod B, it is also τ -rigid mod A, hence X =
(X1, X2, . . . , Xs, Zk+1) is a τ -exceptional sequence in mod A. Clearly Z is an interleaved
sequence X and Y , so this completes the proof by induction.

We will now recall some standard definitions from [5] which we require for the rest of
this paper. Recall that the radical of an A-module M , denoted by rad(M), is defined to be
the intersection of all maximal submodules of M . The quotient M/rad(M) is known as the
top of M and is denoted top(M). The socle of an A-module M denoted soc(M) is the sum
of the simple submodules of M .
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Definition 3.10 Radical Series [5, V.1]. Let M be an A-module. The radical series of M is
defined to be the following sequence of submodules,

0 ⊂ · · · ⊂ rad2(M) ⊂ rad(M) ⊂ M .

Since the left A-modules M are finite dimensional as F-vector spaces, there exists a least
positive integer m such that radm(M) = 0. The integer m is called the length of the radical
series and we denote it by l(M) = m. We will also refer to l(M) as the length of the module
M .

Proposition 3.11 [5, V.3.5, V.4.1, V.4.2]. Let A be a basic connected Nakayama algebra
and let M be an indecomposable A-module. Then there exists some 1 ≤ i ≤ n and 1 ≤ j ≤
l(Pi), such that M ∼= Pi/radj (Pi) and j = l(M). Moreover, if M is not projective, we have
that τM ∼= rad(Pi)/radj+1(Pi) and l(τM) = l(M).

So we see that modules M of Nakayama algebras are uniquely determined by their top,
top(M) and their length l(M).

Proposition 3.12 [1, Lemma 2.4]. Let M = Pj/radl (Pj ) and N = Pi/radk(Pi) for 1 ≤
i, j, k, l ≤ n. Then the following conditions are equivalent,

1. Hom(M,N) �= 0
2. j ∈ [i, (i + k − 1)]n and (i + k − 1)n ∈ [j, (j + l − 1)]n

4 The �2
n Case

Let n ≥ 1 be a positive integer. In this section we will derive a closed formula for the
number of complete τ -exceptional sequences in mod �2

n. Recall that we denote by An the
linearly oriented quiver with n vertices,

1 2 3 . . . n − 1 n.
α1 α2 α3 αn−2 αn−1

The algebra �2
n is defined to be the F-algebra, FAn/R

2
Q. This is the path algebra of the

quiver An modulo the relations αiαi+1 = 0 for 1 ≤ i ≤ n − 2.
The category mod �2

n has the following Auslander-Reiten quiver.

n n − 1 n − 2

n − 1
n

n − 2
n − 1

3
2

2

1
2

1

. . .

Our strategy for calculating the number of τ -exceptional sequences is straightforward.
For each M in ind(mod �2

n), we will calculate the number of complete τ -exceptional
sequences ending in M . If M is indecomposable, then either M = Pi , the projective at ver-
tex i of An, or M = Si , the simple at vertex i of An (notice that Sn = Pn). In the former case
τPi = 0 for 1 ≤ i ≤ n and in the latter case τSj = Sj+1 for 1 ≤ j ≤ n − 1. In both cases
we see that M is τ -rigid i.e. every indecomposable M in mod �2

n is τ -rigid. We recall that a
sequence of indecomposable modules (M1,M2, . . . , Mn−1,M) is a τ -exceptional sequence
in mod �2

n if M is τ -rigid, and (M1,M2, . . . , Mn−1) is a τ -exceptional sequence in J (M).
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Having seen that every indecomposable module M is τ -rigid, what is left to do is to cal-
culate J (M) for each indecomposable module. Theorem 3.5 and Lemma 3.4 are the main
tools for these calculations.

Proposition 4.1 Let Pi be an indecomposable projective module in mod�2
n for some 1 ≤

i ≤ n. Then the τ -perpendicular category of Pi in mod�2
n is J (Pi) ∼= mod�2

i−1⊕mod�2
n−i .

Proof By definition TPi
= P(⊥(τPi)). Since τPi = 0, we have that ⊥(τPi) = mod �2

n. As
a result the Ext-projectives of ⊥(τPi) are just the projectives of mod �2

n, hence

TPi
= P(⊥(τPi)) =

n⊕

j=1

Pj .

Thus the F-algebra EPi
= End�2

n
(TPi

) is precisely given by the path algebra of A
op
n ,

1 2 3 . . . i − 1 i i + 1 . . . n − 1 n
α2 α3 α4 αi−1 αi αi+1 αi+2 αn−1 αn

modulo the relations αjαj−1 = 0 for 3 ≤ j ≤ n. Let A
op(i)
n be the quiver obtained from

A
op
n by removing the vertex i and any arrows incident to i,

1 2 3 . . . i − 1 i + 1 . . . n − 1 n.
α2 α3 α4 αi−1 αi+2 αn−1 αn

The quiver A
op(i)
n has relations αjαj−1 = 0 for 3 ≤ j ≤ i − 1 and i + 3 ≤ j ≤ n.

By Lemma 3.4, DPi
= EPi

/〈ePi
〉 is the path algebra of A

op(i)
n modulo its relations. So it

follows that J (Pi) ∼= mod �2
i−1 ⊕ mod �2

n−i by Theorem 3.5.

Proposition 4.2 Let Si be a simple non-projective module in mod�2
n for some 1 ≤ i ≤ n−

1. Then the τ -perpendicular category of Si in mod�2
n is J (Si) ∼= mod�2

i−1 ⊕mod�2
n−i−1 ⊕

mod�2
1 .

Proof By definition TSi
= P(⊥(τSi)). Since Si is a simple non-projective indecomposable

module Si , we have that τSi = Si+1. Note that the only indecomposable �2
n-modules not in

⊥(τSi) are Si+1 and Pi+1. Observe also that Ext�2
n
(Pj ,

⊥(τSi)) = 0 if j �= i+1, 1 ≤ j ≤ n.

We also have that Ext�2
n
(Sj ,

⊥(τSi)) �= 0 for j �= i, and 1 ≤ j ≤ n because Sj+1 is in
⊥(τSi) in these cases. By Proposition 3.1, Si is Ext-projective in ⊥(τSi). Therefore

TSi
= P(⊥(τSi)) = Si ⊕

⊕

j �=i+1

Pj .

The F-algebra ESi
= End�2

n
(TSi

) is the path algebra of the following quiver,

1 2 . . . i − 1 vSi
i i + 2 . . . n − 1 n

α2 α3 αi−1
αvSi αi αi+3 αn−1 αn

modulo the relations αjαj−1 = 0 for 3 ≤ j ≤ i − 1 and i + 4 ≤ j ≤ n. Here the vertex vSi

is the one corresponding to the simple non-projective module Si and the rest correspond to
the projective modules Pj . Consider the following quiver obtained from the one above by
removing the vertex vSi

and any arrows incident to vSi
,

1 2 . . . i − 1 i i + 2 . . . n − 1 n,
α2 α3 αi−1 αi+3 αn−1 αn

it has the relations αjαj−1 = 0 for 3 ≤ j ≤ i − 1 and i + 4 ≤ j ≤ n. By Lemma
3.4, DSi

= ESi
/〈eSi

〉 is the path algebra of this quiver modulo its relations. So it follows
that mod DSi

∼= mod �2
i−1 ⊕ mod �2

n−i−1 ⊕ mod �2
1. By Theorem 3.5, the statement of this

Proposition follows.

Let us denote by Gn the number of complete τ -exceptional sequences of mod �2
n. When

n = 0, 1, 2 the τ -exceptional sequences coincide with the “classical” exceptional sequences
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since the algebra �2
n is the hereditary Dynkin type A algebra An in this case. Hence, G0 =

G1 = 1 and G2 = 3.

Lemma 4.3 Let Pi be the indecomposable projective module in mod�2
n at the vertex i of

An for some 1 ≤ i ≤ n. The number of complete τ -exceptional sequences in mod�2
n ending

in Pi is, (
n − 1

n − i, i − 1

)
Gn−iGi−1.

Proof Let (X1, X2, . . . , Xn−1, Pi) be a complete τ -exceptional sequence in mod �2
n end-

ing in Pi . Then by definition and the fact that δ(J (Pi)) = n − 1, the sequence
(X1, X2, . . . , Xn−1) is a τ -exceptional sequence in J (Pi). So to count the number of com-
plete τ -exceptional sequences in mod �2

n ending in Pi , we just need to count the number
of complete τ -exceptional sequences in J (Pi). By Lemma 4.1, J (Pi) ∼= mod �2

i−1 ⊕
mod �2

n−i . By Theorem 3.8 and 3.9, the τ -exceptional sequences of J (Pi) are interleav-
ings of τ -exceptional sequences of mod �2

i−1 and mod �2
n−i . The number of interleaved

sequences coming from a sequence of length i − 1 and a sequence of length n − i is pre-
cisely

(
n−1

n−i,i−1

)
. Thus the number of complete τ -exceptional sequences ending in Pi is

(
n−1

n−i,i−1

)
Gn−iGi−1.

Lemma 4.4 Let Si be the indecomposable simple non-projective module in mod�2
n at the

vertex i of An for some 1 ≤ i ≤ n − 1. The number of τ -exceptional sequences in mod�2
n

ending in Si is, (
n − 1

n − i − 1, i − 1

)
Gn−i−1Gi−1.

Proof Let (X1, X2, . . . , Xn−1, Si) be a complete τ -exceptional sequence in mod �2
n end-

ing in Si . Then by definition and the fact that δ(J (Si)) = n − 1, the sequence
(X1, X2, . . . , Xn−1) is a complete τ -exceptional sequence in J (Si). Hence to count the
number of complete τ -exceptional sequences in mod �2

n ending in Si , we just need to
count the number of complete τ -exceptional sequences in J (Si). By Lemma 4.2, J (Si) ∼=
mod �2

i−1 ⊕ mod �2
n−i−1 ⊕ mod �2

1. The number of interleaved sequences coming from a
sequence of length i − 1, a sequence of length n − i − 1 and a sequence of length 1 is pre-
cisely

(
n−1

n−i−1,i−1,1

) = (
n−1

n−i−1,i−1

)
. Thus the number of complete τ -exceptional sequences

ending in Si is
(

n−1
n−i−1,i−1

)
Gn−i−1Gi−1.

Theorem 4.5 Let Gn denote the number of complete τ -exceptional sequences in mod�2
n.

Then Gn satisfies the recurrence relation,

Gn =
n∑

i=1

(
n − 1

n − i, i − 1

)
Gn−iGi−1 +

n−1∑

i=1

(
n − 1

n − i − 1, i − 1

)
Gn−i−1Gi−1,

with initial conditions G0 = G1 = 1.

Proof Let M be an indecomposable in mod �2
n, then either M is projective or M simple non-

projective. There are n projective indecomposable modules in mod �2
n denoted by Pi for 1 ≤

i ≤ n. There are n−1 simple non-projective indecomposable modules in mod �2
n denoted by

1080



Counting the Number of τ -Exceptional Sequences...

Si for 1 ≤ i ≤ n − 1. Therefore by Lemma 4.3 and 4.4, Gn = ∑n
i=1

(
n−1

n−i,i−1

)
Gn−iGi−1 +

∑n−1
i=1

(
n−1

n−i−1,i−1

)
Gn−i−1Gi−1.

Theorem 4.5 allows us to calculate the first ten terms of the sequence (Gn)
∞
n=0 as:

1, 1, 3, 12, 66, 450, 3690, 35280, 385560, 4740120, 6475140.

An ordered set partition of {1, 2, . . . , n} is a partition of the set {1, 2, . . . , n} together
with a total order on the sets in the partition. We refer to the sets in an ordered partition as
blocks. The restricted Fubini number Fn,�m counts the number of ordered set partitions of
{1, 2, . . . , n} with blocks of size at most m. The restricted Stirling number of the second
kind, denoted by

{
n
k

}
�m

, is the number of (unordered) partitions of {1, 2, . . . , n} into k

subsets with the restriction that each block contains at most m elements. Therefore

Fn,�m =
n∑

k=0

k!
{
n

k

}

�m

.

It is shown in [21, Section 5.4] that the restricted Fubini numbers satisfy the recurrence:

Fn,�m =
m∑

l=1

(
n

l

)
Fn−l,�m.

The sequence (Fn,�2) is listed on the On-line Encyclopedia of Integer Sequences (OEIS)
as the sequence A080599. The first terms of this sequence coincide with the first terms we
calculated for (Gn) so we would like to prove that it is the case that Fn,�2 = Gn.

When m = 2 the recurrence for Fn,�m is given as Fn,�2 = nFn−1,�2 + (
n
2

)
Fn−2,�2. In

the paper [13, Theorem 3.7], the authors derive the closed formula

Fn,�2 = n!√
3

(
(
√

3 − 1)−n−1 − (−√
3 − 1)−n−1

)
.

An exponential generating function for Fn,�m is given in [20, Theorem 4]:
∞∑

n=0

Fn,�m

xn

n! = 1

1 − x − x2

2! − . . . xm

m!
.

We will show that Gn = Fn,�2 by showing that the exponential generating functions for
Gn and Fn,�2 coincide.

Theorem 4.6 Let Gn denote the number of complete τ -exceptional sequences in mod�2
n.

The exponential generating function of Gn is as follows,
∞∑

n=0

Gn

xn

n! = 1

1 − x − x2

2!
.

Therefore Gn = Fn,�2 and

Gn = n!√
3

(
(
√

3 − 1)−n−1 − (−√
3 − 1)−n−1

)
.

Proof First let us recall the recurrence relation for Gn.

Gn =
n∑

i=1

(
n − 1

n − i, i − 1

)
Gn−iGi−1 +

n−1∑

i=1

(
n − 1

n − i − 1, i − 1

)
Gn−i−1Gi−1.
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=
n∑

i=1

(n − 1)!
(n − i)!(i − 1)!Gn−iGi−1 +

n−1∑

i=1

(n − 1)!
(n − i − 1)!(i − 1)!Gn−i−1Gi−1.

Therefore

Gn+1 =
n+1∑

i=1

n!
(n + 1 − i)!(i − 1)!Gn+1−iGi−1 +

n∑

i=1

n!
(n − i)!(i − 1)!Gn−iGi−1.

Let

g(x) =
∞∑

n=0

Gn

xn

n! with g(0) = 1,

be the exponential generating function of Gn. We then have that the first derivative of g(x)

is g′(x) = ∑∞
n=0 Gn+1

xn

n! . Expanding Gn+1 in g′(x) by the recurrence relation above we
obtain the following.

g′(x) =
∞∑

n=0

(
n+1∑

i=1

n!
(n + 1 − i)!(i − 1)! Gn+1−iGi−1

)
xn

n! +
∞∑

n=0

(
n∑

i=1

n!
(n − i)!(i − 1)! Gn−iGi−1

)
xn

n!

=
∞∑

n=0

(
n+1∑

i=1

Gn+1−iGi−1

(n + 1 − i)!(i − 1)!

)
xn +

∞∑

n=0

(
n∑

i=1

Gn−iGi−1

(n − i)!(i − 1)!

)
xn.

Recall the Cauchy product of formal power series is as follows,
( ∞∑

s=0

asx
s

)( ∞∑

t=0

btx
t

)
=

∞∑

k=0

ckx
k where ck =

k∑

l=0

albk−l .

By performing a change of variable in g′(x) by setting j = i − 1 and factorising x from the
right summand we write,

g′(x) =
∞∑

n=0

⎛

⎝
n∑

j=0

Gn−jGj

(n − j)!j !

⎞

⎠ xn + x

∞∑

n=0

⎛

⎝
n−1∑

j=0

Gn−j−1Gj

(n − j − 1)!j !

⎞

⎠ xn−1.

Using the Cauchy product of formal power series, we obtain the following first order non-
linear ordinary differential equation.

g′(x) = (g(x))2 + x(g(x))2 = (1 + x)(g(x))2 with initial conditions g(0) = 1.

It is easy to check that the unique solution to this ODE is given by,

g(x) = −2

−2 + x(x + 2)
= 1

1 − x − x2

2

.

This completes the proof.

Remark 4.7 Here we focused on τ -exceptional sequences, but it’s natural to ask what is
known about the more classical exceptional sequences. It is shown in [29] that the number
of complete exceptional sequences of mod �2

n are equal to the sum,
∑n

j=1

(
n
j

)
jn−j . The first

ten terms of the sequence (
∑n

j=1

(
n
j

)
jn−j )∞n=1 are,

1, 3, 10, 41, 196, 1057, 6322, 41393, 293608, 2237921.

For comparison the number of complete τ -exceptional sequences of mod �2
n are given by

Gn, the first ten terms of the sequence (Gn)
∞
n=1 are,

1, 3, 12, 66, 450, 3690, 35280, 385560, 4740120, 6475140.
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5 The�2
n Case

Let n ≥ 1 be a positive integer. In this section we will derive a closed formula for the
number of complete τ -exceptional sequences in mod �2

n. Recall that we denote by Cn the
linearly oriented n-cycle.

. . .

3

2

1

n

n − 1

αn−1

αn−2

αn

α3

α2

α1

The algebra �2
n is defined to be the F-algebra, FCn/R

2
Q. This is the path algebra of the

quiver Cn modulo the relations αjα(j+1)n = 0 for 1 ≤ j ≤ n.
The category mod �2

n has the following Auslander-Reiten quiver.

n
1

n
1

n

n − 1
n

n n − 1 n − 2

n − 1
n

n − 2
n − 1

3
2

2

1
2

1

. . .. . . . . .

We will use the same approach for calculating the number of complete τ -exceptional
sequences for mod �2

n as we did for mod �2
n. If M is indecomposable in mod �2

n, then
M = Pi , the projective at vertex i of Cn, or M = Si , the simple at vertex i of Cn. In
the former case τPi = 0 and in the latter case τSi = S(i+1)n . In both cases M is τ -rigid
i.e. every indecomposable M in mod �2

n is τ -rigid. We recall that a sequence of inde-
composable modules (M1,M2, . . . , Mn−1,M) is a τ -exceptional sequence in mod �2

n if
M is τ -rigid, and (M1, M2, . . . , Mn−1) is a τ -exceptional sequence in J (M). Having seen
that every indecomposable module is τ -rigid, what is left to do is to calculate J (M) for
each indecomposable module. Theorem 3.5 and Lemma 3.4 are the main tools for these
calculations.

Proposition 5.1 Let Pi be an indecomposable projective module in mod�2
n for some 1 ≤

i ≤ n. Then the τ -perpendicular category of Pi in mod�2
n is J (Pi) ∼= mod�2

n−1.

Proof By definition TPi
= P(⊥(τPi)). Since Pi is projective, we have that τPi = 0, there-

fore ⊥(τPi) = mod �2
n. As a result the Ext-projectives of ⊥(τPi) are just the projectives of

mod �2
n, hence

TPi
= P(⊥(τPi)) =

n⊕

j=1

Pj .
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Thus the F-algebra EPi
= End�2

n
(TPi

) is precisely given by the path algebra of the quiver

C
op
n ,

. . .

3

2

1

n

n − 1

αn

αn−1

α1

α4

α3

α2

modulo the relations αiα(i−1)n = 0 for 1 ≤ i ≤ n.

Let C
op(i)
n be the quiver obtained from C

op
n by removing the vertex at i and any arrows

incident to i.
i + 1 i + 2 . . . n − 1 n 1 . . . i − 2 i − 1

αi+2 αi+3 αn−1 αn α1 α2 αi−2 αi−1

It has the relations α1αn = 0 and αjαj−1 = 0 for i + 2 ≤ j ≤ n and 2 ≤ j ≤
i − 2. By Lemma 3.4, DPi

= EPi
/〈ePi

〉 is the path algebra of the quiver C
op(i)
n modulo

relations. It is easy to see that in fact DPi
is isomorphic to �2

n−1. Hence by Theorem 3.5,
the τ -perpendicular category J (M) ∼= mod �2

n−1.

Proposition 5.2 Let Si be a simple module in mod�2
n for some 1 ≤ i ≤ n. Then the

τ -perpendicular category of Si in mod�2
n is J (Si) ∼= mod�2

n−2 ⊕ mod�2
1.

Proof By definition TSi
= P(⊥(τSi)). Since Si is a simple �2

n-module, we have that τSi =
S(i+1)n . Note that the only �2

n-modules not in ⊥(τSi) are S(i+1)n and P(i+1)n . Observe also
that Ext�2

n
(Pj ,

⊥(τSi)) = 0 for j �= (i + 1)n and 1 ≤ j ≤ n. However for j �= i, i +
1, Ext�2

n
(Sj ,

⊥(τSi)) �= 0 because S(j+1)n is in ⊥(τM). By Proposition 3.1, Si is Ext-

projective in ⊥(τSi). Hence

TSi
= P(⊥(τSi)) = Si ⊕

⊕

j �=(i+1)n

Pj

is the Bongartz completion of Si .
The F-algebra ESi

= End�2
n
(TSi

) is given by the path algebra of the quiver,

i + 2 i + 3 . . . n − 1 n 1 . . . i − 1 vSi
i

αi+3 αi+4 αn−1 αn α1 α2 αi−1
αvSi αi

modulo the relations αvSi
αi−1 = 0 = α1αn and αjαj−1 = 0 for i + 4 ≤ j ≤ n and

2 ≤ j ≤ i − 1. Here the vertex vSi
is the one corresponding to the simple module Si and the

rest correspond to the projective modules Pj . By Lemma 3.4, DSi
= ESi

/〈eSi
〉 is the path

algebra of the quiver obtained from the one above by removing the vertex vSi
,

i + 2 i + 3 . . . n − 1 n 1 . . . i − 1 i
αi+3 αi+4 αn−1 αn α1 α2 αi−1

modulo the relations α1αn = 0 and αjαj−1 = 0 for i + 4 ≤ j ≤ n and 2 ≤ j ≤ i − 1.
So it follows that mod DSi

∼= mod �2
n−2 ⊕ mod �2

1. By Theorem 3.5 the statement of this
Proposition follows.

Denote by Ln the number of complete τ -exceptional sequences in mod �2
n.
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Theorem 5.3 Let Ln be the number of complete τ -exceptional sequences in mod�2
n. Then

Ln satisfies the relation,
Ln = nGn−1 + n(n − 1)Gn−2,

with initial conditions L1 = 1 and L2 = 4, and where Gm denotes the number of complete
τ -exceptional sequences in mod�2

m.

Proof Suppose M is an indecomposable projective �2
n-module, then by Lemma 5.1, the τ -

perpendicular category J (M) ∼= mod �2
n−1. Suppose (X1, X2, . . . , Xn−1,M) is a complete

τ -exceptional sequence ending in M in mod �2
n . Then by the fact that δ(J (M)) = n − 1

and by definition, the sequence (X1, X2, . . . , Xn−1) is a complete τ -exceptional sequence
in J (M) ∼= mod �2

n−1. Hence the number of complete τ -exceptional sequences ending in
M is Gn−1, which is the number of complete τ -exceptional sequences in mod �2

n−1.
Now suppose M is a simple �2

n-module. By Lemma 5.2, the τ -perpendicular category
J (M) ∼= mod �2

n−2 ⊕ mod �2
1. Arguing as above the number of complete τ -exceptional

sequences ending in M is equal to the number of complete τ -exceptional sequences in
J (M). Since J (M) ∼= mod �2

n−2 ⊕ mod �2
1, by Theorem 3.8 and 3.9, the τ -exceptional

sequences of J (M) are interleavings of τ -exceptional sequences of mod�2
n−2 and mod�2

1.
The number of interleaved sequences coming from a sequence of length n−2 and a sequence
of length 1 is precisely

(
n−1

n−2,1

) = (n − 1). Thus the number of complete τ -exceptional
sequences ending in M is (n − 1)Gn−2G1 = (n − 1)Gn−2.

An arbitrary indecomposable �2
n-module is either projective or simple. There are n pro-

jective modules and n simple modules up to isomorphism in mod �2
n, hence the number

of complete τ -exceptional sequences in mod �2
n is Ln = nGn−1 + n(n − 1)Gn−2. It then

follows easily that L1 = 1 and L2 = 4.

In the previous section we found the exponential generating function and closed formula
for Gn. Using the above theorem, we can immediately do the same for Ln.

Theorem 5.4 Let Ln denote the number of complete τ -exceptional sequences in mod�2
n.

The exponential generating function of Ln is as follows,
∞∑

n=0

Ln

xn

n! = x + x2

1 − x − x2

2

.

Proof Let h(x) = ∑∞
n=0 Ln

xn

n! be the exponential generating function of Ln. Let

g(x) =
∞∑

n=0

Gn

xn

n!
be the exponential generating function of Gn. We then recall the recurrence relation of Ln,

Ln = nGn−1 + n(n − 1)Gn−2.

Therefore the exponential generating function of Ln is,
∞∑

n=0

Ln

xn

n! =
∞∑

n=0

nGn−1
xn

n! +
∞∑

n=0

n(n − 1)Gn−2
xn

n! .

=
∞∑

n=0

Gn−1
xn

(n − 1)! +
∞∑

n=0

Gn−2
xn

(n − 2)!
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= x

∞∑

n=0

Gn−1
xn−1

(n − 1)! + x2
∞∑

n=0

Gn−2
xn−2

(n − 2)! .

Therefore
h(x) = xg(x) + x2(g(x)) = (x + x2)g(x).

By Theorem 4.6,

g(x) = 1

1 − x − x2

2

,

hence

h(x) = x + x2

1 − x − x2

2!
.

Theorem 5.5 Let Ln denote the number of complete τ -exceptional sequences in mod�2
n.

Then Ln is given by the closed formula,

Ln = n!√
3

(
(
√

3 − 1)−n−2 − (−√
3 − 1)−n−2

)
+ n!√

3

(
(
√

3 − 1)−n−3 − (−√
3 − 1)−n−3

)
.

Proof It is immediate from the recurrence relation for Ln and Theorem 4.6 that,

Ln = n
(n − 1)!√

3

(
(
√

3 − 1)−n−2 − (−√
3 − 1)−n−2

)
+ n(n − 1)

(n − 2)!√
3

(
(
√

3 − 1)−n−3 − (−√
3 − 1)−n−3

)

= n!√
3

(
(
√

3 − 1)−n−2 − (−√
3 − 1)−n−2

)
+ n!√

3

(
(
√

3 − 1)−n−3 − (−√
3 − 1)−n−3

)
.

We calculate the first 10 terms of the sequence (Ln)
∞
n=0 to be,

1, 4, 15, 84, 570, 4680, 44730, 488880, 6010200, 82101600.

In comparison to τ -exceptional sequences, there are no complete exceptional sequences
in mod �2

n, as we will show. In general, not much is known about exceptional sequences
over the Nakayama algebras �2

n.

Proposition 5.6 There are no complete exceptional sequences in mod�2
n when n > 1.

Proof Suppose M = (M1, M2, . . . , Mn) is a complete exceptional sequence. Recall
that an indecomposable module in mod �2

n is either projective or simple. Since
Hom(Pi, P(i+1)n ) �= 0 for 1 ≤ i ≤ n, the sequence M cannot consist entirely of just
indecomposable projective modules, so M must contain at least one simple module.

Consider the simple module Si for some 1 ≤ i ≤ n. Then Si has the following infinite
exact sequence as its projective resolution.

. . . P1 Pn . . . P1 Pn . . . Pi+1 Pi Si 0
We observe that the projective resolution of Si contains every projective indecompos-

able module of mod �2
n. We also observe that the only projective module P such that

Hom(P, Si) �= 0 is P = Pi . Hence applying the functor Hom(−, Si) to the above projective
resolution we get the following sequence.

0 Hom(Si, Si) Hom(Pi, Si) . . . 0 Hom(Pi, Si) 0 . . .
f0 f1 fn−1 fn fn+1 fn+2
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We then observe that Extn(Si, Si) = ker(fn+1)/im(fn) �= 0, so no simple module
in mod �2

n is exceptional. From this we conclude M cannot contain simple modules, a
contradiction.

Unlike exceptional sequences, weak exceptional sequences number over �2
n have been

studied. Weak exceptional sequences are defined in [30] as follows.

Definition 5.7 [30, Definition 1.1]. Let A be a finite dimensional algebra over a field
F, where F is algebraically closed. A left A-module M is called weak exceptional if
Hom(M,M) ∼= F and Ext1A(M,M) = 0. A sequence of indecomposable modules
(M1,M2, . . . , Mr) is called a weak exceptional sequence if, for each pair (Mi,Mj ) with
1 ≤ i < j ≤ r , we have that Hom(Mj , Mi) = Ext1A(Mj , Mi) = 0 and each Mk is weak
exceptional for 1 ≤ k ≤ r .

It turns out that for weak exceptional sequences over �2
n, the maximum length need not

be n and in fact can exceed n. According to [30, Theorem 1.6], if n = 2m + 1 is odd, the
maximum length of a weak exceptional sequence over �2

n is equal to 3m + 1. On the other
hand, if n = 2m is even, then the maximum length of a weak exceptional sequence over
�2

n is 3m − 1. A weak exceptional sequence with maximum length is called full. Again by
[30, Theorem 1.6], when n = 2m, the number of full weak exceptional sequences is given

by 2m
(

8m

12 − (−1)m

3 + 1
)

, and when n = 2m + 1, the number of full weak exceptional

sequences is given by n.

6 The�n
n Case

Let n ≥ 1 be a positive integer. In this section we will derive a closed formula for the
number of complete τ -exceptional sequences in mod �n

n. Recall that we denote by Cn the
linearly oriented n-cycle.

. . .

3

2

1

n

n − 1

αn−1

αn−2

αn

α3

α2

α1

The algebra �n
n is defined to be the F-algebra, FCn/R

n
Q. This is the path algebra of the

quiver Cn modulo the relations αiα(i+1)n . . . α(i+(n−1))n = 0 for 1 ≤ j ≤ n.

Proposition 6.1 [1, Proposition 2.5]. Let A be a Nakayama algebra. Let M be an inde-
composable non-projective module in modA. Then M is rigid if and only if l(M) < n

holds.

For our purposes, the following Proposition is a more convenient restatement of
Proposition 3.12.
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Proposition 6.2 Let M be an indecomposable �n
n-module with length 1 ≤ l(M) ≤ n − 1.

Then Hom(X, τM) �= 0 if and only if top(X) ∼= top(radk(τM)) for some 0 ≤ k ≤ l(M)− 1
and l(radk(τM)) ≤ l(X).

Proof All indecomposable modules in mod �n
n have simple tops. By Proposition 3.11,

for a �n
n-module X, we have that X = Pj/radl(X)(Pj ) hence top(X) = Sj . Let M =

Pi−1/radl(M)Pi−1, then τM = P(i)n/radl(M)(P(i)n ) by Proposition 3.11 as well. Observe
that for 0 ≤ k ≤ l(M)−1, radk(τM) = P(i+k)n/rad(l(M)−k)(P(i+k)n ) thus top(radk(τM)) =
S(i+k)n and l(radk(τM)) = l(M) − k. By Proposition 3.12 we have that,

Hom(X, τM) �= 0 if and only if j ∈ [i, (i+l(M)−1)]n and (i+l(M)−1)n ∈ [j, (j+l(X)−1)]n.

Suppose Hom(X, τM) �= 0, this implies that j = (i + k)n for some 0 ≤ k ≤ l(M) − 1,
and (i + l(M) − 1)n = (j + a)n for some 0 ≤ a ≤ l(X) − 1. It then immediately follows
top(X) ∼= top(radk(τM)) and l(radk(τM)) ≤ l(X).

For the converse, suppose that top(X) ∼= top(radk(τM)) and l(radk(τM)) ≤ l(X). Then
j = (i+k)n for some 0 ≤ k ≤ l(M)−1. Moreover, l(radk(τM)) = l(M)−k ≤ l(X) which
implies i + l(M)−1 ≤ (i + k)+ l(X)−1 therefore (i + l(M)−1)n ∈ [j, (j + l(X)−1)]n.
Hence by Proposition 3.12, Hom(X, τM) �= 0.

By Proposition 6.1, every indecomposable module M of mod �n
n is τ -rigid in mod �n

n

since it is either projective or has length l(M) < n. Hence, we once again adopt the same
strategy for calculating the number of complete τ -exceptional sequences in mod �n

n as we
have done thus far. For each M in ind(mod �n

n), we will calculate the number of com-
plete τ -exceptional sequences ending in M . By definition a sequence of indecomposable
modules (M1,M2, . . . , Mn−1,M) is a τ -exceptional sequence in mod �n

n if M is τ -rigid
and (M1, M2, . . . , Mn−1) is a τ -exceptional sequence in J (M). Having seen that every
indecomposable �n

n-module M is τ -rigid, what is left to do is to calculate J (M) for each
indecomposable module. Theorem 3.5 and Lemma 3.4 are once again the main tools these
calculations.

Proposition 6.3 Let M be an indecomposable �n
n-module with length 1 ≤ l(M) ≤ n − 1

and top(M) = Si . Then for all 1 ≤ k ≤ l(M) − 1,

P(⊥(τM)) = M ⊕
l(M)−1⊕

s=1

rads(M) ⊕
⊕

1≤j≤n
j /∈[i+1,i+l(M)]n

Pj .

Proof Suppose the �n
n-module M has top equal to top(M) = Si and has length 1 ≤

l(M) ≤ n − 1 i.e. M is not projective. By Proposition 3.11, M = Pi/radl(M)(Pi) and
τM = rad(Pi)/radl(M)+1(Pi) with l(M) = l(τM). It is easy to see that top(τM) = S(i+1)n

hence τM = P(i+1)n/radl(M)(P(i+1)n ).
By Proposition 6.2, a �n

n-module X is not in ⊥(τM) if and only if top(X) ∼=
top(radk(τM)) for some 0 ≤ k ≤ l(M) − 1 and l(radk(τM)) ≤ l(X). Let X =
Pj/radl(X)(Pj ) for some 1 ≤ j ≤ n. The statement top(X) ∼= top(radk(τM)) for some
0 ≤ k ≤ l(M) − 1 means that j = (i + 1 + k)n for some 0 ≤ k ≤ l(M) − 1. With this we
are able to determine the Ext-projectives in ⊥(τM).

Let Y = Pl be the indecomposable project at the vertex l with l �= (i + 1 + k)n for some
0 ≤ k ≤ l(M)−1. Then Pl is in ⊥(τM) by Proposition 6.2. Moreover Ext�n

n
(Pl,

⊥(τM)) =
0 since Pl is a projective �n

n-module. Hence Pl is Ext-projective in ⊥(τM).
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Let Y = rads(M) for some 1 ≤ s ≤ l(M) − 1. Then observe that Y =
P(i+s)n/rad(l(M)−s)(P(i+s)n ) meaning l(Y ) = l(M) − s. Recall a �n

n-module X is not in
⊥(τY ) if and only if top(X) ∼= top(radr (τY )) for some 0 ≤ r ≤ l(M) − s − 1 and
l(radr (τY )) ≤ l(X). Therefore if X = Pj/radl(X)(Pj ), then j = (i + 1 + s + r)n for some
0 ≤ r ≤ l(M)−s−1. This implies that {X : Hom(X, τY ) �= 0} ⊂ {X : Hom(X, τM) �= 0},
which further implies that Ext�n

n
(Y,N) ∼= DHom�n

n
(N, τY ) = 0 for all N in ⊥(τM) by the

Auslander-Reiten formula. Hence Y = rads(M) is an Ext-projective in ⊥(τM).
By Proposition 3.1, M is Ext-projective in ⊥(τM). For every other indecomposable �n

n-
module Y , we have that τY is in ⊥(τM), therefore Ext�n

n
(Y, τY ) ∼= DHom�n

n
(τY, τY ) �= 0

i.e. they are not Ext-projective in ⊥(τM). By definition, TM = P(⊥(τM)), hence by the
above arguments,

P(⊥(τM)) = M ⊕
l(M)−1⊕

s=1

rads(M) ⊕
⊕

1≤j≤n
j /∈[i+1,i+l(M)]n

Pj .

Proposition 6.4 Let Pi be an indecomposable projective module in mod�n
n for some 1 ≤

i ≤ n. Then the τ -perpendicular category of Pi in mod�n
n is J (Pi) ∼= modAn−1, where

An−1 is the Dynkin type A hereditary algebra.

Proof By definition TPi
= P(⊥(τPi)). Since Pi is projective, we have that τPi = 0 there-

fore ⊥(τPi) = mod �n
n. As a result the Ext-projectives of ⊥(τPi) are just the projectives of

mod �n
n therefore

TPi
= P(⊥(τPi)) =

n⊕

j=1

Pj .

Thus the F-algebra EPi
= End�2

n
(TPi

) is precisely given by the path algebra of the quiver

C
op
n ,

. . .

3

2

1

n

n − 1

αn

αn−1

α1

α4

α3

α2

modulo the relations αiα(i+1)n . . . α(i+(n−1))n = 0 for 1 ≤ j ≤ n.

By Lemma 3.4, DM = EM/〈eM 〉 is the path algebra of the quiver C
op(i)
n which is the

quiver obtained from C
op
n by removing the vertex i. More precisely, C

op(i)
n is the quiver,

i + 1 i + 2 . . . n − 1 n 1 . . . i − 2 i − 1
αi+2 αi+3 αn−1 αn α1 α2 αi−2 αi−1

with no relations. It is easy to see that the path algebra FC
op(i)
n is isomorphic to An−1.

Hence the Proposition follows by Theorem 3.5.

Proposition 6.5 Let M be an indecomposable �n
n-module with length 1 ≤ l(M) ≤ n − 1

and top(M) = Si . Which is to say that M = Pi/radl(M)(Pi). Then the τ -perpendicular
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category of M in mod�n
n is J (M) ∼= modAl(M)−1 ⊕ mod�

n−l(M)
n−l(M), where Am is the Dynkin

type A hereditary algebra.

Proof By Proposition 6.3 the Bongartz completion of M is,

TM = M ⊕
l(M)−1⊕

s=1

rads(M) ⊕
⊕

1≤j≤n
j /∈[i+1,i+l(M)]n

Pj .

Hence the F-algebra EM = End�n
n
(TM) is the path algebra of the following quiver Qn,

. . .

(i − 2)n

(i − 1)n

i

(i − q)n

(i − q − 1)n

vM vrad(M) vrad2(M) . . . vrad(l(M)−1)(M)

α(i−q−1)

α(i−q−2)

α(i−q)

αi−2

αi−1

αi

α

αrad αrad2 αrad3 αradl(M)−1

modulo the relations αrαr−1 . . . αr−(n−l(M)−1) = 0 for r ∈ [i, i − (n − l(M) − 1)]n and where
q = n − l(M) − 1.

Let Q
(vM)
n be the quiver obtained from Qn by removing the vertex vM and any arrows incident

to vM . More precisely, Q
(vM)
n is the following quiver with two connected components,

. . .

(i − 2)n

(i − 1)n

i

(i − q)n

(i − q − 1)n

vrad(M) vrad2(M) . . . vrad(l(M)−1)(M)

α(i−q−1)

α(i−q−2)

α(i−q)

αi−2

αi−1

αi

αrad2 αrad3 αradl(M)−1

and with relations αrαr−1 . . . αr−(n−l(M)−1) = 0 for r ∈ [i, i − (n− l(M)−1)]n. By Lemma 3.4,

DM = EM/〈eM 〉 is the path algebra of Q
(vM)
n modulo relations. So it follows that mod DM

∼=
modAl(M)−1 ⊕ mod�

n−l(M)
n−l(M). So by Theorem 3.5, the statement of the Proposition follows.
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Theorem 6.6 Let Hn denote the number of complete τ -exceptional sequences in mod�n
n.

Then Hn satisfies the recurrence relation,

Hn = n

n∑

i=1

(
n − 1

i − 1

)
ii−2Hn−i ,

with H0 = 1.

Proof Let M be an indecomposable �n
n-module. Suppose (M1,M2, . . . , Mn−1, M) is a

complete τ -exceptional sequence in mod �n
n ending in M . Then by definition and the fact

that δ(J (M)) = n − 1, the sequence (M1,M2, . . . , Mn−1) is a complete τ -exceptional
sequence in J (M). It then follows that the number of complete τ -exceptional sequences
ending in M is equal to the number of complete τ -exceptional sequences in J (M).

The length of M is 1 ≤ l(M) ≤ n. For each possible value of l(M), there are n indecom-
posable �n

n-modules of that length. If l(M) = n then M is projective and by Proposition
6.4, J (M) ∼= modAn−1. The number of τ -exceptional sequences in modAn−1 was shown
in [[28] [Proposition 1.1]] to be nn−2 = (

n−1
n−1

)
nn−2H0, where H0 = 1.

If 1 ≤ l(M) ≤ n − 1, then by Proposition 6.5, the τ -perpendicular category of M

is J (M) ∼= modAl(M)−1 ⊕ mod �
n−l(M)
n−l(M). Arguing as above, the number of complete

τ -exceptional sequences ending in M is equal to the number of complete τ -exceptional
sequences in modAl(M)−1 ⊕ mod �

n−l(M)
n−l(M). By Theorems 3.8 and 3.9, this is equal to

(
n − 1

n − l(M), l(M) − 1

)
l(M)(l(M)−2)Hn−l(M) =

(
n − 1

l(M) − 1

)
l(M)(l(M)−2)Hn−l(M).

So it follows that,

Hn =
n∑

l(M)=1

n

(
n − 1

l(M) − 1

)
l(M)l(M)−2Hn−l(M) = n

n∑

i=1

(
n − 1

i − 1

)
ii−2Hn−i .

It is trivial to see that H1 = 1. Using the recurrence we obtain H1 = (0
0

)
1−1H0 = 1,

therefore H0 = 1.

We are now in a position to derive the exponential generating function of Hn. First we
state the following results and definitions which will be useful in deriving the exponential
generating function.

Lemma 6.7 [31, Section 2.3 Rule 3′]. Let f = ∑∞
n=0 an

xn

n! and g = ∑∞
n=0 bn

xn

n! be the
generating functions of the sequences {an}∞n=0 and {bn}∞n=0 respectively. Then the series fg

is the exponential generating function of the sequence,
{ n∑

k=0

(
n

k

)
akbn−k

}∞

n=0

.

The Lambert W function is defined to be the function W(z) satisfying W(z)eW(z) = z.
The tree function T (z) is defined by the equation T (z) = −W(−z). The functions W and
T have many applications in mathematics. For example, they appear in the enumeration of
trees and the calculation of water-wave heights. The reader is referred to [9] for more on
Lambert’s W function.
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Lemma 6.8 [9, Section 2, Equation 2.36]. Let a ≥ 1 and n ≥ 0 be integers. Let N(a, n) :=
a(a + n)n−1 be a function of two variables. For a fixed positive integer a, the exponential
generating function of the sequence N(a, n) is given by,

∞∑

n=0

a(a + n)n−1 xn

n! = e−aW(−x),

where W is Lambert’s W function.

Theorem 6.9 The exponential generating function of Hn is,
∞∑

n=0

Hn

xn

n! = 1

1 + W(−x)
,

where W is Lambert’s W function and Hn is given by the closed formula,

Hn = nn.

Proof Let an be the sequence an = (n + 1)n−1. Let h(x) = ∑∞
n=0 Hn

xn

n! and g(x) =∑∞
n=0 an

xn

n! be exponential generating functions of Hn and an respectively. Recall the
recurrence relation of Hn is given by,

Hn = n

n∑

k=1

(
n − 1

k − 1

)
kk−2Hn−k,

so,
Hn

n
=

n∑

k=1

(
n − 1

k − 1

)
kk−2Hn−k .

We make the change of variable j = k − 1 in Hn

n
to obtain the following.

Hn

n
=

n−1∑

j=0

(
n − 1

j

)
(j + 1)j−1Hn−(j+1),

thus
Hn+1

n + 1
=

n∑

j=0

(
n

j

)
(j + 1)j−1Hn−j .

We now study the exponential generating function of Hn+1
n+1 ,

∞∑

n=0

Hn+1

n + 1

xn

n! =
∞∑

n=0

⎛

⎝
n∑

j=0

(
n

j

)
(j + 1)j−1Hn−j

⎞

⎠ xn

n! .

By Lemma 6.7, the right hand side is given the product g(x)h(x). So we have,
∞∑

n=0

Hn+1

n + 1

xn

n! = g(x)h(x).

We can manipulate the right hand side so that the exponent of x matches the factorial, hence

1

x

∞∑

n=0

Hn+1
xn+1

(n + 1)! = g(x)h(x),

1092



Counting the Number of τ -Exceptional Sequences...

so we can write the left hand side in terms of h(x) as follows,

1

x
(h(x) − H0) = g(x)h(x).

Since H0 = 1,
h(x) − 1 = xh(x)g(x).

By Lemma 6.8, g(x) = e−W(−x) therefore,

h(x) = 1

1 − xg(x)
= 1

1 − xe−W(−x)
.

Recall that Lambert’s W function is defined by the equation x = W(x)eW(x) (See [9] for
more on Lambert’s W function), thus −xe−W(−x) = W(−x), giving us that,

h(x) = 1

1 + W(−x)
= 1

1 − T (x)
,

where T (x) = −W(−x) is called Euler’s tree function, again see [9]. This exponential
generating function is precisely the exponential generating function of the sequence nn, see;
[19] Section 2 equation 2.7 and [26].

It is interesting to note that nn is also the number of complete exceptional sequences
over the hereditary algebras of type B and C; see section 5 of [22]. On a more interesting
note, nn also counts the number of full weak exceptional sequences (see Definition 5.7)
over �n

n [30, Theorem 1.4]. The full weak exceptional sequences over �n
n also have length

n, so a natural question to ask is whether the complete τ -exceptional sequences over �n
n

coincide with the full weak exceptional sequences (see Definition 5.7) over �n
n. We answer

this question in the affirmative. First, we state the following well known result.

Lemma 6.10 [8, Lemma 10.20] Let A be an exact category and let B be a full additive
subcategory of A. Then if B is extension-closed in A, the exact sequences A → B → C

in A with A, B, and C ∈ B form an exact structure on B. In particular for X, Y ∈ B, we
have that Ext1A(X, Y ) = Ext1B(X, Y ).

Lemma 6.11 [18, Proposition 3.6] Let A be a finite dimensional F algebra and let M be a
basic τ -rigid left A-module. Then the τ -perpendicular category J (M) is extension-closed
in modA.

Proposition 6.12 Let M = (M1,M2, . . . , Mn) be a complete τ -exceptional sequence in
mod�n

n. Then M is also a full weak exceptional sequence in mod�n
n.

Proof We will argue by induction on n. In the case of n = 1, there is only one indecompos-
able module which is both weak exceptional and τ -rigid, so the statement follows trivially.
Suppose that the statement is true for all 1 ≤ n ≤ k. Let us consider the k +1 case. Suppose
M = (M1, M2, . . . , Mk+1) is a τ -exceptional sequence in mod �k+1

k+1.
Let l = l(Mk+1) be the length of Mk+1, then 1 ≤ l ≤ k + 1. By Propositions 6.4 and

6.5, the τ -perpendicular category

J (Mk+1) ∼= modAl−1 ⊕ �k+1−l
k+1−l .

By definition, the sequence (M1,M2, . . . , Mk) is τ -exceptional in J (Mk+1). By Theo-
rems 3.8 and 3.9, we have that the sequence (M1,M2, . . . , Mk) is an interleaving of a
complete exceptional sequence X = (X1, X2, . . . , Xl−1) in modAl−1 with a complete
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τ -exceptional sequence Y = (Y1, Y2, . . . , Yk+1−l ) in mod �k+1−l
k+1−l . By the inductive hypoth-

esis, the sequence Y is a full weak exceptional sequence in mod �k+1−l
k+1−l . Moreover, we have

that
HomJ (Mk+1)(Xi, Yj ) = 0 = HomJ (Mk+1)(Yj ,Xi),

where 1 ≤ i ≤ l − 1 and 1 ≤ j ≤ k + 1 − l. Therefore, since the τ -perpendicular category
J (Mk+1) is a full subcategory of mod �k+1

k+1, we also have that

Hommod �k+1
k+1

(Xi, Yj ) = 0 = Hommod �k+1
k+1

(Yj , Xi),

where 1 ≤ i ≤ l − 1 and 1 ≤ j ≤ k + 1 − l. By a similar argument, we also have that

Hommod �k+1
k+1

(Xj ,Xi) = 0

for 1 ≤ i < j ≤ l − 1 and
Hommod �k+1

k+1
(Yj , Yi) = 0

for 1 ≤ i < j ≤ k + 1 − l. By Lemma 6.10, since J (Mk+1) is an extension-closed
subcategory of �k+1

k+1, we can argue in a similar way that

Ext1
mod �k+1

k+1
(Xi, Yj ) = Ext1

mod �k+1
k+1

(Yj ,Xi) = 0,

where 1 ≤ i ≤ l − 1 and 1 ≤ j ≤ k + 1 − l. By another similar argument,

Ext1
mod �k+1

k+1
(Xj , Xi) = 0

for 1 ≤ i ≤ j ≤ l − 1 and
Ext1

mod �k+1
k+1

(Yj , Yi) = 0

for 1 ≤ i ≤ j ≤ k + 1 − l. So we can conclude that the sequence (M1, M2, . . . , Mk) is
weak exceptional in mod �k+1

k+1, hence M = (M1, M2, . . . Mk+1) is a full weak exceptional

sequence in mod �k+1
k+1. This completes the proof.

Corollary 6.13 The complete τ -exceptional sequences of mod�n
n and the full weak

exceptional sequences of mod�n
n coincide.

Proof Let us denote by Tn the set of complete τ -exceptional sequences in mod �n
n and

denote by Wn the set of full weak exceptional sequences in mod �n
n. Using Proposition 6.12,

we can construct the following map, f : Tn → Wn, where by f (M) = M . The map f is
clearly injective and since | Tn |=| Wn |= nn, the map f is bijective, but more precisely
the complete τ -exceptional sequences of mod �n

n and the full weak exceptional sequences
of mod �n

n coincide.

Unlike τ -exceptional sequences, there are no complete exceptional sequences in mod �n
n,

as we will show. In general, not much is known about exceptional sequences over the
Nakayama algebras �n

n.

Proposition 6.14 There are no exceptional sequences (M1,M2, . . . , Ml) in mod�n
n of

length l > 1. In particular, there are no complete exceptional sequences in mod�n
n where

n > 1.

Proof Suppose M = (M1,M2, . . . , Ml) is an exceptional sequence of length l > 1. Every
indecomposable projective module in mod �n

n has length n, so by Proposition 3.12 we have
that Hom(Pi, Pj ) �= 0 for all 1 ≤ i, j ≤ n. As a consequence of this M cannot contain more
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than one indecomposable projective module, in particular, if l > 1, then M must contain
non-projective indecomposable modules.

Let N be a non-projective indecomposable module in mod �n
n. Observe that N =

radk(Pi) for some 1 ≤ i ≤ n and 1 ≤ k ≤ n − 1. We can further observe that the length
of N is l(N) = n − k and that top(N) = S(i+k)n . Further observe that N has the following
infinite sequence as its projective resolution.

. . . Pi P(i+k)n Pi P(i+k)n Pi P(i+k)n N 0

Since N has length l(N) = n − k and top(N) = S(i+k)n , we can write N =
P(i+k)n/radn−k(P(i+k)n ). By Proposition 3.12, we can observe that Hom(Pi, N) = 0
and Hom(P(i+k)n , N) �= 0. Therefore by applying the functor Hom(−, N) to the above
projective resolution, we obtain the following sequence.

0 Hom(N,N) Hom(P(i+k)n , N) 0 Hom(P(i+k)n , N) 0 . . .
f0 f1 f2 f3 f4

So we have that Ext2(N,N) = ker(f3)/im(f2) �= 0. Which is to say any non-projective
module in mod �n

n is not exceptional. From this we conclude that M cannot contain non-
projective modules. A contradiction.

7 The �n−1
n Case

Let n ≥ 1 be a positive integer. In this section we will study the combinatorics for the
number of complete τ -exceptional sequence in mod �n−1

n . Recall that we denote by An the
linearly oriented quiver with n vertices,

1 2 3 . . . n − 1 n
α1 α2 α3 αn−2 αn−1 . The algebra �n−1

n is defined

to be the F-algebra, FAn/R
n−1
Q . This is the path algebra of the quiver An modulo the relation

α1α2 . . . αn−1 = 0.
Observe the following. Let M be an indecomposable module in mod �n−1

n , then M

belongs to one of the following disjoint sets. The first set contains the indecomposable pro-
jective modules Pj for 1 ≤ j ≤ n. The second set contains non-projective modules of the
form M =radi (P1) where 1 ≤ i ≤ n − 2 and P1 is the indecomposable projective at ver-
tex 1. The third set contains indecomposable modules which are neither projective or of the
form M =radi (P1) for 1 ≤ i ≤ n − 2. Any indecomposable module M in mod �n−1

n has
length l(M) < n, therefore by Proposition 6.1, every indecomposable module of mod �n−1

n

is τ -rigid.

Proposition 7.1 Let Pi be an indecomposable projective module in mod�n−1
n for some

1 ≤ i ≤ n. Then the τ -perpendicular category of Pi in mod�n−1
n is J (Pi) ∼= modAn−i ⊕

modAi−1, where Aj is the hereditary type A hereditary algebra.

Proof Let Pi be an indecomposable projective with length 1 ≤ l(Pi) ≤ n−1. By definition
the Bongartz completion TPi

= P(⊥(τPi)). Since Pi is projective, τPi = 0 therefore
⊥(τPi) = mod �n−1

n , hence the Bongartz completion

TPi
=

n⊕

j=1

Pj .

Thus the F-algebra EPi
= End

�n−1
n

(TPi
) is precisely the algebra �n−1

n , the path algebra of

the quiver A
op
n ,

1 2 3 . . . i − 1 i i + 1 . . . n − 1 n
α2 α3 α4 αi−1 αi αi+1 αi+2 αn−1 αn
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modulo the relation αnαn−1 . . . α1 = 0. Let A
op(i)
n be the quiver obtained from A

op
n by

removing the vertex i and all arrows incident to i.
1 2 3 . . . i − 1 i + 1 . . . n − 1 n

α2 α3 α4 αi−1 αi+2 αn−1 αn

The quiver A
op(i)
n has no relations. By Lemma 3.4, DM = EM/〈eM 〉 is the path algebra

of the quiver A
op(i)
n . Since DM = FA

op(i)
n , it follows that J (M) ∼= modAn−i ⊕ modAi−1

by Theorem 3.5.

Proposition 7.2 Let M be an indecomposable module in mod�n−1
n of the form M =

radi (P1) for some 1 ≤ i ≤ n − 2 with length 1 ≤ l(M) ≤ n − 2. Then the τ -perpendicular
category of M in mod�n−1

n is

J (M) ∼=
{
modAl(M)−1 ⊕ modA1 ⊕ modA1 i = 1

modAn−l(M) ⊕ modAl(M)−1 i �= 1
,

where Aj is the hereditary type A hereditary algebra.

Proof Consider Pj the indecomposable projective module at the vertex j in mod �n−1
n with

j �= 1. Then it is easy to see that Pj = radj−2(P2) and that Pj has length l(Pj ) = n−j +1.
From this it follows that radq(Pj ) = Pj+q where 0 ≤ q ≤ n − j .

Let M = radi (P1) for some 1 ≤ i ≤ n − 1. We observe that l(M) = n − i − 1
and top(M) = Si+1. In accordance to Proposition 3.11, M may in fact be written as
M = Pi+1/radn−i−1(Pi+1). Using Proposition 3.11 again, we can see that Auslander-
Reiten translate of M is given by τM = rad(Pi+1)/radn−i (Pi+1) = Pi+2 because
rad(Pi+1) = Pi+2 and l(Pi+1) = n − (i + 1) + 1 = n − i, hence radn−i (Pi+1) = 0.
So we see that the only indecomposable �n−1

n -modules not in ⊥(τM) are the projectives
Pj = rads(Pi+2) for 0 ≤ s < n − i − 1, in other words i + 2 ≤ j ≤ n since
l(Pi+2) = n − i − 1.

We are now in the position to determine the Ext-projectives of ⊥(τM) where M =
radi (P1). By the above calculation, we can say that for 1 ≤ j ≤ i + 1, the projective
Pj is in ⊥(τM) hence Ext

�n−1
n

(Pj ,
⊥ (τM)) = 0.

Let N = radj (P1) for some j > i. Arguing as above we can see that the only inde-
composable �n−1

n -modules not in ⊥(τN) are the indecomposable projectives Pm where
j + 2 ≤ m ≤ n, so it follows that {X : Hom(X, τN) �= 0} ⊂ {X : Hom(X, τM) �= 0}.
This implies that Ext

�n−1
n

(N,X) ∼= DHom
�n−1

n
(X, τN) = 0 for all X in ⊥(τM) by the

Auslander-Reiten formula. Hence N = radj (P1) is an Ext-projective in ⊥(τM).
For every other indecomposable �n−1

n module Y , we have that τY is in ⊥(τM), therefore
since Ext

�n−1
n

(Y, τY ) ∼= DHom
�n−1

n
(X, τN) �= 0. Therefore these modules are not Ext-

projective in ⊥(τM). By definition TM = P(⊥(τM)), so by the above arguments,

P(⊥(τM)) = M ⊕
n−2⊕

s=i+1

rads(P1) ⊕
i+1⊕

j=1

Pj .

In the case when i �= 1 the F-algebra EM = End
�n−1

n
(TM) is the path algebra of the quiver

Qn,
i + 1 i . . . 1

vradn−2 vradn−3 . . . vradi+1 vM

αi+1

α

αi α2

αradn−2 αradn−3 αradi+1 αradi+1
αVM

.
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By Lemma 3.4, DM = EM/〈eM 〉 is the path algebra of the quiver Q
(vM)
n which is the

quiver obtained from Qn by removing the vertex vM and all arrows incident to vM . The
quiver Q

(vM)
n has two connected components.

i + 1 i . . . 1

vradn−2 vradn−3 . . . vradi+1

αi+1 αi α2

αradn−2 αradn−3 αradi+1

Since DM = FQ
(vM)
n , it follows that J (M) ∼= modAi+1 ⊕modAn−i−2 by Theorem 3.5.

Recall that l(M) = n − i − 1, hence J (M) ∼= modAn−l(M) ⊕ modAl(M)−1.
When i = 1 however, the F-algebra EM = End

�n−1
n

(TM) is the path algebra of the quiver
Q′

n,

2

vradn−2 vradn−3 . . . vradi+1 vM 1

α

αradn−2 αradn−3 αradi+1 αradi+1 αvM

with no relations. By Lemma, 3.4 DM = EM/〈eM 〉 is the path algebra of the quiver Q
′(vM)
n

which is the quiver obtained from Q′
n by removing the vertex vM and all arrows incident to

vM . This quiver has three connected components.
2

vradn−2 vradn−3 . . . vradi+1 1
αradn−2 αradn−3 αradi+1

.

Since DM = FQ
′(vM)
n , it follows that J (M) ∼= modAn−3 ⊕ modA1 ⊕ modA1 by

Theorem 3.5. Since l(rad1(P1)) = n − 2 then J (M) ∼= modAl(M)−1 ⊕ modA1 ⊕ modA1.

Proposition 7.3 Let M be an indecomposable �n−1
n -module such that M �= radk(P )

for some indecomposable projective P and positive integer k. Suppose M has length
1 ≤ l(M) ≤ n − 2, then the τ -perpendicular category of M in mod�n−1

n is J (M) ∼=
modAl(M)−1 ⊕ mod�

n−l(M)−1
n−l(M) .

Proof By Proposition 3.11, we can write M = Pi/radl(M)(Pi) for some 1 ≤ i ≤ n − 1 and
τM = rad(Pi)/radl(M)+1(Pi). We will consider the case where i �= 1 and i = 1 separately.

Suppose i �= 1, then we have that Pi = radi−2(P2) and l(Pi) = n − i + 1.
Therefore, radq(Pi) = Pi+q , in particular we have that rad(Pi) = Pi+1, hence τM =
Pi+1/radl(M)(Pi+1). Now suppose that i = 1, hence M = P1/radl(M)(P1), then τM =
rad(P1)/radl(M)+1(P1). Observe that top(τM) = S2 and l(τM) = l(M), hence τM =
P2/radl(M)(P2). In either case of i, we have that τM = Pi+1/radl(M)(Pi+1).

Now let X = Pj/radl (Pj ) be an arbitrary indecomposable �n−1
n module. By Proposition

3.12, Hom(X, τM) �= 0 if and only j ∈ [i+1, i+l(M)]n and i+l(M) ∈ [j, j+l−1]n. From
this it follows that Pj is not in ⊥(τM) if i+1 ≤ j ≤ i+l(M). Hence Ext

�n−1
n

(Pj ,
⊥ (τM)) =

0 if j /∈ [i + 1, i + l(M)].
Consider the module rads(M) for 1 ≤ s ≤ l(M) − 1. The length of rads(M) is given

by l(rads(M)) = l(M) − s. Moreover, rads(M) = Pi+s/radl(M)−s(Pi+s), from which it
follows that τ rads(M) = Pi+s+1/radl(M)−s(Pi+s+1). Again let X = Pj/radl (Pj ) be an
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arbitrary indecomposable �n−1
n module. By Proposition 3.12, Hom(X, τ rads(M)) �= 0

if and only j ∈ [i + s + 1, i + l(M)]n and i + l(M) ∈ [j, j + l − 1]n. There-
fore {X : Hom(X, τ rads(M)) �= 0} ⊂ {X : Hom(X, τM) �= 0}, which implies that
Ext

�n−1
n

(rads(M), Y ) ∼= DHom
�n−1

n
(Y, τ rads(M)) = 0 for all Y in ⊥(τM). In other words,

rads(M) is Ext-projective in ⊥(τM).
By Proposition 3.1, M is Ext-projective in ⊥(τM), so

P(⊥(τM)) = M ⊕
l(M)−1⊕

s=1

rads(M) ⊕
⊕

j /∈[i+1,i+l(M)]
Pj .

By definition, the Bongartz completion TM = P(⊥(τM)), so the F-algebra EM =
End

�n−1
n

(TM) is the path algebra of the quiver Qn modulo relations (set l(M) := m),

n n − 1 . . . i + m + 1 i i − 1 . . . 1

vradm−1 vradm−2 . . . vrad1 vM

αn αn−1 αi+m+2 αi+m+1 αi

α

αi−1 α2

αradm−1 αradm−2 αrad2 αrad1

.

Since the vertices of the top row of the quiver correspond to the indecomposable pro-
jectives of mod �n−1

n and the arrows reflect the relations the corresponding maps between
the projectives, we see that we have the relation αnαn−1 . . . αi+m+1αiαi−1 . . . α1 = 0. Let
Q

(vM)
n be the quiver obtained from Qn by removing the vertex vM and all the arrows incident

to vM ,
n n − 1 . . . i + m + 1 i i − 1 . . . 1

vradm−1 vradm−2 . . . vrad1

αn αn−1 αi+m+2 αi+m+1 αi αi−1 α2

αradm−1 αradm−2 αrad2

with the relation αnαn−1 . . . αi+m+1αiαi−1 . . . α1 = 0. By Lemma 3.4, DM = EM/〈eM 〉 is
the path algebra of the quiver Q

(vM)
n modulo the relation αnαn−1 . . . αi+m+1αiαi−1 . . . α1 =

0. It follows that J (M) ∼= modAl(M)−1 ⊕ mod �
n−l(M)−1
n−l(M) by Theorem 3.5.

Theorem 7.4 Let Kn denote the number of complete τ -exceptional sequences in mod�n−1
n .

Then Kn satisfies the recurrence relation;

Kn = (n−1)(n−2)(n−3) +
n∑

i=1

(
n − 1

i − 1

)
(n− i +1)(n−i−1)ii−2 +

n−3∑

i=1

(
n − 1

i − 1

)
(n− i +1)(n−i−1)ii−2

+
n−2∑

i=1

(
n − 1

i − 1

)
(n − i − 1)ii−2Kn−i

with K1 = 1.

Proof Let M be an indecomposable module in mod �n−1
n . Suppose (X1, X2, . . . , Xn−1,M)

is a τ -exceptional sequence in mod �n−1
n . Then by definition and the fact that δ(J (M)) =

n − 1, the sequence (X1, X2, . . . , Xn−1) is a complete τ -exceptional sequence in J (M).
Hence the number of complete τ -exceptional sequences ending in M is equal to the number
of complete τ -exceptional sequences in J (M).

Suppose M is projective, hence M = Pi for some 1 ≤ i ≤ n, then by Proposition 7.1
the τ -perpendicular category J (M) ∼= modAn−i ⊕ modAi−1. The number of complete τ -
exceptional sequences in modAl is precisely the number of complete exceptional sequence
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in modAl which is shown in [[28] [Proposition 1.1]] to be (l + 1)(l−1). Therefore by The-
orems 3.8 and 3.9 the number of complete τ -exceptional sequence ending in M = Pi is(
n−1
i−1

)
(n − i + 1)n−i−1ii−2.

Suppose M = radi (P1) for some 1 ≤ i ≤ n − 2. If i = 1 then we saw in Proposition 7.2
that J (M) ∼= modAn−3⊕modA1⊕modA1. Arguing as above it follows that the number of
complete τ -exceptional sequences ending in rad1(P1) is

(
n−1

n−3,1,1

)
(n − 2)(n−4)2020 = (n −

1)(n−2)(n−3). If it is the case that 2 ≤ i ≤ n−2, then J (M) ∼= modAn−l(M)⊕modAl(M)−1.
Therefore the number of complete τ -exceptional sequences ending in M = radi (P1) for
some 2 ≤ i ≤ n − 2 is

(
n−1

l(M)−1

)
(n − l(M) + 1)n−l(M)−1l(M)l(M)−2, where l(M) is the

length of M .
Finally suppose that M is not of the form radi (P ) for some indecomposable projective

module P . By Proposition 7.3, J (M) ∼= modAl(M)−1 ⊕ mod �
n−l(M)−1
n−l(M) where l(M) is the

length of M . Therefore the number of complete τ -exceptional sequences ending in M is(
n−1

l(M)−1

)
Kn−l(M)l(M)l(M)−2. Observe that in this case the length of M is 1 ≤ l(M) ≤ n−2

and for each fixed value of l(M) there are n − l(M) − 1 indecomposable modules M such
that M �= radi (P ).

By counting the number of complete τ -exceptional sequences ending in each indecom-
posable �n−1

n -module M , the recurrence relation of Kn follows. It is also trivial to see that
K1 = 1.

Theorem 7.5 Let h(x) = ∑∞
n=0 Kn

xn

n! be the exponential generating function of Kn. Then
h(x) satisfies the first order linear ODE,

h′(x)(1 − xe−W(−x)) + h(x)e−W(−x) = 2e−2W(−x) − e−W(−x) + W(−x) + 1

2
xW(−x).

Proof Let h(x) = ∑∞
n=0 Kn

xn

n! be the exponential generating function of Kn. Let a(n) =
(n + 1)n−1. Let g(x) = ∑∞

n=0(n + 1)n−1 xn

n! . Then g(x) = e−W(−x) by Lemma 6.8, where
W(x) is Lambert’s W function. By the only Proposition in Section 6 of [22],

2(n + 2)n−1 =
n∑

i=0

(
n

i

)
a(i)a(n − i).

So it follows from Lemma 6.7 that

(g(x))2 =
∞∑

n=0

2(n + 2)n−1 xn

n! . (1)

We make the following observations about

n∑

i=1

(
n − 1

i − 1

)
(n − i + 1)(n−i−1) · ii−2.

With the change of variable j = i − 1,

n∑

i=1

(
n − 1

i − 1

)
(n−i+1)(n−i−1)·ii−2 =

n−1∑

j=0

(
n − 1

j

)
(n−j)(n−j−2)(j+1)j−1 = 2(n+1)n−2,
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as shown in the proof of the only Proposition in Section 6 of [22]. We also observe that

n∑

i=1

(
n − 1

i − 1

)
(n − i + 1)(n−i−1) · ii−2 =

n−3∑

i=1

(
n − 1

i − 1

)
(n − i + 1)(n−i−1) · ii−2 + nn−2 + (n − 1)n−2 + 3

2
(n − 1)(n − 2)n−3,

so,

n−3∑

i=1

(
n − 1

i − 1

)
(n−i+1)(n−i−1) ·ii−2 = 2(n+1)n−2−nn−2−(n−1)n−2− 3

2
(n−1)(n−2)n−3.

(2)
As a result we can write the recurrence for Kn+1 (from Theorem 7.4) in the following

way ,

Kn+1 =2·2(n+2)n−1−(n+1)n−1−nn−1−1

2
(n)(n−1)n−2+

n−1∑

i=1

(
n

i−1

)
(n−i)Kn+1−i ·ii−2.

(3)
Making the change of variable j = i − 1 we get,

Kn+1 = 2·2(n+2)n−1 −(n+1)n−1 −nn−1 − 1

2
(n)(n−1)n−2 +

n−2∑

j=0

(
n

j

)
(n−j −1)Kn−j ·(j +1)j−1.

We will now study the exponential generating function of Kn+1. To do this we look at the
exponential generating function of each of the summands on the right hand side. We have
already seen from Eq. 1 that

∞∑

n=0

2(n + 2)n−1 xn

n! = (g(x))2 (4)

To deal with the rest of the summands of Kn+1 in Eq. 3 but the last one, we first re-organise
them in the following way using Eq. 2. Let

φ(n) =
n−2∑

i=1

(
n − 1

i − 1

)
(n−i+1)(n−i−1)·ii−2 = 2(n+2)n−1−(n+1)n−1−nn−1−3

2
n(n−1)n−2.

The change of variable j = i − 1 gives us

φ(n) =
n−3∑

j=0

(
n

j

)
(n − j)n−j−2(j + 1)j−1.

We have φ(n) = 0 for n = 0, 1, 2 since the sum is empty for these values of n. This further
implies that,

∞∑

n=0

φ(n)
xn

n! =
∞∑

n=2

φ(n)
xn

n!

=
∞∑

n=2

2(n + 2)n−1 xn

n! −
∞∑

n=2

(n + 1)n−1 xn

n! −
∞∑

n=2

nn−1 xn

n! − 3

2

∞∑

n=2

n(n − 1)n−2 xn

n!

=
(
(g(x))2 − 1 − 2x

)
−

∞∑

n=2

(n + 1)n−1 xn

n! −
∞∑

n=2

nn−1 xn

n! − 3

2

∞∑

n=2

n(n − 1)n−2 xn

n! ,
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by Eq. 1. Lemma 6.8 resolves the second summand. The third summand is resolved by [9]
in Section 2, page 4. This was previously was done in [24]. This has been translated into
English; see [23, Page 48]). To resolve the fourth summand we use the fact the exponential
generating function is a right index shift and multiplication by n of the 3rd summand. Right
index shifting is equivalent to formal integration and by Rule 2′ in Section 2.3 page 41 of
[31] multiplication by n is equivalent to differentiating and then multiplying the exponential
generating function by x (This is also given on the OEIS A055541). Therefore.
∞∑

n=0

φ(n)
xn

n! = [e−2W(−x) −1−2x]−[e−W(−x) −1−x]−[−W(−x)−x]− 3

2
[−xW(−x)]

= e−2W(−x) − 1 − 2x − e−W(−x) + 1 + x + W(−x) + x + 3

2
xW(−x)

= e−2W(−x) − e−W(−x) + W(−x) + 3

2
xW(−x). (5)

Now let us study the final summand of Eq. 3

n−2∑

j=0

(
n

j

)
(n − j − 1)Kn−j · (j + 1)j−1.

Notice that the term
(

n
n−1

)
(n− (n−1)−1)K1n

n−2 = 0 and
(
n
n

)
(n−n−1)K0n + 1n−1 = 0

since K0 = 0. Therefore,

n−2∑

j=0

(
n

j

)
(n − j − 1)Kn−j · (j + 1)j−1 =

n∑

j=0

(
n

j

)
(n − j − 1)Kn−j · (j + 1)j−1.

By Lemma 6.7,

∞∑

n=0

⎛

⎝
n∑

j=0

(
n

j

)
(n − j − 1)Kn−j · (j + 1)j−1

⎞

⎠ xn

n! =
( ∞∑

n=0

(n − 1)Kn

xn

n!

)( ∞∑

n=0

(n + 1)n−1 xn

n!

)
.

By Rule 2′ in Section 2.3 page 41 of [31]
( ∞∑

n=0

(n − 1)Kn

xn

n!

)
= x

d

dx

( ∞∑

n=0

Kn

xn

n!

)
−

( ∞∑

n=0

Kn

xn

n!

)
= xh′(x) − h(x).

By Lemma 6.8, ( ∞∑

n=0

(n + 1)n−1 xn

n!

)
= e−W(−x).

Therefore

∞∑

n=0

⎛

⎝
n∑

j=0

(
n

j

)
(n − j − 1)Kn−j · (j + 1)j−1

⎞

⎠ xn

n! = (xh′(x) − h(x))e−W(−x). (6)

By Rule 1′ in Section 2.3 page 41 of [31],
∞∑

n=0

Kn+1
xn

n! = h′(x).
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We now write the exponential generating function of Kn+1, using the expression of Kn+1
in Eq. 3 and the exponential generating functions of the summands of Kn+1 obtained as in
Eqs. 4, 5 and 6.

∞∑

n=0

Kn+1
xn

n! = 2e−2W(−x) − e−W(−x) + W(−x) + 1

2
xW(−x) + (xh′(x) − h(x))e−W(−x),

so

h′(x) = 2e−2W(−x) − e−W(−x) + W(−x) + 1

2
xW(−x) + (xh′(x) − h(x))e−W(−x),

Therefore we have the following first order linear ODE,

h′(x) + h(x)e−W(−x)

(1 − xe−W(−x))
= 2e−2W(−x) − e−W(−x) + W(−x) + 1

2xW(−x)

(1 − xe−W(−x))
.

This ODE is of the form,

h′(x) + Q(x)h(x) = F(x),

so we may apply the integrating factor method and give a general solution for h(x),

h(x) = e−V (x)

∫
V (x)F (x)dx + C,

where V (X) is the integrating factor,

V (X) =
∫

Q(x)dx =
∫

e−W(−x)

1 − xe−W(−x)
dx.

Unfortunately, we are unable to evaluate V (X) so we leave h(x) as it is.

8 Justification

In this section we would like to justify why we only look at the four cases above. Our
approach to counting the number of complete τ -exceptional sequences in the above module
categories relied upon Theorems 3.8 and 3.9. We also took advantage of the fact that the τ -
perpendicular categories of indecomposable modules M were of the form J (M) ∼= C ⊕ D
with C and D being module categories in the the two families �t

n or �t
n. It is our claim that

these four cases, �2
n, �

n−1
n , �2

n, �
n
n are the only ones were all the τ -perpendicular categories

J (M) are of this form. In other words, our approach only works on these four cases.

Proposition 8.1 Fix a positive integers t ≥ 3. For n ≥ t + 1, let A = �t
n. Then there exists

an A-module M such that the τ -perpendicular category J (M) is not a direct sum of module
categories over algebras of the form �t ′

n′ or �t ′
n′ for 2 ≤ t ′ ≤ n′ < n.

Proof We prove this by counter-example. Set M = S1, the simple module at vertex 1 of
the quiver Cn of A. Note that other simple modules also work, but for simplicity we choose
S1. The Auslander-Reiten translate of S1 is τS1 = S2. Using Proposition 3.11 and 3.12, we
can say that Hom(X, S2) �= 0 if and only if X = P2/radl(X)(P2) where l(X) is the length
of X. It also follows that P2 is the only projective with non-zero maps to S2. Therefore all
other indecomposable projective modules Pj with j �= 2 are in ⊥(τS1), hence they are Ext-
projectives in ⊥(τS1). By Proposition 3.1, the module S1 is Ext-project in ⊥(τS1). We can
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thus conclude that,
P(⊥(τS1)) =

⊕

j �=2

Pj ⊕ S1.

By definition the Bongartz completion of M in mod A is TM = P(τS1). Let Qn be the
following quiver,

vs1

. . .

4

3

1

n

n − 1

α

αn

αn−1

α1

α5

α4

α32

,
where the vertices labelled j correspond to the projective Pj and the vertex vs1 corresponds
to the simple S1 and the arrows correspond to the irreducible maps between their respective
modules. The F-algebra EM = EndA(TM) is the path algebra of the quiver modulo relations.
Let Q

vs1
n be the quiver obtained from Qn by removing the vertex vs1 and any arrows incident

to vs1 ,

. . .

4

3

1

n

n − 1

αn

αn−1

α1

α5

α4

α32

by Lemma 3.4, DM = EM/〈eM 〉 is the path algebra of the quiver Q
vs1
n modulo relations.

We have the relation αt+1αt . . . α4α32 = 0 involving t − 1 arrows because it corresponds
to HomA(Pt+1, P2) = 0 since in mod �t

n the composition of t maps between projec-
tives is 0. However, at the same time we have that the composition of the t ′ − 1 arrows
α1αn . . . αn−(t ′−3) �= 0 for 2 ≤ t ′ ≤ t . Therefore as a module category J (M) cannot be a
direct sum of module categories of the form mod �t ′

n′ or mod �t ′
n′ as required.

Proposition 8.2 Fix a positive integers t ≥ 3. For n ≥ t + 2, let A = �t
n. Then there exists

an A-module M such that the τ -perpendicular category J (M) is not a direct sum of module
categories over algebras of the form �t ′

n′ or �t ′
n′ for 2 ≤ t ′ ≤ n′ < n.

Proof The argument is similar to that for the previous proposition. We prove this by counter-
example. Set M = S1, the simple module at vertex 1 of the quiver An of A. The Auslander-
Reiten translate of S1 is τS1 = S2. By Proposition 3.11 and 3.12, Hom(X, S2) �= 0 if and
only if X = P2/radl(X)(P2) where l(X) is the length of X. It also follows that P2 is the only
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projective with non-zero maps to S2. Therefore all other indecomposable projective modules
Pj with j �= 2 are in ⊥(τS1), hence they are Ext-projectives in ⊥(τS1). By Proposition 3.1,
the module S1 is Ext-project in ⊥(τS1) We can thus conclude that,

P(τS1) =
⊕

j �=2

Pj ⊕ S1.

By definition the Bongartz completion of M in mod A is TM = P(τS1). Let Qn be the
following quiver,

vs1 1 3 4 . . . n − 1 n
α α32 α4 α5 αn−1 αn ,

where the vertices labelled j correspond to the projective Pj and the vertex vs1 corresponds
to the simple S1 and the arrows correspond to the irreducible maps between their respective
modules. The F-algebra EM = EndA(TM) is the path algebra of the quiver Qn modulo
relations. Let Q

vs1
n be the quiver obtained from Qn by removing the vertex vs1 and any

arrows incident to vs1 ,

1 3 4 . . . n − 1 n
α32 α4 α5 αn−1 αn .

by Lemma 3.4, DM = EM/〈eM 〉 is the path algebra of the quiver Q
vs1
n modulo relations.

We have the relation αt+1αt . . . α4α32 = 0 involving t − 1 arrows because it corresponds
to HomA(Pt+1, P2) = 0 since in mod �t

n the composition of t maps between projec-
tives is 0. However, at the same time we have that the composition of the t ′ − 1 arrows
αnαn−1 . . . αn−(t ′−2) �= 0. Therefore as a module category J (M) cannot be a direct sum of
module categories of the form mod �t ′

n′ or mod �t ′
n′ as required.

So we have shown that our strategy for deriving recurrences for the number of com-
plete τ -exceptional sequences over Nakayama algebras only works in the four cases we’ve
studied. However, the statements of Theorems 3.8 and 3.9 are general enough that a simi-
lar strategy may be applied to other algebras, and may prove as effective for counting the
τ -exceptional sequences for the module categories of those algebras.
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