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Abstract It was recently demonstrated that the Matrix Action Key Exchange (MAKE) algorithm, a new type of key

exchange protocol using the semidirect product of matrix groups, is vulnerable to a linear algebraic attack if the

matrices are over a commutative ring. In this note, we establish conditions under which protocols using matrices

over a non-commutative ring are also vulnerable to this attack. We then demonstrate that group rings 𝑅[𝐺], where

𝑅 is a commutative ring and 𝐺 is a non-abelian group, are examples of non-commutative rings that satisfy these

conditions.

Keywords: key‚exchange protocols, cryptanalysis, linear algebra

2010 Mathematics Subject Classification: 9»A60, 68P25, 11T71, 16G«0

1 INTRODUCTION

Since the advent of Shor’s algorithm, it has been desirable to study alternatives to the Diffie‚Hellman key

exchange [2]. One approach to this problem appeals to a more complex group structureȷ recall that for ˘semi¯groups

𝐺, 𝐻 and a homomorphism 𝜃 : 𝐻 → 𝐴𝑢𝑡 (𝐺), the semidirect product of 𝐺 by 𝐻 with respect to 𝜃, 𝐺 ⋊𝜃 𝐻, is the

set of ordered pairs 𝐺 × 𝐻 equipped with multiplication

(𝑔, ℎ) (𝑔′, ℎ′) = (𝜃 (ℎ′) (𝑔)𝑔′, ℎℎ′)

Recall also that the action of a group 𝐺 on a finite set 𝑋 is a function (𝐺, 𝑋) → 𝑋 , here written as 𝑔 · 𝑥, satisfying

1 · 𝑥 = 𝑥 and 𝑔 · (ℎ · 𝑥) = (𝑔ℎ) · 𝑥 for all 𝑔, ℎ ∈ 𝐺. It turns out that such an action induces a homomorphism into

the group of permutations of 𝑋; in particular, if 𝐺, 𝐻 are groups, an action of 𝐻 on 𝐺 specifies a homomorphism

into the automorphism group of 𝐺, so specifying such an action suffices to specify a semidirect product structure.

The semidirect product can be used to generalise the Diffie‚Hellman key exchange [»] via a general protocol

sometimes known as the “non‚commutative shift”. Originally, the semigroup of 3 × 3 matrices over the group ring

Z7 [𝐴5] is proposed as the platform; however, this turned out to be vulnerable to the type of attack ˘the so‚called

“dimension attack”¯ by linear algebra described in [10],[12]. Other platforms used include tropical algebras [«]

and free nilpotent 𝑝‚groups [7]. The former is shown to be insecure in [5], [8].

The insight of the recent MAKE protocol [11] is to use the ring formed by square matrices over a ring. This

object is a group under addition and a semigroup under multiplication, so we can follow the syntax of [»] in such

a way as to mix operations so that no power of any matrix is ever exposed. However, the protocol is vulnerable to

another linear algebraic attack [1], which relies on the commutativity of the underlying ring. The purpose of this

note is to demonstrate that under certain circumstances, using a non‚commutative underlying ring will have the

same vulnerability. In particular, we present general conditions by which one can decide if a platform to be used

with MAKE is unsafe. It turns out these conditions are satisfied by group rings of the form used in [»]; note that

we do not claim to present a break of [»] via our methods.

2 MATRIX ACTION KEY EXCHANGE (MAKE)

The following is taken from [11], following an original version in which 𝐻1 = 𝐻2.

For 𝑛 ∈ N and 𝑝 prime, consider the additive group 𝐺 of 𝑛 × 𝑛 matrices over Z𝑝 , 𝑀𝑛 (Z𝑝), and the semigroup

𝑆 = {(𝐻𝑖
1
, 𝐻𝑖

2
) : 𝑖 ∈ N} generated by non‚invertible matrices 𝐻1, 𝐻2 ∈ 𝑀𝑛 (Z𝑝). The action of 𝑆 on 𝐺 defined by
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(𝐻𝑖
1
, 𝐻𝑖

2
) ·𝑀 = 𝐻𝑖

1
𝑀𝐻𝑖

2
1 induces a homomorphism into the automorphism group of 𝐺; we can therefore define the

semidirect product of 𝐺 by 𝑆 with multiplication

(𝑀, (𝐻𝑖
1, 𝐻

𝑖
2)) (𝑀

′, (𝐻
𝑗

1
, 𝐻

𝑗

2
)) = (𝐻

𝑗

1
𝑀𝐻

𝑗

2
+ 𝑀 ′, (𝐻

𝑖+ 𝑗

1
, 𝐻

𝑖+ 𝑗

2
))

In particular one checks that for any choice of 𝐻1, 𝐻2, exponentiation has the form

(𝑀, (𝐻1, 𝐻2))
𝑛
=

(
𝑛−1∑︁
𝑖=0

𝐻𝑖
1
𝑀𝐻𝑖

2
, (𝐻𝑛

1
, 𝐻𝑛

2
)

)

We use this semidirect product structure in the syntax of [»] as follows. Suppose Alice and Bob wish to agree

on a shared, private key by communicating over an insecure channel. Suppose also that public data 𝑀, 𝐻1, 𝐻2 is

available.

1. Alice picks random 𝑥 ∈ N and calculates (𝑀, (𝐻1, 𝐻2))
𝑥
= (𝐴, (𝐻𝑥

1
, 𝐻𝑥

2
)) and sends 𝐴 to Bob.

2. Bob similarly calculates a value 𝐵 corresponding to random 𝑦 ∈ N, and sends it to Alice.

«. Alice calculates (𝐵, ∗)(𝐴, (𝐻𝑥
1
, 𝐻𝑥

2
)) = (𝐻𝑥

1
𝐵𝐻𝑥

2
+ 𝐴, ∗∗) and arrives at her key 𝐾𝐴 = 𝐻𝑥

1
𝐵𝐻𝑥

2
+ 𝐴. She

does not actually calculate the product explicitly since she does not know the value of ∗; however, it is not

required to calculate the first component of the product.

». Bob similarly calculates his key as 𝐾𝐵 = 𝐻
𝑦

1
𝐴𝐻

𝑦

2
+ 𝐵.

Since 𝐴 =
∑𝑥−1

𝑖=0
𝐻𝑖

1
𝑀𝐻𝑖

2
, 𝐵 =

∑𝑦−1

𝑖=0
𝐻𝑖

1
𝑀𝐻𝑖

2
, we have

𝐻𝑥
1
𝐵𝐻𝑥

2
+ 𝐴 = 𝐻𝑥

1

(
𝑦−1∑︁
𝑖=0

𝐻𝑖
1
𝑀𝐻𝑖

2

)
𝐻𝑥

2
+ 𝐴

=

𝑥+𝑦−1∑︁
𝑖=𝑥

𝐻𝑖
1
𝑀𝐻𝑖

2
+

𝑥−1∑︁
𝑖=0

𝐻𝑖
1
𝑀𝐻𝑖

2

=

𝑥+𝑦−1∑︁
𝑖=𝑦

𝐻𝑖
1
𝑀𝐻𝑖

2
+

𝑦−1∑︁
𝑖=0

𝐻𝑖
1
𝑀𝐻𝑖

2

= 𝐻
𝑦

1
𝐴𝐻

𝑦

2
+ 𝐵

Alice and Bob therefore both arrive at the same shared key 𝐾 = 𝐾𝐴 = 𝐾𝐵.

Attacking the protocol directly requires recovering 𝑥, 𝑦 from 𝐴, 𝐵. This leads to a natural analogue of the

computational Diffie‚Hellman assumption; namely, computational infeasibility of retrieving the shared secret 𝐾

given the data (𝐻1, 𝐻2, 𝑀, 𝐴, 𝐵)2. Clearly, this is closely related to an analogue of the discrete logarithm problem

˘DLP¯, which is shown in [11] to be at least as hard as the standard DLP provided certain “safe” primes 𝑝 are used.

3 ATTACK BY CAYLEY-HAMILTON

Several protocols following the non‚commutative shift syntax are vulnerable to the dimension attack, which

does not require one to solve the problems addressed in the security assumption. This class of attacks, however,

deal with schemes using only group multiplication. In our case, we have two operations; the following attack was

developed by Brown, Koblitz and Legrow in [1] and is roughly outlined below. Suppose the public data 𝑀, 𝐻1, 𝐻2

are fixed, as well as transmitted values 𝐴, 𝐵 corresponding to exponents 𝑥, 𝑦 respectively.

The attack relies on the following easily‚verifiable factȷ we have that

𝐻1𝐴𝐻2 + 𝑀 − 𝐴 = 𝐻𝑥
1
𝑀𝐻𝑥

2

This identity is known as the “telescoping” equality. It is crucial to allow the recovery of the quantity 𝐻𝑥
1
𝑀𝐻𝑥

2

from the data available to an eavesdropper on the left‚hand side of the equality.

Suppose the matrices are of size 𝑛 ∈ N. We also rely on the Cayley‚Hamilton theorem, which for a square

matrix 𝐴 over 𝑀𝑛 (Z𝑝) and any 𝑥 ∈ N guarantees the existence of coefficients 𝑝𝑖 in Z𝑝 such that

𝐴𝑥
=

𝑛−1∑︁
𝑖=0

𝑝𝑖𝐴
𝑖

1We rely on commutativity of 𝑆 to satisfy the axioms of an action, which is why a cyclic ˘semi¯group is used.

2This is a weaker security notion than key indistinguishability, analogue of the decisional Diffie‚Hellman assumption; the authors of [11]

conduct some computational experiments suggesting the latter assumption may hold. This fact is not further referenced in this paper, since the

attack does not require solving the analogue of the discrete log problem.

«
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Finally, we need the following two‚part lemma, the proof of which is given in [1].

Lemma 1. Let 𝑛 ∈ N. Define 𝐿 : 𝑀𝑛 (Z𝑝) → 𝑀𝑛2 (Z𝑝) component-wise by

(𝐿 (𝑌 )) 𝑗𝑛+𝑖,ℎ𝑛+𝑔 = (𝐻
𝑔

1
𝑌𝐻ℎ

2
)𝑖, 𝑗

for 0 ≤ 𝑖, 𝑗 , 𝑔, ℎ ≤ 𝑛 − 1, and 𝑣𝑒𝑐 : 𝑀𝑛 (Z𝑝) → Z
𝑛2

𝑝 by

𝑣𝑒𝑐(𝐴) 𝑗𝑛+𝑖 = 𝐴𝑖, 𝑗

for 0 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1. Then there is a vector 𝑠 in Z𝑛
2

𝑝 such that 𝐿 (𝑌 )𝑠 = 𝑣𝑒𝑐(𝐻𝑥
1
𝑌𝐻𝑥

2
) for any 𝑌 ∈ 𝑀𝑛 (Z𝑝).

Moreover, for some 𝑌 ∈ 𝑀𝑛 (Z𝑝), a vector 𝑢 ∈ Z𝑛
2

𝑝 satisfying 𝐿 (𝑌 )𝑢 = 0 also satisfies 𝐿 (𝐻𝑙
1
𝑌𝐻𝑙

2
)𝑢 = 0 for any

𝑙 ∈ N.

The attack now works as followsȷ

1. Using the telescoping equality, recover the value 𝐻𝑥
1
𝑀𝐻𝑥

2
.

2. Solve the 𝑛2 linear equations in 𝑛2 unknowns defined by 𝐿 (𝑀)𝑡 = 𝑣𝑒𝑐(𝐻𝑥
1
𝑀𝐻𝑥

2
) to recover a vector 𝑡;

by Lemma 1, there is at least one solution to this system of equations; and any solution satisfies 𝐿 (𝐵)𝑡 =

𝑣𝑒𝑐(𝐻𝑥
1
𝐵𝐻𝑥

2
).

«. Since 𝑣𝑒𝑐 is a bijection, applying its inverse to 𝐿 (𝐵)𝑡 allows one to recover 𝐻𝑥
1
𝐵𝐻𝑥

2
, and therefore the shared

key 𝐾 by simply adding 𝐴 to this quantity.

4 ATTACKING NON-COMMUTATIVE RINGS

A key part of the above attack is the construction of the vector 𝑠, which is done by the Cayley‚Hamilton theorem.

In particular, this theorem only applies to square matrices over commutative rings; we will use the following theorem

to characterise some non‚commutative rings over which the scheme is still insecure. In the following, let 𝑅 be an

arbitrary non‚commutative ring.

Theorem 1. Suppose there is an injective ring homomorphism 𝜙 : 𝑅 → 𝑀𝑚 (𝑆) for some𝑚 ∈ N and a commutative

ring 𝑆. For any 𝑛 ∈ N define

𝜓 :𝑀𝑛 (𝑅) → 𝑀𝑚𝑛 (𝑆)

(𝜓(𝐴))𝑖𝑚+𝑔, 𝑗𝑚+ℎ = (𝜙(𝐴𝑖, 𝑗 ))𝑔,ℎ

where 0 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1, 0 ≤ 𝑔, ℎ ≤ 𝑚 − 1. Then 𝜓 is an injective ring homomorphism.

Proof. To check multiplication is preserved we just check that the relevant quantities agree on each entry. Let 𝐴, 𝐵

in 𝑀𝑛 (𝑅); then

(𝜓(𝐴𝐵))𝑖𝑚+𝑔, 𝑗𝑚+ℎ = (𝜙((𝐴𝐵)𝑖, 𝑗 ))𝑔,ℎ

=

(
𝜙

(
𝑛−1∑︁
𝑘=0

𝐴𝑖,𝑘𝐵𝑘, 𝑗

))
𝑔,ℎ

=

(
𝑛−1∑︁
𝑘=0

𝜙(𝐴𝑖,𝑘)𝜙(𝐵𝑘, 𝑗 )

)
𝑔,ℎ

=

𝑛−1∑︁
𝑘=0

(𝜙(𝐴𝑖,𝑘)𝜙(𝐵𝑘, 𝑗 ))𝑔,ℎ

=

𝑛−1∑︁
𝑘=0

𝑚−1∑︁
𝑙=0

𝜙(𝐴𝑖,𝑘)𝑔,𝑙𝜙(𝐵𝑘, 𝑗 )𝑙,ℎ

=

𝑛−1∑︁
𝑘=0

𝑚−1∑︁
𝑙=0

𝜓(𝐴)𝑖𝑚+𝑔,𝑘𝑚+𝑙𝜓(𝐵)𝑘𝑚+𝑙, 𝑗𝑚+ℎ

= (𝜓(𝐴)𝜓(𝐵))𝑖𝑚+𝑔, 𝑗𝑚+ℎ

»
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Similarly, for addition, we have

(𝜓(𝐴 + 𝐵))𝑖𝑛+𝑔, 𝑗𝑛+ℎ = (𝜙((𝐴 + 𝐵)𝑖, 𝑗 ))𝑔,ℎ

= (𝜙(𝐴𝑖, 𝑗 ) + 𝜙(𝐵𝑖, 𝑗 ))𝑔,ℎ

= (𝜙(𝐴𝑖, 𝑗 ))𝑔,ℎ + (𝜙(𝐴𝑖, 𝑗 ))𝑔,ℎ

Finally, 𝜓(𝐼𝑛) = 𝐼𝑚𝑛 since 𝜙(1) = 𝐼𝑚, so 𝜓 is a ring homomorphism. To see injectivity, for 𝐴, 𝐵 ∈ 𝑀𝑛 (𝑅) suppose

𝜓(𝐴) = 𝜓(𝐵). Then for each 0 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1, 0 ≤ 𝑔, ℎ ≤ 𝑚 − 1 we have 𝜙(𝐴𝑖, 𝑗 )𝑔,ℎ = 𝜙(𝐵𝑖, 𝑗 )𝑔,ℎ. Therefore

𝜙(𝐴𝑖, 𝑗 ) = 𝜙(𝐵𝑖, 𝑗 ) for each 𝑖, 𝑗 . Since 𝜙 is injective, we must have 𝐴 = 𝐵. □

Once we have established that 𝜓 is indeed a ring homomorphism the attack can just be carried out on 𝜓 applied

to the public matrices. The details are listed below for completeness.

4.1 EXTENDING THE ATTACK

Letting 𝑘 = 𝑚𝑛 we have a function 𝐿 ◦ 𝜓 : 𝑀𝑛 (𝑅) → 𝑀𝑘2 (𝑆) defined by

(𝐿 (𝜓(𝑌 ))) 𝑗𝑘+𝑖,ℎ𝑘+𝑔 = (𝜓(𝐻
𝑔

1
𝑌𝐻ℎ

2
))𝑖, 𝑗

where each of the indices run from 0 to 𝑘 − 1. The function 𝑣𝑒𝑐 ˘defined with a different domain in Lemma 1¯

stacks the columns of a matrix in 𝑀𝑘 (𝑆) to give a column vector of height 𝑘2.

We will need to invoke the following two propositions during the attackȷ

Proposition 1. There is a vector 𝑠 ∈ 𝑆𝑘
2

such that for all 𝑌 ∈ 𝑀𝑛 (𝑅), we have

𝐿 (𝜓(𝑌 ))𝑠 = 𝑣𝑒𝑐(𝜓(𝐻𝑥
1
𝑌𝐻𝑥

2
))

Proposition 2. Suppose some vector 𝑢 is such that 𝐿 (𝜓(𝑌 ))𝑢 = 0 for 𝑌 ∈ 𝑀𝑛 (𝑅). Then for all 𝑙 ∈ N we have

𝐿 (𝜓(𝐻𝑙
1
𝑌𝐻𝑙

2
))𝑢 = 0.

The proofs are somewhat tedious and similar to those given in [1]; the interested reader can find them in the

appendix.

For the public parameters 𝐻1, 𝐻2, 𝑀 and fixed values of 𝐴, 𝐵 we can calculate

𝜓(𝑀 + 𝐻1𝐴𝐻2 − 𝐴) = 𝜓(𝐻
𝑥
1
𝑀𝐻𝑥

2
)

By Proposition 1, the equation

𝐿 (𝜓(𝑀))𝑡 = 𝑣𝑒𝑐(𝜓(𝐻𝑥
1
𝑀𝐻𝑥

2
))

has at least one solution. We can therefore solve this system of linear equations efficiently, for example by Gaussian

elimination, and obtain a solution, say 𝑡. We know that, with 𝑌 = 𝐵, we also have

𝐿 (𝜓(𝐵))𝑠 = 𝑣𝑒𝑐(𝜓(𝐻𝑥
1
𝐵𝐻𝑥

2
))

Since the vectors 𝑡 and 𝑠 satisfy 𝐿 (𝜓(𝑀))𝑡 = 𝐿 (𝜓(𝑀))𝑠 and 𝐿 preserves addition, setting 𝑢 = 𝑡 − 𝑠 we have,

invoking Proposition 2, that

0 = 𝐿 (𝜓(𝑀))𝑢 + 𝐿 (𝜓(𝐻1𝑀𝐻2))𝑢 + ... + (𝐿 (𝜓(𝐻
𝑦−1

1
𝑀𝐻

𝑦−1

2
))𝑢

= 𝐿 (𝜓(𝑀) + 𝜓(𝐻1𝑀𝐻2) + ... + 𝜓(𝐻
𝑦−1

1
𝑀𝐻

𝑦−1

2
))𝑢

= 𝐿 (𝜓(𝑀 + 𝐻1𝑀𝐻2 + ... + 𝐻
𝑦−1

1
𝑀𝐻

𝑦−1

2
))𝑢

= 𝐿 (𝜓(𝐵))𝑢

Therefore 𝐿 (𝜓(𝐵))𝑡 = 𝐿 (𝜓(𝐵))𝑠 = 𝑣𝑒𝑐(𝜓(𝐻𝑥
1
𝐵𝐻𝑥

2
)), so from public information we can recover 𝜓(𝐻𝑥

1
𝐵𝐻𝑥

2
),

and hence

𝜓(𝐾) = 𝜓(𝐴 + 𝐻𝑥
1
𝐵𝐻𝑥

2
)

= 𝜓(𝐴) + 𝜓(𝐻𝑥
1
𝐵𝐻𝑥

2
)

Note that the vector 𝑠 is not available from public information, but at no point is its calculation required. It is

merely described to show that the vector 𝑡 recovered by the attacker will indeed suffice for recovery of 𝜓(𝐾).

In general, recovering 𝐾 from 𝜓(𝐾) can be done by inverting 𝜙 on the 𝑛2 blocks of size 𝑚 × 𝑚 of 𝜓(𝐾). This

is trivial if there is an explicit description of 𝜙.
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5 GROUP RING REPRESENTATIONS

A well‚behaved and easily scalable example of non‚commutative rings are group rings of the form 𝑅[𝐺], where

𝑅 is a commutative ring and 𝐺 is a non‚abelian group. For example, Z7 [𝐴5] is used in [»]. We now show that such

a ring meets the conditions required for the above modification of the attack. The following definitions are taken

from [9], to which the reader is referred for more detail.

Let 𝐺 be a finite group, 𝑅 be a ring. Consider the set of formal sums

𝑅[𝐺] =



∑︁
𝑔∈𝐺

𝑎𝑔 .𝑔 : 𝑎𝑔 ∈ 𝑅, 𝑔 ∈ 𝐺




where the multiplication refers to scalar multiplication3. Together with addition and multiplication defined respec‚

tively by ∑︁
𝑔∈𝐺

𝑎𝑔 .𝑔 +
∑︁
𝑔∈𝐺

𝑏𝑔 .𝑔 =

∑︁
𝑔∈𝐺

(𝑎𝑔 + 𝑏𝑔).𝑔
©­«
∑︁
𝑔∈𝐺

𝑎𝑔 .𝑔
ª®¬
(∑︁
ℎ∈𝐺

𝑏ℎ .ℎ

)
=

∑︁
𝑔,ℎ∈𝐺

(𝑎𝑔𝑏ℎ).𝑔ℎ

𝑅[𝐺] is a ring that is at the same time a free left 𝑅‚module with basis 𝐺. Moreover, 𝐺 acts on 𝑅[𝐺] by left

multiplicationȷ

𝑔 ·
∑︁
ℎ∈𝐺

𝑎ℎ .ℎ = 𝑔
∑︁
ℎ∈𝐺

𝑎ℎ .ℎ =

∑︁
ℎ∈𝐺

𝑎ℎ .(𝑔ℎ)

Suppose |𝐺 | = 𝑚. Note that left multiplication by a group element permutes the group, which is the basis of

𝑅[𝐺], the 𝑅‚module of rank 𝑚. As a function, then, this multiplication is an automorphism of the 𝑅‚module; there

is therefore a function 𝑇 : 𝐺 → 𝐺𝐿 (𝑘, 𝑅), where the function 𝑇 (𝑔) has matrix representation with entries in 𝑅.

This is the so‚called “left‚regular representation” of 𝐺 over 𝑅. Moreover, one can easily verify that this map is a

group homomorphism.

The matrix representation of the function 𝑇 (𝑔) ∈ 𝐺𝐿 (𝑘, 𝑅) is not unique and depends on a choice of basis.

However, since the group 𝐺 is a basis of 𝑅[𝐺], and 𝑇 (𝑔) permutes this basis, we can specify the matrices as

follows. Enumerate the elements of 𝐺 arbitrarily, and write 𝑇𝑔𝑖 for the matrix corresponding to the function 𝑇 (𝑔𝑖).

Suppose 𝑔𝑖𝑔 𝑗 = 𝑔𝑘 , then (𝑇𝑔𝑖 )𝑘, 𝑗 = 1, with all other entries in the row 0. In this way we can construct a set of

matrices {𝑇𝑔 : 𝑔 ∈ 𝐺} from a multiplication table of 𝐺.

5.1 MAPPING TO MATRICES OVER A COMMUTATIVE RING

We can extend the left‚regular representation outlined above to a map

𝜙 : 𝑅[𝐺] → 𝑀𝑚 (𝑅) :

∑︁
𝑔∈𝐺

𝑎𝑔 .𝑔 ↦→
∑︁
𝑔∈𝐺

𝑎𝑔 .𝑇𝑔

Note that the sum of scaled invertible matrices is not necessarily invertible; hence, the map is into 𝑀𝑚 (𝑅),

rather than 𝐺𝐿 (𝑚, 𝑅).

Proposition 3. Suppose 𝑅 is a commutative ring. We have that 𝜙 : 𝑅[𝐺] → 𝑀𝑚 (𝑅) is an injective ring

homomorphism.

Proof. Clearly 𝜙 is an additive homomorphism. To show multiplication is preserved note that since 𝑅 is commu‚

tative we have ∑︁
𝑔,ℎ∈𝐺

(𝑎𝑔𝑏ℎ).𝑇𝑔ℎ =

∑︁
𝑔,ℎ∈𝐺

(𝑎𝑔𝑏ℎ).𝑇𝑔𝑇ℎ =

∑︁
𝑔∈𝐺

𝑎𝑔 .𝑇𝑔

∑︁
ℎ∈𝐺

𝑏ℎ .𝑇ℎ

Preservation of the identity is inherited from the homomorphicity of the map 𝑇 . To see that 𝜙 is injective, we

first show that 𝜙 is injective exactly when the matrices {𝑇𝑔 : 𝑔 ∈ 𝐺} are linearly independent over 𝑅. This is because

ker 𝜙 = {0} exactly when the only coefficients 𝑎𝑔 that give
∑

𝑔∈𝐺 𝑎𝑔 .𝑇𝑔 = 0 are all zero, i.e. when the matrices

are linearly independent, and the kernel is trivial if and only if the map is injective. Suppose for contradiction

that matrices 𝑇𝑔𝑖 , 𝑇𝑔 𝑗
have a 1 in the same place, say the 𝑚, 𝑛th entry. By the construction of such matrices given

above, this means that for 𝑔𝑖 ≠ 𝑔 𝑗 we have 𝑔𝑖𝑔𝑚 = 𝑔𝑛 = 𝑔 𝑗𝑔𝑚, which is a contradiction, since the action of a group

on itself by left multiplication is faithful. Clearly, this implies the matrices are linearly independent, and so 𝜙 is

injective. □

We therefore have the required homomorphism 𝜙, from which 𝜓 can be constructed as in the general case.

3Technically speaking, the formal sums refer to linear combinations of functions from 𝐺 to 𝑅. However, once we have defined such functions

we usually dispense with them in favour of the notation above; see [9] for further details.
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5.2 INVERTING 𝜓

We can recover the unique value of 𝐾 as follows. The 𝑚𝑛 ×𝑚𝑛 matrix 𝜓(𝐾) recovered in the above consists of

𝑛2 blocks of size 𝑚 × 𝑚, where the 𝑖, 𝑗 th block is given by 𝜙(𝐾𝑖, 𝑗 ). We know from the proof of Proposition « that

the matrices 𝑇𝑔 are a basis of the image of 𝜙, so 𝜙(𝐾𝑖, 𝑗 ) has unique decomposition as 𝜙(𝐾𝑖, 𝑗 ) =
∑

𝑔∈𝐺 𝑘𝑔,𝑖, 𝑗 .𝑇𝑔.

Given the values of 𝑇𝑔, finding this decomposition amounts to solving 𝑚 linear equations in 𝑚 unknowns. By

definition of 𝜙 we have 𝐾𝑖, 𝑗 =
∑

𝑔∈𝐺 𝑘𝑔,𝑖, 𝑗 .𝑔; repeating this procedure for each 𝑖, 𝑗 , we recover 𝐾 from 𝜓(𝐾) in

polynomial time.

6 CONCLUSIONS

We again stress that the attack described in this paper effectively bypasses the security assumption made in [11].

As remarked in [1] this is another example of some inherent linearity underpinning matrix‚based key exchange

protocols.

The main limiting factor in the efficiency of this attack is recovering the vector 𝑡 by solving (𝑚𝑛)2 linear

equations in (𝑚𝑛)2 unknowns. Since solving 𝑛 linear equations in 𝑛 unknowns has a complexity4 of O(𝑛3), we

expect the time complexity of the attack to be O((𝑚𝑛)6). Should one wish to use a ring 𝑅 satisfying the conditions

of Theorem 1, therefore, one should ensure that 𝑚 is large, where 𝜙 : 𝑅 → 𝑀𝑚 (𝑆), and 𝑆 is a commutative ring.

For sufficiently large values of 𝑚 the attack becomes infeasible, although the complexity is still polynomial.

In the case of group rings 𝑅[𝐺] this is possible to achieve by increasing the size of the group 𝐺. However,

we constructed 𝜙 from the left regular representation of 𝐺 over 𝑅, where the dimension of the representation

and therefore 𝑚 is always the size of 𝐺. For some groups it might be possible to construct 𝜙 from a faithful

representation of lower dimension, so one should use a group where there is a lower bound on the dimension of a

faithful representation; for example, certain 𝑝‚groups [6]. This fact was used to counter similar attacks in [7].

It is an interesting problem to determine for which non‚commutative rings there is no injective homomorphism

into matrices over a commutative ring; such rings would be safe from the attack of [1], and the attack could not be

extended by the methods described in this paper. In some sense, then, the criteria described in Theorem 1 serve to

classify rings into “safe” or “unsafe” for use with the MAKE protocol.

Finally, we note that although the group rings used in [»] satisfy the conditions of Theorem 1, our method

does not present a break of the scheme in [»]. This is effectively because the exchanged values 𝐴, 𝐵 are calculated

as product, rather than a sum, and the function 𝐿 does not preserve multiplication. Moreover, whilst there is an

analogue of the telescoping equality in that context, it does not necessarily allow recovery of the required quantity

because the exchanged values do not always have a multiplicative inverse ˘in contrast to the values exchanged during

the MAKE protocol, which always have additive inverse¯. On the other hand, Theorem 1 does give us access to the

Cayley‚Hamilton theorem in the context of [»].
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8 APPENDIX

Here we detail the proofs of Propositions 1 and 2.

Proof of Proposition 1. Since we are now working with matrices over a commutative ring, by the Cayley‚Hamilton

theorem we have 𝑝𝑖 , 𝑞𝑖 ∈ 𝑆 such that

𝜓(𝐻1)
𝑥
=

𝑘−1∑︁
𝑔=0

𝑝𝑔𝜓(𝐻1)
𝑔 𝜓(𝐻2)

𝑥
=

𝑘−1∑︁
ℎ=0

𝑞ℎ𝜓(𝐻2)
ℎ

With 𝑇 ∈ 𝑀𝑘 (𝑆) defined by 𝑇𝑖, 𝑗 = 𝑝𝑖𝑞 𝑗 and 𝑠 = 𝑣𝑒𝑐(𝑇) we have, for any 𝑌 in 𝑀𝑘 (𝑆), that

(𝐿 (𝜓(𝑌 ))𝑠) 𝑗𝑘+𝑖 =

𝑘−1∑︁
𝑔,ℎ=0

(
𝜓(𝐻

𝑔

1
𝑌𝐻ℎ

2

)
)𝑖, 𝑗 𝑝𝑔𝑞ℎ

=

𝑘−1∑︁
𝑔,ℎ=0

(𝑝𝑔𝜓(𝐻1)
𝑥𝜓(𝑌 )𝑞ℎ𝜓(𝐻2)

ℎ)𝑖, 𝑗

= (𝜓(𝐻1)
𝑥𝜓(𝑌 )𝜓(𝐻2)

𝑥)𝑖, 𝑗

= 𝑣𝑒𝑐(𝜓(𝐻𝑥
1
𝑌𝐻𝑥

2
)) 𝑗𝑘+𝑖

Therefore 𝐿 (𝜓(𝑌 ))𝑠 = 𝑣𝑒𝑐(𝜓(𝐻𝑥
1
𝑌𝐻𝑥

2
)). □

Proof of Proposition 2. Checking component‚wise, from the definitions it follows that

𝐿 (𝜓(𝐻𝑙
1
𝑌𝐻𝑙

2
))𝑢 = 𝑣𝑒𝑐

©­«
𝑘−1∑︁
𝑔,ℎ=0

(𝜓(𝐻1)
𝑔𝜓(𝐻𝑙

1
𝑌𝐻𝑙

2
)𝜓(𝐻2)

ℎ)𝑢ℎ𝑛+𝑔
ª®¬

and
𝑘−1∑︁
𝑔,ℎ=0

𝜓(𝐻
𝑔

1
𝑌𝐻ℎ

2
)𝑢ℎ𝑛+𝑔 = 𝑣𝑒𝑐−1 (𝐿 (𝜓(𝑌 ))𝑢)

Therefore, using that 𝜓 preserves multiplication, we have

𝐿 (𝜓(𝐻𝑙
1
𝑌𝐻𝑙

2
))𝑢 = 𝑣𝑒𝑐

©­«
𝑘−1∑︁
𝑔,ℎ=0

(𝜓(𝐻1)
𝑔𝜓(𝐻𝑙

1
𝑌𝐻𝑙

2
)𝜓(𝐻2)

ℎ)𝑢ℎ𝑛+𝑔
ª®¬

= 𝑣𝑒𝑐
©­«
𝜓(𝐻1)

𝑙 ©­«
𝑘−1∑︁
𝑔,ℎ=0

𝜓(𝐻
𝑔

1
𝑌𝐻ℎ

2
)𝑢ℎ𝑛+𝑔

ª®¬
𝜓(𝐻2)

𝑙ª®¬
= 𝑣𝑒𝑐(𝜓(𝐻1)

𝑙𝑣𝑒𝑐−1 (𝐿 (𝜓(𝑌 ))𝑢)𝜓(𝐻2)
𝑙)

= 𝑣𝑒𝑐(0) = 0.

since clearly 𝑣𝑒𝑐(0) is the zero vector height 𝑘2, and 𝑣𝑒𝑐 is a bijection. □
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