
This is a repository copy of The (un)suitability of automatic evaluation metrics for text 
simplification.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/177922/

Version: Published Version

Article:

Alva-Manchego, F., Scarton, C. and Specia, L. (2021) The (un)suitability of automatic 
evaluation metrics for text simplification. Computational Linguistics, 47 (4). pp. 861-889. 
ISSN 0891-2017 

https://doi.org/10.1162/coli_a_00418

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Short Paper
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In order to simplify sentences, several rewriting operations can be performed such as replacing

complex words per simpler synonyms, deleting unnecessary information, and splitting long

sentences. Despite this multi-operation nature, evaluation of automatic simplification systems

relies on metrics that moderately correlate with human judgements on the simplicity achieved

by executing specific operations (e.g. simplicity gain based on lexical replacements). In this

article, we investigate how well existing metrics can assess sentence-level simplifications where

multiple operations may have been applied and which, therefore, require more general simplicity

judgements. For that, we first collect a new and more reliable dataset for evaluating the cor-

relation of metrics and human judgements of overall simplicity. Second, we conduct the first

meta-evaluation of automatic metrics in Text Simplification, using our new dataset (and other

existing data) to analyse the variation of the correlation between metrics’ scores and human

judgements across three dimensions: the perceived simplicity level, the system type and the set of

references used for computation. We show that these three aspects affect the correlations and, in

particular, highlight the limitations of commonly-used operation-specific metrics. Finally, based

on our findings, we propose a set of recommendations for automatic evaluation of multi-operation

simplifications, suggesting which metrics to compute and how to interpret their scores.

1. Introduction

Text Simplification consists of modifying the content and structure of a text in order
to make it easier to read and understand, while preserving its main idea and as much
as possible of its original meaning. Human editors simplify through several rewriting
operations, such as lexical paraphrasing (i.e. replacing complex words/phrases with
simpler synonyms and some rewording for fluency), changing the syntactic structure of
sentences (e.g. splitting or reordering components), or removing information deemed
non-essential to understand the main idea of the original text (Petersen 2007; Aluísio
et al. 2008; Bott and Saggion 2011; Xu, Callison-Burch, and Napoles 2015). Modern sys-
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Computational Linguistics Volume 1, Number 1

tems for Automatic Text Simplification are sentence-level, and attempt to replicate this
multi-operation rewriting process by leveraging corpora of parallel original-simplified
sentence pairs (Alva-Manchego, Scarton, and Specia 2020). However, the simplicity of
automatic sentence-level simplifications is measured with metrics that evaluate single
specific operations. For instance, SARI (Xu et al. 2016) was designed to estimate sim-
plicity gain when just lexical paraphrasing was being assessed, whilst SAMSA (Sulem,
Abend, and Rappoport 2018b) attempts to quantify structural simplicity by verifying
the correctness of sentence splitting. In a recent study, Alva-Manchego et al. (2020)
showed that, for the same set of original sentences, human judges preferred manual
simplifications where multiple edit operations had been applied over those where only
one operation had been performed (i.e. only lexical paraphrasing or only splitting).
However, the authors also provided preliminary evidence that both a general metric
like BLEU (Papineni et al. 2002), and an operation-specific one like SARI had poor cor-
relations with judgements of overall simplicity when computed using multi-operation
manual references.

In this article, we study the extent to which evaluation metrics can estimate the
simplicity of automatic sentence-level simplifications where multiple rewriting op-
erations may have been applied. In order to do so, we: (1) create a new dataset with
direct assessments of simplicity; (2) perform the first meta-evaluation of automatic
metrics for sentence-level Text Simplification, focused on their correlation with human
judgements on simplicity; and (3) propose a set of guidelines for automatic evaluation
of sentence-level simplifications, seeking to improve the interpretation of automatic
scores, especially for multi-operation simplifications.1

In the remainder of the paper, we first review manual and automatic evaluation
methods in Sentence Simplification (Sec. 2). Then, we describe two existing datasets
with human judgements on simplicity gain and structural simplicity of system outputs,
whose limitations motivate the collection of a new dataset with overall simplicity scores
crowdsourced through Direct Assessment (Sec. 3). After that, we study the variation in
sentence-level correlations between automatic metrics and human judgements under
three test conditions: the level of perceived simplicity, the approach implemented by
the simplification systems, and the set of manual simplification references (Sec. 4).
For direct assessments of simplicity, in particular, we show that: (a) metrics can more
reliably score low-quality simplifications; (b) most metrics are better at scoring system
outputs from neural sequence-to-sequence models; and (c) computing metrics using all
available manual references for each original sentence does not significantly improve
their correlations. We also propose explanations on the low-to-moderate correlations
achieved by simplification-specific metrics. Based on our findings, we propose a set
of recommendations for better evaluation of automatic sentence-level simplifications
and suggest ways to improve current practices (Sec. 5). Among these, we suggest to
first compute BERTScore (Zhang et al. 2020) to verify that the system output is of high
quality, and then use SARI and/or SAMSA to measure the gains in simplicity. Finally,
we summarise our results, highlighting our contributions and conclusions (Sec. 6).

1 Our new dataset and the code to reproduce our experiments are available in
https://github.com/feralvam/metaeval-simplification.
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Alva-Manchego, Scarton and Specia (Un)Suitability of Metrics for Text Simplification

2. Background

The preferred method for evaluating the quality of automatic simplifications is eliciting
human judgements on grammaticality, meaning preservation and simplicity. However,
these can be costly to obtain while tuning simplification models, especially at large scale.
This creates scenarios where automatic metrics act as proxies for human judgements, so
it is important to understand how these metrics behave under different circumstances,
to better interpret their scores. We first review common practices for collecting human
judgements on the simplicity of system outputs against which metrics are evaluated,
and motivate our choice of Direct Assessment as our data labelling methodology. Then,
we briefly explain the benefits of conducting meta-evaluations of automatic metrics.

2.1 Human Evaluation of Simplicity

When obtaining human judgements on the simplicity of system outputs, there are
three components to consider: the question to elicit the judgement, what the judges are
shown, and how they submit their judgement. It is generally agreed to show both the
original and simplified sentences so that raters can determine if the latter is simpler than
the former. However, several variations have been tested for the other two components.

It is common to ask how much simpler the system output is compared to the
original sentence, using Likert scales of 0-5, 1-4 or 1-5 (the higher the better) to submit
discrete scores (Woodsend and Lapata 2011; Wubben, van den Bosch, and Krahmer
2012; Feblowitz and Kauchak 2013; Narayan and Gardent 2014, 2016; Zhang and Lapata
2017; Alva-Manchego et al. 2017; Vu et al. 2018; Guo, Pasunuru, and Bansal 2018; Dong
et al. 2019; Kriz et al. 2019; Kumar et al. 2020; Jiang et al. 2020). A variation in the scale
is presented in (Nisioi et al. 2017) with -2 to +2 scores instead, allowing to distinguish
instances with no changes in their simplicity (0), and instances where the automatic
system hurt the readability of the original sentence (-1 or -2).

Most work does not specify what “being simpler” entails, and trusts human judges
to use their own understanding of the concept. In contrast, Xu et al. (2016) experimented
with Simplicity Gain, asking judges to count “how many successful lexical or syntactic
paraphrases occurred in the simplification”. The authors argue that this framing of the task
allows for easier judgements and more informative interpretation of the scores, while
reducing the bias towards models that perform minimal modifications. In a similar
fashion, Nisioi et al. (2017) and Cooper and Shardlow (2020) asked judges to count the
number of changes made by automatic systems, and then to identify how many of them
were “correct” (i.e. preserved meaning and grammaticality, while making the sentence
easier to understand). On a different line of work, Sulem, Abend, and Rappoport
(2018b,c) focused on Structural Simplicity, requesting judges to use the -2 to +2 scale
to answer “is the output simpler than the input, ignoring the complexity of the words?” This
is intended to focus the evaluation in a specific operation: sentence splitting.

For the dataset collected as part of our study (Sec. 3.3), we follow common practice
and present human judges with both original sentences and their automatic simpli-
fications. Furthermore, since the focus of this article is on multi-operation simplifica-
tions, we rely on a general definition of simplicity instead of one for a specific (set of)
operation(s). Finally, as in Alva-Manchego et al. (2020), we experiment with collecting
continuous scores following the Direct Assessment methodology (Graham et al. 2017),
since they can be standardised to remove individual rater’s biases, resulting in higher
inter-annotator agreement (Graham et al. 2013).
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2.2 Automatic Evaluation of Simplicity

BLEU (Papineni et al. 2002) and SARI (Xu et al. 2016) are the most commonly used
metrics in Sentence Simplification. Whilst BLEU scores can be misleading for several
text generation tasks (Reiter 2018), in the case of Simplification they have been shown
to correlate well with human assessments of grammaticality and meaning preserva-
tion (Wubben, van den Bosch, and Krahmer 2012; Štajner, Mitkov, and Saggion 2014; Xu
et al. 2016; Sulem, Abend, and Rappoport 2018a; Alva-Manchego et al. 2020). SARI, on
the other hand, is better suited for evaluating the simplicity of system outputs produced
via lexical paraphrasing. It does so by comparing the automatic simplification to both
the original sentence and multiple manual references, and measuring the correctness
of the words added, kept and deleted. Although not widely adopted, SAMSA (Sulem,
Abend, and Rappoport 2018b) is another simplicity-specific metric, but focused on sen-
tence splitting. It validates that each simple sentence resulting from splitting a complex
one is correctly formed (i.e. it corresponds to a single Scene with all its Participants).

Studies on the correlation of human judgements on simplicity and automatic scores
have been performed when introducing new metrics or datasets.2 Xu et al. (2016)
argued that SARI correlates with crowdsourced judgements of Simplicity Gain when
the simplification references had been produced by lexical paraphrasing, whilst SAMSA
was shown to correlate with expert judgements of Structural Simplicity. When intro-
ducing HSplit (Sulem, Abend, and Rappoport 2018a), a dataset of manual references
for sentence splitting, the authors argued that BLEU (Papineni et al. 2002) was not a
good estimate for (Structural) Simplicity. However, these studies did not analyse if the
absolute correlations varied in different subgroups of the data. In contrast, our study
shows that correlations are affected by the perceived quality of the simplifications, the
types of the simplification systems, and the set of manual references used.

3. Datasets with Human Judgements on Simplicity

In this Section, we describe the datasets that will be used in our meta-evaluation study.
Each dataset is composed of a set of original sentences, their automatic simplifications
produced by various simplification systems, and human evaluations on (some form of)
simplicity for all system outputs. These datasets were chosen (or created) since:

1. Each provides a different simplicity judgement: Simplicity Gain (Xu et al.
2016), Structural Simplicity (Sulem, Abend, and Rappoport 2018c), and
Direct Assessments of Simplicity (new). This allows studying the
behaviour of metrics along varied ways of measuring simplicity (Sec. 4.2).

2. Each includes system outputs from different types of simplification
approaches. This allows analysing the impact of the system type in the
correlation of metrics (Sec. 4.3). Table 1 presents brief descriptions of the
most representative models in these datasets.

3. All original sentences come from TurkCorpus (Xu et al. 2016). This allows
exploiting the alignment between TurkCorpus, HSplit (Sulem, Abend, and
Rappoport 2018a) and ASSET (Alva-Manchego et al. 2020) to investigate

2 Štajner, Mitkov, and Saggion (2014) analysed several MT metrics without introducing a new resource, but
focused on human judgements of grammaticality and meaning preservation.
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Alva-Manchego, Scarton and Specia (Un)Suitability of Metrics for Text Simplification

Table 1
Descriptions of simplification systems included in the studied datasets. Similarly to
Alva-Manchego, Scarton, and Specia (2020), we classified them into phrase-based MT (PBMT),
syntax-based MT (SBMT), neural sequence-to-sequence (S2S), and semantics-informed rules
(Sem) by themselves or coupled with one of the previous types (i.e. Sem+PBMT, Sem+S2S).

Type Name Description

PBMT PBMT-R (Wubben, van den
Bosch, and Krahmer 2012)

Phrase-based MT model that chooses the candi-
date simplification that is most dissimilar to the
original sentence.

SBMT SBMT-SARI (Xu et al. 2016)
SBMT-BLEU (Xu et al. 2016)
SBMT-FKBLEU (Xu et al. 2016)

Syntax-based MT models trained on para-
phrases from the Paraphrase Database (Ganitke-
vitch, Van Durme, and Callison-Burch 2013) and
tuned using SARI, BLEU or FKBLEU.

S2S

NTS (Nisioi et al. 2017) Neural models with standard encoder-decoder
architectures with attention.

Dress-Ls (Zhang and Lapata
2017)

RNN-based encoder-decoder with attention
combined with reinforcement learning.

DMASS-DCSS (Zhao et al.
2018)

Transformer-based encoder-decoder (Vaswani
et al. 2017) and memory-augmentation with
paraphrasing rules from the Simple Paraphrase
Database (Pavlick and Callison-Burch 2016).

ACCESS (Martin et al. 2020) Transformer-based encoder-decoder that condi-
tions the generation of simplifications on explicit
desired text attributes (e.g. length and/or dis-
similarity with original input).

Sem DSS (Sulem, Abend, and Rap-
poport 2018c)

Hand-crafted rules for sentence splitting based
on either automatic or manual UCCA (Abend
and Rappoport 2013) semantic annotations.

Sem+PBMT Hybrid (Narayan and Gardent
2014)

Phrase-based statistical MT model coupled with
semantic analysis to learn to split sentences.

Sem+S2S SENTS (Sulem, Abend, and
Rappoport 2018c)

Uses DSS for sentence splitting and then the re-
sulting output goes through a MT-based model
for further paraphrasing.

the effect in the correlations of using different sets of manual references
when computing the metrics (Sec. 4.4).

Furthermore, we compare the datasets in terms of their human evaluation reliability
using both Inter-Annotator Agreement (IAA) and correlation coefficients, as suggested
in Amidei, Piwek, and Willis (2019). For IAA, we compute Intraclass Correlation (ICC,
Shrout and Fleiss 1979) with the implementation available in pingouin (Vallat 2018).3

For computing ratings correlations, we account for multiple annotators per instance
by simulating two raters as follows: (1) we randomly choose one score as rater A and
the average of the others as rater B; (2) we compute the Spearman’s rank correlation
coefficient between raters A and B using SciPy;4 and (3) we repeat this process 1,000
times to report the mean and variance of all iterations. For interpreting the values of

3 https://pingouin-stats.org/generated/pingouin.intraclass_corr.html

4 https:

//docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html
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Figure 1
Distribution of Simplicity Gain scores in the dataset of (Xu et al. 2016).

both calculations, we use the scale of Landis and Koch (1977) for IAA and the scale of
Rosenthal (1996) for nonparametric correlation coefficients.

3.1 Simplicity Gain Dataset

Xu et al. (2016) created this dataset to study the suitability of metrics for measuring
the Simplicity Gain of automatic simplifications. The authors simplified 93 original
sentences using four Sentence Simplification systems: PBMT-R, SBMT-BLEU, SBMT-
FKBLEU and SBMT-SARI. For the Simplicity Gain judgements, workers on Amazon
Mechanical Turk (AMT) were asked to count the number of “successful lexical or syntactic
paraphrases occurred in the simplification” (Xu et al. 2016). The judgements from five
different workers were averaged to get the final score for each instance. In order to
measure human evaluation reliability, we computed an ICC of 0.176 and a Spearman’s
ρ of 0.299 ± 0.036. The ICC only points to slight agreement between the annotators, and
the Spearman’s ρ implies a small correlation between the human ratings.

This dataset has limitations that could prevent generalising findings based on its
data. For instance, the number of evaluated instances (372) is small, and they were pro-
duced by only four automatic systems, three of which have very similar characteristics.
In addition, as shown in Figure 1, the evaluated systems did not perform significant
simplification changes (as judged by humans), since most instances were rated with
Simplicity Gain scores below 1, with a high frequency of values between 0 and 0.25.

3.2 Structural Simplicity Dataset

Sulem, Abend, and Rappoport (2018c) created this dataset to evaluate the performance
of Sentence Simplification models that mix hand-crafted rules (based on a semantic
parsing) for sentence splitting, with standard MT-based architectures for lexical para-
phrasing. Sulem, Abend, and Rappoport (2018a) further exploited this data to examine
the suitability of BLEU for assessing Structural Simplicity.5 The authors simplified

5 Sulem, Abend, and Rappoport (2018b) also collected a Structural Simplicity dataset, but used
simplification instances from PWKP (Zhu, Bernhard, and Gurevych 2010), making it unsuitable for our
analysis since: (1) it does not contain manual references, but automatic alignments to sentences from
Simple Wikipedia; and (2) it is single-reference, which is unfair to reference-based metrics.
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Figure 2
Distribution of Structural Simplicity scores in the dataset of (Sulem, Abend, and Rappoport
2018c).

70 sentences using 25 automatic systems: Hybrid; SBMT-SARI; four versions of NTS
mixing initialisation with default or word2vec embeddings, and selecting the highest or
fourth-best hypothesis according to SARI; two versions of DSS, with either automatic
or manual semantic annotations; eight versions of SENTS that first use a version of DSS
for sentence splitting and then the resulting output goes through a version of NTS; and
many variations of SENTS where NTS is replaced by Moses (Koehn et al. 2007).

Native English speakers were asked to use a 5-point Likert scale (-2 to +2 scores) to
measure Structural Simplicity: “is the output simpler than the input, ignoring the complexity
of the words?” (Sulem, Abend, and Rappoport 2018c). The judgements from three differ-
ent annotators are averaged to get the final score for each instance. Our computation of
human evaluation reliability found an ICC of 0.465 and a Spearman’s ρ of 0.508 ± 0.013.
The ICC points to a moderate agreement between the annotators, and the Spearman’s ρ

implies a medium correlation between the human ratings.
Compared to the Simplicity Gain dataset, this one is bigger (1,750 instances) and

with more variability in the system outputs collected. In addition, Figure 2 shows
that the distribution of scores spans across all possible values, indicating that some
systems even hurt the Structural Simplicity of the original sentence. Despite the over-
representation of simplifications with scores between 0 and 0.5, around 32% of instances
improve Structural Simplicity, indicating that an analysis based on perceived quality
across different levels is possible.

3.3 The New Simplicity-DA Dataset

We introduce a new dataset with human judgements of simplification quality elicited
via Direct Assessment (DA, Graham et al. 2017), a commonly-used methodology in
Machine Translation Shared Tasks (Bojar et al. 2018; Barrault et al. 2019). Leveraging
publicly-available system outputs on the test set of TurkCorpus (Xu et al. 2016), we
collected simplifications from six systems: PBMT-R, Hybrid, SBMT-SARI, Dress-Ls,
DMASS-DCSS, and ACCESS. For each system, we randomly sampled 100 automatic
simplifications, not necessarily all from the same set of original sentences, but ensuring
that the system output was not identical to the original sentence. Then, we crowd-
sourced human ratings using AMT. Workers were asked to assess the quality of the
automatic simplifications in three aspects: fluency, meaning preservation and simplicity.
For each aspect, raters needed to submit a score between 0 and 100, depending on how
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Figure 3
Distribution of Simplicity zscores in the newly-collected Simplicity-DA dataset.

much they agreed with a specific question. For simplicity, in particular, they were asked:
Rate your level of agreement to the statement: “The Simplified sentence is easier to understand
than the Original sentence”. This is inspired by the DA methodology and, thus, we refer
to this kind of simplicity judgements as Simplicity-DA. Each HIT in AMT consisted
of five sentences, with a maximum time of one hour for completion, and a payment
of $0.5 per HIT. For quality control, workers had to pass a qualification test before
participating in the rating task. All submissions to this test were manually reviewed
to ensure undestandability of the instructions.6 This crowdsourcing methodology is
similar to the preliminary metrics’ correlation study in (Alva-Manchego et al. 2020).
However, our new Simplicity-DA dataset includes more automatic simplifications than
those collected before (600 vs 100), allowing better generalisation of our findings.

For each simplification instance, we collected 15 ratings per quality aspect (fluency,
meaning preservation and simplicity), which are then standardised by the mean and
standard deviation of each worker to reduce individual biases. The average of all 15
standardised ratings (also called zscore) is the final score for the instance per quality
aspect. Our computation of human evaluation reliability found an ICC of 0.386 and
a Spearman’s ρ of 0.607 ± 0.026. The ICC points to a fair agreement between the
annotators, and the Spearman’s ρ implies a large correlation between the human ratings.

The annotation reliability for the collected ratings in our dataset is higher than that
for the Simplicity Gain dataset, and comparable to that of the Structural Simplicity
dataset. In addition, our dataset is bigger in size and offers more variability of system
outputs than the Simplicity Gain dataset. In particular, we included state-of-the-art neu-
ral sequence-to-sequence models, the current trend in automatic simplification systems.
See Table 2 for a summary comparing the characteristics of the three datasets. Further-
more, Figure 3 shows that the Simplicity-DA ratings are more diversely-distributed
across all scores values than the other datasets. This benefits our meta-evaluation since
one of our intended dimensions of study is the perceived low or high quality (in terms of
simplicity) of the system outputs. Overall, we argue that the newly-collected Simplicity-
DA dataset provides a valid alternative view at human judgements of simplicity. In
particular, it is more reliable for analysing automatic metrics in a multi-operation sim-

6 The Qualification Test and Rating Task, with the instructions given to the workers, can be found in:
https://github.com/feralvam/metaeval-simplification/tree/main/HIT_designs.

8

Computational Linguistics Just Accepted MS.
https://doi.org/10.1162/coli_a_00418

© 2021 Association for Computational Linguistics Published under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://d

ire
c
t.m

it.e
d
u
/c

o
li/a

rtic
le

-p
d
f/d

o
i/1

0
.1

1
6
2
/c

o
li_

a
_
0
0
4
1
8
/1

9
5
6
5
0
7
/c

o
li_

a
_
0
0
4
1
8
.p

d
f b

y
 S

W
E

T
S

 IN
F

O
R

M
A

T
IO

N
 S

V
C

S
 IN

C
 u

s
e
r o

n
 0

7
 S

e
p
te

m
b
e
r 2

0
2
1



Alva-Manchego, Scarton and Specia (Un)Suitability of Metrics for Text Simplification

Table 2
Summary of characteristics of the datasets with human ratings of simplicity used for the
meta-evaluation study.

Simplicity Gain Structural Simplicity Simplicity-DA

General Statistics
Number of Instances 372 1,750 600
Ratings per Instance 5 3 15
Type of Rating Discrete (count) Discrete (Likert scale) Continuous
System Types PBMT, SBMT PBMT, SBMT, S2S, Sem,

Sem+PBMT, Sem+S2S
PBMT, SBMT, S2S,
Sem+PBMT

Human Evaluation Reliability
ICC 0.176 0.465 0.386
Spearman’s ρ 0.299 ± 0.036 0.508 ± 0.013 0.607 ± 0.026

plification scenario since the judgements are not tied to the correctness of a specific
rewriting operation.

4. Meta-Evaluation of Automatic Evaluation Metrics

In this Section, we study how the correlations between automatic scores and human
judgements vary across different dimensions. Our investigation is inspired by research
in Machine Translation evaluation. In particular, by the WMT Metrics Shared Tasks
that compare standard and new metrics in a common setting using human judge-
ments collected through Direct Assessment (Graham et al. 2017), primarily in the latest
years (Bojar et al. 2016; Bojar, Graham, and Kamran 2017; Ma, Bojar, and Graham 2018;
Ma et al. 2019; Mathur et al. 2020). Data from these WMT Shared Tasks has allowed
to further study the behaviour of metrics at sentence level across different dimensions
(Fomicheva and Specia 2019), to analyse the protocols for evaluating metrics at system
level (Mathur, Baldwin, and Cohn 2020), to study the effect of the quality of references
used to compute metrics (Freitag, Grangier, and Caswell 2020), among others.

In our study, we analyse the behaviour of automatic metrics at sentence level
since the datasets described previously contain human judgements for each individ-
ual simplification instance. Also, metrics explicitly-developed to measure some form
of simplicity, such as SARI and SAMSA, operate by-definition at the sentence-level.7

Our meta-evaluation analyses the variation of correlations between automatic metrics
with human judgements across three dimensions: the level of simplicity of the system
outputs, the approaches used by the simplification systems, and the set of manual
references used to compute the metrics.

4.1 Experimental Setting

Our study focuses on metrics developed to estimate the simplicity of system outputs,
or that have been traditionally-used for this task:8 BLEU, SARI, SAMSA, FKGL (Kin-

7 SARI has a corpus-level version that is commonly-reported to compare the performances of automatic
systems. However, its authors only validated the correlation of SARI with human judgements at
sentence-level, not system-level (https://github.com/cocoxu/simplification/issues/9).

8 Details of these and other metrics can be found in (Alva-Manchego, Scarton, and Specia 2020).
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caid et al. 1975), FKBLEU (Xu et al. 2016) and iBLEU (Sun and Zhou 2012).9 We also
experiment with the arithmetic mean (AM) and geometric mean (GM) of BLEU-SARI
and SARI-SAMSA. Finally, we include BERTScore (Zhang et al. 2020), a reference-based
metric that computes the cosine similarity between tokens in a system output and in
a manual reference using contextual embeddings, namely BERT (Devlin et al. 2019).
This metric provides three types of scores: BERTScoreRecall matches each token in the
reference to its most similar in the system output, BERTScorePrecision matches each token
in the system output to its most similar in the reference, and BERTScoreF1 combines
the two. When multiple references are available, BERTScore compares the system out-
put against all references and returns the highest value. In the context of Sentence
Simplification, a modified version of BERTScore has been used to create artificial data
for training a model that ranks candidate simplifications, obtaining promising results
(Maddela, Alva-Manchego, and Xu 2021).

We used the implementations of these metrics provided by EASSE (Alva-Manchego
et al. 2019).10 Most of the metrics are sentence-level by definition, with the exception of
BLEU and derivations. In this case, we used a smoothed version with method floor

and default value 0.0 in SacreBLEU (Post 2018).11 For a fair comparison, we detokenised
and recased all original sentences and system outputs in the three datasets. Then,
we set EASSE to compute all metrics with the same configuration: tokenisation using
SacreMoses12 and case-sensitive calculation.

In order to compare the automatic evaluation metrics, we followed the method-
ology of recent editions of the WMT Metrics Shared Task (Ma, Bojar, and Graham
2018; Ma et al. 2019). First, we computed the correlations between automatic scores and
human judgements via Pearson’s r for each metric. Since the simplicity ratings in our
human evaluation datasets are absolute instead of relative rankings between instances,
this method is better suited and easier to apply than Kendall’s Tau. Furthermore, we
performed Williams significance tests (Williams 1959) to determine if the increase in
correlation between two metrics is statistically significant or not.

4.2 Metrics across Simplicity Quality Levels

Our first dimension of analysis is the perceived quality of the automatic simplifications.
We investigate whether it is easier or harder for metrics to evaluate low-quality or
high-quality simplifications, as determined by their human judgements on simplicity. In
order to do this, we split the instances in each dataset into two groups according to their
simplicity score, and compute the Pearson’s r between metrics and human judgements
for the top 50% (“High”), the bottom 50% (“Low”) and “All” available instances.

4.2.1 Simplicity-DA. Table 3 presents the correlations in each quality split of this
dataset. Reference-based metrics were computed using manual simplifications from
ASSET, since the Simplicity-DA judgement is not limited to a particular operation being
performed, and simplifications in ASSET were created applying several of them.

When “All” instances are considered, BERTScorePrecision shows a strong correlation
with direct assessments of Simplicity, and no metric is better than it. Flesch-based

9 Even though FKGL is a document-level metric, we include it in our study following Xu et al. (2016).
10 https://github.com/feralvam/easse

11 https://github.com/mjpost/sacrebleu

12 https://github.com/alvations/sacremoses
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Alva-Manchego, Scarton and Specia (Un)Suitability of Metrics for Text Simplification

Table 3
Absolute Pearson correlations between Simplicity-DA and metrics scores computed using
references from ASSET, for low/high/all quality splits (N is the number of instances in the
split). Correlations of metrics not significantly outperformed by any other in the quality split are
boldfaced.

Metric Low
(N = 300)

High
(N = 300)

All
(N = 600)

Reference-based

BERTScorePrecision 0.512 0.287 0.617
BERTScoreRecall 0.471 0.172 0.500
BERTScoreF1 0.518 0.224 0.573
BLEU 0.405 0.235 0.496
iBLEU 0.398 0.253 0.504
SARI 0.336 0.139 0.359
BLEU-SARI (AM) 0.417 0.239 0.503
BLEU-SARI (GM) 0.408 0.215 0.476
SARI-SAMSA (AM) 0.203 0.050 0.166
SARI-SAMSA (GM) 0.222 0.024 0.156
FKBLEU 0.131 0.006 0.098

Non-Reference-based FKGL 0.272 0.093 0.117
SAMSA 0.103 0.010 0.058
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Figure 4
Scatter plots showing the correlation (r) between BERTScorePrecision, BLEU and SARI, with
human rating of Simplicity-DA, for different quality levels.

metrics (FKGL and FKBLEU) have the lowest correlations, providing further evidence
that these type of metrics are unsuitable for sentence-level evaluation. Simplification-
specific metrics, SARI and SAMSA, also fair poorly. One possible explanation is that
they were developed to assess the execution of particular simplification operations
(lexical paraphrasing and sentence splitting, respectively), whilst the Simplicity-DA
judgements are not operation-specific, but rather perceptions of general simplicity.
Computing their arithmetic or geometric means does not yield good correlations in
this dataset either. BLEU shows a moderate correlation, and combining it with SARI
through arithmetic or geometric mean does not significantly improve the correlation
with Simplicity-DA judgements in this dataset.
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Table 4
Examples of original sentences with some of their simplification references in ASSET, and system
outputs with corresponding human and automatic scores from the Simplicity-DA dataset. The
reference selected by the automatic metric as most-similar to the system output is emphasised.

Original Sentence In 1998, Culver ran for Iowa Secretary of State and was victorious.
System Output In 1998, Culver ran for Iowa Secretary of State.
Sample References Culver ran and won Iowa’s secretary of State in 1998.

In 1998, Culver successfully ran for Iowa Secretary of State.
In 1998, Culver ran for Iowa Secretary of State. He won the election.

Simplicity-DA 0.551 BERTScorePrecision 0.984

Original Sentence Below are some useful links to facilitate your involvement.
System Output Below is some useful links to help with your involvement
Sample References Here are good links to get you to do it.

Below are some useful links to help with your involvement.
Here are some useful links to help you.

Simplicity-DA 0.327 BERTScorePrecision 0.934

Original Sentence He was appointed Companion of Honour (CH) in 1988.
System Output He was appointed Companion of Honour in 1988.
Sample References He was made the Companion of Honour (CH) in 1988.

He was appointed Companion of Honour in 1988.
In 1988 he was chosen as a Companion of Honour.

Simplicity-DA 0.436 BERTScorePrecision 1.000

When comparing the correlations between the “Low” and “High” splits, we can
notice that the ones in the latter are much lower. This could be interpreted as: low scores
of some metrics indicate “bad” quality of a simplification (in terms of Simplicity-
DA), but high scores do not necessarily imply “good” quality. Figure 4 further illus-
trates this behaviour for three representative metrics. This could be explained by how
(most of) the metrics assess the system outputs (i.e. by computing their similarity to the
manual references), and by the question used to elicit Simplicity-DA judgements.

One possible reason is that simplifying a sentence may be limited to a few im-
portant changes that improve its readability (e.g. replacing some words or splitting
a long sentence into two), whilst keeping the rest of the original sentence as-is. Not
performing these key modifications or executing unnecessary ones would be penalised
by the human judges, resulting in low Simplicity-DA scores. However, similarity-based
metrics could still provide high scores that, in fact, are indicative of the overlap between
the system output and the references due to some degree of meaning preservation,
but not of the changes that improve simplicity. The first example in Table 4 illustrates
this scenario. The reference selected by BERTScorePrecision as the most similar to the
system output is a clever simplification that uses the adverb “succesfully” to replace the
clause “and was victorious” from the original sentence. Since the rest of the sentence is
unchanged, it has a high overlap with the system output that merely deleted the “and
was victorious” clause.

Finally, there could be a disagreement between the changes the human judges
deemed necessary for a good Simplicity-DA score, and what the editors that created
ASSET considered as valid simplifications. The second and third examples in Table 4
illustrate this scenario. The selected references are almost identical to the correspond-
ing system outputs, and thus BERTScorePrecision scored them very high. However, the
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Alva-Manchego, Scarton and Specia (Un)Suitability of Metrics for Text Simplification

Table 5
Absolute Pearson correlations between Simplicity Gain and metrics scores computed using
references from TurkCorpus, for low/high/all quality splits (N is the number of instances in the
split). Correlations of metrics not significantly outperformed by any other in the quality split are
boldfaced.

Metric Low
(N = 186)

High
(N = 186)

All
(N = 372)

Reference-based

BERTScorePrecision 0.209 0.231 0.241
BERTScoreRecall 0.221 0.217 0.241
BERTScoreF1 0.215 0.236 0.247
BLEU 0.178 0.132 0.123
iBLEU 0.181 0.136 0.128
SARI 0.292 0.240 0.331
BLEU-SARI (AM) 0.223 0.172 0.187
BLEU-SARI (GM) 0.246 0.177 0.214
FKBLEU 0.041 0.007 0.092

Non-Reference-based FKGL 0.045 0.101 0.147
SAMSA 0.120 0.042 0.013
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Figure 5
Scatter plots showing the correlation (r) between BERTScorePrecision, BLEU and SARI, with
human rating of Simplicity Gain, for different quality levels.

human judges considered the changes insufficient to grant a high value of Simplicity-
DA for improved simplicity. This may not be indicative that references in ASSET are
incorrect, but rather that not all of them have the same degree of simplicity.

4.2.2 Simplicity Gain. Table 5 presents the correlations in each quality split of this
dataset. Reference-based metrics were computed using manual simplifications from
TurkCorpus, since the Simplicity Gain judgement is limited to counting lexical para-
phrases, and references in TurkCorpus were created by only applying that operation.

In this dataset, SARI has a moderate correlation, and the highest among all metrics
when “All” evaluation instances are considered, similar to the results in (Xu et al. 2016).
Just like in the Simplicity-DA dataset, Flesch-based metrics and SAMSA show low
correlations, whilst BLEU and its variants have correlations in the middle of the group.
The different versions of BERTScore are second-best, and have similar performances, i.e.
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Table 6
Examples of original sentences and system outputs with corresponding human and automatic
scores from the Simplicity Gain dataset. Changes related to lexical paraphrasing are boldfaced.

Original Sentence Jeddah is the principal gateway to Mecca, Islam’s holiest city, which able-
bodied Muslims are required to visit at least once in their lifetime.

System Output Jeddah is the main gateway to Mecca, Islam’s holiest city, which sound
Muslims must visit at least once in life.

Simplicity Gain 1.83 SARI 0.462

Original Sentence The Great Dark Spot is thought to represent a hole in the methane cloud
deck of Neptune.

System Output The Great Dark Spot is thought to be a hole in the methane cloud deck of
Neptune.

Simplicity Gain 1.25 SARI 0.587

there is no statistically-significant difference between them. Also, combining SARI with
BLEU does not improve its individual correlation. When comparing the correlations be-
tween the “Low” and “High” quality splits (also see Figure 5), most metrics have lower
Person’s r in “High”. However, this is not a consistent behaviour, and the differences
are not as considerable as observed in the Simplicity-DA dataset.

We hypothesise that the overall moderate-to-low correlations is due to most of the
metrics not directly measuring Simplicity Gain. Almost all metrics compute the similar-
ity between the system output and the references. However, measuring Simplicity Gain
implies identifying the changes made by the system, and then verifying that they are
correct. In order to do this, it is necessary to take the original sentence into consideration,
and not just the system output and the references. SARI is the only metric that attempts
to follow this logic, by computing the correctness of the n-grams kept, deleted and
added. Lexical paraphrasing is however strongly related to performing replacements,
an operation that SARI does not directly identify and measure. The examples in Table 6
show how this limitation hurts the metric: whilst in the second instance there are fewer
correct replacements than in the first one (1 < 3), the SARI score is higher (0.587 > 0.462).
By not directly counting correct replacements, the metric is affected by the conservative
nature of the outputs and references that copy most of the original sentences. It is the
correctness of kept and deleted n-grams that contributes to getting a high score. Con-
sequently, SARI is not measuring Simplicity Gain, which explains why the correlation
with human judgements is barely moderate.13

The concept of Simplicity Gain is easy to understand: it is the number of correct
changes. If metrics were able to measure it accurately, automatic scores would be more
straightforward to interpret, facilitating the comparison of simplifications generated
by different systems. However, collecting this type of human judgements is difficult,
especially in instances where multiple rewriting operations may have been applied, and
identifying where the changes happened (and counting them) is not trivial. In addition,
the Simplicity Gain dataset from Xu et al. (2016) that we use in this study is quite small
(only 372 evaluated instances), and contains automatic simplifications from only four

13 While the examples in Table 6 were cherry-picked, the low overall correlation shows that SARI and
Simplicity Gain are not measuring the same thing. The examples are only illustrative of where this is the
case. A more in-depth analysis is left for future work.
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Table 7
Absolute Pearson correlations between Structural Simplicity and metrics scores computed
using references from HSplit, for low/high/all quality splits (N is the number of instances in the
split). Correlations of metrics not significantly outperformed by any other in the quality split are
boldfaced.

Metric Low
(N = 875)

High
(N = 875)

All
(N = 1, 750)

Reference-based

BERTScorePrecision 0.552 0.310 0.090
BERTScoreRecall 0.411 0.601 0.430
BERTScoreF1 0.483 0.529 0.325
BLEU 0.421 0.643 0.443
iBLEU 0.408 0.635 0.436
SARI 0.137 0.418 0.313
BLEU-SARI (AM) 0.346 0.599 0.431
BLEU-SARI (GM) 0.329 0.589 0.438
BLEU-SAMSA (AM) 0.289 0.608 0.420
BLEU-SAMSA (GM) 0.293 0.569 0.370
FKBLEU 0.395 0.608 0.364

Non-Reference-based FKGL 0.070 0.165 0.228
SAMSA 0.103 0.431 0.284
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Figure 6
Scatter plots showing the correlation (r) between BERTScorePrecision, BLEU and SAMSA, with
human rating of Structural Simplicity, for different quality levels.

systems, three of which are of similar characteristics (SBMT-based), without any current
state-of-the-art neural models. All of this impedes generalisations that could be relevant
in Sentence Simplification research.

4.2.3 Structural Simplicity. Table 7 presents the correlations in each quality split of
this dataset. Reference-based metrics were computed using manual simplification from
HSplit, since the Structural Simplicity judgement is limited to qualifying sentence split-
ting, and references in HSplit were created by only applying that operation.

In this dataset, most metrics have moderate correlations with human judgements
when “All” evaluated instances are used. BLEU obtains the highest correlation, but its
not the best overall since its differences with BLEU-SARI (GM) and BERTScoreRecall are
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Table 8
Examples of original sentences and system outputs with corresponding human and automatic
SAMSA scores from the Structural Simplicity dataset.

Original Sentence Orton and his wife welcomed Alanna Marie Orton on July 12 2008.
System Output Orton and his wife welcomed Alanna Marie Orton on July 12 2008.

Structural Simplicity 0.00 SAMSA 1.00

Original Sentence Graham attended Wheaton College from 1939 to 1943, when he gradu-
ated with a BA in anthropology.

System Output Graham attended Wheaton College from 1939 to 1943. He graduated
with a BA in anthropology.

Structural Simplicity 0.33 SAMSA 1.00

Original Sentence Jeddah is the principal gateway to Mecca, Islam’s holiest city, which
able-bodied Muslims are required to visit at least once in their lifetime.

System Output Jeddah is the principal gateway to Mecca.

Structural Simplicity 2.00 SAMSA 0.14

not statistically significant. This would seem to contradict the findings of Sulem, Abend,
and Rappoport (2018a), who argued that BLEU does not correlate well with Structural
Simplicity. However, as will be shown in the next Section, the magnitude of the cor-
relation depends on the approach of the systems included in the study. Whilst Sulem,
Abend, and Rappoport (2018a) only used models tailored for sentence splitting to reach
that conclusion, in this first analysis we are using all available system outputs in the
dataset. The low correlation of SAMSA is surprising, since this metric was specifically-
designed to evaluate sentence splitting, and it showed better performance in the dataset
of Sulem, Abend, and Rappoport (2018b). However, they measured the correlation at the
system-level, whilst we are analysing it at the sentence-level. Finally, BERTScorePrecision,
the best metric in the Simplicity-DA dataset, has the poorest correlation in the “All” data
split. From previous results, we know that BERTScorePrecision is good at measuring the
similarity between a system output and a reference. As such, its low correlation would
indicate that simple similarity matching is not enough to measure Structural Simplicity.

When comparing the correlations between the “Low” and “High” splits (also see
Figure 6), we can notice that the ones in the former are much lower for all metrics but
BERTScorePrecision. In fact, this metric has the highest correlation in the “Low” split, with
a substantial increase over its own correlation in the “All” data split. This could also be
explained by our previous argument. A low score in Structural Simplicity implies that
the system output does not contain any sentence splitting, or that the changes made
are not structural. In these situations, BERTScorePrecision would not be able to match a
reference in HSplit, since they most likely contain only sentence splitting. In turn, the
metric returns a low score that correlates well with a low human judgement.

We further analyse the behaviour of SAMSA, a metric specifically-designed to
evaluate Structural Simplicity. By design, SAMSA first uses a semantic parser to identify
the Scenes in the original sentence, and a syntactic parser to identify the sentence
splits in the system output. Then, it counts how many of the words corresponding
to the Participants of each Scene align with words in each sentence split. Ideally, all
Participants of a single Scene should appear in a single sentence split. The first example
in Table 8 illustrates a case where this logic may be problematic. SAMSA identifies
that there is only one Scene in the original sentence and only one sentence split in
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2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
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Figure 7
Distribution of Structural Simplicity scores in the dataset of (Sulem, Abend, and Rappoport
2018c) for instances with and without sentence splitting in the system output.

the system output. Since both sentences are identical, the word alignment is perfect
and SAMSA gives the simplification the highest possible score. However, the human
judges gave the instance a score of 0 since no changes were performed. On the one
hand, this could suggest that SAMSA should only be used when sentence splitting was
actually performed in the simplification instance. On the other hand, it could be argued
that the original sentence was already structurally simple, and that no splitting was
necessary, making the human score of 0 unfair. This points out to possible issues in the
data collection, and that perhaps using a -2 to +2 scale is unsuitable for these scenarios.

We further explore our last argument of potential incompatibilities between what
Structural Simplicity should measure, and what the human judges qualified as such.
The second and third examples in Table 8 suggest that there are indeed problems. The
second example shows that a perfectly-reasonable and correct splitting (with a SAMSA
score of 1.0) received a low score from the judges. More worryingly, the third example
presents a sentence where no splitting was performed (and with substantial compres-
sion) that received the highest score for Structural Simplicity. This could indicate that the
human judges did not consider sentence splitting as the only mechanism for improving
the simplicity of the structure of a sentence. In an attempt to quantify this phenomenon,
Figure 7 presents the distribution of Structural Simplicity scores for instances where
sentence splitting was performed and where it was not. Instances with splitting only
amount to 17% (306/1,750) of the total of instances in the dataset. Whilst this is a low
quantity, their human scores span along all possible values for Structural Simplicity.
It is encouraging that most instances where no splitting was performed received a
human score close to 0. However, there are many that were judged with high values
of Structural Simplicity. We hypothesise that this is caused by misunderstanding of
the rating instructions, since many of these instances also contain substantial levels of
compression (as in the third example of Table 8), which could not an type of rewriting
that improves the structural simplicity of a sentence.

Improvement in Structural Simplicity is a relevant feature to evaluate in auto-
matic simplifications. Isolating its assessment both manually and through metrics can
contribute to a more fine-grained analysis of the performance of automatic systems.
However, it is important to establish adequate quality control mechanisms that ensure
the trustworthiness of the collected data, so that we can develop metrics that accurately
resemble the intended human judgements.
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Table 9
Pearson correlations between Simplicity-DA human judgements and automatic metrics scores
computed using references from ASSET, for splits based on system type (N is the number of
instances in the split). Correlations of metrics not significantly outperformed by any other in the
system type split are boldfaced. Metrics are grouped in Reference-based (top) and
Non-Reference-based (bottom).

Metric SBMT
(N = 100)

PBMT
(N = 100)

S2S
(N = 300)

Sem+PBMT
(N = 100)

BERTScorePrecision 0.537 0.459 0.650 0.624
BERTScoreRecall 0.527 0.375 0.484 0.470
BERTScoreF1 0.528 0.400 0.588 0.568
BLEU 0.295 0.347 0.546 0.333
iBLEU 0.315 0.336 0.536 0.335
SARI 0.228 0.173 0.310 0.240
BLEU-SARI (AM) 0.315 0.336 0.536 0.335
BLEU-SARI (GM) 0.298 0.320 0.508 0.308
SARI-SAMSA (AM) 0.243 0.121 0.209 0.291
SARI-SAMSA (GM) 0.250 0.080 0.190 0.333
FKBLEU 0.006 0.058 0.092 0.138

FKGL 0.055 0.063 0.104 0.062
SAMSA 0.184 0.067 0.126 0.248

4.3 Metrics across Types of Systems

We now investigate if metrics’ correlations are affected by the type of system that
generated the simplifications. For this study, we do not use the Simplicity Gain dataset
since it only provides simplifications produced by PBMT and SBMT systems.

4.3.1 Simplicity-DA. Table 9 presents the correlations of each metric for the different
system types in this dataset, with reference-based metrics computed using simplifica-
tions from ASSET. BERTScorePrecision achieves the highest correlations in all groups, and
for S2S and Sem+PBMT models, in particular, no other metric is statistically-equal. Most
metrics show higher correlations in the S2S group than in others. However, because the
number of data points is smaller in the latter, stronger conclusions cannot be formulated.
Overall, since the current trend is to develop S2S models, it is encouraging that modern
metrics are capable of evaluating them, but keeping in mind the nuances we signalled
in the previous Section regarding quality levels.

4.3.2 Structural Simplicity. Table 10 presents the correlations of each metric in the
different system type groups in this dataset. Reference-based metrics were computed
using manual simplifications from HSplit. All metrics achieve their highest correlations
in the S2S group, except for BERTScorePrecision. As presented in the previous Section, this
metric is particularly good at judging instances with low Structural Simplicity, which
seem to be those from the PBMT and SBMT groups, mainly.

Previously, we observed that BLEU had high correlation with high-scoring quality
judgements (in terms of Structural Simplicity). Here, we notice that this behaviour is
limited to simplifications produced by S2S and Sem+S2S systems. This appears to con-
tradict the observations of Sulem, Abend, and Rappoport (2018a), who used this same
dataset to conclude that BLEU is a bad estimator of Structural Simplicity. The reason
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Table 10
Pearson correlations between Structural Simplicity judgements and automatic metrics scores
computed using references from HSplit, for splits based on system type (N is the number of
instances in the split). Correlations of metrics not significantly outperformed by any other in the
system type split are boldfaced. Metrics are grouped in Reference-based (top) and
Non-Reference-based (bottom).

Metric PBMT
(N = 70)

SBMT
(N = 70)

S2S
(N = 280)

Sem
(N = 140)

Sem+PBMT
(N = 630)

Sem+S2S
(N = 560)

BERTScorePrecision 0.501 0.571 0.292 0.330 0.096 0.111
BERTScoreRecall 0.339 0.418 0.635 0.066 0.134 0.480
BERTScoreF1 0.405 0.497 0.553 0.180 0.049 0.362
BLEU 0.284 0.380 0.661 0.130 0.147 0.540
iBLEU 0.252 0.380 0.642 0.130 0.145 0.536
SARI 0.015 0.286 0.330 0.028 0.166 0.355
BLEU-SARI (AM) 0.184 0.364 0.603 0.100 0.175 0.507
BLEU-SARI (GM) 0.157 0.341 0.589 0.097 0.185 0.515
BLEU-SAMSA (AM) 0.240 0.334 0.603 0.095 0.072 0.573
BLEU-SAMSA (GM) 0.216 0.279 0.563 0.109 0.075 0.561
FKBLEU 0.215 0.344 0.617 0.009 0.119 0.539

FKGL 0.205 0.016 0.251 0.083 0.155 0.242
SAMSA 0.141 0.177 0.368 0.052 0.009 0.497

1 0 1 2
0

50

100

150

200

250

300

350
Sem

2 1 0 1 2

Sem+PBMT

0.5 0.0 0.5 1.0 1.5 2.0
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1 0 1 2

Sem+S2S
no splitting
with splitting

Figure 8
Distribution of Structural Simplicity scores in the dataset of (Sulem, Abend, and Rappoport
2018c) for instances with and without sentence splitting in the system output and for each
system type.

behind this disagreement is that for their sentence-level study “HSplit as Reference
Setting”, the systems they chose were those within the Sem and Sem+PBMT groups,
for which BLEU, indeed, shows poor correlations. A possible reason for choosing this
setup is explained by Figure 8. Whilst S2S and Sem+S2S have more instances that were
scored with good Structural Simplicity, these groups contain very few system outputs
where sentence splitting was performed. Therefore, we believe that Sulem, Abend, and
Rappoport (2018a)’s conclusion should be more nuanced: BLEU is a bad metric to estimate
Structural Simplicity in system outputs where sentence splitting was performed.

Nevertheless, not considering system outputs in the S2S and Sem+S2S groups
reduces the future impact of the previous statement, since the current trend in Sentence
Simplification research is developing that type of models. For their system-level study
“Standard Reference Setting”, Sulem, Abend, and Rappoport (2018a) included systems
from the S2S group, but computed BLEU using references from Simple Wikipedia and
TurkCorpus, which are not focused on sentence splitting. We believe that this experi-
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Table 11
Pearson correlations between Simplicity-DA judgements and reference-based metrics scores
grouped by the set of manual references used. Within each group, we divide the data into
Low/High/All quality splits. Correlations of metrics not significantly outperformed by any
other in their group and quality split are boldfaced. The scores in the left-hand side (under
ASSET) are the same ones as in Table 3.

Metric ASSET All References Selected References

Low High All Low High All Low High All

BERTScorePrecision 0.512 0.287 0.617 0.541 0.280 0.629 0.543 0.276 0.635
BERTScoreRecall 0.471 0.172 0.500 0.476 0.165 0.506 0.479 0.165 0.511
BERTScoreF1 0.518 0.224 0.573 0.530 0.202 0.576 0.534 0.202 0.584
BLEU 0.405 0.235 0.496 0.404 0.230 0.526 0.402 0.223 0.525
iBLEU 0.398 0.253 0.504 0.398 0.250 0.537 0.396 0.244 0.536
SARI 0.336 0.139 0.359 0.366 0.097 0.353 0.352 0.115 0.350
BLEU-SARI (AM) 0.417 0.239 0.503 0.418 0.218 0.519 0.418 0.221 0.523
BLEU-SARI (GM) 0.408 0.215 0.476 0.410 0.195 0.490 0.410 0.205 0.496

mental setting is unfair to BLEU, and that more cautious analysis should be performed
to determine if a metric should be used to assess Structural Simplicity in S2S models.

4.4 Effect of Simplification References

The third dimension of analysis for our meta-evaluation is the set of simplification
references used to compute automatic evaluation scores. Since there can be multiple
correct simplifications for the same original sentence, it is possible that a reference-based
metric becomes more reliable if it has access to more manual references for comparison.
It is worth remembering that whilst BLEU and SARI take all references for each original
sentences into account when computing their scores, BERTScore takes one at a time and
returns the maximum score. In this Section, we investigate whether the correlations of
reference-based metrics vary depending on using all available simplification references
or particular subsets of them. We only experiment with the Simplicity-DA dataset,
because its simplicity judgements are not tied to performing a specific type of simplifi-
cation operation, as is the case for the other datasets. Thus, having a more varied set of
references could be beneficial for reference-based metrics in this scenario. In addition,
we take advantage of the fact that the original sentences in the Simplicitiy-DA dataset
have corresponding manual simplifications in three multi-reference datasets: ASSET
(10 references), TurkCorpus (8 references) and HSplit (4 references). Recall that the
manual simplifications in each dataset were produced via different operations: lexical
paraphrasing in TurkCorpus; sentence splitting in HSplit; and lexical paraphrasing,
compression, and sentence splitting in ASSET.

4.4.1 ASSET vs All References. Table 11 presents the correlations of each reference-
based metric computed using the 10 manual references from ASSET or their union with
those from TurkCorpus (8 references) and HSplit (4 references), i.e. what we refer to
“All References” (22). We further divide this data into “Low”, “High” and “All” quality
splits as in a previous Section. As such, the left-hand side of Table 11 is the same as
Table 3. We do not add the system type dimension since the number of instances in each
subgroup would be too small to allow drawing strong conclusions.
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When using “All” instances, most metrics have a slight increase in their Pearson’s r
when All References are used, with BERTScorePrecision achieving the highest correlations,
and being statistically superior to every other metric. This improvement seems to be
caused by better detection of “Low” quality simplifications. In fact, using All References
slightly affects BERTScorePrecision and most metrics when detecting system outputs of
“High” Simplicity-DA. As in a previous Section, we hypothesise that this is caused by
the different degrees of simplicity that each manual reference has in each dataset. By
having more references available, BERTScorePrecision is more-likely to match one with a
system output, and then return a high score. However, high similarity with a reference
does not necessarily mean high improvements in simplicity, since the manual reference
could correspond to a valid simplification but with a relatively-low degree of simplicity.

4.4.2 ASSET vs Selected References. In the previous analysis, we changed the set of
references for all sentences that are being assessed at the same time. We now analyse
the effect of changing the set of references for each sentence individually. More
concretely, we devise an experiment where, for each automatically-simplified sentence,
reference-based metrics compare it to a subset of all available references based on the
simplification operations that were performed. Therefore, for each sentence:

1. Identify the operations that were performed. We use the annotation
algorithms in EASSE to label deletions, replacements and splits at the
sentence-level. For deletions and replacements, these algorithms leverage
automatic word alignments between the original sentence and the
automatic simplification, extracted using SimAlign (Jalili Sabet et al. 2020).
If a word in the original sentence is aligned but not to an exact match in
the simplification, then it is considered a replacement. If a word in the
original sentence is not aligned, then it is considered as deleted. For
identifying splits, we compute the number of sentences in the original and
simplified sides using NLTK,14 and register a split if the number in the
simplified side is higher than the one in the original side. In preliminary
experiments with a sample of 250 sentences, these algorithms achieved F1
scores of 0.76 for deletions, 0.78 for replacements, and 0.87 for splits. More
details can be found in (Alva-Manchego 2020, chap 3).

2. Determine the references to use. Based on the operations identified, we
treat three possible cases: (1) the system performed only sentence splitting;
(2) the system performed only lexical paraphrasing and/or deletion; (3)
the system performed another possible combination of operations.15

Depending on the case, a different set of references would be used: HSplit
for (1), TurkCorpus and ASSET for (2), and ASSET for (3). ASSET was
added for case (2) since it also contains manual references where only
lexical paraphrasing was applied.

3. Compute the metrics. Calculate the metrics’ scores using the selected set
of manual references.

14 https://www.nltk.org/api/nltk.tokenize.html

15 There is one more possible case: (4) the system did not perform any operation (i.e. the original sentence
and the system output are the same). However, there are no such instances in the Simplicity-DA dataset.
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Column “Selected References” in Table 11 presents the correlations of reference-
based metrics computed following the previous process. All metrics but SARI improve
their correlations when instances of “All” qualities are used. As before, this is caused by
better detection of “Low” quality simplifications.

5. Recommendations for Automatic Evaluation

Our meta-evaluation has allowed us to better understand the behaviour of traditional
and more modern metrics for assessing automatic simplifications. Based on those find-
ings, in this Section we set a list of recommendations related to the present and future
of automatic evaluation of Sentence Simplification systems.

5.1 Evaluation of Current Simplification Systems

Automatic Metrics. It is difficult to determine an overall “best” metric across all types
of simplicity judgements. For Simplicity-DA, BERTScorePrecision achieved the highest
correlations in all dimensions of analysis. For Simplicity Gain, SARI is better than all
BERTScore variants, but that difference is not statistically significant when assessing
low and high quality simplifications separately. In addition, there is not enough data
to determine if that behaviour translates to modern sequence-to-sequence models. The
comparison is even less clear for Structural Simplicity, since the correlations are heavily
dependent on the system type or, rather, on evaluating simplifications where sentence
splitting was actually performed, instances of which are insufficient in the dataset used.
SAMSA was specifically-developed for this type of simplicity evaluation, and manual
inspection suggests that it is doing what it was designed for. As such, even though
our analysis does not seem to support its use, we argue that this is caused by the
lack of adequate data with judgements on Structural Simplicity. Overall, we suggest
to use multiple metrics, and mainly BERTScorePrecision for reference-based evaluation.
SARI could be used when the simplification system only executed lexical paraphrasing,
whilst SAMSA may be useful when it is guaranteed that splitting was performed.

Simplification References. Simplifications in ASSET are well suited for reference-based
evaluation. Incorporating references from TurkCorpus and HSplit seems to only slightly
improve the correlations. In addition, it appears that selecting which references to use
for each sentence individually benefits the computation of metrics. However, for both
cases, the improvements are limited to evaluation of low-quality simplifications.

Interpretation of Automatic Scores. For Simplicity-DA, low scores of most metrics appear
to be good estimators of low quality, whilst high scores do not necessarilly suggest
high quality. This indicates that metrics could be more useful for development stages
of simplification models. Following the recommendation of using multiple metrics, we
suggest to use BERTScorePrecision to get a first evaluation. If the score is low, then it
signals that the quality of the output is also low. However, when the score is high, it
is important to look at other metrics, such as SARI or SAMSA, to verify the correctness
of the simplification operations. Nevertheless, for final arguments on the superiority of
one system over another, human evaluation should be preferred. For Simplicity Gain,
metrics’ correlations are low to moderate in general, so it is unclear if they are actually
measuring this type of human judgement. In the case of Structural Simplicity, inconsis-
tencies in the human judgements (i.e. high scores for instances where no splitting was
performed) hinders the interpretation of results.
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5.2 Development of New Metrics

Considering the advantages and disadvantages of current metrics, as well as the prob-
lems identified in the data used for evaluating them, we provide some suggestions for
the development of new resources for automatic evaluation.

Collection of New Human Judgements. We experimented with crowdsourcing simplicity
judgements following a methodology inspired by Direct Assessment, which has been
successful in Machine Translation research. We believe that submitting continuous
scores on how much simpler a system output is over the original sentence gives raters
more flexibility on their judgements, and facilitates subsequent analyses. However,
whilst the type of score collected (continuous or discrete) influences the ratings, it is
even more important to ensure that raters submit judgements that follow the kind of
simplicity that is intended to be measured. As such, it is paramount to train raters
before they perform the actual task, and establish quality control mechanisms through
out the data collection process. In relation to the kind of simplicity judgement to elicit,
both Simplicity Gain and Structural Simplicity have advantages over requesting abso-
lute simplicity scores. Therefore, we recommend to collect more human judgements
based on them, using modern simplification models and simplification instances with
adequate characteristics for what we are trying to evaluate.

Characteristics of New Metrics. For Simplicity-DA, Simplicity Gain and Structural Sim-
plicity, raters had to compare the automatic simplification to the original sentence, and
then submit a particular kind of judgement. Therefore, if humans submit evaluations
taking both the original sentence and the simplification into consideration, then we
should expect that automatic metrics do so too. Both SARI and SAMSA follow this
logic, and we would expect that new metrics take that idea even further. For example,
by replacing n-gram matching in SARI and syntax-based word alignments in SAMSA
by similarity of contextual word embeddings, as is done in BERTScore. Furthermore,
we have explained that not every manual simplification in multi-reference datasets (i.e.
ASSET, TurkCorpus and HSplit) has the same simplicity level. Therefore, it could be
useful to enrich references with human judgements on their simplicity. In this way, an
automatic score would not be only based on the similarity to a reference, but also on
the potential level of simplicity that the system output could achieve if it were an exact
match with that particular reference. Perhaps, metrics could even combine how similar
the system output is to a reference with the simplicity level that could be achieved.

Analysis Beyond Absolute Correlations. Our meta-evaluation has shown that different
factors influence the correlation of human judgements with automatic scores, namely:
perceived quality level, system type, and set of references used for computation. As
such, new automatic metrics should not only be evaluated on their absolute overall
correlation. It is important to also analyse the reasons behind that value considering
the different factors that could be affecting it. In this way, we can determine in which
situations the new metrics prove more advantageous than others.

6. Conclusions

In this article, we studied the degree in which current evaluation metrics measure the
ability of automatic systems to perform sentence-level simplifications, especially when
multiple operations were applied.
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We collected a new dataset for evaluation of automatic metrics following the Direct
Assessment methodology to crowdsource human ratings on fluency, meaning preserva-
tion and simplicity. The dataset consists of 600 automatic simplifications generated by
six different systems, three of which are based on modern neural sequence-to-sequence
architectures. This makes it bigger and more varied than the Simplicity Gain dataset.
In addition, we collected 15 ratings per simplification instance to increase annotation
reliability, contrasting with the Simplicity Gain dataset that has five raters, and the
Structural Simplicity dataset that only has three. Our data collection process can be fine-
tuned, and more system outputs should be included. However, our dataset’s features
are sufficient to offer an alternative view at simplicity judgements over system outputs.

We used our newly-collected dataset (Simplicity-DA), together with the Simplicity
Gain and Structural Simplicity datasets to conduct, to the best of our knowledge, the
first meta-evaluation study of automatic metrics in Sentence Simplification. We anal-
ysed the variations of the correlations of sentence-level metrics with human judgements
along three dimensions: the perceived simplicity level, the system type, and the set of
references used to compute the automatic scores. For the first dimension, we found that
metrics can more reliably score low-quality simplifications in terms of Simplicity-
DA, whilst this effect is not apparent in Simplicity Gain and no strong conclusions
could be drawn for Structural Simplicity due to inconsistencies in the ratings. For the
second dimension, correlations change based on the system type. In the Simplicity-
DA dataset, most metrics are better at scoring system outputs from neural sequence-to-
sequence models. Whilst this difference in correlation is more significant in the Struc-
tural Simplicity dataset, it seems to be caused by low representation of sentence splitting
in the data, rather than differences in system type. This highlights the importance of
analysing outputs of several types of systems (e.g. neural and non-neural) with all
the characteristics under study (e.g. split sentences), to prevent obtaining conclusions
that are limited to a certain subgroup of models. For the third dimension, combining
all multi-reference datasets does not significantly improve metrics’ correlations over
using only ASSET in the Simplicity-DA dataset. Further analyses on the diversity of the
manual references across ASSET, TurkCorpus and HSplit should be performed in order
to explain this result. In addition, preliminary experiments on per-sentence reference
selection based on the performed operations showed promising results.

Based on the findings of our meta-evaluation, we designed a set of guidelines
for automatic evaluation of current simplification models. In particular for multi-
operation simplifications, we suggest to use BERTScore with references from ASSET
during the development stage of simplification models, and manual evaluation for final
comparisons. The main reason is that BERTScore is very good at identifying references
that are similar to a system output. However, since not all references have the same
simplicity level, a high similarity with a reference does not necessarily indicate high
(improvements in) simplicity. Finally, we proposed a desiderata for the characteristics
of new resources for automatic evaluation. Namely: (1) to further collect Simplicity
Gain and Structural Simplicity ratings with better quality controls and diversity of
system outputs; (2) to develop metrics that take both the original sentence and the
automatic simplification into consideration, (3) to enrich manual references with their
simplicity level; and (4) to evaluate new metrics along several dimensions and not just
overall absolute correlation with human ratings of (some form) of simplicity.
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and Miloš Stanojević. 2016. Results of the
WMT16 metrics shared task. In Proceedings
of the First Conference on Machine
Translation: Volume 2, Shared Task Papers,
pages 199–231, Association for
Computational Linguistics, Berlin,
Germany.

Bott, Stefan and Horacio Saggion. 2011.
Spanish text simplification: An
exploratory study. Procesamiento del
Lenguaje Natural, 47:87–95.

Cooper, Michael and Matthew Shardlow.
2020. CombiNMT: An exploration into
neural text simplification models. In
Proceedings of The 12th Language Resources
and Evaluation Conference, pages
5588–5594, European Language Resources
Association, Marseille, France.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee,
and Kristina Toutanova. 2019. BERT:
Pre-training of deep bidirectional
transformers for language understanding.
In Proceedings of the 2019 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short
Papers), pages 4171–4186, Association for

25

Computational Linguistics Just Accepted MS.
https://doi.org/10.1162/coli_a_00418

© 2021 Association for Computational Linguistics Published under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://d

ire
c
t.m

it.e
d
u
/c

o
li/a

rtic
le

-p
d
f/d

o
i/1

0
.1

1
6
2
/c

o
li_

a
_
0
0
4
1
8
/1

9
5
6
5
0
7
/c

o
li_

a
_
0
0
4
1
8
.p

d
f b

y
 S

W
E

T
S

 IN
F

O
R

M
A

T
IO

N
 S

V
C

S
 IN

C
 u

s
e
r o

n
 0

7
 S

e
p
te

m
b
e
r 2

0
2
1



Computational Linguistics Volume 1, Number 1

Computational Linguistics, Minneapolis,
Minnesota.

Dong, Yue, Zichao Li, Mehdi
Rezagholizadeh, and Jackie Chi Kit
Cheung. 2019. EditNTS: An neural
programmer-interpreter model for
sentence simplification through explicit
editing. In Proceedings of the 57th Annual
Meeting of the Association for Computational
Linguistics, pages 3393–3402, Association
for Computational Linguistics, Florence,
Italy.

Feblowitz, Dan and David Kauchak. 2013.
Sentence simplification as tree
transduction. In Proceedings of the Second
Workshop on Predicting and Improving Text
Readability for Target Reader Populations,
pages 1–10, Association for Computational
Linguistics, Sofia, Bulgaria.

Fomicheva, Marina and Lucia Specia. 2019.
Taking mt evaluation metrics to extremes:
Beyond correlation with human
judgments. Computational Linguistics,
45(3):515–558.

Freitag, Markus, David Grangier, and Isaac
Caswell. 2020. BLEU might be guilty but
references are not innocent. In Proceedings
of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP),
pages 61–71, Association for
Computational Linguistics, Online.

Ganitkevitch, Juri, Benjamin Van Durme, and
Chris Callison-Burch. 2013. PPDB: The
paraphrase database. In Proceedings of
NAACL-HLT, pages 758–764, Association
for Computational Linguistics, Atlanta,
Georgia.

Graham, Yvette, Timothy Baldwin, Alistair
Moffat, and Justin Zobel. 2013.
Continuous measurement scales in human
evaluation of machine translation. In
Proceedings of the 7th Linguistic Annotation
Workshop and Interoperability with Discourse,
pages 33–41, Association for
Computational Linguistics, Sofia,
Bulgaria.

Graham, Yvette, Timothy Baldwin, Alistair
Moffat, and Justin Zobel. 2017. Can
machine translation systems be evaluated
by the crowd alone. Natural Language
Engineering, 23(1):3–30.

Guo, Han, Ramakanth Pasunuru, and Mohit
Bansal. 2018. Dynamic multi-level
multi-task learning for sentence
simplification. In Proceedings of the 27th
International Conference on Computational
Linguistics, pages 462–476, Association for
Computational Linguistics, Santa Fe, New
Mexico, USA.

Jalili Sabet, Masoud, Philipp Dufter, François
Yvon, and Hinrich Schütze. 2020.
SimAlign: High quality word alignments
without parallel training data using static
and contextualized embeddings. In
Findings of the Association for Computational
Linguistics: EMNLP 2020, pages 1627–1643,
Association for Computational
Linguistics, Online.

Jiang, Chao, Mounica Maddela, Wuwei Lan,
Yang Zhong, and Wei Xu. 2020. Neural
CRF model for sentence alignment in text
simplification. In Proceedings of the 58th
Annual Meeting of the Association for
Computational Linguistics, pages 7943–7960,
Association for Computational
Linguistics, Online.

Kincaid, J.P., R.P. Fishburne, R.L. Rogers, and
B.S. Chissom. 1975. Derivation of new
readability formulas (automated
readability index, fog count and flesch
reading ease formula) for navy enlisted
personnel. Technical Report 8-75, Chief of
Naval Technical Training: Naval Air
Station Memphis. 49 p.

Koehn, Philipp, Hieu Hoang, Alexandra
Birch, Chris Callison-Burch, Marcello
Federico, Nicola Bertoldi, Brooke Cowan,
Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondřej Bojar, Alexandra
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