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ABSTRACT   

Undesirable cross-coupling between polarisation-maintaining (PM) fibers can result in detrimental ghost artefacts within 

polarisation sensitive optical coherence tomography (PS-OCT) images. Such artefacts combine with coherence noise 

stripes (originating from Fresnel reflections of optical components), complex-conjugate derived mirror-images and 

further irregular autocorrelation terms originating from the sample. Together, these artefacts can severely degrade the 

detected images, making quantitative measurements of the tissue birefringence challenging to perform. 

 

In this work, we utilize the recently presented wavelet-FFT filter1 to efficiently suppress these imaging artefacts entirely 

through post-processing. While the original algorithm was designed to suppress one-dimensional stripe artefacts, we 

extend this methodology to also facilitate removal of artefacts following a duplicate or inverse (mirror) profile to that of 

the skin surface. This process does not require any hardware modification of the system and can be applied retroactively 

to previously acquired OCT images. 

 

The performance of this methodology is evaluated by processing artefact-corrupted PS-OCT images of skin consisting of 

simultaneously detected horizontal and vertical polarized light. The resulting images are used to calculate a phase 

retardance map within the skin, the profile of which is indicative of localized birefringence. Artefacts in the resulting 

processed PSOCT images were notably attenuated compared to the unprocessed raw-data, with minimal degradation to 

the underlying phase retardation information. This should improve the reliability of curve-fitting for measurements of 

depth-resolved birefringence. 

 

Keywords: Polarization Sensitive, Optical Coherence Tomography, Image Artefacts, Ghost Artefacts, Wavelet-FFT 

filtering, Image Processing. 
 

1. INTRODUCTION  

Polarization sensitive optical coherence tomography (PS-OCT) is a non-invasive optical modality which utilizes the 

polarimetric information carried within transverse light waves to infer measurements of the polarization properties within 

a sample. PS-OCT has been used extensively within biological tissues, finding particular application in opthalmology2, 

dermatology3, dentistry4 and for the enhanced study of tendon, bone, cartilage and ligaments5. Recently, PS-OCT 

systems comprised of polarization-maintaining (PM) fibers have been developed6–9, which are more clinically applicable 

and less prone to systematic errors when compared to systems utilizing bulk optics10. Such systems also avoid the 

undesirable polarization state fluctuations during beam propagation along single-mode (SM) fibers6,11. One notable 

disadvantage of PM fiber based systems is the introduction of ghost-image artefacts, which arise due to refractive index 

differences between the two orthogonal polarization modes of the fiber, effectively slowing beam propagation  along one 

axis of the elliptic fiber core with respect to the other6. Imperfections in splice angles and at fiber connectors can result in 

undesirable cross-coupling between the two channels6,7, creating vertically offset copies of the image which limit the 

accuracy of corresponding birefringence measurements. A hardware based method of removing these artefacts involves 

displacing them out of the OCT imaging range through the use of long PM fiber segments7. 
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Following processing, the reflectivity images of both the palm (Fig. 5B) and the dorsal hand (Fig. 6B) have visibly fewer 

artefacts present, resulting in an improved visualization of the underlying tissue structure. Within the upper stratum 

corneum at both skin sites, faint horizontal lines have persisted through the processing. These are what remain of the 

horizontal coherence noise stripes, which (as shown on Fig. 2B) are heavily attenuated albeit not entirely removed 

following the first application of the Wavelet-FFT filter. In addition, small sections of the ghost copies of the skin 

surface have persisted, perhaps due to them not aligning in a perfectly flat manner following the skin surface flattening 

operation, resulting in non-uniform offset parameters in the frequency-domain. This is particularly noticeable on Fig. 6D, 

where the imprint of the ghost artefacts can still be seen (again heavily attenuated compared to the unprocessed scan) 

within the phase retardance profile of the dermis. It is possible that these remaining artefacts could be increasingly 

suppressed with further optimization of the wavelet-FFT filter parameters discussed in Sec. 2.2, however it is likely that 

the ideal choice of parameters will depend on how far the various stripes differ from ideal horizontal lines. For example, 

increasingly wide line artefacts can be more effectively removed by increasing the decomposition level (݈) of the filter at 

the expense of some degree of image information. A more efficient approach in terms of preserving the underlying 

image information, particularly for blurred lines such as those observed here, may be to specifically FFT filter the 

decomposition levels which correspond to the range of stripe widths within the image1. 

 

4. CONCLUSIONS 

In summary, this algorithm provides a simple method of reducing parasitic optical artefacts from PS-OCT images, and 

can be applied retroactively to previously acquired scans without any hardware modification to the OCT system. The 

resulting PS-OCT images contain visibly reduced coherence banding, together with a reduction in ghost/mirror artefact 

intensity, with no apparent degradation to the underlying image. This facilitates a clearer view of the depth-resolved 

phase retardance profile which could increase the reliability of curve-fitting methods for measurements of tissue 

birefringence. Future work could focus on the optimization of the filter parameters for specific datasets, allowing for 

more complete filtering of any present artefacts.  
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